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Using the Hartree-Fock-Bogoliubov mean field theory in coordinate space, we investigate ground state
properties of the sulfur isotopes from the line of stability up to the two-neutron driplines34−52Sd. In particular,
we calculate two-neutron separation energies, quadrupole moments, and rms radii for protons and neutrons.
Evidence for shape coexistence is found in the very neutron-rich sulfur isotopes. We compare our calculations
with results from relativistic mean field theory and with available experimental data. We also study the
properties of neutron-rich zirconiums102,104Zrd, cerium s152Ced, and samariums158,160Smd isotopes which
exhibit very large prolate quadrupole deformations.
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I. INTRODUCTION

One of the fundamental questions of nuclear structure
physics is: how many neutrons or protons can we add to a
given nuclear isotope before it becomes unstable against
spontaneous nucleon emission? The neutron-rich side of the
nuclear chart, in particular, exhibits thousands of nuclear iso-
topes still to be explored with new radioactive ion beam
facilities [1]. Another limit to stability is the superheavy el-
ement region aroundZ=124−126 andN=184 which is
formed by a delicate balance between strong Coulomb repul-
sion and additional binding due to closed shells[2]. Theo-
retically, one expects profound differences between the
known isotopes near stability and exotic nuclei at the neutron
dripline, e.g., the appearance of neutron halos and neutron
skins, and large pairing correlations.

There are various theoretical approaches to the nuclear
many-body problem. For the lightest nuclei, e.g.,12C, an
exact diagonalization of the Hamiltonian in a shell model
basis is feasible[3,4]. Stochastic methods like the shell
model Monte Carlo approach[5,6] may be used for medium-
mass nuclei up toA,60. For heavier nuclei, theorists tend to
utilize self-consistent mean field theories; both nonrelativis-
tic versions[7–14] and relativistic versions[2,15,16] have
been developed. As long as the pairing interaction is rela-
tively weak, it is permissible to treat the mean field and the
pairing field separately via Hartree-Fock theory with added
BCS or Lipkin/Nogami pairing. This works well near the line
of stability [7]. However, as one approaches the driplines,
pairing correlations increase dramatically and it is essential
to treat both the mean field and the pairing field self-
consistently within the Hartree-Fock-Bogoliubov(HFB) for-
malism [13]. While the HF(B) theories describe the ground
state properties of nuclei, their excited states can be obtained
with the (quasiparticle) random phase approximation
(Q)RPA [17–19].

In this paper we study the ground state properties of
neutron-rich even-even nuclei up to the two-neutron dripline.
Besides the large pairing correlations already mentioned,
HFB calculations face another problem in this region: not

only does one have to consider “well-bound” single-particle
states(which determine the structure near stability), but in
addition there are occupied “weakly bound” states with large
spatial extent. Furthermore, because the Fermi energy for
neutrons«F<0 at the dripline, virtual excitations into the
continuum states become important for a proper description
of the HFB ground state. All of these features represent ma-
jor challenges for the numerical solution.

Traditionally, the HFB equations have been solved by ex-
panding the quasiparticle wavefunctions in a harmonic oscil-
lator basis[20]. This works very well near the line ofb−
stability because only well-bound states need to be consid-
ered. However, as one approaches the driplines, the numeri-
cal solution becomes more challenging: in practice, it is very
difficult to represent continuum states as superpositions of
bound harmonic oscillator states because the former show
oscillatory behavior at large distances while the latter decay
exponentially. On the other hand, a direct solution of the
HF(B) equations on a finite-size coordinate space lattice does
not suffer from the above-mentioned shortcomings because
no region of the spatial lattice is favored over any other
region: well-bound, weakly bound, and(discretized) con-
tinuum states can be represented with the same accuracy.
Therefore, the spatial lattice representation has inherent ad-
vantages for the theoretical description of exotic nuclei.

