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The level densities and radiative strength functions(RSFs) in 160,161Dy have been extracted using the
s3He,agd and s3He,3He8gd reactions, respectively. The data are compared to previous measurements on
161,162Dy. The energy distribution in the canonical ensemble is discussed with respect to the nucleon Cooper
pair breaking process. The gross properties of the RSF are described by the giant electric dipole resonance. The
RSF at lowg-ray energies is discussed with respect to temperature dependency. Resonance parameters of a soft
dipole resonance atEg,3 MeV are deduced.
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I. INTRODUCTION

The well-deformed rare earth region appears to be ideal
for studying statistical properties of nuclei as a function of
temperature. The single particle Nilsson scheme displays al-
most uniformly distributed single particle orbitals with both
parities. However, the low-temperature thermal properties of
these nuclei are only poorly known. The main reason for this
is the lack of appropriate experimental methods.

The Oslo Cyclotron group has developed a method to
extract first-generation(primary) g-ray spectra at various ini-
tial excitation energies. From such a set of primary spectra,
nuclear level density and radiative strength function(RSF)
can be extracted[1,2]. These two functions reveal essential
nuclear structure information such as pair correlations and
thermal and electromagnetic properties. In the last couple of
years, the Oslo group has demonstrated several fruitful ap-
plications of the method[3–11].

The subject of this work is to perform a systematic and
consistent analysis of the three160,161,162Dy isotopes. Since
the proton numbersZ=66d and the nuclear deformationsb
,0.26d are equal for these cases, we expect to find the same
electromagnetic properties. Furthermore, the underlying uni-
form distribution of single particle Nilsson states should
from a statistical point of view give similar level densities
for 160Dy and 162Dy. The present dataset also allows us to
check the results using thes3He,agd and s3He,3He8gd reac-
tions for one and the same residual nucleus.

In Sec. II an outline of the experimental procedure is
given. The thermal aspects of the level density and RSF are
discussed in Secs. III and IV, respectively. Finally, conclud-
ing remarks are given in Sec. V.

II. EXPERIMENTAL METHOD

The experiments were carried out with 45-MeV3He
ions at the Oslo Cyclotron Laboratory. Particle-g

coincidences for160,161,162Dy were measured with the CAC-
TUS multidetector array. The charged ejectiles were detected
with eight particle telescopes placed at an angle of 45°
relative to the beam direction. An array of 28 NaIg-ray de-
tectors with a total efficiency of,15% surrounded the target
and particle detectors. The following five reactions were uti-
lized: 161Dys3He,agd160Dy, 161Dys3He,3He8gd161Dy,
162Dys3He,agd161Dy, 162Dys3He,3He8gd162Dy, and
163Dys3He,agd162Dy. The three latter reactions have been re-
ported earlier[3,4,7]. The reaction spin windows are typi-
cally I,2–6". The self-supporting targets are enriched to
,95% with thicknesses of,2 mg/cm2. The experiments
were run with beam currents of,2 nA for 1–2 weeks.

The experimental extraction procedure and the assump-
tions made are described in Refs.[1,2], and references
therein. For each initial excitation energyE, determined from
the ejectile energy,g-ray spectra are recorded. These spectra
are the basis for making the first-generation(or primary)
g-ray matrix [12], which is factorized according to the
Brink-Axel hypothesis[13,14] as

PsE, Egd ~ rsE − EgdTsEgd. s1d

Here, r is the level density andT is the radiative trans-
mission coefficient.

The r andT functions can be determined by an iterative
procedure[2] through the adjustment of each data point of
these two functions until a globalx2 minimum with the ex-
perimentalPsE, Egd matrix is reached. It has been shown[2]
that if one solution for the multiplicative functionsr andT is
known, one may construct an infinite number of other func-
tions, which give identical fits to theP matrix by

r̃sE − Egd = A expfasE − Egdg rsE − Egd, s2d

T̃sEgd = B expsaEgdTsEgd. s3d

Consequently, neither the slope nor the absolute values of
the two functions can be obtained through the fitting pro-*Electronic address: magne.guttormsen@fys.uio.no
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cedure. Thus, the parametersa, A, and B remain to be
fixed.

