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The potential energy surfaces of some superheavy nuclei are determined, using a mapping from the micro-
scopic shell model space to a geometrical model. The content of the shell model space is determined through
the knowledge of theabsolutedeformation and a single-particle spectrum as a function of deformation. Both
have to be extracted from a microscopic model. We show that one cannot restrict to only prolate or oblate
deformations because the content of the microscopic space already implies triaxiality. Also cases ofg insta-
bility occur. The mass parameter of254No is determined through the knowledge of at least one rotational state
of the ground-state band. Assuming the same mass parameter for the other superheavy elements, the spectrum
of each of them is determined. The following superheavy nuclei are considered:254No, 260Rf, 262Sg, 270Hs,
274110sDsd, 276112, and290114, where260Rf and262Sg turn out to beg unstable.
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I. INTRODUCTION

Since almost five decades transfermium nucleisZ.100d
have been produced[1]. The most spectacular recent discov-
ery was the superheavy element with atomic chargeZ=116
in Dubna[2]. However, little is known about their structure.
Except for two isotopes of the elementZ=102, no further
experimental information is available. Very recently, the iso-
tope254No has been measured after the208Pbs48Ca, 2nd reac-
tion at 215 and 219 MeV and the ground-state band popu-
lated up to spin 22" and excitation energyù6 MeV [3].
Shortly after, the production cross section for the isotope
252No was measured in the reaction206Pbs48Ca, 2nd with a
magnitude approximately ten times smaller than the one for
254No and levels up to spin 20 were populated[4]. The ex-
perimental data showed that both isotopes are well deformed
with a well defined rotational level sequence.

There exist various theoretical models which attempted to
describe the collective structure of those nuclei and thus pro-
vide some information about physical observables, such as
deformation and the lowest states in the spectrum.

The first calculation in the framework of the Hartree-
Fock-Bogoliubov approximation was carried out in Ref.[5]
for 254No and the properties of the ground-state rotational
band discussed. This fully self-consistent approach showed
that apart from the first barrier, the nucleus is axially sym-
metric at all deformations.

The ground-state rotational energies of several nuclei in
the rangeZ=88–112 were calculated in the macroscopic-
microscopic approach for axial-symmetric nuclei by the War-
saw group[6].

Further away fromZ=102, theb-vibrational spectrum of
the putative double magic superheavy nucleus292120, as pre-
dicted by the relativistic mean field, was studied in a phe-
nomenological collective approach[7]. It turned out that the
spectrum of this nucleus, in the absence ofg deformations
does not exhibit an equidistant spacing between the vibra-
tional states as it is the case of the heaviest known double
magic nucleus,208Pb.

In Ref. [8] a method of how to obtain, without any pa-
rameter, the potential energy surface(PES) starting from a
known content of the shell model space was proposed. The
method uses as one possible input the deformation and the
Nilsson diagram as a function of the deformation(any other
single-particle spectrum as a function in the deformation can
also be used), data which have to be obtained from some-
where else. It is based on the symplectic description of the
shell model space and it was able to reproduce the structure
of 190Pt, 238U, and Sm isotopes, and qualitatively the spectra
andBsE2d-transition values.

The objective of this paper is to investigate the quadru-
pole structure of some superheavy elements, using the
method proposed in Ref.[8]. It will give some important
hints on the collective structure of these nuclei. We do not
investigate all superheavy elements identified, but rather will
use an isotope from each even chemical element fromZ
=102 to 114. Also the results have to be seen as an estima-
tion of the structure of these nuclei.

We will show that the restriction to axial-symmetric nu-
clei is not justified by the content of the shell model space.
We encountered throughout our investigation examples of
g-unstable nuclei and/or of a softg behavior.

The paper is organized as follows. In Sec. II the basic
ideas of the mapping to the geometrical model is outlined. In
Sec. III the PES, spectra, and someBsE2d-transition rates are
calculated. Finally, in Sec. IV conclusions are drawn. Only
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even-even nuclei will be considered because any odd proton
or neutron changes the structure of the low lying spectrum
significantly. However, the PES deduced can be used to iden-
tify the PES of the core of neighboring even-odd, odd-even,
and odd-odd nuclei.