Using our recently developed HFB lattice code for de-
formed nuclei far from stability[14], we have investigated
the ground state properties of the sulfur isotope chain, start-
ing at the line of stabilitysN=16d up to the two-neutron
dripline (which turns out to beN=36 in our HFB calcula-
tions). Our calculations show both spherical and quadrupole-
deformed ground state deformations; in addition, there is evi-
dence for shape coexistence in the very neutron-rich region.
In particular, we calculate two-neutron separation energies,
quadrupole moments, and rms radii for protons and neutrons.
Our HFB calculations are compared with results from rela-
tivistic mean field theory and with available experimental
data.

We have also carried out HFB calculations for some re-
cently measured heavier systems: among medium and heavy
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nuclei, 104Zr fb2=0.45s4dg and 158Sm fb2=0.46s5dg are
among the most deformed isotopes[27]. The large deforma-
tion could have its origin in the high spin down-sloping or-
bitals nearZ=38, 40, 62 andN=40, 64, 96. These large pro-
late deformations at104Zr and 158Sm are confirmed by
Hartree-Fock-Bogoliubov calculations carried out in the
present work.

II. HFB EQUATIONS IN COORDINATE SPACE

Recently, we have solved for the first time the HFB con-
tinuum problem in coordinate space for deformed nuclei in
two spatial dimensions without any approximations, using
basis-spline methods[14]. The novel feature of our HFB
code is that it is capable of generating high-energy con-
tinuum states with an equivalent single-particle energy of
hundreds of MeV. In fact, early one-dimensionals1Dd calcu-
lations for spherical nuclei[8] and our recent 2D HFB cal-
culations have demonstrated that one needs continuum states
with an equivalent single-particle energy up to 60 MeV to
describe the ground state properties accurately near the neu-
tron dripline. QRPA calculations may require the inclusion of
continuum states with even higher energy for the description
of collective excited states. It should be mentioned that cur-
rent 3D HFB codes in coordinate space, e.g., Ref.[9,13],
utilize an expansion of the quasiparticle wave functions in a
truncated HF basis which is limited to continuum states up to
about 5 MeV of excitation energy. Alternatively, an expan-
sion in a stretched oscillator basis has also been explored
[12].

A detailed description of our theoretical method has been
published in Ref.[14]; in the following, we give a brief
summary. In coordinate space representation, the HFB
Hamiltonian and the quasiparticle wave functions depend on
the distance vectorr , spin projections= ± 1

2, and isospin pro-
jection q= ± 1

2 (corresponding to protons and neutrons, re-
spectively). In the HFB formalism, there are two types of
quasiparticle wave functions,f1 andf2, which are bispinors
of the form

f1,a
q sr d = Sf1,a

q sr , ↑ d
f1,a

q sr , ↓ d D, f2,a
q sr d = Sf2,a

q sr , ↑ d
f2,a

q sr , ↓ d D . s1d

The quasiparticle wave functions determine the normal
densityrqsr d and the pairing densityr̃qsr d as follows:

rqsr d = o
Ea.0

`

o
s=−1/2

+1/2

f2,a
q srsdf2,a

q* srsd, s2d

r̃qsr d = − o
Ea.0

`

o
s=−1/2

+1/2

f2,a
q srsdf1,a

q* srsd. s3d

In the wave functions, the dependence on the quasiparticle
energyEa is denoted by the indexa for simplicity.

In the present work, we use Skyrme effectiveN-N inter-
actions in thep-h channel, and ad interactions in thep-p
channel. For these types of effective interactions, the particle

mean field Hamiltonianh and the pairing field Hamiltonianh̃
are diagonal in isospin space and local in position space,

hsrsq, r 8s8q8d = dq,q8dsr − r 8dhs,s8
q sr d s4d

and

h̃srsq, r 8s8q8d = dq,q8dsr − r 8dh̃s,s8
q sr d, s5d

and the HFB equations have the following structure in
spin-spacef14g:

Sshq − ld h̃q

h̃q − shq − ld DSf1,a
q

f2,a
q D = EaSf1,a

q

f2,a
q D , s6d

with

hqsr d = Sh↑↑
q sr d h↑↓

q sr d
h↓↑

q sr d h↓↓
q sr d D, h̃qsr d = Sh̃↑↑

q sr d h̃↑↓
q sr d

h̃↓↑
q sr d h̃↓↓

q sr d
D .