The parametersA anda can be determined by normaliz-
ing the level density to the number of known discrete levels
at low excitation energy[15] and to the level density esti-
mated from neutron-resonance spacing data at the neutron
binding energyE=Bn [16]. The procedure for extracting the
total level densityr from the resonance energy spacingD is
described in Ref.[2]. Since our experimental level density
data points only reach up to an excitation energy ofE,Bn
−1 MeV, we extrapolate with the back-shifted Fermi-gas
model [17,18]

rBSsEd = h
exps2ÎaUd

12Î2a1/4U5/4sI

, s4d

where a constanth is introduced to fixrBS to the experi-
mental level density atBn. The intrinsic excitation energy
is estimated by U=E−C1−Epair, where C1
=−6.6A−0.32 MeV and A are the back-shift parameter and
mass number, respectively. The pairing energyEpair is
based on pairing gap parametersDp andDn evaluated from
even-odd mass differencesf19g according to Ref.f20g.
The level density parameter is given bya
=0.21A0.87 MeV−1. The spin-cutoff parametersI is given
by sI

2=0.0888aTA2/3, where the nuclear temperature is de-
scribed by

T = ÎU/a. s5d

In cases where the intrinsic excitation energyU becomes
negative, we putU=0, T=0, andsI =1. The spin distribu-
tion of levelsswith equal energyd is given byf17g

gsE, Id =
2I + 1

2sI
2 expf− sI + 1/2d2/2sI

2g, s6d

which is normalized tooI gsE, Id,1. Figure 1 compares
gsE, Id to the spin distributions of levels with known spin
assignmentsf15g for nuclei along theb-stability line with
A=150–170. Although these data are incomplete and in-
clude systematical errors,1 the agreement is gratifying and
supports the expressions adopted forsI and g.

Unfortunately,159Dy is unstable and no information exists
on the level density atE=Bn for 160Dy. Therefore, we esti-
mate the value from the systematics of other even-even dys-
prosium and gadolinium isotopes. In order to bring these
data on the same footing, we plot the level densities as a
function of intrinsic energyU. From the systematics of Fig.
2, we estimate for160Dy a level density ofrsBnd=s9.7±2.0d
3106 MeV−1. Figure 3 demonstrates the level density nor-
malization procedure for the160Dy case.

The level densities extracted from the five reactions are
displayed in Fig. 4. The data have been normalized as pre-
scribed above, and the parameters used for160,161,162Dy in
Eq. (4) are listed in Table I. The level densities for the three
reactions previously published[3,4,7] deviate slightly since
we here have used updated and newly recommended data
[15,16]. The results obtained with the very different reactions
s3He,ad ands3He,3He8d, are almost identical, except for the
level density of the ground state band in162Dy. Here, the

1One typical shortcoming of these compilations are that high spin
members of rotational bands are over-represented compared to low
spin band heads.

FIG. 1. Average experimental spin distributions(data points
with error bars) compared to Eq.(6). The data include 130 nuclei
along theb-stability line in theA=150–170 mass region.

FIG. 2. Level densities estimated from neutron resonance level
spacings atBn. The data are plotted as a function of intrinsic exci-
tation energyUn=Bn−C1−sDp+Dnd. The unknown level density for
160Dy (open circle) is estimated from the line determined by a least
x2 fit to the data points.
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s3He,3He8d reaction overestimates the level density, as has
been discussed previously[4].

III. LEVEL DENSITY AND THERMAL PROPERTIES

The level densities of160Dy and 162Dy are very similar,
however,161Dy reveals several times higher level densities.
In a previous work[6], it was claimed that the entropy for
the excited quasiparticles is approximately extensive. To in-
vestigate this assumption further, we express the entropy as

SsEd = kB ln VsEd, s7d

where Boltzmann’s constant is set to unityskB=1d. The
multiplicity V is directly proportional to the level density
by VsEd=rsEd/r0. The ground state of even-even nuclei
represents a well-ordered system with no thermal excita-
tions and is characterized with zero entropy and tempera-
ture. Therefore, the normalization denominatorr0 is ad-
justed to giveS=ln V,0 in the ground state band region.
This ensures that the ground band properties fulfill the
third law of thermodynamics withSsT→0d=0. The same
extractedr0 is used for the odd-mass neighboring nuclei.