II. THE MAPPING OF THE PES

In Ref. [8] a mapping to the potential of a geometrical
model [9] is presented, starting from the microscopic shell
model space and using the Hamiltonian of the pseudosym-
plectic model(PSM) [10]. This Hamiltonian provides a mea-
sure for the relative distances in energy of the SUs3d irreduc-
ible representations(irreps). Here we outline briefly the
procedure exposed in a more detailed form in Refs.
[8,11,12].

The PSM is an extension of the pseudo-SUs3d model[13]
taking into account 2n"v shell excitations. In this model the
orbitals are divided into intruders and the normal orbitals.
The intruders are the orbitals with maximal spin in each os-
cillator shell. By inspecting the normal orbitals and redefin-
ing orbital angular momentum into pseudo-orbital angular
momentum and spin into pseudospin, a new degeneration is
observed which allows one to introduce a pseudo-SUs3d
model [denoted from here on as SU˜s3d]. The PSM adds to

the SŨs3d intershell excitations of the type 2n"v. It is
equivalent to the extension of the Elliott model of SUs3d [14]
to the symplectic model[15], including an approximation
called contraction[16]. In the PSM the nucleons in the in-
truder orbitals are treated as spectators. The model describes
without any parameter the polarization of the closed shells.
In order to take into account the nucleons in the intruder
orbitals, as an effective charge, a definite scaling is used in
terms ofZ andA, the number of charge and nucleons, andZn
andAn are the same for the particles in the normal orbitals.

In order to determineZn and the number of neutronsNn in
the normal orbitalssAn=Zn+Nnd, one needs the external in-
formation of the deformation of the nucleus and a single-
particle spectrum(e.g., a Nilsson diagram or the ones given
in Ref. [17]) for either b,0 (or equivalentlyb.0 with g
=60°) or b.0. The deformation can be deduced experimen-
tally [18] or by a microscopic model, which is indispensable
for obtaining a single-particle spectrum, e.g., a Nilsson dia-
gram. In Ref. [17] the single-particle spectra of different
light and heavy nuclei are given, also taking into account
higher multipolarities. For a particular nucleus we use a
single-particle spectrum of the next possible one, which is
listed in Ref.[17]. This should give for the neighboring nu-
clei a fairly good first approximation of the single-particle
diagram. The main objective is to get the approximate occu-
pation of a particular nucleus in terms of nucleons in normal
and unique orbitals. We also checked what happens when the
nucleons are filled into the orbitals at a prolate or oblate
deformation. As a result it changes maximally by 2, for the
cases considered. From this we obtained a fairly good idea of
the absolute changes going from prolate to oblate nuclei.
This is important because, as we will see, the restriction to
axial-symmetric nuclei is too strong and the microscopic
shell model space dictates in many cases triaxiality or eveng

instability. The result, of course, will depend on this model.
Here, we use the macroscopic-microscopic calculations of
Möller et al. for both the quadrupole deformation[19] (using
e2<b [20]) and the single-particle spectrum for the folded
Yukawa potential as a function in the deformation[17]. In
this sense, our result will contain the effects of relevant mi-
croscopic interactions. For the excited states we restrict to
quadrupoleexcitationsonly. It was shown in Ref.[9] that
they are sufficient in order to describe low lying, positive
parity states and theirBsE2d transitions. This should not be
confused with the argument that higher multipolarities are
important for the description of the ground-state properties.
These effects were taken into account through the use of the
listed deformation value and the single-particle spectrum in
order to obtain the distribution of the nucleons into the nor-
mal and unique orbitals. Once the numbersb, Zn, andNn are
determined, the content of the shell model space in the va-
lence shells(protons and neutrons) is fixed using the tables
of Ref. [21] or the SUs3d-package routines of Refs.[22,23].
This gives a list of SUs3d irreps slp, mpd for protons and
sln, mnd for neutrons. The pseudosymplectic space is then
obtained by allowing 2n"v excitations on top ofsl, md
=slp+ln, mp+mnd, i.e., the stretched irreps of SUs3d (the oth-
ers, e.g., scissors modes, are higher in energy and do not
contribute to the envelope of the PES). Because the nucleons
in the unique orbitals are treated as spectators and their in-
fluence is only taken into account via the effective charge, a
PES of two successive isotopes will be similar when the next
orbitals filled are unique.

