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The self-consistent cranked harmonic oscillator with volume conservation is examined more closely. Con-
trary to previous claims, bifurcations corresponding to tilted rotation are found to exist, even in systems with
axially symmetric ground states. The tilted angular-momentum vector is proven to always lie in a principal
plane of the ellipsoidal potential. The case of20Ne is used for illustrative purposes. Detailed graphical results
are provided for the properties of the bifurcating trajectories, which are found with the aid of the cranked
bifurcation theorem discussed in a previous publication.
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I. INTRODUCTION

Since its introduction by Inglis in 1954[1], the cranking
model(CM) has been the main theoretical pillar for describ-
ing collective rotation in deformed nuclei. In the original
version of the CM, the moment of inertia for low spins was
obtained by summing the inertial effect of each particle as it
is dragged around by a uniformly rotating deformed poten-
tial. Since then, it has evolved into the self-consistent crank-
ing model(SCCM), which is a self-consistent uniformly ro-
tating solution of time-dependent mean-field equations.
Since the rotational motion in the SCCM is self-sustaining,
the appellation “cranking model” is somewhat inappropriate
but persists by tradition. Unlike the original CM, the SCCM
is applicable to high-spin states, providing the chief theoret-
ical backbone[2]. More recently, it has been shown that
self-consistent cranking is not limited to the rotation of per-
manently deformed nuclei, but also provides a description of
certain anharmonic vibrational bands[3]. The condition for
applicability is that the nucleus must have at least one intrin-
sic C̀ symmetry axis and that the vibrational mode carry
nonzero angular momentum about this axis. According to the
cranked bifurcation theorem(CBT) [3], when the nucleus is
cranked about a symmetry axis, symmetry-breaking trajecto-
ries representing the vibrational bands bifurcate from axially
symmetric states at critical points corresponding to the van-
ishing of random-phase approximation(RPA) frequencies in
the rotating frame. These points are characterized by the an-
gular velocitiesV=vm/Km, wherevm is a collective vibra-
tional RPA frequency(laboratory frame) for a mode built on
an axially symmetric state projecting integer spinKm on the
symmetry axis. The main purpose of this paper is to illustrate
the consequences of this theorem using a mathematically
tractable model.

An ideal testing ground is provided by the self-consistent
cranked harmonic oscillator(SCCHO), especially in view of
the elegant RPA analysis provided by Kurasawa[4] many
years ago. The SCCHO itself has an old, but recently some-
what confusing history. In this model, nucleons move inde-
pendently in a rotating three-dimensional anisotropic
harmonic-oscillator potential, whose equipotentials maintain
constant volumes while the potential frequencies are varia-
tionally optimized for each angular velocity. This volume-

conservation(VC) constraint is intended to model nuclear
incompressibility. It has been shown that under these circum-
stances, the potential is a true mean-field approximation to a
peculiar internucleon interaction including two-body+three
-body+¯+n-body+̄ interactions, where the two-body
part is the “doubly stretched” quadrupole-quadrupole inter-
action[5–7]. The addition of certain embellishments, such as
spin-orbit coupling and the pairing force, extends the SC-
CHO to a more realistic nuclear model, but with the sacrifice
of mathematical transparency. The present paper is con-
cerned with the pure SCCHO, which has some relevance for
giant resonances. For most of its history, the SCCHO was
applied only to rotation about a principal axis of the ellipsoi-
dal potential, as reviewed in the textbook of Blaizot and
Ripka [8]. Usually, the discussion was confined only to the
ground-state band and its termination at an axially symmetric
oblate state. A more systematic approach was attempted by
Troudet and Arvieu[9], who found a new solution bifurcat-
ing from the terminal oblate state. Since the SCCHO system
is not a rigid body(notwithstanding the rigid-body moment
of inertia at low spins), one may ask whether the rotational
motion is necessarily confined to a principal axis. If not, then
one has the phenomenon oftilted rotation, i.e., rotation about
an axis tilted with respect to a principal axis. In 1987,
Cuypers[10] was the first to pose this question for the SC-
CHO. His conclusion was that the model only permits
principal-axis(PA) rotation. Nevertheless, Heiss and Nazmit-
dinov [11] subsequently claimed to have found examples of
tilted-axis(TA) rotation in the SCCHO. In a recent followup
paper[12], these authors make the more specific statement:
“A major outcome of the present paper is the result that, in
even-even nuclei, tilted rotations occur if and only if the
nucleus has a triaxial shape in its ground state.” An inescap-
able implication of the present study is that both the conclu-
sion of Cuypers and that of Heiss and Nazmitdinov are in-
correct as shown by the example of20Ne. It should also be
mentioned that in the past ten years, the topic of TA rotation
has become a major focus of high-spin physics, both theo-
retically and experimentally[13]. The emphasis in this paper,
however, will be on the SCCHO.

The SCCHO is first reviewed, with a derivation of the
equations for rotational equilibrium close to that of Cuypers.
It is then shown that if tilted rotations exist, the axis must be
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confined to a principal plane. The equations are then applied
to the case of20Ne, which has an axially symmetric prolate
ground state and an axially symmetric oblate excited state.
Bifurcations from these two states are found with the guid-
ance of the CBT and the known RPA frequencies. Bifurca-
tions corresponding to both PA and TA solutions are ob-
tained, the former havinguKu=2 and the latteruKu=1 as the
spin projections on the symmetry axis. In order to obtain all
the bifurcations, it is essential that the orbitals of the cranked
oscillator be occupied diabatically. The properties of the tra-
jectories at high spin are discussed in detail. Although the
solutions appear as rotational equilibria, they are really su-
perpositions of degenerate vibrations and therefore may be
interpreted as anharmonic multiphonon vibrational bands. It
is demonstrated that Cuypers’ original equations havepairs
of TA solutions bifurcating from the same point. An addi-
tional condition overlooked by Cuypers rules out one mem-
ber of each pair as spurious. Ironically, not only do TA solu-
tions exist, but there are too many of them.