The quasiparticle energy spectrum is discrete foruEu
,−l and continuous foruEu.−l [8]. For even-even nuclei it
is customary to solve the HFB equations for positive quasi-
particle energies and consider all negative energy states as
occupied in the HFB ground state.

III. NUMERICAL METHOD

Using cylindrical coordinatessr, z, fd, we introduce a 2D
grid sra, zbd with a=1, .. .,Nr and b=1, .. .,Nz. In radial di-
rection, the grid spans the region from 0 tormax. Because we
want to be able to treat octupole shapes, we do not assume
left-right symmetry inz direction. Consequently, the grid ex-
tends from −zmax to +zmax. Typically, zmax<rmax and Nz
<2Nr.

For the lattice representation, the wave functions and op-
erators are represented in terms of basis splines.B splines of
orderM, Bi

Msxd, are a setsi=1, .. .,Nd of piecewise continu-
ous polynomial sections of orderM−1; a special case is the
well-known finite elements which areB splines of orderM
=2. By usingB splines of seventh or ninth order, we are able
to represent derivative operators very accurately on a rela-
tively coarse grid with a lattice spacing of about 0.8 fm re-
sulting in a lattice Hamiltonian matrix of relatively low di-
mension. While our current 2D lattices are linear, a major
advantage of theB spline technique is that it can be extended
to nonlinear lattices(e.g., exponentially increasing) [23]
which will be particularly useful for problems where one is
interested in the behavior of wave functions at very large
distances.

The four componentssn=1, .. ., 4d of the HFB bispinor
wave functioncnsr, zd are expanded in terms of a product of
B splines

cnsra, zbd = o
i=1

Ni

o
j=1

N j

Bi
MsradBj

Mszbdcn
ij . s7d

We construct the derivative operators contained in the
Hamiltonian with theB spline Galerkin method[24] while
local potentials are represented by the collocation method
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[22,23]. The numerical solution of the HFB equations results
in a set of quasiparticle wave functions at the lattice points.
The corresponding quasiparticle energy spectrum contains
both bound and(discretized) continuum states. We diagonal-
ize the HFB Hamiltonian separately for fixed isospin projec-
tion q and angular momentum projectionV. Note that the
number of quasiparticle eigenstates is determined by the di-
mensionality of the lattice HFB Hamiltonian. For fixed val-
ues ofq andV, we obtain 4NrNz eigenstates, typically up to
1000 MeV.

In Ref. [14,25,26] we have investigated the numerical
convergence of several observables as a function of lattice
box size, grid spacing, and maximum angular momentum
projectionVmax. In the case of spherical nuclei, our calcula-
tions have been compared with the 1D radial HFB results of
Dobaczewskiet al. [8], and indeed there is good agreement
between the two. Production runs of our HFB code are car-
ried out on an IBM-SP massively parallel supercomputer us-
ing OPENMP/MPI message passing. Parallelization is pos-
sible for different angular momentum statesV and isospins
sp/nd.

IV. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

In this section we present numerical results of our 2D-
HFB code and compare these to experimental data and other
theoretical methods. In all of our calculations we utilized the
Skyrme(SLy4) [10] effectiveN-N interaction in thep-h and
h-p channel, and for thep-p and h-h channel we use ad
interaction with the same parameter set as in Ref.[14]: a
pairing strength ofV0=−170.0 MeV fm3, with an equivalent
single-particle energy cutoff parameter«max=60 MeV. All
calculations reported in this paper were carried out with
B-spline orderM=7 and maximum angular momentum pro-
jection Vmax=

21
2 .

