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Bifurcations of the self-consistent cranked harmonic oscillator
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The self-consistent cranked harmonic oscillator with volume conservation is examined more closely. Con-
trary to previous claims, bifurcations corresponding to tilted rotation are found to exist, even in systems with
axially symmetric ground states. The tilted angular-momentum vector is proven to always lie in a principal
plane of the ellipsoidal potential. The case®¥le is used for illustrative purposes. Detailed graphical results
are provided for the properties of the bifurcating trajectories, which are found with the aid of the cranked
bifurcation theorem discussed in a previous publication.
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[. INTRODUCTION conservation(VC) constraint is intended to model nuclear
incompressibility. It has been shown that under these circum-
stances, the potential is a true mean-field approximation to a
peculiar internucleon interaction including two-body+three
-body+ --+n-body+ -- interactions, where the two-body

Since its introduction by Inglis in 195@1], the cranking
model(CM) has been the main theoretical pillar for describ-
ing collective rotation in deformed nuclei. In the original

version of the CM, the moment of inertia for low spins was ' W . )
obtained by summing the inertial effect of each particle as ilpart Is the "doubly stretched” guadrupole-guadrupole inter-
action[5-7]. The addition of certain embellishments, such as

is dragged around by a uniformly rotating deformed poten-_ . = . . - ’
tial. Since then, it has evolved into the self-consistent CrankSpln orbit coupling and the pairing force, extends the SC

) o ) ) CHO to a more realistic nuclear model, but with the sacrifice
ing model(SCCM), which is a self-consistent uniformly 10- ¢ o\ aihematical transparency. The present paper is con-
tating solution of time-dependent mean-field equationsgereq with the pure SCCHO, which has some relevance for
Since the rotational motion in the SCCM is self—sustalnmg,giam resonances. For most of its history, the SCCHO was
the appellation “cranking model” is somewhat inappropriateappjied only to rotation about a principal axis of the ellipsoi-
but persists by tradition. Unlike the original CM, the SCCM ¢a| potential, as reviewed in the textbook of Blaizot and
is applicable to high-spin states, providing the chief theoretRipka [8]. Usually, the discussion was confined only to the
ical backbone[2]. More recently, it has been shown that ground-state band and its termination at an axially symmetric
self-consistent cranking is not limited to the rotation of per-oblate state. A more systematic approach was attempted by
manently deformed nuclei, but also provides a description offroudet and Arviey9], who found a new solution bifurcat-
certain anharmonic vibrational banf3]. The condition for ing from the terminal oblate state. Since the SCCHO system
applicability is that the nucleus must have at least one intrinis not a rigid body(notwithstanding the rigid-body moment
sic C, symmetry axis and that the vibrational mode carryof inertia at low sping one may ask whether the rotational
nonzero angular momentum about this axis. According to thenotion is necessarily confined to a principal axis. If not, then
cranked bifurcation theorefCBT) [3], when the nucleus is one has the phenomenontdfed rotation i.e., rotation about
cranked about a symmetry axis, symmetry-breaking trajectoan axis tilted with respect to a principal axis. In 1987,
ries representing the vibrational bands bifurcate from axiallyCuypers[10] was the first to pose this question for the SC-
symmetric states at critical points corresponding to the van€cHO. His conclusion was that the model only permits
ishing of random-phase approximati@RPA) frequencies in  principal-axis(PA) rotation. Nevertheless, Heiss and Nazmit-
the rotating frame. These points are characterized by the amtinov [11] subsequently claimed to have found examples of
gular velocitiesQ)=w,/K,, where v, is a collective vibra- tilted-axis(TA) rotation in the SCCHO. In a recent followup
tional RPA frequencylaboratory framgfor a mode built on  paper[12], these authors make the more specific statement:
an axially symmetric state projecting integer spipon the  “A major outcome of the present paper is the result that, in
symmetry axis. The main purpose of this paper is to illustrateeven-even nuclei, tilted rotations occur if and only if the
the consequences of this theorem using a mathematicallyucleus has a triaxial shape in its ground state.” An inescap-
tractable model. able implication of the present study is that both the conclu-
An ideal testing ground is provided by the self-consistentsion of Cuypers and that of Heiss and Nazmitdinov are in-
cranked harmonic oscillatg8CCHO), especially in view of  correct as shown by the example ¥Ne. It should also be
the elegant RPA analysis provided by Kurasa@ many  mentioned that in the past ten years, the topic of TA rotation
years ago. The SCCHO itself has an old, but recently somehas become a major focus of high-spin physics, both theo-
what confusing history. In this model, nucleons move indeetically and experimentallfl3]. The emphasis in this paper,
pendently in a rotating three-dimensional anisotropichowever, will be on the SCCHO.
harmonic-oscillator potential, whose equipotentials maintain The SCCHO is first reviewed, with a derivation of the
constant volumes while the potential frequencies are variaequations for rotational equilibrium close to that of Cuypers.
tionally optimized for each angular velocity. This volume- It is then shown that if tilted rotations exist, the axis must be
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confined to a principal plane. The equations are then applied R 1 3 .
to the case of%Ne, which has an axially symmetric prolate (A= 5t EmZ)SE wx2—Q-((PAframe, (5
ground state and an axially symmetric oblate excited state. m k=1

Bifurcations from these two states are found with the guid\yhere the potential is just the familiar three-dimensional
ance of the CBT and the known RPA frequencies. Bifurca-_ . : . . = - >
tions corresponding to both PA and TA solutions are ob-frl'sofmplc oscillator anq the grgnkmg tedr£ with ¢
tained, the former havingk|=2 and the lattefK|=1 as the =FX p allows for an arbitrary filting of the angular mo-
spin projections on the symmetry axis. In order to obtain a"r?entum _relatl\_/e to the p_rlnslpal axes of the _potentlal
the bifurcations, it is essential that the orbitals of the cranke(ﬁ three-dimensional crankl_rjg. The VC constraint re-
oscillator be occupied diabatically. The properties of the traquires that for any vectof), the oscillator frequencies
jectories at high spin are discussed in detail. Although thé@bey the conditionw w,wz=1. In the spin frame, the
solutions appear as rotational equilibria, they are really susingle-particle Routhiam=rg is given by