In order to estimate the relative positions in energy of the
different symplectic irreps, the following Hamiltonian is
used:

H = "vÑ − 1
2xfQc ·Qc − sQc ·Qcdshellg + Hr , s1d

where Ñ is the phonon number operator of the protons
plus the neutrons,"v is 45A1/3–25A2/3 for light and 41A1/3

for heavy nuclei. TheQm
c is the physical quadrupole op-

erator andsQc·Qcdshell is the trace equivalent partof the
quadrupole-quadrupole interaction, which guarantees that
even for large deformation, on an average, the shell structure
is conservedf24g. Hr contains residual interactions for the

rotor Hamiltonianf10g. The term"vÑ guarantees that states
of a higher shell are shifted to larger energies.

Following Ref. [8] the PES is defined as the expectation
value of the microscopic HamiltonianH with respect to a
trial state

V = kFsa2mduHuFsa2mdl. s2d

The collective coordinatesa2m are nothing else but the
geometrical quadrupole variablesf9g. The trial state is the
product of a coherent state, describing intershell mixtures,

and the Elliott SŨs3d state f14g, describing the irreps
within the valence shell. The coherent stateuFsa2mdl is
given by an operator, which is an exponential function in
the symplectic operators which raise the number of
phonons by two, applied to a lowest weight state of an
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SŨs3d irrep in the valence shell. In this way a symplectic
irrep is defined.

Restricting toonly one symplectic irrep, in the lowest
order, the potential is given by

V <
65

16p
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2dbs
2 +
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with N0 the total number of phonons in the lowest

SUs3dstate plus 3sA−1d/2 and b̃=b/k. The valuek is ap-
proximately given by

1

2Shp − 1

hp

+
hn − 1

hn
D ,

with hp and hn the valence shell number of protons and
neutrons, respectively.sbs, gsd in Eq. s3d is related to the
deformation of the 0"v space in the strong coupled for-
malism, without multi-"v excitations. For largeb the sys-
tem is dominated by the monopole and quadrupole inter-
shell excitations acting on the leading irrep. However, for
lower values ofb a different Sps3,Rd irrep minimizes the
expectation value in Eq.s2d, leading to a differentbs and
therefore to a dependence of the formbs=b tan f, with f
a function inx, N0, and"v ssee for details Ref.f8gd. The
total PES is then obtained by the envelope of all potentials
related to different symplectic irreps.

The expression in Eq.(3) depends on the parametersx,
N0, and"v. "v andN0 are fixed as explained above. Thex
value is obtained by requiring that the total potential has its
minimum either at the experimentally deduced positionbexpt.
or one can use the predictions of the macroscopic-
microscopic model[19], or any other source of information
and theoretically calculated values of the deformation from a
microscopic model.

The only parameter which cannot be deduced is the col-
lective massB2 of the geometrical model[9]. This parameter
has to be adjusted to, e.g., a state in the ground-state band.
Another possibility is to use a cranking model to obtain the
mass parameter. However, this method is quite insecure and
will not be used here. FittingB2 to the experimental data
automatically gives a good estimate. Also assuming for
neighboring nuclei the same value ofB2 is in general far
more accurate than using the cranking model. This conjec-
ture can be tested in lighter isotopes. In Ref.[25] the Pt, Os,
and W isotopes were investigated within the generalized col-
lective model(GCM). The adjusted mass parameterB2 is of
the same order over a wide range of nuclei.

The microscopic shell model space in the pseudosymplec-
tic model can be obtained by first filling the single-particle
orbitals from below at a given deformation, counting the
number of nucleons in the normal orbitals, and finally use the
tables of the reduction Usnd3Us2d.SUs3d [21], with Us2d
as the spin group. An alternative is to use the SUs3d package
of the Louisiana group[22,23]. In the reduction of Usnd

3Us2d.SUs3d only spin S=0 states were considered, be-
cause states with largerS are lying higher in energy and do
not contribute to the construction of the PES.

This method was applied in Ref.[11] to 238U and190Pt. In
Ref. [12] several Sm isotopes were investigated. The PESs
obtained were in agreement with the knowledge of their
structure. For example, in190Pt a g-unstable potential was

obtained[11] due to many similar SU˜s3d irreps, i.e., with a
similar eigenvalue of the second-order Casimir operator. In
all cases, the agreement of the spectrum andBsE2dtransitions
with experiment was remarkably well, considering the
simple approach. The energies came out more or less right,
while theBsE2d transitions deviated about a factor of 2. The
BsE2d systematics, however, were excellently reproduced.