A. Sulfur isotope chain up to the two-neutron dripline; shape
coexistence studies

The sulfur isotopessZ=16d have been investigated several
years ago by Werneret al. [7] using self-consistent mean
field models: both Skyrme-HF and relativistic mean field
(RMF) model calculations were carried out using a simple
heuristic “constant pairing gap” approximation. Because of
the well-known deficiencies of standard pairing theory in the
exotic neutron-rich region, we have decided to reinvestigate
the sulfur isotope chain, starting at the line of stabilitysN
=16d up to the two-neutron dripline(which turns out to be
N=36 in our HFB calculations). Based on the above-
mentioned earlier calculations, one may expect a wide range
of ground state deformations, and in addition there has been
some evidence for shape coexistence in this region[7]. Be-
cause our HFB code[14] has been specifically designed to
describe deformed exotic nuclei, the sulfur isotopes are ex-
pected to provide a rich testing ground for our calculations.

Within the single-particle shell model, one would expect
nuclei such as16

44S28 with “magic” neutron numberN=28 to
be spherical. But the mean field theories predict, in fact,

deformed intrinsic shapes as a result of “intruder” states.
Furthermore, in some of these isotopes shape coexistence has
been predicted[7]. All these phenomena depend strongly on
the interplay between the mean field and the pairing field
which is correctly described in the HFB theory. Furthermore,
the neutron-richN<28 nuclei play a crucial role in astro-
physics for the nucleosynthesis of the heavy Ca-Ti-Cr iso-
topes[28].

In radial(r) direction, our lattice extends from 0 to 12 fm,
and in symmetry axisszd direction from −12 to+12 fm, with
a lattice spacing of about 0.8 fm in the central region. Angu-
lar momentum projectionsV=1/2, 3/2, .. ., 21/2 were taken
into account.

Figure 1 shows the calculated two-neutron-separation en-
ergies for the sulfur isotope chain. The two-neutron separa-
tion energy is defined as

S2nsZ, Nd = EbindsZ, Nd − EbindsZ, N − 2d. s8d

Note that in using this equation, all binding energies must
be entered with apositive sign. The position of the two-
neutron dripline is defined by the conditionS2nsZ, Nd=0, and
nuclei with negative two-neutron separation energy are un-
stable against the emission of two neutrons.

The two-neutron separation energies have been calculated
using various methods: in addition to HFB calculations(i.e.,
self-consistent mean field with pairing), we have also carried
out Hartree-Fock calculations with added Lipkin/Nogami
pairing sHF+LNd, and we compare our results to the relativ-
istic mean field with BCS pairingsRMFd calculations by
Lalazissiset al. [16]. Experimental data based on measured
binding energies[29] are available up to the isotope48S.
Figure 1 shows that both the HFB and RMF calculations are
in good agreement with experiment where available but there
are dramatic differences as we approach the two-neutron
dripline: Our HFB calculations predict50S to be the last iso-
tope that is stable against the emission of two neutrons. By
contrast, the RMF approach predictsS2nsZ, Nd.0 at least up
to 56S. Our HF+LN calculations also yield positive
2n-separation energies in the mass region investigated here.
It should be stressed that, on theoretical grounds, neither
BCS-type nor Lipkin-Nogami-type pairing is justified for the
very neutron-rich isotopes. The problem of the Lipkin-
Nogami method is the poorness of the approximation at

FIG. 1. (Color online) Two-neutron separation energies for sul-
fur isotopes. The dripline is located where the separation energy
becomes zero.
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magic numbers, i.e., the obtained nonzero pairing gap is not
very close to the result of the full variation-after-number-
projection method for magic nuclei.

In Fig. 2 we show a comparison of the HFB and RMF
results for the intrinsic electric quadrupole moments of the
sulfur isotopes. In most cases, the HFB and RMF calcula-
tions show a similar trend: we observe a region with pre-
dominantly prolate deformation. Note, however, that for the
most neutron-rich sulfur isotopes, our HFB theory predicts a
prolate ground state whereas RMF theory yields an oblate
shape. Direct measurements of electric quadrupole moments
are only available for two of the sulfur isotopes. The data
compilation of Stone[30] yields intrinsic electric quadrupole
moments ofQexpt=−0.15 b for 32S and Qexpt= +0.04 b for
34S. Our HFB code yieldsQHFB= +0.113 b and +0.203 b for
these two isotopes. The RMF calculations of Lalazissiset al.
[16] give values ofQRMF= +0.339 b and +0.159 b, respec-
tively.