perpositions of degenerate vibrations and therefore may be

interpreted as anharmonic multiphonon vibrational bands. It p? 1 vy s 3 _

is demonstrated that Cuypers’ original equations hpaies rs=omt gmwoz 2 kijxiX; — Q€3(spin frame,  (6)

of TA solutions bifurcating from the same point. An addi- ==l

tional condition overlooked by Cuypers rules out one mem-+here the six parameters;(k; =k, i # ) determine the

ber of each pair as spurious. Ironically, not only do TA solu-shape and orientation of the potential tilted relative to the

tions exist, but there are too many of them. direction of the angular momentum. The VC condition in
this case is obtained from the determinant of the symmet-
ric matrix k:
Il. FORMULATION OF THE SCCHO
A. Two rotating frames detk =1. (7)
The SCCM Hamiltoniarfor Routhian Rin a frame rotat- In Eq. (6), the direction of the angular momentum has
ing with angular velocitys_)) is given in general by arbitrarily been Iabgled as the three-direction in accord
with Cuypers[10] (|[€]|=¢3).
- - The two formulations, being related by a rotation of co-
R=Hur-Q-L, (1) ordinates, are entirely equivalent. In both approaches, the

- . rotating equilibrium solutions are obtained from the station-
whereL is the angular momentum vector ahtjye is the 5. \ariation of(R) with respect to the potential and orienta-
mean-field Hamiltonian for nucleons. For the SCCHO, 5y harameters, subject to the appropriate VC constraint. In
L is assumed to be therbital angular momentum, the in- practice, it was found that the use of the spin frame is more
trinsic spin being taken into account only in the occupationadvantageous, both theoretically and numerically, in locating
of the single-particle levels. The mean-field Hamiltonian hasthe bifurcation points, as well as providing more reliable

the usual form convergence. In addition, the proof that the tilted angular
momentum must lie in a principal plane of the ellipsoidal

A potential becomes trivial in this frame. Therefore, the spin

Hue=T+V=3 [t) + ()], ) fra_me will be used henceforth. Afterwards, the stationary so-

i=1 lutions are rotated from the spin frame to the PA frame to

provide the tilt direction and the intrinsic shape parameters

. . . _ 1= .
wheret is the kinetic e_nergyt—5|p|2/m, andv is the de- ot the oscillator potential in Eq(5). The adopted intrinsic
formed potential for théth nucleon. The Routhian may be shape parameters aeeand v, defined by[2]:

defined relative to one of two reference frames. In one
case, the reference frame coincides with the principal axes

of v (PA frame, and in the second case with the direction  , =, (e 7){1 _26 C05<7+ Z—WK)] k=1,2,3,(8)
: 3 , 12,3,

of the angular momentuitspin frame. Thus, if one writes 3
where wq(e, y) is chosen to secure the VC condition
A w1w,w3=1. From now on, all energies will be measured in
R=>r(i) (3)  units of aky=41/AY3 MeV, all frequencies in units oy,
i=1 and all distances in units dfi/(méag)]Y2 This is tanta-

mount to settingh=m=ay=1.
Since the single-particle Routhian in either frame is a qua-

dratic form in coordinates and momenta, it may be diagonal-
A ized by a linear transformation to normal modes with the aid
L=2 €, (4)  of a Bogoliubov transformation. The details for E&) are

reviewed in the Appendix. Lel,= BlBk (k=1,2,3 be the

the SCCHO single-particle Routhian in the PA framme, normal-mode number operators, Wh@ﬁe By are the boson
=rpas IS given by creation and destruction operators, satisfying the usual com-

and

I
Y
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mutation ruleg By, Bf]=8, [B¢, BJ=0 (and H.c. equation IR, Q, m) IRy ddetk

g;(renn the diagonalized single-particle Routhian takes the ak] = ok, M s
_2((78) +2<(98) +2<(98)
3 =21\ T 2\ T 3\ oL
rS:E Sk(Nk+})- (9) akij £7¢gg akij =€y akij £=¢€g
= 2 adetk
As shown in the Appendix, the normal-mode eigenfre- e ak; =0 (16)

quenciese =g, are roots of the polynomial equation , . )
together with the constrair(7). These equations can also

P(s) = (63 - a,(s)? + aye? - a5= 0, (10) be written in another form in terms of the cartesian com-
ponents of the quadrupole tensQy,

where R
ay =Ky + kop+ kgg + 202, Qm= <2 Xl(i)Xm(i)> - (17)
i=1
From the Hellmann-Feynman theordm4] and Eq.(6),
ay = Ky 1Ko + Ky 1Kaz + Kookaz = (Ky0)? = (K39)? = (Kp9)? one then obtains y 4] a-(6)
= 02(Kqq + koo — 2Kgq) + Q4
urteTe @<Bs> _ Q% s

ap = detk — Q7ky1Kaz + Kookag = (Kig)® = (Kpg)?] + kas2?,
(11) with the convention that all distances are measured in
units of [#/(méag)]¥2. The Lagrange multipliep can be
and the determinant is explicitly given by obtained from Eq(16) and Euler’s theorem on homoge-
neous functions, as follows:
detk = Kygkookas — Kya(Kaa)® = Koo(Kgg)? = kag(kso)? sdetk
+ 2Ky Ky Kos. (12) (Vo =2 k.J ak = u>, kj——— =3u detk = 3p.
i= i= |
It should be noted thalP(e) is a cubic equation 2. In - - J (19)
order for a physical solution to exist, the roots of this
cubic must all be real and positive. When this is the case, As shown by Cuyper$10], the virial theorem holds for
one must still choose the sign of each eigenfrequesicy the tilted oscillator, so tha(l\/Q:%(HMQE%E, whereE is the
It is not true that all three eigenfrequencies must alwaysotal energy in the laboratory frame. Therefore
be chosen positive, as assumed in previous papers. In fact, N
the correct sign is determined by the norm of the corre- =5E. (20)
sponding eigenvector as discussed in the Appendix, &ne total energy can also be written as
point to be elaborated on further.
Assuming a fixed diabatic occupation, Igfi) be the ei- E=(Ry + Q{Ls). (21
genvalue ofN, for the single-particle orbital occupied by the

ith particle, and define the quantiti&s, 3., andX3 by _ ) i .
B. Equations for rotational equilibrium—analog of Riemann’s

theorem

1
=2 (nk(') + §>’ k=1,2,3. (13 From Eq.(16), the explicit evaluation of the conditions
=1 for rotational equilibrium requires the derivatives of the
Then the expectation value of the total Routhi@mergy  normal-mode frequencies with respect to the paramégers
in the rotating framg the sum of the individual contribu- These can be obtained most simply by using Cuypers’ im-

