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The symmetry energy for nuclear matter and its relation to the neutron skin in finite nuclei is discussed. The
symmetry energy as a function of density obtained in a self-consistent Green function approach is presented
and compared to the results of other recent theoretical approaches. A partial explanation of the linear relation
between the symmetry energy and the neutron skin is proposed. The potential of several experimental methods
to extract the neutron skin is examined.
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I. INTRODUCTION

The nuclear symmetry energy plays a central role in a
variety of nuclear phenomena. It determines to a large extent
the equation of state(EOS) and the proton fraction of neu-
tron stars[1], the neutron skin in heavy nuclei[2], it enters as
an input in the analysis of heavy ion reactions[3,4], etc. Its
value at nuclear saturation density,Ssr0=0.17 fm−3d
<30 MeV, seems reasonably well established, both empiri-
cally as well as theoretically; still different parametrizations
of relativistic mean-field(RMF) models(which fit observ-
ables for isospin symmetric nuclei well) lead to a relatively
wide range of predictions for the symmetry energy,
24–40 MeV. However, predictions for its density depen-
dence show a substantially larger variation.

Recently it has been pointed out by several authors[2,5,6]
that there exists a strong correlation between the neutron
skin, DR=Rn–Rp, and the density derivative of the EOS of
neutron matter near saturation density. Subsequently in a
more detailed analysis in the framework of a mean-field ap-
proach, Furnstahl[2] demonstrated that in heavy nuclei there
exists an almost linear empirical correlation between theoret-
ical predictions in terms of various mean-field approaches to
Ssrd (i.e., a bulk property) and the neutron skin,DR (a prop-
erty of finite nuclei).

This observation has contributed to a renewed interest in
an accurate determination of the neutron skin in neutron-rich
nuclei for several reasons. First precise experimental infor-
mation on the neutron skin could help to further constrain
interaction parameters that play a role in the calculation of
the symmetry energy[7]. Furthermore a precise value of the
neutron skin is required as an input in several processes of
physical interest, e.g., the analysis of energy shifts in deeply
bound pionic atoms[8], and in the analysis of atomic parity
violation experiments(weak charge) [9]. It has been shown
that the calculated symmetry energy is quite insensitive to
details of modern realistic nucleon-nucleon(NN) interactions
[10]. On the other hand the symmetry energy and in particu-
lar its density dependence can vary substantially with the
many-body approximations employed. For instance the re-
sults of lowest-order Brueckner-Hartree-Fock(BHF) and
variational calculations do not seem to agree well.

The aim of this paper is threefold: First we address the
sensitivity of the symmetry energy to various many-body
approximations. To this end we present results of a calcula-
tion of Ssrd using the self-consistent Green function(SCGF)
approach and compare the result with various other theoret-
ical approaches. Second we will try to provide some new
insight in the origin of the “Furnstahl” relation; for this pur-
pose we use the Landau-Migdal effective interaction in the
mean-field approximation. Finally in view of the large vari-
ety of existing and proposed experimental methods to deter-
mine the neutron skinDR we examine the merits of some
recently proposed methods that seem to be of potential inter-
est to provide more accurate information on the neutron skin
in the near future.

Section II is devoted to an overview of theoretical ap-
proaches to the symmetry energy, and a new calculation in
terms of the self-consistent Green function approach is pre-
sented. In Sec. III an interpretation of the Furnstahl relation
is presented in terms of the Landau-Migdal approach. Sec-
tion IV contains an overview of various experimental meth-
ods to deduce information on the neutron skin and Sec. V
contains a short discussion of implications for other physical
processes where the information on the neutron skin is re-
quired as an input.

II. THE SYMMETRY ENERGY IN NUCLEAR MATTER

The symmetry energySsrd is defined in terms of a Taylor
series expansion of the energy per particle for nuclear matter
in terms of the asymmetrya=sN−Zd/A (or equivalently the
proton fractionx=Z/A),

Esr, ad = Esr, 0d + Ssrda2 + Osa4d + ¯ . s1d

It has been shownf11,12g that deviations from the para-
bolic law in Eq. s1d, i.e., terms ina4, are quite small.