In intermediate-energy Coulomb excitation experiments,
the energies andBsE2d values of the lowest excited 2+ state
were measured for38,40,42S [32] and for44S [33]. The analy-
sis of the measuredBEs2d values in terms of the simple
quadrupole-deformed rotor model yields the following
experimental quadrupole deformations for the even sulfur
isotopes 38–44S: ub2

exptu=0.246s16d,0.284s16d,0.300s24d,
0.258s36d; our corresponding Skyrme-HFB theory results are
b2

HFB=0.16,0.26,0.25,0.29. Apparently, the HFB results for
40,42,44S are in good agreement with experiment, but there is
a discrepancy in the case of38S: Skyrme-HFB predicts a less
deformed shape than the experimental value. There is an
even larger discrepancy between experiment and the RMF
calculations which yield an almost spherical shape,b2

RMF

=0.054.
Both HFB and RMF calculations reveal shape coexistence

in this region, with an energy difference between the ground
state and the shape isomer that is usually quite small. For
example, in the case of16

48S32 our HFB code yields a ground
state binding energy of −362.56 MeV with a quadrupole de-
formation ofb2=0.11, and an oblate minimum atb2=−0.15
which is only 0.49 MeV higher than the ground state. The
RMF predicts in this case a ground state binding energy of
−362.97 MeV with oblate deformation ofb2=−0.25, and a
shape isomer withb2= +0.179 which is located 0.29 MeV
above the ground state.

In Fig. 3 we show a comparison of the quadrupole mo-
ment for neutrons predicted by our HFB calculations and the
RMF results of Ref.[16]. In both cases, the general trend is
very similar to the result obtained for protons.

In Fig. 4 we compare the root-mean-square radii of pro-
tons and neutrons predicted by our HFB calculations and the
RMF calculations with BCS pairing[16]. Near the line ofb
stability, the proton and neutron radii are almost identical,
but as we approach the 2n dripline, we see clearly the devel-
opment of a “neutron skin” as evidenced by the large differ-
ence between the neutron and proton rms radii. For example,
in 16

50S34 our HFB calculations yieldrn=3.935 fm andrp
=3.364 fm, respectively. In general, the RMF calculations
predict larger neutron rms radii for mass numbersAù38
than do our HFB calculations.

B. Strongly deformed neutron-rich zirconium, cerium,
neodymium, and samarium isotopes

Recently, triple-g coincidence experiments have been car-
ried out with Gammasphere at LBNL[27] which have deter-
mined half-lives and quadrupole deformations of several
neutron-rich zirconium, cerium, and samarium isotopes. Fur-
thermore, laser spectroscopy measurements[31] for zirco-
nium isotopes have yielded precise rms radii in this region.
These medium/heavy mass nuclei are among the most
neutron-rich isotopessN/Z<1.6d for which spectroscopic
data are available. It is therefore of great interest to compare
these data with the predictions of the self-consistent HFB
mean field theory.

FIG. 2. (Color online) Quadrupole moment for protons(in units
of barn) for even-even sulfur isotopes.

FIG. 3. (Color online) Quadrupole moment for neutrons(in
units of barn) for even-even sulfur isotopes.

FIG. 4. (Color online) Root-mean-square radii of protons and
neutrons for even-even sulfur isotopes.
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A comparison of our HFB results and experimental data is
given in Table I. The theoretical quadrupole deformations of
the proton charge distributions agree very well with the mea-
sured data of Ref.[27]. In addition, our calculated proton
rms radius for102Zr is in good agreement with recent laser
spectroscopic measurements(see Fig. 4 of Ref.[31]). Theo-
retical HFB predictions are also given for the neutron density
distributions.