We emphasize that the method presented in Ref.[8] gives
a procedure to obtain the PES for a given nucleus,if the
deformation of a nucleus is known(or proposed by a theo-
retical model) and if the distribution of nucleons in the nor-
mal and unique orbitals can be obtained from a single-
particle spectrum diagram, deduced by a microscopic model
as the one in Ref.[17]. In this sense, our approach depends
on the underlying microscopic model and may vary from one
model to the other. Thus, trusting one of these models, our
method gives the first estimate to the PES. As we will see,
however, sometimes the PES obtained is in contradiction to
an initial assumed axial symmetry and sheds some doubt on
the used microscopic model.

In Ref. [11] the spectrum of a nucleus could be deter-
mined by solving numerically the Schrödinger equation us-
ing the finite element method. Unfortunately, the program is
not available anymore. An alternative is to estimate the stiff-
ness of the potential(as obtained by our procedure) in b and
g and use it as an input to the routine, published in Ref.[26],
which calculates the spectrum and theBsE2d values within
the GCM [9], using a potential expanded up to the sixth
power inb. The program also estimates the potential param-
eters, once the depth and the stiffness of the potential is
known.

In the application of the following section we will see that
the procedure works more or less well. Care has to be taken
when the potential is spherical or its minimum is atg=0° or
60° or very near to one of these values. The estimation
method then has a singularity[11]. The position of the po-
tential minimum inb andg will be reproduced as well as the
depth. The stiffness, however, is not always well reproduced.
The error is, however, not large because the frequency, i.e.,
"vb, is proportional to the square root of the stiffness.

III. APPLICATIONS TO SUPERHEAVY NUCLEI

The method of obtaining the PES, shortly resumed in the
preceding section, will be applied to the nuclei254No, 260Rf,
262Sg, 270Hs, 274110 sDsd, 276112, and290114.

The first nucleus to be considered is254No for which ex-
perimental data on excited states in the ground-state band are
available[3]. This permits us to adjust the collective mass
parameter and to deduce with more confidence the spectrum,
apart from the PES which does not need this information.
For the other nuclei, after having determined the PES in each
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case, the same mass parameter will be assumed. However,
care has to be taken because this mass parameter might vary
from nucleus to nucleus. A fixed mass parameter already
gives us a rough estimate about the spectrum(see the discus-
sion below). Changing the mass parameter by a given factor
more or less raises the energies, for smallerB2, or lowers, for
greaterB2, by the same factor. It is better realized for states
within the ground-state band than for the vibrational band
heads. This way of estimating the mass parameter is in gen-
eral more accurate than calculating it from a microscopic
model, which normally has a bad performance in determin-
ing B2.

A. 254No

The physical proton(neutron) shell hashp=5 shn=6d,
which implies the pseudoshellsh̃p=4 sh̃n=5d. It will be the
same for all cases studied here. The occupation in the
pseudoproton(neutron) shell turns out to be 12 protons(16
neutron), having before filled the nucleons in the single-
particle scheme of Ref.[17], with b=0.246[19], and counted
the nucleons in the normal orbitals. The 12 protons(16 neu-
trons) in the pseudoshellh̃p=4 sh̃n=5d correspond to a
nearly half filled shell. Because it is less than half filled, we
expect a prolate deformation. The spin representations used
are f62g for protons andf82g for neutrons.

The largest SU˜s3d irrep formed by the product of proton
and neutron irreps is in the sector between 5° and 10° and is
given by(58,8) with the eigenvalue of the second-order Ca-
simir operator 4090 and theg=7°. [The eigenvalue of the
second-order Casimir operatorC2 for the irrepsl, md is given
by sl2+lm+m2+3l+3md.] The largest irrep in the sector of
25° –30° is(38,30) at g=26.2° with the eigenvalue of the
second-order Casimir operator of 3688, which is a difference
of 402 to the former one. The separation is well pronounced,
explaining the rise ing. The k value is 1.168 andN0
=633.5.

In upper left corner of Fig. 1 the deduced potential energy
surface is given. For254No two potentials are drawn, the
upper one is the potential as derived by our procedure while
the lower one gives the approximation of the potential within
the GCM. Note that the GCM potential is used finally in the
calculation of the energies and theBsE2d transitions. As
ground-state deformation we use the value ofb0=2.046 from
Ref. [19]. In the lower panel of254No we depicted the func-
tion which approximates the deduced potential within a finite
power expansion up to sixth order inb. The potential exhib-
its a near prolate minimum and a stiff behavior towards large
g values, as can be seen in Fig. 2. Even for this prolate
nucleus a slight triaxiality is produced by the content of the
shell model space, as can be appreciated by the valuem
different from zero insl, md=s58, 8d of the lowest SUs3d ir-
rep.