II. FORMULATION OF THE SCCHO

A. Two rotating frames

The SCCM Hamiltonian(or Routhian) R in a frame rotat-

ing with angular velocityVW is given in general by

R= HMF − VW ·LW , s1d

whereLW is the angular momentum vector andHMF is the
mean-field Hamiltonian forA nucleons. For the SCCHO,

LW is assumed to be theorbital angular momentum, the in-
trinsic spin being taken into account only in the occupation
of the single-particle levels. The mean-field Hamiltonian has
the usual form

HMF = T + V = o
i=1

A

ftsid + vsidg, s2d

where t is the kinetic energy,t= 1
2upWu2/m, and v is the de-

formed potential for theith nucleon. The Routhian may be
defined relative to one of two reference frames. In one
case, the reference frame coincides with the principal axes
of v sPA framed, and in the second case with the direction
of the angular momentumsspin framed. Thus, if one writes

R= o
i=1

A

rsid s3d

and

LW = o
i=1

A

,Wsid, s4d

the SCCHO single-particle Routhian in the PA frame,r
=rPA, is given by

rPA =
upWu2

2m
+

1

2
mv̊0

2o
k=1

3

vk
2xk

2 − VW · ,WsPA framed, s5d

where the potential is just the familiar three-dimensional

anisotropic oscillator and the cranking termVW ·,W with ,W

=rW3pW allows for an arbitrary tilting of the angular mo-
mentum relative to the principal axes of the potential
s“three-dimensional cranking”d. The VC constraint re-

quires that for any vectorVW, the oscillator frequencies
obey the conditionv1v2v3=1. In the spin frame, the
single-particle Routhianr =rs is given by

rs =
upWu2

2m
+

1

2
mv̊0

2o
i=1

3

o
j=1

3

kijxixj − V,3sspin framed, s6d

where the six parameterskijskji =kij , i Þ jd determine the
shape and orientation of the potential tilted relative to the
direction of the angular momentum. The VC condition in
this case is obtained from the determinant of the symmet-
ric matrix k:

det k = 1. s7d

In Eq. s6d, the direction of the angular momentum has
arbitrarily been labeled as the three-direction in accord

with Cuypersf10g si,Wi=,3d.
The two formulations, being related by a rotation of co-

ordinates, are entirely equivalent. In both approaches, the
rotating equilibrium solutions are obtained from the station-
ary variation ofkRl with respect to the potential and orienta-
tion parameters, subject to the appropriate VC constraint. In
practice, it was found that the use of the spin frame is more
advantageous, both theoretically and numerically, in locating
the bifurcation points, as well as providing more reliable
convergence. In addition, the proof that the tilted angular
momentum must lie in a principal plane of the ellipsoidal
potential becomes trivial in this frame. Therefore, the spin
frame will be used henceforth. Afterwards, the stationary so-
lutions are rotated from the spin frame to the PA frame to
provide the tilt direction and the intrinsic shape parameters
of the oscillator potential in Eq.(5). The adopted intrinsic
shape parameters aree andg, defined by[2]:

vk = v0se, gdF1 −
2

3
e cosSg +

2p

3
kDG, k = 1, 2, 3, s8d

where v0se, gd is chosen to secure the VC condition
v1v2v3=1. From now on, all energies will be measured in
units of "v̊0.41/A1/3 MeV, all frequencies in units ofv̊0,
and all distances in units off"/smv̊0dg1/2. This is tanta-
mount to setting"=m=v̊0=1.

Since the single-particle Routhian in either frame is a qua-
dratic form in coordinates and momenta, it may be diagonal-
ized by a linear transformation to normal modes with the aid
of a Bogoliubov transformation. The details for Eq.(6) are
reviewed in the Appendix. LetNk;Bk

†Bk sk=1, 2, 3d be the
normal-mode number operators, whereBk

†, Bk are the boson
creation and destruction operators, satisfying the usual com-
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mutation rulesfB,, Bk
†g=dk,, fB,, Bkg=0 (and H.c. equation).

Then the diagonalized single-particle Routhian takes the
form

rs = o
k=1

3

«kSNk +
1

2D . s9d

As shown in the Appendix, the normal-mode eigenfre-
quencies«=«k are roots of the polynomial equation

Ps«d ; s«2d3 − a4s«2d2 + a2«2 − a0 = 0, s10d

where

a4 = k11 + k22 + k33 + 2V2,

a2 = k11k22 + k11k33 + k22k33 − sk12d2 − sk13d2 − sk23d2

− V2sk11 + k22 − 2k33d + V4,

a0 = detk − V2fk11k33 + k22k33 − sk13d2 − sk23d2g + k33V
4,

s11d

and the determinant is explicitly given by

det k = k11k22k33 − k11sk23d2 − k22sk13d2 − k33sk12d2

+ 2k12k13k23. s12d

It should be noted thatPs«d is a cubic equation in«2. In
order for a physical solution to exist, the roots of this
cubic must all be real and positive. When this is the case,
one must still choose the sign of each eigenfrequency«k.
It is not true that all three eigenfrequencies must always
be chosen positive, as assumed in previous papers. In fact,
the correct sign is determined by the norm of the corre-
sponding eigenvector as discussed in the Appendix, a
point to be elaborated on further.

Assuming a fixed diabatic occupation, letnksid be the ei-
genvalue ofNk for the single-particle orbital occupied by the
ith particle, and define the quantitiesS1, S2, andS3 by

Sk ; o
i=1

A Snksid +
1

2D, k = 1, 2, 3. s13d

Then the expectation value of the total Routhiansenergy
in the rotating framed, the sum of the individual contribu-
tions from Eq.s9d, is given by

kRsl = «1S1 + «2S2 + «3S3. s14d

The rotating equilibrium solutions are those that are sta-
tionary with respect to variations of the parameterskij in
kRsl, subject to the VC constraints7d. Therefore, defining
the functionalFsk, V, md by

Fsk, V, md ; kRsl − m det k , s15d

where detk is given by Eq.s12d, and m is a Lagrange
multiplier sas isVd, one obtains the equilibrium solutions
from the set of six equations

] Fsk, V, md
] kij

=
] kRsl
] kij

− m
] det k

] kij

= S1S ] «

] kij
D

«=«1

+ S2S ] «

] kij
D

«=«2

+ S3S ] «

] kij
D

«=«3

− m
] det k

] kij
= 0 s16d

together with the constraints7d. These equations can also
be written in another form in terms of the cartesian com-
ponents of the quadrupole tensorQ,m:

Q,m ;Ko
i=1

A

xlsidxmsidL . s17d

From the Hellmann-Feynman theoremf14g and Eq. s6d,
one then obtains

] kRsl
] kij

=K ] Rs

] kij
L =

Qij

1 + di j
s18d

with the convention that all distances are measured in
units of f"/smv̊0dg1/2. The Lagrange multiplierm can be
obtained from Eq.s16d and Euler’s theorem on homoge-
neous functions, as follows:

kVsl = o
iù j

kij

] kRsl
] kij

= mo
iù j

kij

] det k

] kij
= 3m det k = 3m.

s19d

As shown by Cuypers[10], the virial theorem holds for
the tilted oscillator, so thatkVsl=

1
2kHMFl; 1

2E, whereE is the
total energy in the laboratory frame. Therefore

m = 1
6E. s20d

The total energy can also be written as

E = kRsl + VkL3l. s21d

B. Equations for rotational equilibrium—analog of Riemann’s
theorem

From Eq. (16), the explicit evaluation of the conditions
for rotational equilibrium requires the derivatives of the
normal-mode frequencies with respect to the parameterskij .
These can be obtained most simply by using Cuypers’ im-
plicit differentiation of the polynomial equation(10):

] «

] kij
= −

] P/] kij

] P/] «
, s22d

where, of course,kij , «, and V are regarded as the inde-
pendent variables. The derivatives are trivially calculated
as, for example,

] P

] «
= 2«s3«4 − 2a4«2 + a2d, s23d

wherea2 and a4 are given by Eq.s11d. Focusing for the
moment on the derivatives with respect to the tilt param-
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eterskij with i Þ j , one obtains

] P

] k13
= 2sk13k22 − k12k23 − k13V

2 − k13«
2d, s24ad

] det k

] k13
= 2sk12k23 − k13k22d. s24bd

Furthermore,

] P

] k23
= 2sk23k11 − k12k13 − k23V

2 − k23«
2d, s25ad

] det k

] k23
= 2sk12k13 − k23k11d. s25bd

Finally,

] P

] k12
= 2sk12k33 − k13k23 − k12«

2d, s26ad

] det k

] k12
= 2sk13k23 − k12k33d. s26bd

Now, the definition of the spin frame is not unique. Given
a solution of Eq.(16) characterized by a matrixk, one can
obtain another physically equivalent solution by performing
an arbitrary static rotation about the 3-axis, which preserves
the general form of Eq.(6). In particular, one may define a
frame in which the condition

k12 = 0 s27d

is satisfied, which simplifies everything, especially the
equation ]Fsk, V, md/]k12=0. From Eqs.s16d, s18d, and
s26d, this condition can be written either in the form

Q12 = 2mk13k23, s28d

or, equivalently,

2k13k23FS1S ] P

] «
D

«=«1

−1

+ S2S ] P

] «
D

«=«2

−1

+ S3S ] P

] «
D

«=«3

−1

− mG
= 0. s29d

The Eq.s29d implies that either

k13k23 = 0 s30d

or else there exists a solution for which the quantity in
brackets vanishes. For the latter possibility, however, Eq.
s28d shows thatQ12Þ0 if Eq. s30d does not hold, even
thoughk12=0. This would violate the consistency between
the mean-field potential and the density distribution, im-
plying an unphysical solution. The conclusion then is that
physical solutions must obey Eq.s30d. These have the
property that eitherk13 or k23 sor bothd must vanish. If
k13Þ0, then the angular momentum is tilted in the 1-3
principal plane of the ellipsoidal potential, while ifk23
Þ0, it is tilted in the 2-3 plane. The conclusion then is
physical solutions of the SCCHO have the property that the

angular momentum must lie in a principal plane of the ellip-
soidal mean field.

This result is somewhat analogous to Riemann’s theorem
for a self-gravitating ellipsoidal fluid mass[15,16], which
requires that the angular momentum(and vorticity) lie in a
principal plane of the ellipsoidal mass distribution.

Although the treatment of the SCCHO generally follows
that of Cuypers,1 the last conclusion seems to have eluded
him for two reasons. The first is that the conditionk12=0 was
imposed by Cuypers as a constraintbefore the variation.
Consequently,k12 never appeared as a variable, resulting in
the automatic omission of the equation]Fsk, V, md/]k12=0
and its implications. Second, he seemed to have a bias
against the existence of tilted solutions. This can be seen in
the treatment of the equations corresponding to
]Fsk, V, md/]k13=0 and ]Fsk, V, md/]k23=0. The former
equation, withk12=0 taken into account, is explicitly given
by

k13Ho
j=1

3 F sk22 − V2 − «2dS j

«s3«4 − 2a4«2 + a2dG«=« j

− 2mk22J = 0, s31d

while the latter equation can be obtained from it by ex-
changingk13↔k23 and k11↔k22, so thatk23 factors out.
Noting the existence of solutions withk13=k23=0 sas well
ask12=0d, which corresponds to PA rotation, Cuypers im-
mediately jumped to the conclusion that these are theonly
solutions. Unfortunately, he failed to consider the possibility
that there might be solutions in which, for example,k13Þ0,
but the expression in braces vanishes. In that case, of course,
k23=0, which would satisfy the companion equation, as well
as Eq.s30d. As shown by explicit calculations, such TA so-
lutions indeed do exist, in addition to the usual PA solutions.

The situation, as it now stands, is that only four potential
parameters need to be solved for:k11, k22, k33, and eitherk13
or k23. The exchangesk13↔k23 andk11↔k22 give physically
equivalent solutions, as can be seen from Eqs.(24) and(25).
The VC constraint reduces the number of parameters to
three, while the Lagrange multiplierm, as given by Eq.(20),
can be expressed as a function of the other parameters.

Since the nonlinear equations are solved numerically for
each value of the angular velocityV, the total angular mo-
mentumkL3l, which is the true observable, can be calculated
with the aid of the Hellmann-Feynman theorem as follows:

kL3l = −K ] Rs

] V
L = −

] kRsl
] V

= − S1S ] «

] V
D

«=«1

− S2S ] «

] V
D

«=«2

− S3S ] «

] V
D

«=«3

. s32d

1Cuypers includes a correction for spurious center-of-mass motion
that is omitted here since it is anA−1 correction, which is of the
same order as other omittedA−1 corrections lying outside of the
mean-field approximation.
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The derivatives of the eigenfrequencies can be obtained
by implicit differentiation of the polynomial equations10d
as follows:

] «

] V
= −

] P/] V

] P/] «
, s33d

where

] P

] V
= − 2Vf2«4 + sk11 + k22 − 2k33 − 2V2d«2− k22k33 − k11k33

+ k13
2 + k23

2 + 2k33V
2g, s34d

assuming thatk12=0, which should also be taken into ac-
count in the expressions23d for ]P/]«.