In Table II we give a more detailed comparison of various
theoretical calculations for62

158Sm. As stated earlier, only the
HFB theory provides a self-consistent treatment of both
mean field and pairing properties. In contrast, the HF+
Lipkin/Nogami and the RMF calculations treat mean field
and pairing as separate entities. By comparing the HFB and
HF+LN results in the first two columns with the measured
binding energies and quadrupole deformations(last column)
we find that our HFB lattice calculation yields values which
are closer to the experimental data. Table II also shows that
while the RMF theory reproduces the experimental binding
energy quite well, it seriously underpredicts the strong quad-
rupole deformation measured in Ref.[27]. In addition, Table
II compares theoretical results for other observables such as
rms radii for neutrons and protons, Fermi energiessln, lpd,
pairing gapssDn, Dpd, and pairing energiesEpairsnd, Epairspd.

In Fig. 5 we depict contour plots of the density distribu-
tions for neutrons and protons in62

158Sm. The large prolate
quadrupole deformation is clearly visible. We also observe
small density enhancements near the center of the nucleus
which are caused by the nuclear shell structure.

Figure 6 shows the corresponding pairing density for neu-
trons and protons; as discussed in Ref.[8], this quantity de-
scribes the probability ofcorrelatednucleon pair formation
with opposite spin projection, and it determines the pair
transfer form factor. We can see that most correlated pair
formation in 62

158Sm takes place outside the central region of
the nucleus.

V. CONCLUSIONS

In this paper, we have performed Skyrme-HFB calcula-
tions in coordinate space for several neutron-rich exotic nu-
clei. The coordinate space method has the advantage that
well-bound, weakly bound, and(discretized) continuum
states can be represented with the same numerical accuracy.
The novel feature of our lattice HFB code is that it takes into
account high-energy continuum states with an equivalent
single-particle energy of 60 MeV or more. This feature is
crucial when one studies nuclei near the neutron dripline
[14].

We have calculated the ground state properties of the sul-
fur isotope chainsZ=16d, starting at the line of stability
sN/Z=1d up to the two-neutron dripline with a neutron-to-
proton ratio ofN/Z<2.2. In particular, we have calculated
two-neutron separation energies, quadrupole moments, and
rms radii for protons and neutrons. In comparing our HFB
calculations with other theoretical methods(RMF with BCS
pairing and HF+Lipkin/Nogami) we find similar results near
stability but dramatic differences near the 2n dripline(see

TABLE I. Our HFB results for neutron-rich zirconium, cerium, neodymium, and samarium isotopes. The first column lists the neutron-
to-proton ratioN/Z. Subsequent columns display quadrupole deformationsb2spd, b2snd and rms radiirp, rn of protons and neutrons. Recent
experimental data for quadrupole deformations are taken from Ref.[27]. The rms radius for102Zr was measured in Ref.[31].

N/Z b2spd b2
exptspd b2snd rpsfmd rp

exptsfmd rnsfmd

102Zr 1.55 0.43 0.42(5) 0.43 4.47 4.54 4.65
104Zr 1.60 0.45 0.45(4) 0.45 4.49 4.70
152Ce 1.62 0.32 0.30(3) 0.33 5.01 5.22
156Nd 1.60 0.37 0.36 5.08 5.27
160Sm 1.58 0.38 0.37 5.13 5.31

TABLE II. Ground state properties for62
158Sm. The first two columns give the results of our present work in the Hartree-Fock-Bogoliubov

theory(HFB) and in the Hartree-Fock plus Lipkin-NogamisHF+LNd pairing theory. The third column shows RMF theory results[16] and
the last column gives a comparison with recent experimental data[27].

HFB HF1LN RMF Expt.