Figure 5 shows the entropiesS for the two new reactions
reported in this work, i.e., thes3He,agd160Dy and
s3He,3He8gd161Dy reactions. The results for the other reac-
tions are very similar and are therefore not discussed here.
The entropy of the161Dy nucleus is seen to display an almost
constant entropy excess compared to160Dy. The difference,
DS,2, represents the entropy carried by the valence neutron
outside the even-even160Dy core (or hole coupled to the
162Dy core). It is an interesting feature that this difference is
almost independent of excitation energy and therefore, of the

number of quasiparticles excited in dysprosium, thus mani-
festing an entropy ofSqp,2 assigned to each quasiparticle.

The concept of temperature in small systems has been
discussed extensively in the literature. Traditionally, tem-
perature is introduced in slightly different ways in the micro-
canonical statistical ensemble[as a property of the system
itself by means ofT=sdS/dEdV

−1] and in the canonical statis-
tical ensemble(as imposed by a heat bath). The temperature-
energy relations for rare earth nuclei(the caloric curves) de-
rived within the two statistical ensembles display in general a
very different behavior since the nuclei under discussion are

FIG. 3. Normalization procedure of the experimental level den-
sity (data points) of 160Dy. The data points between the arrows are
normalized to known levels at low excitation energy(histograms)
and to the level density at the neutron-separation energy(open
circle) using the Fermi-gas level density(line).

FIG. 4. Normalized level densities for160,161,162Dy. The filled
and open circles are measured with thes3He,ad and s3He,3He8d
reactions, respectively.
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essentially discrete systems[3]. The microcanonical tem-
perature can, e.g., yield violent fluctuations as a function of
excitation energy giving mostly unphysical results such as
negative heat capacities(decreasing temperature with in-
creasing excitation energy) and even negative branches of
temperature. Also the canonical caloric curve has shortcom-
ings since it is defined by means of the canonical partition
function, which gives a too smooth excitation energy as a
function of temperature. However, it seems evident that the
statistical concept of temperature needs averaging over a suf-
ficient number of levels in order to avoid violent fluctuations.
For these reasons, we would like to defer the discussion of
caloric curves to another occasion[21] and instead focus on
the probability to find the system at an excitation energy for
a given temperature.

The probability that a system at fixed temperatureT has
an excitation energyE, is described by the probability den-
sity function2

pTsEd =
VsEd e−E/T

ZsTd
, s8d

where the canonical partition function is given by

ZsTd = o
i

DE VsEide−Ei/T. s9d

The experimental excitation energiesEi have energy bins
of DE. In principle, the sum runs over all energies from 0
to `, and we therefore use Eq.s4d to extrapolate to the
higher energies. The energy distribution functionpTsEd
has a moment of the ordern about theorigin given by

kEnl = o
i

DE Ei
n pTsEid. s10d

It is easy to show that the various moments also may be
evaluated by the differentiation ofZsTd:

kEl =
T2

Z

dZ

dT
, s11d

kE2l =
T4

Z

d2Z

dT2 + 2TkEl, s12d

kE3l =
T6

Z

d3Z

dT3 + 6TkE2l − 6T2kEl. s13d

The momentsmn of E about itsmeanvaluekEl are defined
by mn=ksE−kEldnl. Thus, the second and third moments be-
come

m2sTd = kE2l − kEl2, s14d

m3sTd = kE3l − 3kE2lkEl + 2kEl3. s15d

These two moments are connected to the heat capacity and
skewness ofpTsEd according to

CV = m2/T
2, s16d

g = m3/m2
3/2, s17d

respectively. We also identify the standard deviation of
the energy distribution assE=Îm2.

Figure 6 shows the probability density functions for160Dy
and 161Dy. Below T,0.6 MeV, the distribution is mainly
based on experimental data, but at higher temperatures the
influence of the somewhat arbitrary extrapolation of the level
density by Eq.(4) will be increasingly important. The most
interesting temperature region is aroundT=0.5–0.6 MeV,
where the Cooper pair breaking process is the strongest. At
this point, the even-even and odd-even nuclei behave differ-

2The temperatureT is in units of MeV. FIG. 5. Experimental entropy for160,161Dy.

TABLE I. Parameters used for the back-shifted Fermi-gas level density.