A

tions from Eq.(9), is given by plicit differentiation of the polynomial equatiofi0):
(R)=e131 + &%, + £323. (14) de __ 0PIk (22)
ki Ploe’

The rotating equilibrium solutions are those that are sta-
tionary with respect to variations of the parametkfsn  where, of coursek;, €, and () are regarded as the inde-
(Ry, subject to the VC constrairi¥). Therefore, defining pendent variables. The derivatives are trivially calculated

the functionalF(k, €2, u) by as, for example,
= - JP
F(k, Q, u) =(Ry — u detk, (15) (9_ — 28(384— 2a482 +a,), (23
&€

where detk is given by Eq.(12), and u is a Lagrange
multiplier (as is{}), one obtains the equilibrium solutions wherea, and a, are given by Eq(11). Focusing for the
from the set of six equations moment on the derivatives with respect to the tilt param-
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etersk;; with i #j, one obtains angular momentum must lie in a principal plane of the ellip-
s soidal mean field
7T _ _ 2 _ o2 This result is somewhat analogous to Riemann’s theorem
ASE 2kagkoz ™ kazkos = kaall —kae”), (243 for a self-gravitating ellipsoidal fluid magd5,16, which
requires that the angular momentyand vorticity) lie in a
Jdetk principal plane of the ellipsoidal mass distribution.
= 2(Kq Koz = KygKao) - (24b) Although the treatment of the SCCHO generally follows
that of Cuypers, the last conclusion seems to have eluded
Furthermore, him for two reasons. The first is that the conditigp=0 was
imposed by Cuypers as a constralmfore the variation.

aP ; T
= 2Ky — Ky Kis — KpsQ2 = kyge?), (254 Consequentlyk;, never appeared as a variable, resulting in

dKq3

Koz the automatic omission of the equatioR(k, ), w)/dk;,=0
and its implications. Second, he seemed to have a bias
gdetk against the existence of tilted solutions. This can be seen in
= 2(KqoKyg = Kogkyq) . (25b) the treatment of the equations corresponding to
IKag IF(k, Q, w)ldki3=0 and dF(k, Q, u)/dk,3=0. The former
Finally, equation, withk;,=0 taken into account, is explicitly given
b
i = 2(Kq oKaz — KygKog — K162 (26a '
ke 12K33 7~ K1gKo3 = K128 ), ) g (kzz_Qz_Sz)Ej - o (a1
13 = 8(384—2a482+a2) - ukop (=0, (31)
ddetk !

= 2(ky Koz~ KyK3a)- (26b)  while the latter equation can be obtained from it by ex-
changingk; s« ko3 and ky1ky,, so thatk,; factors out.
Now, the definition of the spin frame is not unique. Given Noting the existence of solutions with;=k,;=0 (as well

a solution of Eq(16) characterized by a matrikk, one can ask;,=0), which corresponds to PA rotation, Cuypers im-
obtain another physically equivalent solution by performingmediately jumped to the conclusion that these areotfig

an arbitrary static rotation about the 3-axis, which preservesolutions. Unfortunately, he failed to consider the possibility
the general form of Eq(6). In particular, one may define a that there might be solutions in which, for examptg,#0,

Jd k12

frame in which the condition but the expression in braces vanishes. In that case, of course,
ko3=0, which would satisfy the companion equation, as well
ki2=0 (27) as Eq.(30). As shown by explicit calculations, such TA so-
is satisfied, which simplifies everything, especially the lutions indeed do exist, in addition to the usual PA solutions.
equation dF(k, Q, u)/dk;,=0. From Egs.(16), (18), and The situation, as it now stands, is that only four potential
(26), this condition can be written either in the form parameters need to be solved fiy, ks, kss, and eitherk;
or kys. The exchangek,; ;< ky3 andk; 1<k, give physically
Q12=2uk;3Ko3, (28) equivalent solutions, as can be seen from E24) and(25).

The VC constraint reduces the number of parameters to

or, equivalently, three, while the Lagrange multipliet, as given by Eq(20),

gP\1 gpP\™! gpP\! can be expressed as a function of the other parameters.
2Ky 3Ko3 El(—> +22<—) +23<—> s Since the nonlinear equations are solved numerically for
de ) _ de) _ de ) _ -
86y £=ep =63 each value of the angular velocify, the total angular mo-
=0. (299  mentum(Ls), which is the true observable, can be calculated
o ) with the aid of the Hellmann-Feynman theorem as follows:
The Eq.(29) implies that either
Kuskos = 0 (30) (Ly=—{ IR\ R
dQ dQ

or else there exists a solution for which the quantity in

brackets vanishes. For the latter possibility, however, Eq. __s de s de
(28) shows thatQ,,# 0 if Eq. (30) does not hold, even “T 0l . A sa)
thoughk;»,=0. This would violate the consistency between = e
the mean-field potential and the density distribution, im- de

plying an unphysical solution. The conclusion then is that ~33 Q)

physical solutions must obey E¢30). These have the o

property that eithelk;3 or ky3 (or both must vanish. If

ki3# 0, then the angular momentum is tilted in the 1-3 lcyypers includes a correction for spurious center-of-mass motion
principal plane of the ellipsoidal potential, while K,z  that is omitted here since it is ai'® correction, which is of the
#0, it is tilted in the 2-3 plane. The conclusion then is same order as other omittes® corrections lying outside of the
physical solutions of the SCCHO have the property that thenean-field approximation.