In Ref. [3] the states in the ground-state band up to spin
20 are given. We adjust the mass parameter such that the 2+

and 6+ states at 0.044 MeV and 0.305 MeV are well repro-
duced. For this we use the formulas"2/4B2b0

2dLsL+1d of the
rotor [9], whereL is the spin,B2 the mass parameter of the
model, andb0 the ground-state deformation of the nucleus

(fitted using the routine of Ref.[26]). Our fit gives
0.045 MeV for the 2+ state and 0.301 MeV for the 6+ state
and the mass parameter acquires the value ofB2=230
310−42 MeV s2 In Fig. 3 the corresponding spectrum is plot-
ted. The spin of each level is indicated to the right. The
spectrum shows the typical structure of an axially symmetric
rotor with its b andg bands.

In Table I someBsE2d-transition values in units ofe2 b2

are given. It can be used as an estimate for expected transi-
tion strengths in experiment. TheBsE2d values indicate a
clear identification of the ground state, theb, and theg band.
For higher states the identification is not clear because the
BsE2d values from one given spin to higher ones are of the
same order for more than one transition.

B. 260Rf

In the physical proton(neutron) shell the occupation is 22
(30), which indicates that the shell is filled more than half.
This suggests a tendency to an oblate deformation. We ap-
plied the same steps as in the former case, using a deforma-
tion value of b=0.228 [19] (prolate). The resulting PES
turned out to beg unstable, which is a consequence of many

SŨs3d irreps lying near together in energy. In order to be
consistent with the shell model space we then used a nega-
tive deformation(oblate) with the same absolute value as
reported in Ref.[19] (note that we have changed the sign of
b<e2 as given in Ref.[19]). The result is given in the fol-
lowing paragraph. Compared to the prolate filling of the
single-particle diagram[17] the occupation in the normal
orbitals is a little bit different, but the PES obtained is nearly
indistinguishable and the shell model space also favors

SŨs3d irreps which are oblate.
Changing the sign of the deformation(i.e., b=−0.228 and

assuming that at least the absolute deformation is correct),
the occupation in the pseudoproton(neutron) shell turns out
to be 14 protons(22 neutron), having before filled the nucle-
ons in the Nilsson scheme of Ref.[17], with Ref. [19], and
counted the nucleons in the normal orbitals. The 14 protons
(22 neutrons) in the pseudoshellh̃p=4sh̃n=5d correspond to
shells filled more than half. The spin representations used are
f72g for protons andf112g for neutrons.

The largest SU˜s3d irrep is in the sector of 50° –55° and is
given by(8,58) with the eigenvalue of the second-order Ca-
simir operator 4090 and theg angle 53°. The highest irrep in
the sector of 30° –35° is(31,39) at g=33.7° with the eigen-
value of the second-order Casimir operator of 3901, where
the difference in its value to the former one is 189, which
indicates a softer behavior ing as in the former case. Another
information is that the largest irreps indicate anoblate defor-
mation, though in the tables of Ref.[19] a prolate deforma-
tion (positiveb) is reported. This hints already to a problem
between the shell model space and the supposed deforma-
tion. Thek value is 1.168 andN0=683.5.

The deduced potential energy surface is given in the upper
right part of Fig. 1. Again, two PESs are plotted, the upper
part referring to the PESs as deduced by our procedure and
the lower one its approximation within the GCM potential.
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Contrary to the previous case, this Rf isotope turns out to
be g unstable(see Fig. 2). Note that the microscopic shell
model space is purely determined by the number of valence
protons and valence neutrons in the normal orbitals at the
measured deformation, given by a microscopic calculation
[17]. This is the first example that the restriction to only
prolate or oblate deformation creates problems of consis-

tency. According to the microscopic shell model space a
g-unstable potential is preferred.