Near the saturation densityr0 the energy of isospin-
symmetric matterEsr, 0d and the symmetry energy can be
expanded as

Esr, 0d = E0 +
K

18r0
2sr − r0d2 + ¯ , s2d

and
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Ssrd = U1

2

]2Esr, ad
] a2 U

a=0

= a4 +
p0

r0
2sr − r0d +

DK

18r0
2sr − r0d2+ ¯ . s3d

The parametera4 is the symmetry energy at equilibrium
and the slope parameterp0 governs the density depen-
dence.

The relevance of the nuclear matter results in part de-
pends on the question whether there is a surface contribution
to the symmetry energy for finite nuclei. In Ref.[13] it was
found that the latter is of minor importance, which has also
been confirmed in Ref.[2].

A. Self-consistent Green function and Brueckner approach

In this section we describe the calculation of the symme-
try energy in the SCGF approach. Since the latter can be
considered as a generalization of the lowest-order BHF
method we start with a brief discussion of the symmetry
energy in the latter case.

1. Symmetry energy in BHF

In the Brueckner-Hartree-Fock approximation, the
Brueckner-Bethe-Goldstone(BBG) hole-line expansion is
truncated at the two hole-line level. The short-rangeNN re-
pulsion is treated by a resummation of the particle-particle
ladder diagrams into an effective interaction orG matrix.
Self-consistency is required at the level of the BHF single-
particle (sp) spectrumeBHFskd,

eBHFskd =
k2

2m
+ o

k8,kF

Rekkk8uGfv = eBHFskd + eBHFsk8dgukk8l.

s4d

In the standard choice BHF the self-consistency require-
ments4d is restricted to hole statessk,kFd only, while the
free spectrum is kept for particle statesk.kF. The result-
ing gap in the sp spectrum atk=kF is avoided in the
continuous-choice BHFsccBHFd, where Eq.s4d is used
for both hole and particle states. The continuous choice
for the sp spectrum is closer in spirit to the many-body
Green function perturbation theory. Moreover, recent re-
sults indicatef14,15g that the contribution of higher-order
terms in the hole-line expansion is considerably smaller if
the continuous choice is used.

The BHF energy per nucleon can be easily evaluated for
both symmetric nuclear matter(SNM) and pure neutron mat-
ter (PNM) using the energy sum rule,

E

A
=

d

r
E d3k

s2pd3S k2

2m
+ eBHFskdDuskF − kd, s5d

where r=dkF
3/3p2 is the density andd is the isospin de-

generacyfd=1s2d for PNM sSNMdg. The symmetry en-
ergy Ssrd is obtained as the difference between PNM and
SNM energies for the same density.

We first performed ccBHF calculations with the Reid93
interaction, including partial waves withJ,4 in the calcula-
tion of the G matrix. The results are presented in Fig. 1,
where the symmetry energyS is decomposed into various
contributions as suggested in Ref.[11] and shown as a func-
tion of nucleon densityr.

The contributionSkin of the kinetic energy to the BHF
symmetry energy is given by the free Fermi-gas expression1

Skin = Ekin,PNM − Ekin,SNM=
3

10m
s3p2d2/3r2/3S1 −

1

22/3D ,

s6d

and it determines to a large extent the density dependence
of S. In Fig. 1 we also show the symmetry potentialSpot
=S−Skin, which is much flatter, and the contributions to
Spot from both the isoscalarsT=0d and isovectorsT=1d
components of the interaction. Over the considered den-
sity rangeSpot is dominated by the positiveT=0 part. The
T=0 partial waves, containing the tensor force in the
3S1–3D1 channel which gives a major contribution to the

1This expression differs from the standard one, which is based
upon the derivative rather than the finite difference.

FIG. 1. The symmetry energyS (full line) and the contributions
to S from the kinetic(dash-dotted line) and potential energy(dashed
line), calculated within a ccBHF scheme and using the Reid93 in-
teraction. Also shown(dotted lines) are theT=0 andT=1 compo-
nents of the potential energy contribution.
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potential energy in SNM, do not contribute to the PNM
energy. TheT=0 contribution peaks atr<0.3 fm−3. The
decrease of this contribution at higher densities is com-
pensated by the increase of theT=1 potential energy, with
as a net result a much weaker density dependence of the
total potential energy.sIt should be noted that inclusion of
a three-nucleon interaction in general leads to a substan-
tial increase for the slope parameterp0 f12g.d

2. Symmetry energy in SCGF approach

In recent years several groups have considered the re-
placement of the BBG hole-line expansion with the SCGF
theory[16–21]. In Refs.[20,21] the binding energy for SNM
was calculated within the SCGF framework and using the
Reid93 potential. In the present paper we have extended
these calculations to PNM and calculated the corresponding
symmetry energy. Details of a technical nature can be found
in Ref. [20].