Nucleus Epair a C1 Bn D rsBnd h

(MeV) sMeV−1d (MeV) (MeV) (eV) s106 MeV−1d

160Dy 1.945 17.37 –1.301 8.576 9.7(20)a 1.57
161Dy 0.793 17.46 –1.298 6.453 27.0(50) 2.14(44) 1.19
162Dy 1.847 17.56 –1.296 8.196 2.4(2) 4.96(59) 0.94

aEstimated from systematics.
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ently; 160Dy shows a broader distribution than161Dy. This is
due to the explosive behavior ofr for E.Epair
=1.5–2 MeV in even-even nuclei. Roughly, the number of
levels for the breaking of neutron or proton pairs increases
by a factor of exps2Sqpd,55 giving totally,110 times more
levels.

Figure 4 shows that the level density of161Dy is almost
linear in a log plot as a function of excitation energy and thus
follows closely the constant-temperature expression
C expsE/Tcd with Tc=0.545 MeV. In the right panels of Fig.
6, we have tested the consequences of replacing the experi-
mental level density by this constant-temperature approxima-

tion. In the excitation energy region up to,6 MeV (the re-
gion accessible to our experiment), pTsEd is then proportional
to expsE/Tc−E/Td according to Eq.(8). At the critical tem-
peratureT=Tc a plateau emerges which results in a broad
distribution and a consequently high heat capacity, see Eq.
(16). However, from Fig. 6 it is clear that the exact value of
the heat capacity will depend on the extrapolation of the
level density at energies aboveE,6 MeV.

The various experimental moments are best evaluated
from pTsEd, since the multiplicityV is directly known from
the measured level densities. The left panels of Fig. 7 show
the corresponding values of average excitation energykEl,
heat capacityCV, and the skewnessg of pT as a function of
temperatureT. These key quantities characterizepTsEd, and
thereby reveal the thermodynamic properties of the systems
studied. In the right panels these functions are compared to
predictions evaluated in the canonical ensemble. The model
[22] applied here treats the excitation of protons, neutrons,
rotation, and vibration adiabatically with a multiplicative
partition function

Z = ZpZnZrotZvib, s18d

where the various energy momentskEnl are evaluated
from Eqs.s11d–s13d.

FIG. 6. Observed probability density functions for160,161Dy.
The right panels show the case where the experimental data of
161Dy are replaced by a constant temperature level density, see text.

FIG. 7. Experimental(left) and theoretical(right) excitation en-
ergy kEl, heat capacityCV, and skewnessg of the pT distribution as
a function of temperatureT. The model parameters[22] used are
«p=«n=3a/p2=0.19 MeV, Dp=Dn=0.7 MeV, r=0.56, Arigid

=7.6 keV, and"vvib=0.9 MeV.
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The qualitative agreement between model and experi-
ments shown in Fig. 7 indicates that our model describes the
essential thermodynamic properties of the heated systems.
The heat capacity curves show clearly a local increase in the
T=0.5–0.6 MeV region, hinting the collective and massive
breaking of nucleon Cooper pairs. This feature was recently
discussed in Ref.[23], where two different critical tempera-
tures were discovered in the microcanonical ensemble using
the method of Lee and Kosterlitz[24,25]: (i) The lowest
critical temperature is due to the zero to two quasiparticle
transition and(ii ) the second critical temperature is due to
the continuous melting of Cooper pairs at higher excitation
energies. The first contribution is strongest for the even-even
systems160Dyd, since the first broken pair represents a large
and abrupt step in level density and thus a large contribution
to the heat capacity. In161Dy, the extra valence neutron
washes out this step. The second contribution toCV is present
in both nuclei signalizing the continuous melting of nucleon
pairs at higher excitation energies. This second critical tem-
perature appears at,0.1 MeV higher values.

The skewnessg reveals higher order effects in thepTsEd
distribution. For a symmetric energy distribution,g is zero.
Figure 7 shows positive values indicating distributions with
high energy tails, as is confirmed by Fig. 6. The160Dy sys-
tem shows a strong signal ing aroundT,0.2 MeV. This
signal is connected with the high energy tail of thepTsEd
distribution into theE.2D excitation region with high level
density.

IV. RADIATIVE STRENGTH FUNCTION AND ITS
RESONANCES

The slope of the experimental radiative transmission co-
efficient TsEgd has been determined through the normaliza-
tion of the level densities, as described in Sec. II. However, it
remains to determineB of Eq. (3), giving the absolute nor-
malization of T. For this purpose we utilize experimental
data[16] on the average total radiative widthkGgl at E=Bn.