2

(32)
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The derivatives of the eigenfrequencies can be obtained (Lyy=3,-3;=L,. (38)
by implicit differentiation of the polynomial equatidii0) ) . )
as follows: Motivated by the CBT, one may seek bifurcations that

break the symmetries at certain critical frequendies().. .
de dPlaQ) In order to find bifurcation points fatilted (TA) “rotation,”

90 aPlas’ (33 set ky1=Kp=w?, Kg=w3, ki3=0, and assumét;= dky3#0
but infinitesimal(equivalently, one may takk,;=0 andk;;
where +0). Then, Eq.(31) takes the form
P
a0 20[ 2% + (kg3 + Koy = 2Kz = 20%)e2= Kyokaz — Ky 1Kas x S+, . So+2, .\ PPN
23
w3tw, +Q. w3tw, —Q. w3—w, =
+k§s+k§3+2k33(22], (34) 3 2 1 2 c 3 1 c 3 1 C
assuming thak;,=0, which should also be taken into ac- + _2—+39 —-8uw, | =0. (39
count in the expressio(23) for dP/oe. @3 WL ¢
In order to have a tilted solution, the quantity in brackets
Ill. BIFURCATION POINTS OF THE SCCHO must vanish giving

A. Bifurcation equations

S.+33 N 3,+3, + 3-3,

wz3to, +Q wz3to, —Q wz3-0, -

According to the CBT[3], for a givenaxially symmetric
mean-field reference state with corresponding RPA eigen-
mode frequencies,, the bifurcation points resulting from 3,-35 43,
cranking about the symmetry axis should occur at the critical + m =8uw, =—,
cranking frequencie§).=tw,/K,, K,#0 being the angular
momentum projected by the RPA exciton on the symmetrywhere the relat|or)u Fw3S3=334/w? from Eq. (37) and
axis. The two signs allow for time-reversal symmetry. Thethe VC constrainiv? w;=1 were used in the last equality
RPA modes withK,=0 do not provide any bifurcations. on the right-hand S|de Apart from notational differences,
Since the blfurcatlng trajectory represents repeated applicd=q. (40) agrees completely with Kurasawalgl] RPA
tion of an exciton operator, the RPA mode must not be a purequation for|K|=1 excitations built on axially symmetric
particle-hole excitation, but should have sufficient collectiv-states of the CHO, with the identificatid®, =w,.” With a
ity to allow repeated application. Another caveat is that little algebra and the aid of Eq$37) and (38), the Eq.
=0 (Goldstone modemay not correspond to a bifurcating (40) can be written in the following simpler form:
trajectory in the sense of the CBT if the associated RPA
normal-mode operator is not a true exciton, but rather a con-
stant of motion. Nevertheless, it is sometimes convenient to Qe [ QF - Q¢ (0 +0]) + = E =0. (41
nominally regard such a mode as a bifurcation point if it 3
corresponds to a terminus of a collective band generated bjhe root).=0, which represents a Goldstone modee
crankingperpendicularto a symmetry axis. Ref.[4]), does not correspond to a true bifurcation. There-

Consider now a fixed axially symmetric mean field with fore, the bifurcation points for tilted rotation are in gen-
w=w,=w,. Cranking about the symmetry axi8-axi9  eral the roots of the cubic equation
with angular velocity(Q) then provides the following three
eigenfrequenciefroot of Eq.(10)] of the Routhian:

(40)

93—Q(w2+w2)+ﬂ:o IK|=1 (42)
g1=w, +Q, g=w, -0, &3=w; (35 D T
with corresponding occupation factofs,, 3., 33). Under ~ With one qualification discussed in the following section.
these conditions, the variation of the Routhian with the Next, consider the bifurcation points for PA solutions,
VC constraint, which project|K|=2 units of angular momentum on the sym-
metry axis. In this case, the relevant multipole of the mean
field is proportional to¢—x3. Therefore, with the aid of Egs.
(16)«(18), setky=w] = Koy, ko= +3kap, Kaa=w3, Kiz=kos
=0, in the expression

J
a_cw[zl(wl +Q) +2(0; —Q) + 2303~ Mwiwg] =0,

W=w,, s (36)

1 k k
yields the relation E(Q“ Q) - M(r?dEt ddet

dKqq koo

) 0. (43
(21+22)wl Sawz=2u. (37)  Theresultis

The associated angular moment{igy. (32)] is then given *To go over to Kurasawa’s notation, l&t;—3_ 3,53, 3,
by —3, w3— oy [cyclic permutaiofiw;wyws)]

064308-5



EUGENE R. MARSHALEK PHYSICAL REVIEW C68, 064308(2003

4-'"'I""I""I""I""I""I""I"_ 4 T

3 [ > [
—— O 3 N, @ Q e
c Q ] c 2F 22240 N
3 2t (vf°"yi ———— ] o T 20 (0014
- Prtas N A >
o 14 -~ © 1f \ ia <7 14/ -
w— kx4 [ Pl
el wy(prol.) 1 © [ s - ~, 7t
? 22 \\\(\ ~~~~~ 22 g-, 0 C //’// 1 2 i\\\\ -1
[ 4 PrO/ \\\\\\\\ - L //’/ A\
of N . “ ot ,/‘14/ 22 ™
____—;\\\ _ - ~.
14 3 1y ™~
- PRI W SN U W W U T W W U T W W T W M U U S T NN NN AT R RN - , ,
-2 )
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 . 1 5 . )
Q Q

FIG. 1. Eigenfrequencies as a function of the rotational speed
for the TA bifurcation from the ground state &iNe. The vertical for the two TA bifurcations from the oblate rotational band-

and horizontal axes are in units df. The dashed lines are the termination state of°Ne. The vertical and horizontal axes are in

eigenfrequencies for the prolate ground state cranked about the . o . . .
. - . : units of wy. The dashed lines are the eigenfrequencies for the oblate

symmetry axis. The solid lines are the self-consistent eigenfrequen-, : .
: : : : state cranked about the symmetry axis. The solid lines are the self-
cies for the symmetry-breaking bifurcation. The numerals 14, 14,

22 are the corresponding diabatic occupation SUMS tonsistent eigenfrequencies for the symmetry-breaking bifurcation.
P 9 P ' The numerals 14, 14, 22 are the corresponding diabatic occupation
sums.