III. BIFURCATION POINTS OF THE SCCHO

A. Bifurcation equations

According to the CBT[3], for a givenaxially symmetric
mean-field reference state with corresponding RPA eigen-
mode frequenciesvm, the bifurcation points resulting from
cranking about the symmetry axis should occur at the critical
cranking frequenciesVc= ±vm/Km, KmÞ0 being the angular
momentum projected by the RPA exciton on the symmetry
axis. The two signs allow for time-reversal symmetry. The
RPA modes withKm=0 do not provide any bifurcations.
Since the bifurcating trajectory represents repeated applica-
tion of an exciton operator, the RPA mode must not be a pure
particle-hole excitation, but should have sufficient collectiv-
ity to allow repeated application. Another caveat is thatVc
=0 (Goldstone mode) may not correspond to a bifurcating
trajectory in the sense of the CBT if the associated RPA
normal-mode operator is not a true exciton, but rather a con-
stant of motion. Nevertheless, it is sometimes convenient to
nominally regard such a mode as a bifurcation point if it
corresponds to a terminus of a collective band generated by
crankingperpendicularto a symmetry axis.

Consider now a fixed axially symmetric mean field with
v1=v2;v'. Cranking about the symmetry axis(3-axis)
with angular velocityV then provides the following three
eigenfrequencies[root of Eq.(10)] of the Routhian:

«1 = v' + V, «2 = v' − V, «3 = v3 s35d

with corresponding occupation factorssS1, S2, S3d. Under
these conditions, the variation of the Routhian with the
VC constraint,

]

] vi
fS1sv' + Vd + S2sv' − Vd + S3v3 − mv'

4 v3
2g = 0,

vi = v', v3 s36d

yields the relation

1

2
sS1 + S2dv' = S3v3 = 2m. s37d

The associated angular momentumfEq. s32dg is then given
by

kL3l = S2 − S1 ; L0. s38d

Motivated by the CBT, one may seek bifurcations that
break the symmetries at certain critical frequenciesV=Vc .
In order to find bifurcation points fortilted (TA) “rotation,”
set k11=k22=v'

2 , k33=v3
2, k13=0, and assumek23;dk23Þ0

but infinitesimal(equivalently, one may takek23=0 andk13
Þ0). Then, Eq.(31) takes the form

dk23F S1 + S3

v3 + v' + Vc
+

S2 + S3

v3 + v' − Vc
+

S1 − S3

v3 − v' − Vc

+
S2 − S3

v3 − v' + Vc
− 8mv'G = 0. s39d

In order to have a tilted solution, the quantity in brackets
must vanish giving

S1 + S3

v3 + v' + Vc
+

S2 + S3

v3 + v' − Vc
+

S1 − S3

v3 − v' − Vc

+
S2 − S3

v3 − v' + Vc
= 8mv' =

4S3

v'

, s40d

where the relationm= 1
2v3S3= 1

2S3/v'
2 from Eq. s37d and

the VC constraintv'
2 v3=1 were used in the last equality

on the right-hand side. Apart from notational differences,
Eq. s40d agrees completely with Kurasawa’sf4g RPA
equation foruKu=1 excitations built on axially symmetric
states of the CHO, with the identificationVc =vm.2 With a
little algebra and the aid of Eqs.s37d and s38d, the Eq.
s40d can be written in the following simpler form:

Vc FVc
3 − Vc sv3

2 + v'
2 d +

L0

S3
G = 0. s41d

The rootVc=0, which represents a Goldstone modessee
Ref. f4gd, does not correspond to a true bifurcation. There-
fore, the bifurcation points for tilted rotation are in gen-
eral the roots of the cubic equation

Vc
3 − Vcsv3

2 + v'
2 d +

L0

S3
= 0, uKu = 1 s42d

with one qualification discussed in the following section.
Next, consider the bifurcation points for PA solutions,

which projectuKu=2 units of angular momentum on the sym-
metry axis. In this case, the relevant multipole of the mean
field is proportional tox1

2−x2
2. Therefore, with the aid of Eqs.

(16)–(18), setk11=v'
2 −dk22, k22=v'

2 +dk22, k33=v3
2, k13=k23

=0, in the expression

1

2
sQ11 − Q22d − mS ] det k

] k11
−

] det k

] k22
D = 0. s43d

The result is

2To go over to Kurasawa’s notation, letS1→S−, S2→S+, S3

→S1, v3→v1 [cyclic permutaionsv1v2v3d]
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dk22F v'S1

sv' + VcdVc
−

v'S2

sv' − VcdVc
+ 4mv3G = 0. s44d

The nontrivial solution corresponds to the vanishing of the
expression in brackets. With the aid of the second equality
in Eq. s37d and the VC conditionv'

2 v3=1, the result can
be written in the form

S1

v' + Vc
+

S2

v' − Vc
+

S2 − S1

Vc
= 4v3

2S3, s45d

which agrees with Kurasawa’s RPA equation foruKu=2
excitations, given the relationVc =vm/2, which is in ac-
cord with the CBT. This can be equivalently written as the
cubic equation

Vc
3 −

1

2
v'

2 Vc +
1

4
v'

6 L0

S3
= 0, uKu = 2. s46d

It should be noted that the replacementVc →−Vc in Eqs.
(42) and (46) has the same effect asL0→−L0, equivalent to
swappingS1 andS2. This just provides the(classical) time-
reversed bifurcations. It will be sufficient to takeS2ùS1 so
that the bifurcations are based on a mean-field state with
L0ù0.

The equations for the bifurcation points can be applied to
either the axially symmetric oblate band-termination state,
provided thatS1ÞS2, ensuring thatL0Þ0, or to an axially
symmetric ground state, provided thatS1=S2, implying L0
=0. In both cases, the symmetry axis has been arbitrarily
labeled as the 3-axis to maintain the applicability of a single
set of equations. Usually, the ground-state symmetry axis is
labeled as the 3-axis, while the oblate symmetry axis is la-

beled as the 1-axis. This is because the ground and oblate
states are connected by a finite rotational band of the ordi-
nary kind, generated by cranking the ground state about an
axis perpendicular to the symmetry axis(1-axis). The label-
ing is immaterial for observable properties. However, since
relabeling involves permutation of the potential frequencies
v1, v2, v3, it affects the assignment of the deformation pa-
rameterg in Eq. (8). For this reason, the results are redefined
according to the conventional labeling in extracting this de-
formation parameter in the calculations to follow. Also, in
Figs. 1 and 2, the symmetry axis for the oblate state is la-
beled asv1(obl.).