We assume here that theg decay taking place in the con-
tinuum is dominated byE1 andM1 transitions and that the
number of positive and negative parity states is equal. For
initial spin I and parityp at E=Bn, the expression of the
width [26] reduces to

kGgl =
1

4prsBn, I, pdoI f

E
0

Bn

dEgBTsEgdrsBn − Eg, I fd,

s19d

where the summation and integration run over all final
levels with spin I f which are accessible by dipolesL

=1d g radiation with energyEg. From this expression the
normalization constantB can be determined as described
in Ref. f10g. However, some considerations have to be
made before normalizing according to Eq.s19d.

Methodical difficulties in the primaryg-ray extraction
prevents determination of the functionsTsEgd andrsEd in the
intervalEg,1 MeV andE.Bn−1 MeV, respectively. In ad-
dition, the data at the highestg energies, aboveEg,Bn
−1 MeV, suffer from poor statistics. For the extrapolation of
r we apply the back-shifted Fermi-gas level density of Eq.
(4). For the extrapolation ofT we use a pure exponential
form, as demonstrated for160Dy in Fig. 8. The contribution
of the extrapolation to the total radiative width given by Eq.
(19) does not exceed 15%, thus the errors due to a possibly
poor extrapolation are expected to be of minor importance
[10].

For 160Dy, the average total radiative width atBn is un-
known. However, the five161–165Dy isotopes exhibit very
similar experimental values of 108s10d, 112s10d, 112s20d,
113s13d, and 114s14d meV [16], respectively. It is not clear
how to extrapolate to160Dy, but here the average value of
kGgl=112s20d meV has been adopted.

The radiative strength function forL=1 transitions can be
calculated from the normalized transmission coefficient by

TABLE II. Parameters used for the radiative strength functions.

Nucleus EE1
1 sE1

1 GE1
1 EE1

2 sE1
2 GE1

2 EM1 sM1 GM1 kGgl
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (meV)

160Dy 12.47 204.6 3.22 15.94 204.6 5.17 7.55 1.51 4.0 112(20)a

161Dy 12.44 206.0 3.21 15.92 206.0 5.14 7.54 1.51 4.0 108(10)
162Dy 12.42 207.5 3.20 15.90 207.5 5.12 7.52 1.51 4.0 112(10)

aEstimated from systematics.

FIG. 8. Unnormalized radiative transmission coefficient for
160Dy. The lines are extrapolations needed to calculate the normal-
ization integral of Eq.(19). The arrows indicate the fitting regions.
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fsEgd =
1

2p

TsEgd
Eg

3 . s20d

The RSFs extracted from the five reactions are displayed
in Fig. 9. The data have been normalized with parameters
from Tables I and II. Also here, the present results deviate
slightly from the three datasets previously published
f3,4,10g. The present RSFs seem not to show any clear
odd-even mass differences, and again thes3He,ad and
s3He,3He8d reactions reveal similar results.

The g decay probability is governed by the number and
the character of available final states and by the RSF. A

rough inspection of the experimental data of Fig. 9 indicates
that the RSFs are increasing functions ofg energy, generally
following the tails of the giant electric dipole resonance
(GEDR) and giant magnetic dipole resonance(GMDR) in
this region. In addition, a small resonance aroundEg

,3 MeV is found, the so-called pygmy resonance. These
observations have been previously verified for several well-
deformed rare earth nuclei[3,10].

Also in the present work we adapt the Kadmenski�,
Markushev, and Furman(KMF) model [27] for the giant
electric dipole resonance:

fE1sEgd =
1

3p2"2c2

0.7sE1GE1
2 sEg

2 + 4p2T2d
EE1sEg

2 − EE1
2 d2 . s21d

Since the nuclei studied here have axially deformed
shapes, the GEDR is split into two components GEDR1
and GEDR2. Thus, we add two RSFs with different reso-
nance parameters, i.e., strengthsE1, width GE1, and cen-
troid EE1. The M1 radiation, which is supposed to be gov-
erned by the spin-flipM1 resonancef10g, is described by

fM1sEgd =
1

3p2"2c2

sM1EgGM1
2

sEg
2 − EM1

2 d2 + Eg
2GM1

2 . s22d

The GEDR and GMDR parameters are taken from the
systematics of Ref.f16g and are listed in Table II. The
pygmy resonance is described with a similar Lorentzian
function fpy as described in Eq.s22d. Thus, we fit the total
RSF given by

f = ksfE1 + fM1d + fpy, s23d

to the experimental data using the pygmy-resonance pa-
rametersspy, Gpy, andEpy and the normalization constant
k as free parameters.