FIG. 2. Eigenfrequencies as a function of the rotational velocity

szl wJ_EZ

22 -
(0, + Q)0 (0, = Q) beled as the 1-axis. This is because the ground and oblate
The nontrivial solution corresponds to the vanishing of thestates are connected by a finite rotational band of the ordi-
expression in brackets. With the aid of the second equalitjpary kind, generated by cranking the ground state about an

in Eq. (37) and the VC condition? w3=1, the result can gxis. pgrpendic_ular to the symmetry axbaxis. The Iabel—.
be written in the form ing is immaterial for observable properties. However, since

relabeling involves permutation of the potential frequencies
b p 2,-3 w,, Wy, w3, it affects the assignment of the deformation pa-
+ + - ; .
w, +0, o, -0 QO rametery in Eq. (8). For this reason, the results are redefined
] . , ) according to the conventional labeling in extracting this de-
which agrees with Kurasawa's RPA equation #=2  formation parameter in the calculations to follow. Also, in
excitations, given the relatiof); =w,/2, which is in ac-  Figs. 1 and 2, the symmetry axis for the oblate state is la-
cord with the CBT. This can be equivalently written as thepgled asw,(obl.).
cubic equation

+4uws|=0. (44)

= 433, (45)

3 1 2 1 6 I-O

Q- -0 Qc+-w, =0, |K[=2. (46)

2 4 "3 Systems with axially symmetric ground states are of spe-

It should be noted that the replacemént —-Q. in Egs. ~ cial interest for two reasons. First, as will be demonstrated,

(42) and (46) has the same effect 43— -L,, equivalent to One of the three roots of Eq42) does not correspond to a
swappings,; and3.,. This just provides théclassical time- ~ true bifurcation from the oblate band-termination state. Sec-
reversed bifurcations. It will be sufficient to taka=>3, so  ond, there is the claim of Heiss and Nazmitdind?] that
that the bifurcations are based on a mean-field state witBUch systems cannot have TA bifurcations, which is in dis-
Lo=0. agreement with the present work.

The equations for the bifurcation points can be applied to In the caseX;#X,#X3, when the ground state of the
either the axially symmetric oblate band-termination stateNucleus is always triaxial, the E¢42) provides three genu-
provided thatzlgﬁzzy ensuring tha‘_ogﬁo, or to an ax|a||y ine TA bifurcations based on the aX|a”y SymmetrIC oblate
symmetric ground state, provided tH&f=S,, implying L, ~ band-termination state when such a state exists. The condi-
=0. In both cases, the symmetry axis has been arbitrariljion for the existence of such a state BK/3;<(y27
labeled as the 3-axis to maintain the applicability of a single+\2)/(27-2) [4,9]. The situation is different for a nucleus
set of equations. Usually, the ground-state symmetry axis i&ith an axially symmetric ground state, which always has an
labeled as the 3-axis, while the oblate symmetry axis is laeblate band-termination state. The condition for this is the

B. The case of axially symmetric ground states
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equality of two occupation sums, sdy=2. Then the bifur- cation with the negative sign of).. In the case of a
cation Eq.(42) depends only on the ratioc=3,/25. The first  nucleus with a triaxial ground state, on the other hand, one
equality in Eqg.(37) and the VC constraintuiwgzl imply  expects three TA bifurcations based on the oblate band-

that termination state, if it exists, while for the ground state the
CBT is inapplicable.

(343,28 [ 235 \1B b This brings up the assertion of Hess and Nazmitdinov

@3~ 254 ’ LAY+, (oblatg. (47) [12] that the SCCHO does not permit TA solutions for a

_ ) ) 3 nucleus with an axially symmetric ground state, but admits
From this, one infers that i&,=35 thenr=2w3"~1. I one based on an oblate state of a triaxial nucleus. Although
fact, Eq.(42) can be written entirely in terms dl; and  thejr argument seems nebulous, the essential part, given in an
w3, which makes it easy to see that it factors as appendix, is the simple dictum that solutions for cranking
frequencies() exceeding in magnitude any of the potential
Qo+ )~ 0[O+ (w3~ )~ 2030,1=0. (48) frequenciesw,, w,, w5 are “unphysical,’even if the eigenfre-
The rootwz—w, is the energy of a pure partic]e_ho|e ex- quenciesgj of the SCCHO are all realThis criterion would
citation as first noted by Kurasawa and therefore this doe&ender all the TA bifurcations points for the axially symmet-

not correspond to a bifurcating trajectory. The roots of thefic nucleus unphysical, but would admit the intermediate bi-
residual quadratic equation are furcation for the triaxial nucleus. Although everyone agrees

that a pair of complex values @f; cannot correspond to a
Q)= %(wl - wy) * %\;(wl +wy)’+ho, ws, (49 physical solution, the disagreement here in effect is focused
) . ] ) .__on the admissibility of a real but negatieg As stated in the
which, in fact, do correspond to genuine TA bifurcation preceding paragraph, there is no reason to rule out such so-
points. The point), (-) clearly has a negative sign, which |ytions in the present context. As shown in the following

is entirely permissible, since a bifurcation carries spin thakgction, the numerical results are physically quite reasonable.
may be in the same or opposite direction to that of the

reference statgpro and contra modgs Thus, Q. (-)
would be a contra mode and. (+) a pro mode. More-

C. Bifurcation points for ?°Ne

over, for each cranking solution, there is (elassical Extensive SCCHO numerical computations have been
time-reversed solution with opposit@, associated with performed for the celebrated nucleiisle, wh|ch. has an axi- .
the time-reversed reference state. ally symmetric prolate ground state and an axially symmetric

It is obvious from Eq.(49) that Q. (+)>w, for a TA  oblate band-termination state. Assuming occupation of the

bifurcation from the oblate band-termination state. In theOrbitals by neutron-proton pairs, the set of occupation sums
case of a TA bifurcation from the ground state, &) with 121, 22, 23}={14, 14, 22 for the ground state. For the oblate

Lo=0 explicitly yields the bifurcation points band terminus, one hd&,, X5, X3}={14, 22, 14 if the sym-
metry axis is labeled bws. The frequencies of the oscillator
Qu#) = +0? + o, (50)  Potential for the oblate state are given by E4j7), while for

_ _ the ground state they are given by
which correspond to degenerate time-reversal partners, so

that it is sufficient to focus on the positive sign. In this w3=(21/29?  , = (/2" *(ground statg (51)

case, the conditiof),(+)>w, also holds. The EA(35) a5 follows from the self-consistency condition, S,
implies then that one of the eigenfrequencies of the SC-:(U323, the VC constraint an&,=3,. Note that theK=2
CHO, namely s, is negative at the bifurcation point, and hityrcation point from the ground state is just given by
by continuity in some neighborhood of this point. Is a0 —w,/\2. as follows from Eq(46) with L,=0. The criti-
three-dimensionalcranked oscillator with a real negative cr;I bifLurca'tion points foP°Ne are given inOTabIe | below.
frequency unphysical? In the present context with a finite The bifurcations are labeled as follows. The TA bifurca-

number of particles and a fixed diabatic occupation of thetions are denoted by ¢or to when based on the ground or
levels of the oscillator, the answer is not at all. As dIS'oblate state, respectively. The PA bifurcations are denoted by

cussed in the Appendix, the diagonalization problem for
: - ) Ok or pax when based on the ground or oblate state, respec-
the tilted CHO, having the same mathematical form as th ively. The usual ground-state band, which is also a PA bi-