BEsMEVd −1, 290.2 −1, 286.6 −1, 291.98 −1, 291.9
b2spd 0.375 0.359 0.292 0.46(5)
rnsfmd 5.27 5.376
rpsfmd 5.15 5.098
lnsMeVd −5.63 −5.37
lpsMeVd −9.21 −8.93
DnsMeVd 0.31 0.65
DpsMeVd 0.37 0.75
EpairsndsMeVd −0.96 −4.90
EpairspdsMeVd −1.19 −4.57

HARTREE-FOCK-BOGOLIUBOV CALCULATIONS IN… PHYSICAL REVIEW C 68, 064302(2003)

064302-5



Figs. 1–4). For example, our HFB calculations predict50S to
be the last isotope that is stable against the emission of two
neutrons whereas the RMF approach predictsS2nsZ, Nd.0 at
least up to56S. For48S, the last even-even isotope for which
experimental binding energies are available(Fig. 1), the ex-
perimental value for the two-neutron separation energy is
3.64 MeV, as compared to our HFB calculation result of
3.49 MeV and the RMF result of 5.24 MeV. Both our HFB
calculations and the RMF calculations of Ref.[16] predict
the existence of shape isomeric states in the neutron-rich
sulfur isotopes. In Fig. 2 we compare calculated electric
quadrupole moments. In most cases, the HFB and RMF cal-
culations yield prolate quadrupole deformations. However,
for the most neutron-rich sulfur isotopes, our HFB theory
predicts a prolate ground state whereas RMF theory yields an
oblate shape. Shape coexistence is found both in the HFB
and RMF calculations, with fairly small energy difference
between the ground state and the shape isomer. Specific re-
sults are given for16

48S32. A comparison between the root-
mean-square radii of protons and neutrons clearly exhibits
the development of a “neutron skin” in the neutron-rich sul-
fur isotopes: for example, in16

50S34 our HFB calculations yield

neutron and proton rms radii ofrn=3.935 fm and rp
=3.364 fm, respectively.

In connection with recent experiments at Gammasphere,
we have carried out HFB calculations of medium/heavy
mass nuclei withN/Z<1.6. In particular, we have examined
the isotopes102,104Zr, 152Ce, 156Nd, and158,160Sm. The theo-
retical quadrupole charge deformations for zirconium and ce-
rium are in very good agreement with the new data. Also, our
calculated proton rms radius for102Zr agrees with recent la-
ser spectroscopic measurements. Table I gives a summary of
these results and presents predictions for two neutron-rich
isotopes,156Nd and160Sm, for which experimental data are
expected to become available in the near future.

ACKNOWLEDGMENTS

This work has been supported by the U.S. Department of
Energy under Grant No. DE-FG02-96ER40963 with Vander-
bilt University. The numerical calculations were carried out
at the IBM-RS/6000 SP supercomputer of the National En-
ergy Research Scientific Computing Center which is sup-
ported by the Office of Science of the U.S. Department of
Energy.

[1] Opportunities in Nuclear Science, A Long-Range Plan for the
Next Decade, DOE/NSF Nuclear Science Advisory Commit-
tee, 2002, published by U.S. Dept. of Energy

[2] A. T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T.
Vertse, and S. Cwiok, Phys. Rev. C61, 034313(2000).

[3] P. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. C62,
054311(2000).

[4] P. Navratil and W. E. Ormand, Phys. Rev. Lett.88, 152502

(2002).
[5] S. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rep.278, 1

(1997).
[6] T. Papenbrock and D. J. Dean, Phys. Rev. C67, 051303(R)

(2003).
[7] T. R. Werner, J. A. Sheikh, W. Nazarewicz, M. R. Strayer, A.

S. Umar, and M. Misu, Phys. Lett. B333, 303 (1994).
[8] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C.

FIG. 5. (Color online) Density distribution for neutrons(left)
and protons(right) in 62

158Sm. The vertical axis is thez axis (sym-
metry axis) and the horizontal axis denotes the radial directionr. All
lengths are given in femtometer.

FIG. 6. (Color online) Pairing density distribution of neutrons
(left) and protons(right) in 62

158Sm. The vertical axis is thez axis
(symmetry axis) and the horizontal axis denotes the radial direction
r. All lengths are given in femtometer.

