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Hartree-Fock-Bogoliubov calculations in coordinate space: Neutron-rich sulfur, zirconium, cerium,
and samarium isotopes
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Using the Hartree-Fock-Bogoliubov mean field theory in coordinate space, we investigate ground state
properties of the sulfur isotopes from the line of stability up to the two-neutron dripifne®s). In particular,
we calculate two-neutron separation energies, quadrupole moments, and rms radii for protons and neutrons.
Evidence for shape coexistence is found in the very neutron-rich sulfur isotopes. We compare our calculations
with results from relativistic mean field theory and with available experimental data. We also study the
properties of neutron-rich zirconiurt°21%%r), cerium (}Ce), and samariun(*®¢-165m) isotopes which
exhibit very large prolate quadrupole deformations.
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I. INTRODUCTION only does one have to consider “well-bound” single-particle

One of the fundamental questions of nuclear structuré tates(which determine the structure near stabjlitput in
S d addition there are occupied “weakly bound” states with large
physics is: how many neutrons or protons can we add to

: | . bef it b bl . Spatial extent. Furthermore, because the Fermi energy for
given nuclear isotope before it becomes unstable again utronseg=0 at the dripline, virtual excitations into the

spontaneous nucleon emission? The neutron-rich side of thg,iinyum states become important for a proper description
nuclear (_:hart, in particular, ex_h|b|ts thousands_of n_uclear iS0f the HFB ground state. All of these features represent ma-
topes still to be explored with new radioactive ion beamjOr challenges for the numerical solution.
facilities [1] Another limit to Stab|l|ty is the SUperheaVy el- Traditiona”y, the HFB equations have been solved by ex-
ement region around=124-126 andN=184 which is  panding the quasiparticle wavefunctions in a harmonic oscil-
formed by a delicate balance between strong Coulomb repulator basis[20]. This works very well near the line o8-
sion and additional binding due to closed sh¢ls Theo-  stability because only well-bound states need to be consid-
retically, one expects profound differences between thered. However, as one approaches the driplines, the numeri-
known isotopes near stability and exotic nuclei at the neutroral solution becomes more challenging: in practice, it is very
dripline, e.g., the appearance of neutron halos and neutradifficult to represent continuum states as superpositions of
skins, and large pairing correlations. bound harmonic oscillator states because the former show
There are various theoretical approaches to the nuclearscillatory behavior at large distances while the latter decay
many-body problem. For the lightest nuclei, e.fC, an  exponentially. On the other hand, a direct solution of the
exact diagonalization of the Hamiltonian in a shell modelHF(B) equations on a finite-size coordinate space lattice does
basis is feasiblg3,4]. Stochastic methods like the shell not suffer from the above-mentioned shortcomings because
model Monte Carlo approadb,6] may be used for medium- no region of the spatial lattice is favored over any other
mass nuclei up té&\~60. For heavier nuclei, theorists tend to region: well-bound, weakly bound, andliscretized con-
utilize self-consistent mean field theories; both nonrelativistinuum states can be represented with the same accuracy.
tic versions[7-14 and relativistic version$2,15,1 have  Therefore, the spatial lattice representation has inherent ad-
been developed. As long as the pairing interaction is relavantages for the theoretical description of exotic nuclei.
tively weak, it is permissible to treat the mean field and the Using our recently developed HFB lattice code for de-
pairing field separately via Hartree-Fock theory with addedormed nuclei far from stabilityf14], we have investigated
BCS or Lipkin/Nogami pairing. This works well near the line the ground state properties of the sulfur isotope chain, start-
of stability [7]. However, as one approaches the driplinesjng at the line of stability(N=16) up to the two-neutron
pairing correlations increase dramatically and it is essentiadripline (which turns out to beN=36 in our HFB calcula-
to treat both the mean field and the pairing field self-tions). Our calculations show both spherical and quadrupole-
consistently within the Hartree-Fock-Bogoliub@dFB) for-  deformed ground state deformations; in addition, there is evi-
malism [13]. While the HKB) theories describe the ground dence for shape coexistence in the very neutron-rich region.
state properties of nuclei, their excited states can be obtaindd particular, we calculate two-neutron separation energies,
with the (quasiparticle random phase approximation quadrupole moments, and rms radii for protons and neutrons.
(QRPA[17-19. Our HFB calculations are compared with results from rela-
In this paper we study the ground state properties ofivistic mean field theory and with available experimental
neutron-rich even-even nuclei up to the two-neutron driplinedata.
Besides the large pairing correlations already mentioned, We have also carried out HFB calculations for some re-
HFB calculations face another problem in this region: notcently measured heavier systems: among medium and heavy
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nuclei, *%Zr [5,=0.454)] and ***Sm [5,=0.4685)] are  mean field Hamiltoniah and the pairing field Hamiltoniah