A SCGF calculation differs in two important ways from a
BHF calculation. First, within SCGF particles and holes are
treated on an equal footing, whereas in BHF only intermedi-
ate particlesk.kFd states are included in the ladder dia-
grams. This aspect ensures thermodynamic consistency, e.g.,
the Fermi energy or chemical potential of the nucleons
equals the binding energy at saturation(i.e., it fulfills the
Hugenholz–van Hove theorem). In the low-density limit
BHF and SCGF coincide. As the density increases the phase
space for hole-hole propagation is no longer negligible, and
this leads to an important repulsive effect on the total energy.
Second, the SCGF generates realistic spectral functions,
which are used to evaluate the effective interaction and the
corresponding nucleon self-energy. The spectral functions in-
clude a depletion of the quasiparticle peak and the appear-
ance of single-particle strength at large values of energy and
momentum, in agreement with experimental information
from se, e8pd reactions. This is in contrast with the BHF ap-
proach where all the sp strength is concentrated at the BHF
energy as determined from Eq.(4).

In a SCGF approach the particle statessk.kFd, which are
absent in the BHF energy sum rule of Eq.(5), do contribute
according to the energy sum rule

E

A
=

d

r
E d3k

s2pd3E
−`

«F

dvS k2

2m
+ vDShsk, vd, s7d

expressed in terms of the nucleon spectral function
Shsk, vd.

The results for the ccBHF and SCGF calculations for both
SNM and PNM are compared in the left and central panels of
Fig. 2 for the Reid93 interaction. The inclusion of high-
momentum nucleons leads roughly to a doubling of the ki-
netic and potential energy in SNM, as compared to BHF. As
seen in Fig. 2, the net result for the total energy of SNM is a
repulsive effect, increasing with density[20]. This leads to a
stiffer equation of state, and a shift of the SNM saturation
density towards lower densities. The above effects are domi-
nated by the tensor force(the isoscalar3S1–3D1 partial
wave). Consequently, the effects are much smaller in PNM.

The corresponding symmetry energy, shown in the right
panel of Fig. 2, is dominated by the shift in the total energy
for SNM, and lies below the ccBHF symmetry energy in the
entire density range. Atr0=0.16 fm−3 the symmetry energy
parametera4 is reduced from 28.9 MeV to 24.9 MeV, while
the slopep0 remains almost the same(from 2.11 MeV fm−3

to 1.99 MeV fm−3).

B. Comparison of symmetry energy in other approaches

1. Calculations with realistic NN forces

Engvik et al. [10] have performed lowest-order
Brueckner-Hartree-Fock(LOBHF) calculations in SNM and
PNM for all “modern” potentials(CD Bonn, Argonne v18,
Reid93, Nijmegen I and II), which fit the NijmegenNN scat-
tering database with high accuracy. They concluded that for
small and normal densities the symmetry energy is largely
independent of the interaction used, e.g., atr0 the values ofS
vary around an average value ofa4=29.83 MeV by about
1 MeV. At larger densities the spread becomes larger; how-
ever, the symmetry energy keeps increasing with density, in
contrast to some of the older potentials such as Argonne v14
and the original Reid interaction(Reid68) for which Ssrd
tended to saturate at densities larger thanr=0.4 fm−3. Some
insight into the microscopic origin of the symmetry potential
was obtained by Zuoet al. [11] who decomposed the sym-
metry energy into contributions from kinetic and potential
energy. The BHF calculations in Ref.[11] used the Argonne
v14 and the separable Paris interaction. In Fig. 1 we showed
that the use of the modern Reid93 potential leads to essen-
tially the same conclusions.

Detailed studies for SNM and PNM using variational
chain summation techniques were performed by Wiringaet
al. [22] for the Argonne Av14 and Urbana Uv14NN interac-
tion, in combination with the Urbana UVIII three-nucleon

FIG. 2. The total energy per
particle for symmetric nuclear
matter (left panel) and pure neu-
tron matter(central panel) for the
Reid93 interaction. The dashed
line refers to a ccBHF calculation,
the full line to a SCGF calcula-
tion. The right panel displays the
symmetry energy in these two ap-
proaches.
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interaction(TNI), and by Akmalet al. [23] for the modern
Av18 NN potential in combination with the UIX-TNI. Re-
sults for a4 and p0, extracted from Refs.[22] and [23], are
shown in Table I. The inclusion of TNI stiffens the EOS for
both SNM and PNM, and increases considerably the value of
the symmetry energya4 and its slopep0 at the empirical
densityr0. The effect of including a relativistic boost correc-
tion dv (in combination with a refitted TNI) on the values of
a4 andp0 is sizable as well.