RPA, requires that th? sign of th_e e_lgenvalues b_e Choseﬁjrcation from the oblate state, is denoted by the letter g. The
according to the positive-norm criterion for the eigenvec-

) ) . ) . TA bifurcations, which have brokensymmetry[13], corre-
tors. For the eigenvalues in question, this automancallyspond to a quantized sequence of angular momenta given by
leads to the negative sign choice. In summary, for 31_:L0+nK whereK=+1 andn=0. 1.2 is the number of
nucleus with an axially symmetric ground state, thevibrational phonons. The PA bifurcations, which have good

present study provides two TA bifurcation poingk. of - )
different magnitude and opposite sign based on the oblatS rmmn;?rt]rghgs;ivc;onrrg;pzocli;%ab%l:e\lllvﬂittlﬁtla(d:iezquence of angu

band-termination state with a given sign of the angular
momentum. The replacemeifil, — -, then gives the

degenerate time-reversed solutions with opposite angular
momentum. Based on the ground state, there is one bifur- All the bifurcating trajectories issuing from the ground
cation for ). >0, and a degenerate time-reversed bifur-and oblate states ciNe were computed by numerically

IV. NUMERICAL CALCULATIONS
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TABLE 1. The first column gives the reference state for the L ? T ]
bifurcations, the second the angular momentum, the third and 30 - tg, |lto -
fourth, the potential frequencies perpendicular and parallel to the [ ! t ]
symmetry axis, respectively. The fifth column labels the bifurca- 20 F po,| lPa, 3
tions, as explained in the text, while the last column provides the [ ]
critical bifurcation frequencies. Note that the zero-frequency termi- 10 _ _
nus of the g band has been nominally included as a bifurcation
point. : \ \ g \

~4 0
State Loh) o, (0  wsymde) label Q(ap) [ ]
tg,  1.37804 -1op ]
Ground 0 1.16260  0.73984 pg 0.82208 p toy Po_2
g 0.00000 ~20F ]
to, 1.34917 -30f 3
to., -1.61192 SN RN N TN
Oblate 8 0.91964 1.18240 po  0.50005 -2 -1 0 1 2
po, -0.73514 Q
g 0.23509

FIG. 3. Angular momenturh (units:#) as a function of angular
velocity Q (units: &) for the bifurcations of%Ne. The horizontal
solving the nonlinear equations discussed in Sec. Il B fowsolid line atL=0 represents the ground state, while the horizontal
each value of the angular velocify. These solutions repre- dashed line at_=8 represents the oblate state. The bifurcating
sent rotating equilibrium states, although there is no guararfurves are labeled according to conventions discussed in the text.
tee that the equilibrium is stable. This question is briefly
addressed in the concluding section. The eigenfrequengies Neighborhood of the bifurcation point of poeverywhere
of the SCCHO with the Corresponding occupation sums fo|e|Sed|_/dQ<O, i.e., the trajectories exhibit backbending. All
the tilted solutions are provided in Figs. 1 and 2. trajectories other than the g band extend to infinite magni-

It should be noted that the eigenfrequendisslid lineg  tudes ofL. The sequences tpand pa, are especially inter-
are provided only for the limited range 6f values actually —esting because the spins descealthough the energies in-
computed. The eigenfrequencies for the PA bifurcationgreasg with L eventually becoming negative. This poses no
could also have been included, but were omitted to avoidProblem in itself, since the degenerate time-reverse solution
clutter. Figures 1 and 2 clearly show the diabatic occupatiofias positiveL. Taking pa, as an example, this implies the
of the levels of the cranked axially symmetric system beingduantized spin sequent&3, 6, ..., 0,2,4, .... Thus, one has
inherited by the bifurcating levels. For TA solutions, one of & descending followed by an ascending sequentevafues.
the eigenfrequencies is always negaties expectedbe-  Since the modes in question are of the contra type, this is not
causew, —() or w, +Q) become negative in the neighborhood necessarily unphysical, but rather peculiar. On the other
of the bifurcation point. hand, as discussed in the concluding section, it is not clear

Figure 3, showing the total angular momentuniLs) or that these solutions are truly stable equilibria in the ascend-
(Ly)) plotted against the angular veloci€y for all the bifur-  ing range.
cating trajectories corresponding to the points in Table I, is A few words are in order concerning the backbending
the principal result of this paper. behavior in Fig. 3. The most familiar type of backbending in

The degenerate time-reverse bifurcations obtained frornL vs ) plot is thes-shaped curve resulting from the qua-
the replacement§ —-Q, L—~-L equivalent to rotating the sicrossing of two rotational bandg], which is rather differ-
figure by 180° have not been shown explicitly. Then, theent from the behavior in the present case. In the familiar case
oblate bifurcations occur from a state with=—8. The three  there is a steep increase in the moment of inertia over a small
TA bifurcations tg, to,; have never been calculated before.range ofL or () as the adiabatic yrast sequence switches
The g band is just the familiar ground-state rotational bandrom the ground-state rotational band to the initially higher
obtained by cranking the ground staterpendicularto the ~ crossing band. In the present case, apart from a small region
symmetry axigthree-axig, with the quantized spin sequence near the bifurcation point for gpL continually increases as
L=0, 2, ..., 8 and terminating at the oblate state. On the othe? decreases, so that— as{)—0, which, of course, im-
hand, the g band is a legitimate bifurcation from the oblatePlies a continual increase in the kinematic moment of inertia
state(in the sense of the CBTobtained by cranking about as the system approaches an elongated cylinder. Such behav-
the Symmetry axis. The bifurcation pwvas first found by ior is well known for the rotational bifurcations of classical
Troudet and Arvie9], although the relation of the bifurca- liquid drops, for example, the Jacobi sequefit4. It should
tion point to the RPA frequency was not recognized at thaPe kept in mind that the sequences discussed in the present
time. The bifurcation pgwas first calculated by Marshalek Work are really vibrational bands. When quantized, they cor-
and Nazmitdino\[17], while pa, were calculated by Mar- respond to overtone modes of the forg/\n!)(I'})"[Lo),
shalek [18]. A noteworthy feature is that the condition whereI'! is a suitably defined phonon creation operator and
dL/dQ>0 is satisfied only for the g band and in a small L) is the(correlateg reference state. For a purely harmonic
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70 prr—ro T T T T the symmetry axis at the bifurcation point. The portion of the
F L<0 curve for ta; could have been replaced by its time-
60 E reverse reflection witth. >0, but this has not been done for
[ esthetic reasons.
50 | It should be noted that at the bifurcation points;0 for
~ [ tg; andL=8 for ta,4, the tilt angles are all zero, and then rise
@ 40F ly with i i itud f Il -
P _ very steeply with increasing magnitudeslgfeventually ap
© [ proaching saturation values of just below 30° fof &nd
- [
30 F close to 60° for tg,.
® F Figure 5 plots the excitation energiaE=E-E, of the
20 | bifurcating bands relative to the ground state as a function of
F angular momentum. This shows the g band and two other
10 bifurcations branching from the ground statdat0 and four