In previous works[3,10,11], the temperatureT of Eq. (21)
was also used as fitting parameter, assuming that a constant
temperature could describe the data. The fitting to experi-
mental data gave typicallyT,0.3 MeV which is about the
average of what is expected in this energy region. The use of
a constant temperature approach is consistent with the Brink-
Axel hypothesis[13,14], which is utilized in order to sepa-
rater andT through Eq.(1).

However, experimental data indicate that the RSF may
depend also on how the temperature changes for the various
final states. Data from the147Smsn,gad144Nd reaction[28]
indicate a finite value offE1 in the limit Eg→0. Furthermore,
in our study of the weakly deformed148Sm, where no clear
sign of the pygmy resonance is present, the RSF also flattens
out at smallg energies[11]. In the 56,57Fe isotopes it has
been reported[29] that the RSF reveals an anomalous en-
hancement forg energies below 4 MeV. Also the27,28Si iso-
topes show a similar increase in the RSF below 6 MeV[30].
We should also mention that the extracted caloric curve
kEsTdl of Fig. 7 indicates a clear variation inT for the exci-
tation energy region investigated. Figure 10 shows indeed
that the strength of the tail of the GEDR, using the model of
Eq. (21), is strongly temperature dependent. Therefore, from
these considerations, we find it interesting to test the conse-

FIG. 9. Normalized RSFs for160,161,162Dy. The filled and open
circles are measured with thes3He,ad and s3He,3He8d reactions,
respectively.
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quences by including a temperature dependent RSF in the
description of the experimental data.

However, there is an inconsistency between such an ap-
proach and our extraction of the RSF using the Brink-Axel
hypothesis through Eq.(1). The consequences have been
tested in the following way: We first construct a typical level
density and a temperature dependent transmission coefficient

and multiply these two functions with each other to simulate
a primaryg-ray matrix. Then Eq.(1) is utilized in order to
extractr andT. It turns out that the outputr is almost iden-
tical with the input. AlsoT is correctly extracted, except for
small deviations of,15% for g energies below 1 MeV.
Thus, the mentioned inconsistency should not cause severe
problems.

If we assume that the RSF depends on the temperature of
the final states, it also depends on the primaryg-ray spectra
chosen. Usually these spectra are taken at initial excitation
energies betweenE1,4 andE2,8 MeV. Thus, the average
temperature of the final statesEf populated by ag transition
of energyEg is given by

kTsEgdl =
1

E2 − E1
E

E1−Eg

E2−Eg

dEfTsEfd, s24d

whereTsEfd=ÎsEf −C1−Epaird/a is the schematic tempera-
ture dependency taken from Eq.s5d. Figure 11 showskTl
and the standard deviationsT=ÎkT2l−kTl2 for states popu-
lated by ag transition of energyEg in 160Dy. The tempera-
ture goes almost linearly from 0.6 MeV to zero, giving an
average of 0.3 MeV consistent with earlier constant tem-
perature fitsf3,10,11g. The standard deviation is relatively
large,sT,0.1 MeV, indicating that one should not replace
T by kTl in Eq. s21d but rather calculatekfE1sEgdl analog to
the evaluation ofkTsEgdl in Eq. s24d.

Figure 12 shows fits to the experimental RSFs obtained
from the s3He,ad160Dy and s3He,3He8d162Dy reactions. The

FIG. 11. Average temperaturekTl of the final state(solid line)
and standard deviationsT (dashed line) for the temperature distri-
bution as a function ofg energy in160Dy, see text.

FIG. 12. The experimental RSFs for160,162Dy (data points) com-
pared to model predictions using a temperature dependent GEDR
(solid line). The GEDR and pygmy resonance(solid lines) are the
most important contributions to the total RSF. The total RSFs using
a fixed temperature ofT=0.30 MeV (dashed line) and T
=0.55 MeV(dash-dotted line) give lower strengths forEg,1 MeV.