The symmetry energy has also been computed in the
Dirac-Brueckner-Hartree-Fock approach[24,25]. In relativis-
tic approaches the symmetry energy generally is found to
increase almost linearly with density, and more rapidly than
in the nonrelativistic case. This difference can be attributed
to two effects. First the covariant kinetic energy which is
inversely proportional toÎkF

2+m*2 is larger because of the
decreasing Dirac massm* with increasing density. Second
the contribution fromr exchange appears to be larger than in
the nonrelativistic case[24].

2. Mean-field approach using effective interactions

Since the Furnstahl relation has been verified mainly in
terms of mean-field models we discuss some results obtained
in these approaches, which in general are based upon a pa-
rametrized effective interaction.

Brown [5] has investigated proton and neutron radii in
terms of the nonrelativistic Skyrme Hartree-Fock(SHF)
model. First he noted that a certain combination of param-
eters in the SHF is not determined well by a fit to ground-
state binding energies, and that a wide range of predictions
for the EOS for PNM is obtained. He also pointed out a
direct correlation between the derivative of the neutron mat-
ter EOS(i.e., basically the symmetry energy coefficientp0)
and the neutron skin in208Pb.

Covariant approaches are in general based upon either a
covariant Lagrangian withs, v, andr exchange(and possi-
bly other mesons) [26,27], or on the use of contact interac-
tions [2], solved as an energy density functional in the
Hartree-Fock approximation. Sets of model parameters are
determined by fitting bound state properties of nuclei. Spe-
cifically the isovector degree of freedom is determined by the
exchange of isovector mesons; in case ofr meson exchange
the (positive definite) contribution toS is given by

a4 =
kF

2

6Îm*2 + kF
2

+
gr

2

8mr
2r0, s8d

and its potential energy contribution top0, which scales
with that for a4, is gr

2/8mr
2 f2g. Typical values obtained for

p0 are around 4–6 MeV fm−3, and a4,30–36 MeV, i.e.,

considerably larger than in nonrelativistic approachessa
large part of the enhancement can be ascribed to the fact
that the kinetic contribution is larger, becausem* ,md.
Recently in Refs.f28,29g this approach was extended by
inclusion of the isovector-scalar partnerd of the isoscalar
scalars meson. Because of the presence of the Lorentz
factor m* /E in the scalar potential contribution,
,−sgd

2/8md
2dsm* /Ed, which decreases with increasing den-

sity its inclusion leads to an even larger net value forp0

f28,29g.

Since explicit pion exchange is usually not included in the
mean-field approaches it is difficult to make a meaningful
comparison with microscopic ones. In fact it can be argued
that in contrast to isoscalar properties the long-range pion
exchange could play an essential role in determining the is-
ovector properties[2].

3. Effective field theory

Recently the density dependence of the symmetry energy
has been computed in chiral perturbation effective field
theory, described by pions plus one cutoff parameter,L, to
simulate the short distance behavior[30]. The nuclear matter
calculations have been performed up to three-loop order; the
resulting EOS is expressed as an expansion in powers ofkF,
and the value ofL<0.65 GeV is adjusted to the empirical
binding energy per nucleon. The value obtained in this ap-
proach fora4=33 MeV is in remarkable agreement with the
empirical one; at higher densitiessr.0.2 fm−3d a downward
bending is predicted. However, in its present form the valid-
ity of this approach is clearly confined to relatively small
values of the Fermi momentum, i.e., rather low densities. It
is interesting to note that there are relatively small(large)
contributions toa4 coming from one-pion exchange Fock
diagram(three-loop diagrams with either two or three me-
dium insertions).

4. Comparison

To summarize the present status in Fig. 3 various results
of the approaches forSsrd discussed above are compared. As
noted above one sees that the covariant models yield a much
larger increase ofS with the density than the nonrelativistic
approaches. The LOBHF leads to a higher value ofS than
both variational and the SCGF method which include more
correlations; that the SCGF result is close to the variational
approach may be fortuitous. Effects from three-body forces
are not included.