] bifurcations branching from the oblate terminus of the g

: band atL=8. The sequences _tpand pa, have increasing
-20 E 20 40 60 energy with decreasing angular momentumlfor0. Instead
of smoothly continuing these curves forx 0, one may plot
the degenerate time-reverse solution with positive0, as
given by the two dashed lines. Then the sequence abruptly
switches to one of increasing with increasing energy. As
sequence, the energies would be given ByEy L,  Mentioned before, there is some doubt as to whether these
+(w,/K,)(L-Lo). Since Q=dE/dL, one would have() two solutions actually represent stable equilibria in this re-
=w,/K,=constant for the harmonic case. The corresponding'°": . _
curve in Fig. 3 would then be a vertical straight line. The Figure 6 portrays the deformation changes in terms of a
backbending behavior, which implies thadQ/dL plot of esiny vs e cosy fo_r each bifurcation, W_here 'ghe
=d?E/dL2<0, reflects anharmonic effects. These anharmoParameterse and y are defined by Eq(8). The figure is
nicities imply a compression of the quantized spectrum, i.eJargely self-explanatory. For the most part, the shapes are
spacings between successive levels decrease. This effect cdighly asymmetric. An interesting point is that an axially
be seen in the energy diagram in Fig. 5 below. The energy fopymmetric shape may momentarily evolve into another axi-
the purely harmonic limit is given by the tangent line at a@lly symmetric one, as illustrated by pgvhich goes from
bifurcation point while the actual anharmonic curve falls be-Prolate to oblate, and powhich goes from oblate to prolate.
low this line. In principle, secondary CBT bifurcations from such axial

Figure 4 plots the tilt angles of the three TA bifurcating Shapes could occur. However, since thealues at which
trajectories as a function of the angular momentum. The tilthis occurs are not integers in general, the significance of

angle is always measured from the axis that corresponds &}Ch sgc;ondary bifurcations is not clear from a quantum
viewpoint.

0 Dbl
-60 -40

FIG. 4. The tilt angled (degreesas a function of angular mo-
mentumL (units: #) for the three TA bifurcating trajectories.

30 T T T
[ /

[ V. SUMMARY AND CONCLUSIONS
25 | The present work serves three main purposes. First, it
- provides a microscopic illustration of the CBT, whose proof
I 1 was based on perturbation theory in the neighborhood of the
. ] bifurcation pointq3]. It is therefore reassuring to see that the
bifurcating trajectories can be continued far from these
points. The second purpose is to dispel some misconceptions
concerning the SCCHO model. While Cuyp€i0] formu-
] lation of the conditions for rotating equilibrium is basically
] sound, his assertion that they do not admit tilted rotation is
] incorrect. Although Heiss and Nazmitdindi1] realized
this, they incorrectly concluded that TA rotation is possible
only for systems with triaxial ground stat¢$2]. The de-
tailed numerical calculations fofNe should dispel these
g misunderstandings. The third purpose is to provide a general
S R proof that the TA solutions in the SCCHO must lie in a
-10 0 L10 20 30 principal plane. A condition omitted in Cuypers’ original for-
mulation, given by Eq(30), provides the key to a trivial
FIG. 5. The excitation energ§E (units: %) as a function of ~ proof. Figure 7 illustrates the additional importance of Eq.
the angular momenturh (units: ). The dashed curves are the (30). It shows that without this condition unphysical tilted
time-reverse reflections of tpand pa,. solutions exist with exactly the same bifurcation points as the

20 |

PO,

0 .
-20
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T T T T NP 40 T T
30 -_ -
physical
I, unphysical ]
20 | phy ;
— [ 1
[ 1 1
10 | /l N
] i
a X/
0 -
B : \ 1 1
= -102.. '1---'0-'-'1-'--2
P - -
w Q

FIG. 7. The angular momentuin (units: #) as a function of
angular velocityQ (units: og) for the TA solutions. The physical
solutions, which satisfy Eq(30), correspond to the full curves,
while the unphysical solutions, which violate E&0), correspond
to the dashed curves. The horizontal solid linéa0 represents the
ground state, while the horizontal dashed liné a8 represents the
oblate state.

points. Instead, one must seek minima(kdf,r), the energy
in the laboratory framdpr fixed angular momentunsuch a
[ ] code was written, but found not to be as reliable nor as
Qb o e accurate as the one used for solving the nonlinear equations.
0.0 0.2 0.4 0.6 0.8 Nevertheless, the former could be used to check if a solution
€cosy . - ) , -
of the latter is a local minimum. In this way, it was verified
FIG. 6. esin y plotted againste cosy for the bifurcating se- that all the physical bifurcations correspond to minima in

quences. The straight dashed linejat0° corresponds to axially SOome finite neighborhood of the bifurcation points, while
symmetric prolate shapes, while thatyat60° to axially symmetric ~none of the unphysical bifurcations passed this test. For the
oblate shapes. Bifurcations from the ground state and the g band aéfurcations with ascending values of the angular momentum
represented by solid curves, while bifurcations from the oblate ard-, @ maximum valud,,, seems to exist beyond which the
represented by dashed curves. For each curve, the progresdion ofminimizer could not find an energy minimum verifying the
values (units: %) at intervals of 10 is provided by the numbers rotating equilibrium solution. Thus, for the bifurcation; to
accompanying the solid dots. Limax =28, for pe, Lyma =32, and for pg, Ly =12. For
the bifurcations with descending values lof a minimum

physical tilted solutions. The unphysical solutions have thevalue L, seems to exist. For the bifurcation_{p L,
property thatk;;=Kk,3# 0, which obviously violates Eq30). ~1, and for pa,, Ly, =2. In other words, the negative