B. The case of axially symmetric ground states

Systems with axially symmetric ground states are of spe-
cial interest for two reasons. First, as will be demonstrated,
one of the three roots of Eq.(42) does not correspond to a
true bifurcation from the oblate band-termination state. Sec-
ond, there is the claim of Heiss and Nazmitdinov[12] that
such systems cannot have TA bifurcations, which is in dis-
agreement with the present work.

In the caseS1ÞS2ÞS3, when the ground state of the
nucleus is always triaxial, the Eq.(42) provides three genu-
ine TA bifurcations based on the axially symmetric oblate
band-termination state when such a state exists. The condi-
tion for the existence of such a state isS2/S1øsÎ27
+Î2d/sÎ27−Î2d [4,9]. The situation is different for a nucleus
with an axially symmetric ground state, which always has an
oblate band-termination state. The condition for this is the

FIG. 1. Eigenfrequencies as a function of the rotational speed
for the TA bifurcation from the ground state of20Ne. The vertical
and horizontal axes are in units ofv0˚ . The dashed lines are the
eigenfrequencies for the prolate ground state cranked about the
symmetry axis. The solid lines are the self-consistent eigenfrequen-
cies for the symmetry-breaking bifurcation. The numerals 14, 14,
22 are the corresponding diabatic occupation sums.

FIG. 2. Eigenfrequencies as a function of the rotational velocity
for the two TA bifurcations from the oblate rotational band-
termination state of20Ne. The vertical and horizontal axes are in
units ofv0˚ . The dashed lines are the eigenfrequencies for the oblate
state cranked about the symmetry axis. The solid lines are the self-
consistent eigenfrequencies for the symmetry-breaking bifurcation.
The numerals 14, 14, 22 are the corresponding diabatic occupation
sums.
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equality of two occupation sums, sayS1=S3. Then the bifur-
cation Eq.(42) depends only on the ratior=S2/S3. The first
equality in Eq.(37) and the VC constraintv'

2 v3=1 imply
that

v3 = SS1 + S2

2S3
D2/3

, v' = S 2S3

S1 + S2
D1/3

soblated. s47d

From this, one infers that ifS1=S3, then r =2v3
3/2−1. In

fact, Eq. s42d can be written entirely in terms ofVc and
v3, which makes it easy to see that it factors as

sVc + v' − v3dfVc
2 + sv3 − v'dVc − 2v3v'g = 0. s48d

The rootv3−v' is the energy of a pure particle-hole ex-
citation as first noted by Kurasawa and therefore this does
not correspond to a bifurcating trajectory. The roots of the
residual quadratic equation are

Vcs±d = 1
2sv' − v3d ± 1

2
Îsv' + v3d2 + 4v'v3, s49d

which, in fact, do correspond to genuine TA bifurcation
points. The pointVc s−d clearly has a negative sign, which
is entirely permissible, since a bifurcation carries spin that
may be in the same or opposite direction to that of the
reference statespro and contra modesd. Thus, Vc s−d
would be a contra mode andVc s+d a pro mode. More-
over, for each cranking solution, there is asclassicald
time-reversed solution with oppositeV, associated with
the time-reversed reference state.

It is obvious from Eq.(49) that Vc s+d.v' for a TA
bifurcation from the oblate band-termination state. In the
case of a TA bifurcation from the ground state, Eq.(42) with
L0=0 explicitly yields the bifurcation points

Vcs±d = ± Îv'
2 + v3

2, s50d

which correspond to degenerate time-reversal partners, so
that it is sufficient to focus on the positive sign. In this
case, the conditionVcs+d.v' also holds. The Eq.s35d
implies then that one of the eigenfrequencies of the SC-
CHO, namely,«2 is negative at the bifurcation point, and
by continuity in some neighborhood of this point. Is a
three-dimensionalscrankedd oscillator with a real negative
frequency unphysical? In the present context with a finite
number of particles and a fixed diabatic occupation of the
levels of the oscillator, the answer is not at all. As dis-
cussed in the Appendix, the diagonalization problem for
the tilted CHO, having the same mathematical form as the
RPA, requires that the sign of the eigenvalues be chosen
according to the positive-norm criterion for the eigenvec-
tors. For the eigenvalues in question, this automatically
leads to the negative sign choice. In summary, for a
nucleus with an axially symmetric ground state, the
present study provides two TA bifurcation pointsVc of
different magnitude and opposite sign based on the oblate
band-termination state with a given sign of the angular
momentum. The replacementVc →−Vc then gives the
degenerate time-reversed solutions with opposite angular
momentum. Based on the ground state, there is one bifur-
cation for Vc .0, and a degenerate time-reversed bifur-

cation with the negative sign ofVc . In the case of a
nucleus with a triaxial ground state, on the other hand, one
expects three TA bifurcations based on the oblate band-
termination state, if it exists, while for the ground state the
CBT is inapplicable.

This brings up the assertion of Hess and Nazmitdinov
[12] that the SCCHO does not permit TA solutions for a
nucleus with an axially symmetric ground state, but admits
one based on an oblate state of a triaxial nucleus. Although
their argument seems nebulous, the essential part, given in an
appendix, is the simple dictum that solutions for cranking
frequenciesV exceeding in magnitude any of the potential
frequenciesv1, v2, v3 are “unphysical,”even if the eigenfre-
quencies«j of the SCCHO are all real. This criterion would
render all the TA bifurcations points for the axially symmet-
ric nucleus unphysical, but would admit the intermediate bi-
furcation for the triaxial nucleus. Although everyone agrees
that a pair of complex values of«j cannot correspond to a
physical solution, the disagreement here in effect is focused
on the admissibility of a real but negative«j. As stated in the
preceding paragraph, there is no reason to rule out such so-
lutions in the present context. As shown in the following
section, the numerical results are physically quite reasonable.