OBERACKER, UMAR, TERÁN, AND BLAZKIEWICZ PHYSICAL REVIEW C68, 064302(2003)

064302-6



R. Chinn, and J. Dechargé, Phys. Rev. C53, 2809(1996).
[9] J. Terasaki, P.-H. Heenen, H. Flocard, and P. Bonche, Nucl.

Phys. A600, 371 (1996).
[10] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaef-

fer, Nucl. Phys.A635, 231 (1998); A643, 441 (1998).
[11] P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J.

A. Maruhn, and M. R. Strayer, Phys. Rev. C60, 014316
(1999).

[12] M. V. Stoitsov, J. Dobaczewski, P. Ring, and S. Pittel, Phys.
Rev. C 61, 034311(2000).

[13] M. Yamagami, K. Matsuyanagi, and M. Matsuo, Nucl. Phys.
A693, 579 (2001).

[14] E. Terán, V. E. Oberacker, and A. S. Umar, Phys. Rev. C67,
064314(2003).

[15] P. Ring, Prog. Part. Nucl. Phys.37, 193 (1996).
[16] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data

Tables 71, 1 (1999).
[17] M. Matsuo, Nucl. Phys.A696, 371 (2001).
[18] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz,

Phys. Rev. C65, 054322(2002).
[19] I. Stetcu and C. W. Johnson, Phys. Rev. C67, 044315(2003).
[20] J. L. Egido, L. M. Robledo, and Y. Sun, Nucl. Phys.A560,

253 (1993).
[21] A. S. Umar, J. Wu, M. R. Strayer, and C. Bottcher, J. Comput.

Phys. 93, 426 (1991).
[22] J. C. Wells, V. E. Oberacker, M. R. Strayer, and A. S. Umar,

Int. J. Mod. Phys. C6, 143 (1995).

[23] D. R. Kegley, V. E. Oberacker, M. R. Strayer, A. S. Umar, and
J. C. Wells, J. Comput. Phys.128, 197 (1996).

[24] V. E. Oberacker and A. S. Umar, inPerspectives in Nuclear
Physics, edited by J. H. Hamilton, H. K. Carter, and R. B.
Piercey(World Scientific, Singapore, 1999), pp. 255–266.

[25] E. Terán, V. E. Oberacker, and A. S. Umar, Heavy Ion Phys.
16, 1–4, 437(2002).

[26] A. S. Umar, V. E. Oberacker, and E. Terán, inProceedings of
the Third International Conference on Fission and Properties
of Neutron-Rich Nuclei, Sanibel Island, Florida 2002, edited
by J. H. Hamilton, A. V. Ramayya, and H. K. Carter(World
Scientific, Singapore, 2003), pp. 109–116.

[27] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, D. Fong, C. J.
Beyer, P. M. Gore, E. F. Jones, E. Terán, V. E. Oberacker, A. S.
Umar, Y. X. Luo, J. O. Rasmussen, S. J. Zhu, S. C. Wu, I. Y.
Lee, P. Fallon, M. A. Stoyer, S. J. Asztalos, T. N. Ginter, J. D.
Cole, G. M. Ter-Akopian, and R. Donangelo(unpublished).

[28] O. Sorlinet al., Phys. Rev. C47, 2941(1993).
[29] G. Audi and A. H. Wapstra, Nucl. Phys.A595, 409 (1995);

and Table of Nuclides, Brookhaven Nat. Lab., http://
www2.bnl.gov/ton/index.html

[30] N. Stone, Table of Nuclear Moments(2001 Preprint), Oxford
University, United Kingdom, http://www.nndc.bnl.gov/nndc/
stone_moments/

[31] P. Campbellet al., Phys. Rev. Lett.89, 082501(2002).
[32] H. Scheitet al., Phys. Rev. Lett.77, 3967(1996).
[33] T. Glasmacheret al., Phys. Lett. B395, 163 (1997).

HARTREE-FOCK-BOGOLIUBOV CALCULATIONS IN… PHYSICAL REVIEW C 68, 064302(2003)

064302-7