FIG. 10. Radiative GEDR strength function of the KMF model
calculated for various temperatures.
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approach using a varying temperature,kfE1l, is displayed as
solid lines. Alternative fits have been made using fixed tem-
peratures ofT=0.30 MeV (dashed lines) and 0.55 MeV
(dash-dotted lines). These temperatures are typical average
values found in the canonical and microcanonical ensembles,
respectively. The GEDR contribution to the total RSF using a
varying temperature is seen to give an increased strength for
Eg,1 MeV, which the162Dy case seems to support. How-
ever, the160Dy case supports the approach with a fixed tem-
perature ofT=0.30 MeV. TheT=0.55 MeV approach repre-
sents a compromise at lowg energies, but gives a too small
slope in theEg,4–7 MeV region. Unfortunately, the RSFs
in theEg,1 MeV region are experimentally difficult to mea-
sure. Here, a strongg-decay intensity from vibrational states
may not have been properly subtracted in the primaryg-ray
spectra. Thus, the present data are not conclusive regarding
the existence of enhanced radiative strength at lowg ener-
gies.

In Table III, we have summarized the fitted parameters for
the pygmy resonance and the normalization constantk.
Separate fits are performed for three cases:(i) varying tem-
perature, constant temperatures of(ii ) T=0.30 MeV and(iii )
T=0.55 MeV. The too small slope of the RSF with fixedT
=0.55 MeV is revealed in a,30% reduction of the fittedk
parameter. All the investigated dysprosium nuclei show simi-
lar pygmy-resonance parameters except for the widthGpy,
which gets significantly higher for the case ofT=0.30 MeV.
It turns out thatGpy depends strongly on the slope of the
GEDR strength function in theEg=3 MeV region.

V. SUMMARY AND CONCLUSIONS

The present comparison between level densities and RSFs
obtained with various reactions gives confidence to the Oslo

method. The entropies of161Dy follow parallel the even-even
160,162Dy systems, assigning an entropy of,2 to the valence
neutron. The evolution of the probability density function
with temperature was presented for160,161Dy. The widths of
these distributions increase anomalously in theT
=0.5–0.6 MeV region. This feature of local increase in the
canonical heat capacity is a fingerprint of the depairing pro-
cess. Also the skewnesses of these distributions are studied
showing the variation in the high energy tails as a function of
temperature. A simple canonical model is capable of describ-
ing qualitatively the various thermodynamic quantities.

The five RSFs studied reveal very similar structures for
all isotopes studied, as is expected since they all are consid-
ered to have the same deformation. The RSFs show a pygmy
resonance superimposed on the tail of the giant dipole reso-
nance. We have tested the consequences of introducing an
RSF with varying temperatures in the GEDR case, which
gives an enhanced strength at lowerg energies. Our data are
not conclusive in determining whether such effects are real
or not.
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TABLE III. Fitted pygmy-resonance parameters and normalization constants.

Reaction Temperature Epy spy Gpy k

dependence (MeV) (mb) (MeV)

s3He,ad160Dy ÎUf/a 2.68(25) 0.27(11) 0.90(47) 1.06(12)

0.30 MeV 2.63(17) 0.33(7) 1.57(40) 0.95(12)
0.55 MeV 2.67(21) 0.26(8) 1.02(42) 0.76(8)

s3He,ad161Dy ÎUf/a 2.73(12) 0.42(9) 0.95(24) 1.31(11)

0.30 MeV 2.68(8) 0.44(5) 1.26(19) 1.34(10)
0.55 MeV 2.72(9) 0.37(6) 0.90(18) 1.00(6)

s3He,3He8d162Dy ÎUf/a 2.86(7) 0.40(4) 0.90(12) 1.27(5)

0.30 MeV 2.80(5) 0.43(3) 1.26(11) 1.30(5)
0.55 MeV 2.84(5) 0.37(3) 0.90(10) 0.95(3)

s3He,ad162Dy ÎUf/a 2.74(22) 0.28(12) 0.78(34) 1.02(11)

0.30 MeV 2.69(14) 0.36(7) 1.32(31) 0.96(11)
0.55 MeV 2.71(17) 0.30(9) 0.84(29) 0.75(7)

s3He,3He8d162Dy ÎUf/a 2.61(8) 0.28(4) 0.98(18) 0.93(4)

0.30 MeV 2.59(5) 0.37(2) 1.36(14) 0.84(4)
0.55 MeV 2.61(6) 0.30(3) 1.04(13) 0.66(3)
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