C. Bifurcation points for 20Ne

Extensive SCCHO numerical computations have been
performed for the celebrated nucleus20Ne, which has an axi-
ally symmetric prolate ground state and an axially symmetric
oblate band-termination state. Assuming occupation of the
orbitals by neutron-proton pairs, the set of occupation sums
hS1, S2, S3j=h14, 14, 22j for the ground state. For the oblate
band terminus, one hashS1, S2, S3j=h14, 22, 14j if the sym-
metry axis is labeled byv3. The frequencies of the oscillator
potential for the oblate state are given by Eq.(47), while for
the ground state they are given by

v3 = sS1/S3d2/3, v' = sS3/S1d1/3sground stated, s51d

as follows from the self-consistency conditionv'S1
=v3S3, the VC constraint andS2=S1. Note that theK=2
bifurcation point from the ground state is just given by
Vc=v'/Î2, as follows from Eq.s46d with L0=0. The criti-
cal bifurcation points for20Ne are given in Table I below.

The bifurcations are labeled as follows. The TA bifurca-
tions are denoted by tgK or toK when based on the ground or
oblate state, respectively. The PA bifurcations are denoted by
pgK or poK when based on the ground or oblate state, respec-
tively. The usual ground-state band, which is also a PA bi-
furcation from the oblate state, is denoted by the letter g. The
TA bifurcations, which have brokenr symmetry[13], corre-
spond to a quantized sequence of angular momenta given by
L=L0+nK, whereK= ±1 andn=0, 1, 2, .. . is the number of
vibrational phonons. The PA bifurcations, which have goodr
symmetry, also correspond to a quantized sequence of angu-
lar momenta given byL=L0+nK, but with K= ±2.

IV. NUMERICAL CALCULATIONS

All the bifurcating trajectories issuing from the ground
and oblate states of20Ne were computed by numerically
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solving the nonlinear equations discussed in Sec. II B for
each value of the angular velocityV. These solutions repre-
sent rotating equilibrium states, although there is no guaran-
tee that the equilibrium is stable. This question is briefly
addressed in the concluding section. The eigenfrequencies«k
of the SCCHO with the corresponding occupation sums for
the tilted solutions are provided in Figs. 1 and 2.

It should be noted that the eigenfrequencies(solid lines)
are provided only for the limited range ofV values actually
computed. The eigenfrequencies for the PA bifurcations
could also have been included, but were omitted to avoid
clutter. Figures 1 and 2 clearly show the diabatic occupation
of the levels of the cranked axially symmetric system being
inherited by the bifurcating levels. For TA solutions, one of
the eigenfrequencies is always negative(as expected) be-
causev'−V or v'+V become negative in the neighborhood
of the bifurcation point.

Figure 3, showing the total angular momentumL (kL3l or
kL1l) plotted against the angular velocityV for all the bifur-
cating trajectories corresponding to the points in Table I, is
the principal result of this paper.

The degenerate time-reverse bifurcations obtained from
the replacementsV→−V, L→−L equivalent to rotating the
figure by 180° have not been shown explicitly. Then, the
oblate bifurcations occur from a state withL0=−8. The three
TA bifurcations tg1, to±1 have never been calculated before.
The g band is just the familiar ground-state rotational band
obtained by cranking the ground stateperpendicularto the
symmetry axis(three-axis), with the quantized spin sequence
L=0, 2, .. ., 8 and terminating at the oblate state. On the other
hand, the g band is a legitimate bifurcation from the oblate
state(in the sense of the CBT), obtained by cranking about
the symmetry axis. The bifurcation po2 was first found by
Troudet and Arvieu[9], although the relation of the bifurca-
tion point to the RPA frequency was not recognized at that
time. The bifurcation pg2 was first calculated by Marshalek
and Nazmitdinov[17], while po±2 were calculated by Mar-
shalek [18]. A noteworthy feature is that the condition
dL/dV.0 is satisfied only for the g band and in a small

neighborhood of the bifurcation point of po2; everywhere
elsedL/dV,0, i.e., the trajectories exhibit backbending. All
trajectories other than the g band extend to infinite magni-
tudes ofL. The sequences to−1 and po−2 are especially inter-
esting because the spins descend(although the energies in-
crease), with L eventually becoming negative. This poses no
problem in itself, since the degenerate time-reverse solution
has positiveL. Taking po−2 as an example, this implies the
quantized spin sequenceL=8, 6, .. ., 0, 2, 4, .. .. Thus, one has
a descending followed by an ascending sequence ofL values.
Since the modes in question are of the contra type, this is not
necessarily unphysical, but rather peculiar. On the other
hand, as discussed in the concluding section, it is not clear
that these solutions are truly stable equilibria in the ascend-
ing range.

A few words are in order concerning the backbending
behavior in Fig. 3. The most familiar type of backbending in
an L vs V plot is thes-shaped curve resulting from the qua-
sicrossing of two rotational bands[2], which is rather differ-
ent from the behavior in the present case. In the familiar case
there is a steep increase in the moment of inertia over a small
range ofL or V as the adiabatic yrast sequence switches
from the ground-state rotational band to the initially higher
crossing band. In the present case, apart from a small region
near the bifurcation point for po2, L continually increases as
V decreases, so thatL→` as V→0, which, of course, im-
plies a continual increase in the kinematic moment of inertia
as the system approaches an elongated cylinder. Such behav-
ior is well known for the rotational bifurcations of classical
liquid drops, for example, the Jacobi sequence[19]. It should
be kept in mind that the sequences discussed in the present
work are really vibrational bands. When quantized, they cor-
respond to overtone modes of the forms1/În!dsGm

†dnuL0l,
whereGm

† is a suitably defined phonon creation operator and
uL0l is the(correlated) reference state. For a purely harmonic

TABLE I. The first column gives the reference state for the
bifurcations, the second the angular momentum, the third and
fourth, the potential frequencies perpendicular and parallel to the
symmetry axis, respectively. The fifth column labels the bifurca-
tions, as explained in the text, while the last column provides the
critical bifurcation frequencies. Note that the zero-frequency termi-
nus of the g band has been nominally included as a bifurcation
point.