TABLE I. Results for the symmetry energy parametersa4 andp0 from the variational calculations of Refs.[22,23] using the Argonne and
UrbanaNN potentials, in combination with Urbana models for the three-nucleon interaction. The last column includes a relativistic boost
correctiondv and the adjusted UIX* three-nucleon interaction.

Av14 Av14+UVIII Uv14 Uv14+UVIII Av18 Av18+UIX Av18+dv+UIX*

a4 sMeVd 24.90 27.49 26.39 28.76 26.92 29.23 30.1
p0 sMeV fmd−3 2.02 2.71 2.38 3.04 1.95 3.24 2.95
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III. RELATIONSHIP BETWEEN SYMMETRY ENERGY
AND DR

Brown [5] and Furnstahl[2] have pointed out that within
the framework of mean-field models there exists an almost
linear empirical correlation between theoretical predictions
for both a4 and its density dependencep0 and the neutron
skin DR=Rn−Rp in heavy nuclei. This observation suggests
an intriguing relationship between a bulk property of infinite
nuclear matter and a surface property of finite systems.

Here we wish to address this question from a different
point of view, namely in the spirit of Landau-Migdal ap-
proach. Let us consider a simple mean-field model(see, e.g.,
Ref. [31]) with the Hamiltonian consisting of the single-

particle mean-field partĤ0 and the residual particle-hole in-

teractionĤp-h:

Ĥ = Ĥ0 + Ĥp-h, Ĥ0 = o
a

fTa + Usxadg, s9d

Usxd = U0sxd + U1sxd + UCsxd, s10d

U0sxd = U0srd + Usosxd; U1sxd =
1

2
Spotsrdts3d;

UCsxd =
1

2
UCsrds1 − ts3dd, x = sr, s, td.

Here, the mean-field potentialUsxd includes the phenom-
enological isoscalar partU0sxd along with the isovector
U1sxd and the CoulombUCsxd parts calculated consistently
in the Hartree approximation; U0srd and Usosxd
=UsosrdsW ·lW are the central and spin-orbit parts of the iso-
scalar mean field, respectively;Spotsrd is the symmetry
potentialsthe potential part of the symmetry energyd.

In the Landau-Migdal approach the effective isovector

particle-hole interactionĤp-h is given by

Ĥp-h = o
a.b

sF8 + G8sW asW bdtWatWbdsrWa − rWbd, s11d

where F8 and G8 are the phenomenological Landau-
Migdal parameters.

The model HamiltonianĤ in Eq. (10) preserves isospin
symmetry if the condition

fĤ, T̂s−dg = ÛC
s−d s12d

is fulfilled, where T̂s−d=oa ta
s−d, ÛC

s−d=oa UCsradta
s−d. With

the use of Eqs.s10d–s12d the condition, Eq.s12d, in the
random phase approximation formalism leads to a self-
consistency relation between the symmetry potential and
the Landau parameterF8 f32g:

Spotsrd = 2F8ns−dsrd, s13d

where ns−dsrd=nnsrd−npsrd is the neutron excess density.
Thus, in this model the depth of the symmetry potential is
controlled by the Landau-Migdal parameterF8 sanalo-
gously to the role played by the parametergr

2 in relativistic
mean-field modelsd.

Spotsrd is obtained from Eq.(13) by an iterative procedure;
the resulting dependence ofDR on the dimensionless param-
eter f8=F8/s300 MeV fmd3 shown in Fig. 4 indeed illustrates
that DR depends almost linearly onf8. Then with the use of
the Migdal relation[33] which relates symmetry energy and
f8,

a4 =
eF

3
s1 + 2f8d, s14d

a similar almost linear correlation between the symmetry
energya4 and the neutron skin is obtained.