We use for this isotope of Rf, like for all other nuclei
under study in this paper, the same mass parameter as for
254No. The corresponding spectrum is plotted in Fig. 3(first
line, right). On the right-hand side of each level the spin and
parity are indicated. Please note the near degeneracy of the

FIG. 1. The potential energy surface of the
isotopes considered in the text. Each isotope is
represented by two figures. The one on top of
each sequence gives the result of the deduced
PES with the method explained in Sec. II. In the
bottom part of each sequence the approximation
via the potential within the generalized collective
model (GCM) is given.
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first 4+ with the second 2+. Also, the first 3+, the second 4+,
and the first excited 0+ are degenerate. This kind of degen-
eracy can also be observed approximately in the IBA-I
within the Os6d limit [27–29]. This particular structure
should be observed in experiment. In experiment the degen-
eracy in theg band might be seen as an extreme even-odd
staggering.

SomeBsE2d-transition values in units ofe2 b2 are given in
Table I. It can be used as an estimate for expected transition
strengths in experiment. As in the previous case, theBsE2d
values indicate a clear identification of the ground-state, the
b, and theg band.

C. 262Sg

The physical proton(neutron) shell is as in the previous
case more than half filled, and the number of protons(neu-
trons) in the normal orbitals is 24(30). This occupation sug-
gests again a tendency towards an oblate deformation. We
applied the same steps as in the former case, using a defor-
mation value ofb=0.229 [19] (prolate). The resulting PES
turned out to be nearlygunstable, which is a consequence of

many SŨs3d irreps lying near together in energy. In order to
be consistent with the shell model space we used again a

FIG. 2. Sections of the PES along theg direction for the fol-
lowing superheavy nuclei254No, 260Rf, 262Sg, 270Hs, 274110 sDsd,
and276112.

FIG. 3. Spectra of the isotopes discussed in
the text.
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negative deformation(oblate) with the same absolute value
as reported in Ref.[19]. The result is given in the following
paragraph.

After having filled the nucleons at deformationb
=−0.229 the occupation of protons(neutrons) in the normal
orbitals is 14(22). The spin representations used aref72g
sf112gd. The proton pseudoshell is less than half filled, while
the neutron pseudoshell is more than half filled. This is the
identical occupation of the proton and neutron pseudoshells
as for the case260Rf. The reason is that the additional pair of
protons are in a unique orbital which does not contribute to
the PES within the pseudosymplectic description. The nucle-
ons in the normal orbitals already trace the deformation of
the system. The number of neutrons is the same. Due to the
same occupation, the PES and the spectrum are expected to
be similar. Differences appear due to the different deforma-
tion reported in Ref.[19]. The k value is 1.168,N0=683.5.

In Fig. 1 the deduced potential energy surface is given. In
the lower panel of262Sg the potential is depicted which ap-
proximates the deduced potential within a finite power ex-
pansion up to sixth order inb. As in 260Rf, this isotope turns
out to begunstable(see Fig. 2).

The corresponding spectrum is plotted in Fig. 3, which is
similar to the spectrum of260Rf.

In Table I someBsE2d-transition values in units ofe2 b2

are given. TheBsE2dvalues indicate a clear identification of
the ground-state, theb, and theg band.

D. 270Hs

In the physical proton(neutron) shell the occupation is 26
(36) which is more than half filled. This suggests again a
tendency to an oblate deformation. We applied the same
steps as in the former case, using a deformation value ofb
=0.231 [19] (prolate). The resulting PES turned out to be
oblate, in contrast to the initially assumed prolate deforma-
tion. In order to be consistent with the shell model space, we

used again a negative deformation(oblate) with the same
absolute value as reported in Ref.[19]. The result is given in
the follwing paragraph.

The occupation of the normal orbitals in the pseudoproton
shell is 18, while for the pseudoneutron shell it is 22. The
corresponding spin-zero representations aref92g and f112g,
respectively.

For this isotope of Hs the largest SU˜s3d irrep is in the
sector of 55° –60° and it is(0,64) with the eigenvalue of the
second-order Casimir operator 4288 and theg angle 59.2°.
The largest highest irrep in the sector 30° –35° is(30,40) at
g=34.6° with the eigenvalue of the second-order Casimir
operator of 3910, where the difference in its value with the
former one is 378, which hints to a well deformed oblate
nucleus. Thek value is 1.168,N0=705.5.