State L0s"d v'sv0˚ d vsymsv0˚ d label Vcsv0˚ d

tg1 1.37804
Ground 0 1.16260 0.73984 pg2 0.82208

g 0.00000

to1 1.34917
to−1 −1.61192

Oblate 8 0.91964 1.18240 po2 0.50005
po−2 −0.73514

g 0.23509 FIG. 3. Angular momentumL (units:") as a function of angular
velocity V (units: v0˚ ) for the bifurcations of20Ne. The horizontal
solid line atL=0 represents the ground state, while the horizontal
dashed line atL=8 represents the oblate state. The bifurcating
curves are labeled according to conventions discussed in the text.

EUGENE R. MARSHALEK PHYSICAL REVIEW C68, 064308(2003)

064308-8



sequence, the energies would be given byE=E0sL0d
+svm/KmdsL−L0d. Since V=dE/dL, one would haveV
=vm/Km=constant for the harmonic case. The corresponding
curve in Fig. 3 would then be a vertical straight line. The
backbending behavior, which implies thatdV/dL
=d2E/dL2,0, reflects anharmonic effects. These anharmo-
nicities imply a compression of the quantized spectrum, i.e.,
spacings between successive levels decrease. This effect can
be seen in the energy diagram in Fig. 5 below. The energy for
the purely harmonic limit is given by the tangent line at a
bifurcation point while the actual anharmonic curve falls be-
low this line.

Figure 4 plots the tilt angles of the three TA bifurcating
trajectories as a function of the angular momentum. The tilt
angle is always measured from the axis that corresponds to

the symmetry axis at the bifurcation point. The portion of the
L,0 curve for to−1 could have been replaced by its time-
reverse reflection withL.0, but this has not been done for
esthetic reasons.

It should be noted that at the bifurcation points,L=0 for
tg1 andL=8 for to±1, the tilt angles are all zero, and then rise
very steeply with increasing magnitudes ofL, eventually ap-
proaching saturation values of just below 30° for tg1 and
close to 60° for to±1.

Figure 5 plots the excitation energiesDE;E−E0 of the
bifurcating bands relative to the ground state as a function of
angular momentum. This shows the g band and two other
bifurcations branching from the ground state atL=0 and four
bifurcations branching from the oblate terminus of the g
band atL=8. The sequences to−1 and po−2 have increasing
energy with decreasing angular momentum forL.0. Instead
of smoothly continuing these curves forL,0, one may plot
the degenerate time-reverse solution with positiveL.0, as
given by the two dashed lines. Then the sequence abruptly
switches to one of increasingL with increasing energy. As
mentioned before, there is some doubt as to whether these
two solutions actually represent stable equilibria in this re-
gion.

Figure 6 portrays the deformation changes in terms of a
plot of e sin g vs e cosg for each bifurcation, where the
parameterse and g are defined by Eq.(8). The figure is
largely self-explanatory. For the most part, the shapes are
highly asymmetric. An interesting point is that an axially
symmetric shape may momentarily evolve into another axi-
ally symmetric one, as illustrated by pg2, which goes from
prolate to oblate, and po2, which goes from oblate to prolate.
In principle, secondary CBT bifurcations from such axial
shapes could occur. However, since theL values at which
this occurs are not integers in general, the significance of
such secondary bifurcations is not clear from a quantum
viewpoint.

V. SUMMARY AND CONCLUSIONS

The present work serves three main purposes. First, it
provides a microscopic illustration of the CBT, whose proof
was based on perturbation theory in the neighborhood of the
bifurcation points[3]. It is therefore reassuring to see that the
bifurcating trajectories can be continued far from these
points. The second purpose is to dispel some misconceptions
concerning the SCCHO model. While Cuypers’[10] formu-
lation of the conditions for rotating equilibrium is basically
sound, his assertion that they do not admit tilted rotation is
incorrect. Although Heiss and Nazmitdinov[11] realized
this, they incorrectly concluded that TA rotation is possible
only for systems with triaxial ground states[12]. The de-
tailed numerical calculations for20Ne should dispel these
misunderstandings. The third purpose is to provide a general
proof that the TA solutions in the SCCHO must lie in a
principal plane. A condition omitted in Cuypers’ original for-
mulation, given by Eq.(30), provides the key to a trivial
proof. Figure 7 illustrates the additional importance of Eq.
(30). It shows that without this condition unphysical tilted
solutions exist with exactly the same bifurcation points as the

FIG. 4. The tilt angleu (degrees) as a function of angular mo-
mentumL (units: ") for the three TA bifurcating trajectories.

FIG. 5. The excitation energyDE (units: "v0˚ ) as a function of
the angular momentumL (units: "d. The dashed curves are the
time-reverse reflections of to−1 and po−2.
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physical tilted solutions. The unphysical solutions have the
property thatk13=k23Þ0, which obviously violates Eq.(30).

It is interesting to note that while the physical solutions
have the propertydL/dV,0 everywhere, the unphysical
ones have the propertydL/dV.0.

An incidental observation of this work, is that a bifurcat-
ing trajectory may evolve from an axially symmetric prolate
to oblate shape or vice versa, allowing for the possibility of
secondary bifurcations via the CBT mechanism. This issue is
left for future study.

In this paper, the nonlinear equations for rotating equilib-
ria in the SCCHO model are solved numerically. The ques-
tion of whether an equilibrium is stable or unstable has not
been addressed. This could be done, for example, by solving
the equations for the frequencies of RPA excitations built on
the rotating mean-field solutions. Another possible approach
is to check whether each stationary solution corresponds to
an energy minimum. This is not quite so straightforward as it
might seem. As is well known, solutions with the property
that dL/dV,0 (backbending) do not correspond to true
minima of the total Routhian[Eq. (14)], but rather saddle

points. Instead, one must seek minima ofkHMFl, the energy
in the laboratory frame,for fixed angular momentum. Such a
code was written, but found not to be as reliable nor as
accurate as the one used for solving the nonlinear equations.
Nevertheless, the former could be used to check if a solution
of the latter is a local minimum. In this way, it was verified
that all the physical bifurcations correspond to minima in
some finite neighborhood of the bifurcation points, while
none of the unphysical bifurcations passed this test. For the
bifurcations with ascending values of the angular momentum
L, a maximum valueLmax seems to exist beyond which the
minimizer could not find an energy minimum verifying the
rotating equilibrium solution. Thus, for the bifurcation to1,
Lmax <28, for po2, Lmax <32, and for pg2, Lmax <12. For
the bifurcations with descending values ofL, a minimum
value Lmin seems to exist. For the bifurcation to−1, Lmin
<1, and for po−2, Lmin <2. In other words, the negative
values ofL appear to correspond to unstable equilibria. For-
tunately, this would remove the paradox mentioned earlier. If
the negative values were permitted, the degenerate time-
reversed positive-L solution would imply a band with a de-
scending followed by an ascending sequence ofL values. It
should be emphasized that the inability of the minimization
code to locate a minimum within a designated range is not a
rigorous criterion for instability — there may be delicate
numerical reasons for this behavior. Therefore, the limits on
L are very approximate. The tentative conclusion then is as
follows: although the bifurcations have no limits onuLu,
minimization for fixedL suggests that beyond a certain value
of uLu, each bifurcation becomes unstable, probably via a
saddle-point behavior. A rigorous conclusion would require
the additional calculation of the RPA frequencies along the
bifurcating trajectories, which is beyond the scope of this
paper.