It is interesting to note that while the physical solutionsvalues ofL appear to correspond to unstable equilibria. For-
have the propertydl/d()<0 everywhere, the unphysical tunately, this would remove the paradox mentioned earlier. If
ones have the propergh/dQ)>0. the negative values were permitted, the degenerate time-

An incidental observation of this work, is that a bifurcat- reversed positivé- solution would imply a band with a de-
ing trajectory may evolve from an axially symmetric prolate scending followed by an ascending sequence wflues. It
to oblate shape or vice versa, allowing for the possibility ofshould be emphasized that the inability of the minimization
secondary bifurcations via the CBT mechanism. This issue isode to locate a minimum within a designated range is not a
left for future study. rigorous criterion for instability — there may be delicate

In this paper, the nonlinear equations for rotating equilib-numerical reasons for this behavior. Therefore, the limits on
ria in the SCCHO model are solved numerically. The quesi are very approximate. The tentative conclusion then is as
tion of whether an equilibrium is stable or unstable has nofollows: although the bifurcations have no limits dh|,
been addressed. This could be done, for example, by solvingiinimization for fixedL suggests that beyond a certain value
the equations for the frequencies of RPA excitations built orof |L|, each bifurcation becomes unstable, probably via a
the rotating mean-field solutions. Another possible approackaddle-point behavior. A rigorous conclusion would require
is to check whether each stationary solution corresponds tthe additional calculation of the RPA frequencies along the
an energy minimum. This is not quite so straightforward as itifurcating trajectories, which is beyond the scope of this
might seem. As is well known, solutions with the property paper.
that dL/dQ2<0 (backbending do not correspond to true Finally, it may be worthwhile to recall the interpretation
minima of the total RouthiariEq. (14)], but rather saddle of the bifurcations, which is discussed in great detail in Ref.
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[3]. While these bifurcations correspond classically to rotat- 3 . .

ing equilibria obtained by superposing degenerate vibrations, Bi= > [—vi(eb) + Uy(eby].

from a quantal viewpoint they are multiphonon anharmonic =1

vibrations. In particular, they represent overtone modes ofrp¢ requirement that the normal-mode operatBEs B,

the form 1An!(I'})"[Ly), wherel'} is a suitably defined pho- gpey the usual boson commutation rules then leads to the

non creation operator anftl) is the (correlated reference  following orthonormality conditions for the coefficients:
state. For more details, see RE3]. In the case of the SC-

CHO, the bifurcations described in this paper represent quad- 3 . .

rupole giant resonances built on either the ground or the > [Un(eUn(e) = tnlE Un(£0)1= Sce,
oblate band-termination state, with the exception of the g m=L

band, which is the ordinary ground-state rotational band.

APPENDIX: DIAGONALIZATION OF THE CHO 2, [Un(&)tn(e) = Un(z)tn(e] =0, (and H.c. equation

HAMILTONIAN i AS
In order to diagonalize the single-particle CHO Routhian (AS)
in the spin frame given by Eq6) with the unitshi=m=ay The equations of motiofrg, Bf]=¢,B] lead to the follow-
=1, it is convenient to first introduce the usual Cartesianng 6x6 eigenvalue problem:
creation and destruction operatdn% b, via the transforma-
tion x.=(bi+b)\2, p=i(bi-b)/\2, k=1,2,3. The boson ( A* B *><‘-J(8k)):8k(‘-‘(8k)), (A6)
commutation rules[by, bj]=8, [by,b,]=0 (and Hermitian =B -A J\uUey ey

qonjugate equatigncorrespond to the canonical commuta— whereu(ey), v(e,) are the three-dimensional column vec-
tion rules[x, pe]=id, [ %]=0, [P PJ=0. The Routhian 1515 whose respective components are the coefficients

then takes the general form udew, ulel). These equations have exactly the same
L 3 3 ; L ot mathematical form as the RPA eigenvalue problem. The
re=3trA+ > > [ Axebibe + 3B(bib] + beby) ], equation for the eigenvalues obtained from
k=1 ¢=1
A
_ o (A1) det{( . ) —sz} =0, (A7)
where the matrices are explicitly given by -B -A
1 1 _ 1 7 being the six-dimensional identity matrix, is just Eq.
§(k11+ 1) Ek12_ i 5"13 (10).
The Eq.(A6) has the well knowr{and obvious property
A= }k +i0 }(k 1) }k that for each real eigenvalieigenfrequencye, its negative
Tl 22 222 223 ’ -g, is also an eigenvalue with the associated eigenvector
1 1 1 having the coefficients
-k Skos ket 1) : )
2% 2w 2 U(-e) =v(e), wl-e)=ufe).  (AB)
1 1 1 The normalization imposed by the first of Eq8A5),
E(kll_ 1) Eklz §k13 namely,
3
1 1 1 , )
B= ki Slka=1) Sk | (A2) 2 [un(e? = [um(ed]?1= 1, (A9)
2 2 2 =
}km }kzg E(kgg_l) can only be satisfi(_ed for one of the sign choices &yf _
2 2 2 because of a negative value of the sum for the other sign

Both matrices are Hermitian, but is complex whileB is  choice. It is important to check which sign choice yields
real. The CHO Routhian can be diagonalized in the forman eigenvector for which the sum on the left-hand side is
positive. Upon normalization, one then obtains the cre-

3 . . .
ation operatoB/, with the operator B, corresponding to

_ fp oo 1
rS‘glgk(BkBkJr 2) (A3) the eigenvector associated te,;-such that the condition
] ) [By, BE]=1 is satisfied. In other words, for a gives)|, one
by means of the Bogoliubov transformation sign choice defines the creation operator and the other the
3 destruction operator. In the case of TA rotations of the
Bl = [u/(eb] — v(e)b], (A4) SCCHO, there is qlwaysTone eigenmode for which a nega-
=1 tive value ofe, definesB,.
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