In Fig. 1 the deduced potential energy surface is given. As
the deformation of the system the value ofb0=−0.231 from
Ref. [19] was used. In the lower panel of270Hs the potential
is depicted, which approximates the deduced potential within
a finite power expansion up to sixth order inb. The PES has
a minimum near 60°, i.e., it is an oblate nucleus as can be
clearly noticed from Fig. 2. In the approximated PES the
behavior nearg=60° and 30° is well reproduced, while at 0°
the potential is too high. The error in the spectrum is not
large because the stiffness ing at 60° is well reproduced. The
potential hints to an oblate rotor. This is in contrast to the
proposed prolate structure of Ref.[19].

In Fig. 3 the corresponding spectrum is plotted. There is
now a clear distinction of the rotational bands. No odd-even
staggering in theg band is observed.

In Table I someBsE2d-transition values in units ofe2 b2

are given.

E. 274110 „Ds…

For this nucleus the physical proton(neutron) shell is as
well filled more than half and the occupation is 28(38). This

TABLE I. SomeBsE2d transitions, in units ofe2 b2. 01
+, 21

+, 41
+, and 61

+ from the ground-state band, while
22

+, 31
+, 42

+, 51
+, and 62

+ from theg-vibrational and 02
+ and 23

+ from theb-vibrational band. This association was
done, except for290114, looking for the largestBsE2d values connecting a band. For higher states the
identification is not easy because there are more than oneBsE2d transitions of the same order connecting a
given spin with a higher one. For290114 the states are ordered according to a harmonic spectrum.

254No 260Rf 262Sg 270Hs 274110 276112 290114

01
+→21

+ 8.679 7.346 8.626 6.945 8.455 6.410 0.250

21
+→41

+ 4.528 3.797 4.456 3.633 4.370 3.410 0.180

41
+→61

+ 4.093 3.579 4.197 3.173 4.119 3.168 0.217

22
+→31

+ 3.976 2.478 2.906 3.282 2.852 2.876 0.150

22
+→42

+ 1.767 2.337 2.740 1.464 2.689 1.452 0.141

42
+→51

+ 1.810 0.795 0.932 1.485 0.915 1.210 0.058

42
+→62

+ 2.848 2.685 3.145 2.362 3.089 2.299 0.197

02
+→23

+ 7.328 4.998 5.855 3.300 5.750 5.758 0.350

01
+→22

+ 0.305 0.048 0.058 0.617 0.053 0.736 0.000

01
+→23

+ 0.039 0.000 0.000 0.024 0.000 0.025 0.000

21
+→42

+ 2.461 0.015 0.019 0.084 0.017 0.066 0.000

02
+→21

+ 0.054 0.016 0.020 0.031 0.018 0.037 0.100
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suggests again a tendency to an oblate deformation. Follow-
ing the same steps as in the previous cases, we use a defor-
mation value ofb=0.222 Ref.[19] (prolate). The resulting
PES turned out to be oblate. In order to be consistent with
the shell model space we used again a negative deformation
(oblate) with the same absolute value as reported in Ref.
[19]. The result is given in the following paragraph.

There are 18 protons(22 neutrons) in the pseudovalence
shell and the spin representations used aref92g for protons
andf122g for neutrons. It is the same as for270Hs, which then

results into the same SU˜s3d irreps. The reason is that the
additional nucleons occupy unique orbitals and thus the oc-
cupation in the normal orbitals is the same. Thek value is
1.168,N0=692.5.

In Fig. 1 the deduced potential energy surface is given. As
the deformation of the system the value ofb0=−0.222 from
Ref. [19] was used. In the lower panel of274110 the potential
is depicted, which approximates the deduced potential within
a finite power expansion up to sixth order inb. The PES has
an oblate minimum, which is less pronounced than the one
for 270Hs (see Fig. 2).

In Fig. 3 the corresponding spectrum is plotted. To the
right of each level the spin and parity are indicated. The
same degeneration is observed as in the other cases ofg
instability, presented so far.

Table I lists someBsE2d-transition values in units ofe2 b2.

F. 276112

In the physical proton(neutron) shell the occupation is 30
(38), which is more than half filled. This again suggests a
tendency to an oblate deformation. We applied the same
steps as in the former case, using a deformation value ofb
=0.212 [19] (prolate). The resulting PES turned out to be
oblate. In order to be consistent with the shell model space
we used again a negative deformation(oblate) with the same
absolute value as reported in Ref.[19]. The result is given in
the following paragraph.