Finally, it may be worthwhile to recall the interpretation
of the bifurcations, which is discussed in great detail in Ref.

FIG. 6. e sin g plotted againste cosg for the bifurcating se-
quences. The straight dashed line atg=0° corresponds to axially
symmetric prolate shapes, while that atg=60° to axially symmetric
oblate shapes. Bifurcations from the ground state and the g band are
represented by solid curves, while bifurcations from the oblate are
represented by dashed curves. For each curve, the progression ofL
values (units: ") at intervals of 10 is provided by the numbers
accompanying the solid dots.

FIG. 7. The angular momentumL (units: ") as a function of
angular velocityV (units: v0˚ ) for the TA solutions. The physical
solutions, which satisfy Eq.(30), correspond to the full curves,
while the unphysical solutions, which violate Eq.(30), correspond
to the dashed curves. The horizontal solid line atL=0 represents the
ground state, while the horizontal dashed line atL=8 represents the
oblate state.
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[3]. While these bifurcations correspond classically to rotat-
ing equilibria obtained by superposing degenerate vibrations,
from a quantal viewpoint they are multiphonon anharmonic
vibrations. In particular, they represent overtone modes of
the form 1/În!sGK

†dnuL0l, whereGK
† is a suitably defined pho-

non creation operator anduL0l is the (correlated) reference
state. For more details, see Ref.[3]. In the case of the SC-
CHO, the bifurcations described in this paper represent quad-
rupole giant resonances built on either the ground or the
oblate band-termination state, with the exception of the g
band, which is the ordinary ground-state rotational band.

APPENDIX: DIAGONALIZATION OF THE CHO
HAMILTONIAN

In order to diagonalize the single-particle CHO Routhian
in the spin frame given by Eq.(6) with the units"=m=v0˚
=1, it is convenient to first introduce the usual Cartesian
creation and destruction operatorsbk

†, bk via the transforma-

tion xk=sbk
†+bkd/Î2, pk=isbk

†−bkd/Î2, k=1, 2, 3. The boson
commutation rulesfbk, b,

†g=dk,, fbk, b,g=0 (and Hermitian
conjugate equation) correspond to the canonical commuta-
tion rules fxk, p,g=idk,, fxk, x,g=0, fpk, p,g=0. The Routhian
then takes the general form

rs = 1
2trA + o

k=1

3

o
,=1

3

fAk,bk
†b, + 1

2Bk,sbk
†b,

† + b,bkdg ,

sA1d
where the matrices are explicitly given by

A =1
1

2
sk11 + 1d

1

2
k12 − iV

1

2
k13

1

2
k12 + iV

1

2
sk22 + 1d

1

2
k23

1

2
k13

1

2
k23

1

2
sk33 + 1d

2 ,

B =1
1

2
sk11 − 1d

1

2
k12

1

2
k13

1

2
k12

1

2
sk22 − 1d

1

2
k23

1

2
k13

1

2
k23

1

2
sk33 − 1d

2 . sA2d

Both matrices are Hermitian, butA is complex whileB is
real. The CHO Routhian can be diagonalized in the form

rs = o
k=1

3

«ksBk
†Bk + 1

2d sA3d

by means of the Bogoliubov transformation

Bk
† = o

,=1

3

fu,s«kdb,
† − y,s«kdb,g, sA4d

Bk = o
,=1

3

f− v,
*s«kdb,

† + u,
*s«kdb,g.

The requirement that the normal-mode operatorsBk
†, Bk

obey the usual boson commutation rules then leads to the
following orthonormality conditions for the coefficients:

o
m=1

3

fums«kdum
* s«,d − yms«kdym

* s«,dg = dk,,

o
m=1

3

fums«kdyms«,d − ums«,dyms«kdg = 0, sand H.c. equationd.

sA5d

The equations of motionfrs, Bk
†g=«kBk

† lead to the follow-
ing 636 eigenvalue problem:

S A B
− B* − A* DSuI s«kd

yIs«kd
D = «kSuI s«kd

yIs«kd
D , sA6d

whereuI s«kd, yI s«kd are the three-dimensional column vec-
tors whose respective components are the coefficients
uks«kd, yks«kd. These equations have exactly the same
mathematical form as the RPA eigenvalue problem. The
equation for the eigenvalues obtained from

detFS A B
− B* − A* D − «IG = 0, sA7d

I being the six-dimensional identity matrix, is just Eq.
s10d.

The Eq.(A6) has the well known(and obvious) property
that for each real eigenvalue(eigenfrequency) «k, its negative
−«k is also an eigenvalue with the associated eigenvector
having the coefficients

u,s− «kd = y,
*s«kd, y,s− «kd = u,

*s«kd. sA8d

The normalization imposed by the first of Eqs.sA5d,
namely,

o
m=1

3

fuums«kdu2 − uyms«kdu2g = 1, sA9d

can only be satisfied for one of the sign choices of«k
because of a negative value of the sum for the other sign
choice. It is important to check which sign choice yields
an eigenvector for which the sum on the left-hand side is
positive. Upon normalization, one then obtains the cre-
ation operatorBk

†, with the operator −Bk corresponding to
the eigenvector associated to −«k, such that the condition

fBk, Bk
†g=1 is satisfied. In other words, for a givenu«ku, one

sign choice defines the creation operator and the other the
destruction operator. In the case of TA rotations of the
SCCHO, there is always one eigenmode for which a nega-
tive value of«k definesBk

†.
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