To get more insight in the role off8 we consider small
variationsdF8. Neglecting the variation ofns−dsrd with re-
spect todF8 one has a linear variation of the symmetry po-
tential: dSpotsrd=2dF8ns−dsrd. Then in first-order perturbation
theory, such a variation ofSpot causes the following variation
of the ground-state wave function:

FIG. 3. Overview of several theoretical predictions for the sym-
metry energyS: Brueckner-Hartree-Fock(continuous choice) with
Reid93 potential(circles), self-consistent Green function theory
with Reid93 potential(full line), variational calculation from Ref.
[22] with Argonne Av14 potential(dashed line), Dirac-Brueckner-
Hartree-Fock calculation from Ref.[24] (triangles), relativistic
mean-field model from Ref.[28] (squares), effective field theory
from Ref. [30] (dash-dotted line).
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ud0l = dF8o
s

ksuN̂s−du0l
E0 − Es

usl, s15d

with s labeling the eigenstates of the nuclear Hamiltonian

and a single-particle operatorN̂s−d=oa ns−dsradta
s3d. Conse-

quently the variation of the expectation value of the

single-particle operator V̂s−d=oa ra
2ta

s3d with k0uV̂s−du0l
=NRn

2−ZRp
2 can be written as

RpdsDRd = dF8
2

Ao
s

Rek0uN̂s−duslksuV̂s−du0l
E0 − Es

. s16d

In practice the sum in Eq.s16d is exhausted mainly by the
isovector monopole resonance of which the high excita-
tion energysabout 24 MeV in208Pbd justifies the pertur-
bative consideration. We checked that Eq.s16d is able to
reproduce directly calculateddsDRd shown in Fig. 4 with
the accuracy of about 10%. As a result a simple micro-
scopic interpretation of the linear correlation between the
neutron skin thickness and Landau parameterF8 is ob-
tained.

IV. EXPERIMENTAL METHODS TO DETERMINE DR

A variety of experimental approaches have been explored
in the past to obtain information onDR. To a certain extent
all analyses contain a certain model dependence, which is
difficult to estimate quantitatively. It is not our intention to
present a full overview of existing methods for the special
case of208Pb. In particular the results obtained in the past
from the analysis of elastic proton and neutron scattering
have varied depending upon specifics of the analysis em-
ployed. At present the most accurate value comes from a
recent detailed analysis of the elastic proton scattering reac-
tion at E=0.5–1 GeV[34], and of neutron and proton scat-
tering atE=40–100 MeV[35]. For details we refer to these
papers. Here we restrict ourselves to a discussion of some
less well-known methods that have the potential to provide
more accurate information on the neutron skin in the future.

In particular the excitation of isovector giant resonances
through the restoring force contains information about the
symmetry energy.

A. Isovector giant resonances

We begin with a brief overview of the study of excitation
of isovector giant resonances. Sum rules for the latter contain
direct information onDR.

1. Giant dipole resonance (GDR)

In the past the excitation of the isovector giant dipole
resonance(GDR) with isoscalar probes has been used to ex-
tract DR/R [36]. In the distorted wave Born approximation
optical model analysis of the cross section the neutron and
proton transition densities are needed as an input. In the
Goldhaber-Teller picture,

gisrd = − k
2Ni

A

dri

dr
s17d

with k the oscillation amplitude andsi =p, nd. We assume
ground-state neutron and proton distributions of the form
fx=sN−Zd/Ag

risrd =
1

2
s1 ± x 7 gxdrfr − cs1 ± gx/3dg. s18d

While for N=Z the transition density vanishes, forN.Z
the isovector transition density is finite,

Dgsrd = kg
N − Z

A
Sdr

dr
+

c

3

d2r

dr2D ,

whereg is related toDR, g=f3A/2sN−ZdgDR/R0.
Excitation of the GDR bya particle scattering(isoscalar

probe) the corresponding transition optical potential is given
by

DUtr = kg
N − Z

A
SdU

dr
+

R0d
2U0

3dr2 D . s19d

By comparing the experimental cross section with the the-
oretical onescalculated as a function of the ratioDR/Rd
the value ofDR/R can be deduced.

It is difficult to make a quantitative estimate of the uncer-
tainty in the result coming from the model dependence of the
approach. In the analysis several assumptions must be made,
such as the radial shape of the density oscillations and about
the actual values of the optical model parameters.