The occupation of the protons and neutrons in the normal
orbitals is the same as for270Hs and274110. The additional
protons and neutrons all fall into unique orbitals, which do

not contribute to the PES. The largest SU˜s3d irrep is again
(0,64) with the eigenvalue of the second-order Casimir op-
erator 4288 and theg angle 59.2°. The largest, highest irrep
in the sector of 30° –35° is(30,40) at g=34.6° with the ei-
genvalue of the second-order Casimir operator of 3910,
where the difference in its value with the former one is only
378, which hints to a well deformed oblate nucleus. Thek
value is 1.168,N0=705.5. As before the irreps hint to an
oblate deformation. Because of the same occupation as for
270Hs we expect a similar spectrum and PES.

In Fig. 1 the deduced potential energy surface is given. As
the deformation of the system the value ofb0=−0.212 from
Ref. [19] was used. In the lower panel of276112 the potential
is depicted, which approximates the deduced potential within
a finite power expansion up to sixth order inb. The PES has
a minimum near 60°(Fig. 2), i.e., it has an oblate shape like
the two previous investigated nuclei. The stiffness towards

lower g has increased further. Note again that we started
from a prolate deformation, but the shell model space sug-
gests an oblate deformation.

In Fig. 3 the corresponding spectrum is plotted.
In Table I someBsE2d-transition values in units ofe2 b2

are given. TheBsE2dvalues indicate again a clear identifica-
tion of the ground-state, theb and theg band.

G. 290114

The occupation of the pseudoshells is 18 for protons and

50 for neutrons. The largest SU˜s3d irrep is (0,60). Because
the microscopically deduced deformation is only −0.026
(slightly oblate) the resulting potential should be nearly

spherical. In this case a comparison of the different SU˜s3d
irreps does not give much insight into theg dependence of
the potential, which is washed out by the small deformation.

In Fig. 1 the potential energy surface is given. It is iden-
tical for the deduced potential as well for the potential within
the GCM, because it is just an oscillator which can be given
by the termb2 of the potential.

In Fig. 3 the corresponding spectrum is plotted. Towards
the right of each level the spin and parity are indicated. The
spectrum is typical of an oscillator.

In Table I someBsE2d-transition values in units ofe2 b2

are given.

IV. CONCLUSIONS

In this paper we estimated the collective quadrupole struc-
ture of some superheavy nuclei, with atomic charge from 102
to 114. The PES, the low lying spectrum, and some
BsE2d-transition rates were calculated for each nucleus. The
method used[8] is based on the pseudosymplectic descrip-
tion of nuclei and is quite robust, i.e., it depends only on the
external information of the deformation of a nucleus and the
calculated single-particle diagram. All the shell structure in-
puts are determined by microscopic models, such as in Refs.
[17,19]. Changing slightly the occupation and/or the defor-
mation has similar effects on the spectrum, i.e., small
changes do not effect the core of the results.

We showed that254No is a prolate rotor in accordance
with Ref. [19]. However, 260Rf and 262Sg are typical
g-unstable nuclei. For example, i.e.,270Hs, 274110, and
276112, the nuclei turn out to be oblate, contrary to the re-
ported positive value ofb in Ref. [19] or [6]. Finally, 290114
is a spherical nucleus.

Our study indicates the necessity to include dynamically
the g-vibrational degree of freedom. Though, assuming an
axial-symmetric shape the microscopic shell model content
dictatesg values different from zero and the PES deduced
even containsg-unstable cases. We assume that at least the
absolute deformation is well reproduced by the microscopic
model. Our results then suggest the correctg triaxiality (or
instability).

Only even-even nuclei were considered. The reason is that
an odd proton and/or neutron changes the spectrum signifi-
cantly at low energies. However, the PES can be used to
deduce the PES of the core of neighboring even-odd, odd-
even, and odd-odd nuclei.
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We did not consider in the present paper the nucleus
252No, because from the point of view of the microscopical
shell-model space it is identical with254No. This is due to the
fact that the only orbital which is removed because it has two
neutrons less is an intruder. It is possible that the mass pa-
rameter changes slightly, but the spectrum is more or less the
same as for254No.

The present compilation can be used to look into experi-
ments for the structure of low lying states. Some typical
signatures were discussed in the text, though care has to be

taken with respect to the absolute scale. Using only relative
scales is more secure. Also, the reportedBsE2d values have
to be interpreted as depicting tendencies and first estimates
of their absolute value.
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