2. Spin-dipole giant resonance

Recently it has been proposed to utilize the excitation of
the spin-dipole resonance(SDR), excited in charge exchange
reactions, to determine the neutron skin; in fact the method
has been applied to obtain information on the variation of the
neutron skin in the Sn isotopes with isotope number[37]. For
the relevant operatorositi

±riY1srid, the summedDL=1
strength is

FIG. 4. Neutron skin in208Pb vs the Landau-Migdal parameter
f8.
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Ss−d − Ss+d = CsNRn
2 − ZRp

2d. s20d

HereSs−d andSs+d are the spin-dipole total strengths inbs−d

and bs+d channels, respectively;C is the factor depending
on the definition of the spin-dipole operatorsin the defi-
nition of Ref.f2g C=1/4p, we use hereC=1d. BecauseSs+d

could not be measured experimentally, the model-
dependent energy-weighted sum rule was invoked in the
analysis to eliminateSs+d. Let us putSs+d=0 sthat seems to
be a very good approximation for208Pbd and ask the ques-
tion what experimental accuracy forSs−d is needed to de-
termine the neutron skin to a given accuracy. With

Ss−d = sN − ZdRp
2 + 2NRpDR s21d

the ratio of the second term on the right-hand side to the
first one in case of208Pb is

2NDR/fsN − ZdRpg < 5.7DR/Rp.

Therefore, forRp=5.5 fm andDR=0.2 fm the second term
is only 25% of the first one and one needs 3% accuracy in
Ss−d to determineDR with 10% accuracy. Because the SDR
strength is spread out and probably has a considerable
strength at low energy the results for theDR can be only
considered as qualitative with a relatively large uncer-
tainty sof the order of 30–50%d.

3. Isobaric analog state

The dominant contribution to the energy-weighted sum
rule (EWSR) for Fermi excitations by the operatorTs−d

comes from the Coulomb mean field[38]

sEWSRdF =E UCsrdns−dsrdd3r . s22d

The Coulomb mean fieldUCsrd resembles very much that
of the uniformly charged sphere, being inside a nucleus a
quadratic function:UCsrd=sZe2/2Rcdf3−sr/Rcd2g, r øRc. It
turns out that if one extends such a quadratic dependence
also to the outer regionr .Rc sinstead of proportionality
to Rc/rd, it gives numerically just very small deviation in
sEWSRdF fless than 0.5%, due to the fact that the differ-
ence and its first derivative go to 0 atr =Rc and ns−dsrd is
exponentially decreasing atr .Rcg. Using such an ap-
proximation, one gets

sEWSRdF < sN − ZdDCS1 −
Ss−d

3sN − ZdRc
2D s23d

with DC=3Ze2/2Rc, andSs−d given in Eq.s21d.
Since the isobaric analog state(IAS) exhausts almost

100% of the non-EWSR and EWSR, one may hope to extract
Ss−d from the IAS energy. However, the term depending on
Ss−d contributes only about 20% tosEWSRdF, and as a result,
the part ofSs−d depending onDR contributes only about 4%
to sEWSRdF (in 208Pb). From the experimental side, the IAS
energy can be determined with unprecendently high accu-
racy, better than 0.1%. Also, from the experimentally known
charge density distribution the Coulomb mean fieldUCsrd
can be calculated rather accurately, and hence one can deter-

mine the small difference between Eqs.(23) and(22). But at
the level of 1% accuracy several theoretical effects discarded
in Eq. (22) come into play(see, e.g., Ref.[38]) which makes
the reliability of such a method questionable. On the other
hand in a forthcoming paper we will show that for an isoto-
pic chain the excitation of the IAS can be used as a quanti-
tative tool to obtain the variation ofDR with neutron number.

B. Antiprotonic atoms

Recently neutron density distributions were deduced from
antiprotonic atoms[39]. The basic method determines the
ratio of neutron and proton distributions at large differences
by means of a measurement of the annihilation products
which indicates whether the antiproton was captured on a
neutron or a proton. In the analysis two assumptions are
made. First, a best fit value for the ratioRI of the imaginary
parts of the free spacepp andpn scattering lengths equal to
unity is adopted. Second, in order to reduce the density ratio
at the annihilation side to a ratio of rms radii a two-parameter
Fermi distribution is assumed. The model dependence intro-
duced by this assumption is difficult to judge. Since a large
number of nuclei have been measured one may argue that the
value ofRI is fixed empirically.

C. Parity violating electron scattering

Recently it has been proposed to use the(parity violating)
weak interaction to probe the neutron distribution. This is
probably the least model-dependent approach[41]. The weak
potential between electron and a nucleus is

Ṽsrd = Vsrd + g5Asrd, s24d

where the axial potentialAsrd=sGF/23/2drWsrd. The weak
charge is mainly determined by neutrons

rWsrd = s1 − 4sin2uWdrpsrd − rnsrd, s25d

with sin2 uW<0.23. In ascattering experiment using po-
larized electrons one can determine the cross section
asymmetryf41g which comes from the interference be-
tween theA andV contributions. Using the measured neu-
tron form factor at small finite value ofQ2 and the exist-
ing information on the charge distribution one can
uniquely extract the neutron skin. Some slight model de-
pendence comes from the need to assume a certain radial
dependence for the neutron density, to extractRn from a
finite Q2 form factor.

V. DISCUSSION OF DR FOR 208Pb AND
SOME IMPLICATIONS

In Table II we present a summary of some recent results
on DR in 208Pb. One sees that(with the exception of the
analysis of proton and neutron pickup reactions in terms of
mean-field orbitals in Ref.[42]) all recent results are consis-
tent with DR,0.13±0.03 fm. Therefore it appears that the
data agree with the result of conventional Skyrme model
approach but seem to disagree with the results of the RMF
models considered in Ref.[2]. One the basis of the correla-
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tion plot betweenDR and p0 shown in Ref.[2] one would
then conclude that a small value forp0,2 MeV/fm3 is pre-
ferred over larger values predicted in RNF approaches.

In several processes of physical interest knowledge ofDR
plays a crucial role and in fact a more accurate value could
lead to more stringent tests.

(i) The pion polarization operator[8] (the s-wave opti-
cal potential) in a heavy nucleus,Psv, rp, rnd=−T+svdr
−T−svdsrn−rpd, has mainly an isovector character
fT+smpd,0g. Parametrizing the densities by Fermi shapes for
the case of208Pb the main nuclear model dependence in the
analysis comes from the uncertainty in the value ofDR
multiplying T−.

(ii ) Parity violation in atoms is dominated byZ-boson
exchange between the electrons and the neutrons[9,44]. Tak-
ing the proton distribution as a reference there is a small
so-called neutron skin(ns) correction to the parity noncon-
serving amplitude,dEpnc

ns , for, say, a 6s1/2→7s1/2 transition,
which is related toDR as[44] (independent of the electronic
structure)

dEpnc
ns

Epnc
= −

3

7
saZd2DR

Rp
. s26d

In 133Cs it amounts to adE/E<−s0.1–0.4d% depending on
whether the nonrelativistic or relativistic estimates forDR
are usedf9g. The corresponding uncertainty in the weak
chargeQW is −s0.2–0.8ds.

(iii ) The pressure in neutron star matter can be expressed
as in terms of the symmetry energy and its density depen-
dence[1]

Psr, xd = r2] Esr, xd
] r

= r2fE8sr, 1/2d + S8srds1 − 2xd2 + . . .g.

s27d

By using theb equilibrium condition in a neutron star,
me=mn−mp=−]Esr, xd/]x, and the result for the electron

chemical potential,me=3/4"cxs3p2rxd1/3, one finds the
proton fraction near saturation density,r0, to be quite
small, x0,0.04. Hence the pressure at saturation density
can be approximated as

Psr0d = r0s1 − 2x0dfr0S8sr0ds1 − 2x0d + Ssr0dx0g , r0
2S8sr0d.

s28d

At higher densities the proton fraction increases; this in-
crease is more rapid in case of largerp0 f26g. While for
the pressure at higher densities contributions from other
nuclear quantities such as compressibility will play a role,
in Ref. f1g it was argued that that there is a correlation of
the neutron star radius and the pressure which does not
depend on the EOS at the highest densities. Numerically
the correlation can be expressed in the form of a power
law, RM ,Csr, MdfPsrd/MeV fm−3g0.25 km, where Csr
=1.5r0, M =1.4Msolard,7. This shows that a determination
of a neutron star radius would provide some constraint on
the symmetry properties of nuclear matter.

VI. CONCLUSION

In this paper we have discussed the bulk symmetry en-
ergy, and compared various approaches to compute it as a
function of density. Because the tensor interaction plays an
important role the symmetry energy is sensitive to details of
the treatment of the many-body correlations. It was shown
that the self-consistent Green function approach in which
more correlations are included than in lowest-order BHF
leads to a smaller value of the symmetry energy. The rela-
tively large values forp0 obtained in the relativistic mean-
field approach can be associated with an effective mass ef-
fect.

We showed that the phenomenological almost linear rela-
tionship between symmetry energy and neutron skin in finite
nuclei observed in mean-field calculations could be under-
stood in terms of the Landau-Migdal approach. Finally we
compared several experimental tools of potential interest for
the determination of the neutron skin.
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