among the most deformed isotop@s]. The large deforma-  4re diagonal in isospin space and local in position space,
tion could have its origin in the high spin down-sloping or-

bitals nearz=38, 40, 62 andN=40, 64, 96. These large pro- h(roq,r'o'q’) = 6,4 &r —r’)hf;a,(r) (4)
late deformations at®Zr and °®%Sm are confirmed by '
Hartree-Fock-Bogoliubov calculations carried out in theand

present work. ~ ~
h(rog,r'o'q’) = &, Ar —r’)hiﬂ,(r), (5)

Il. HFB EQUATIONS IN COORDINATE SPACE and the HFB equations have the following structure in

Recently, we have solved for the first time the HFB con-Spm_SpaCE{M]:

tinuum problem in coordinate space for deformed nuclei in (h9=)) ha & 9

two spatial dimensions without any approximations, using _ ( 1’“) = a( 1’“), (6)

basis-spline methodgl4]. The novel feature of our HFB ha - (hi-n) J\¢3, ?3 4

code is that it is capable of generating high-energy con- .

tinuum states with an equivalent single-particle energy oiw'th

hundreds of MeV. In fact, early one-dimensioiaD) calcu- ha.(r) hA(r) o) F9)

lations for spherical nucl€i8] and our recent 2D HFB cal- ha _( 1 1 ) = " T _

culations have demonstrated that one needs continuum states hi.(r) h{(r) E?T(r) F‘Ti(r)

with an equivalent single-particle energy up to 60 MeV to o o

describe the ground state properties accurately near the neu- 1N€ duasiparticle energy spectrum is discrete [}
< -\ and continuous folE|> -\ [8]. For even-even nuclei it

tron dripline. QRPA calculations may require the inclusion of | ! M )
continuum states with even higher energy for the descriptiof® customary to solve the HFB equations for positive quasi-

of collective excited states. It should be mentioned that curParticle energies and consider all negative energy states as
rent 3D HFB codes in coordinate space, e.g., RefL3, occupied in the HFB ground state.

utilize an expansion of the quasiparticle wave functions in a

truncated HF basis which is limited to continuum states up to Il NUMERICAL METHOD

a.bouy 5> MeV of excitatipn energy. Alternatively, an expan- Using cylindrical coordinate§, z, ¢), we introduce a 2D
sion in a stretched oscillator basis has also been exploreg. (fw2p) With a=1, ... N, and =1, ... N, In radial di-

[12]. rection, the grid spans the region from Ortg,, Because we

A detailed description of our theoretical method has been | le sh
published in Ref[14]: in the following, we give a brief want to be able to treat octupole shapes, we do not assume

- : eft-right symmetry inz direction. Consequently, the grid ex-
summary. In coordinate space representation, the HF ends from 2., t0 +Z.. Typically, Zna=Tma and N,

Hamiltonian and the quasiparticle wave1 functions depend OQZN,.
the _dlstancelvectm, spin projections=+3, and isospin pro- For the lattice representation, the wave functions and op-
jection q=+3 (corresponding to protons and neutrons, re-grators are represented in terms of basis spliesplines of
spectively. In the HFB formalism, there are two types of orderM, BY(x), are a seti=1, ...,\) of piecewise continu-
quasiparticle wave functiongh, and ¢,, which are bispinors g polyn(l)mial sections of ordé-1; a special case is the
of the form well-known finite elements which a splines of ordeiv
a a =2. By usingB splines of seventh or ninth order, we are able
&9 (1) = (¢l,a(r’ T)) &3 (1) = (¢2,a(r’ “) 1) to represent derivative operators very accurately on a rela-
L Hlr, 1)) 2 #3r, 1)) tively coarse grid with a lattice spacing of about 0.8 fm re-
sulting in a lattice Hamiltonian matrix of relatively low di-
The quasiparticle wave functions determine the normamension. While our current 2D lattices are linear, a major

density p,(r) and the pairing densitj,(r) as follows: advantage of th® spline technique is that it can be extended
to nonlinear lattices(e.g., exponentially increasing23]
@ 172 X which will be particularly useful for problems where one is
py(r) = > > 3 ,(ro) g (ro), (2)  interested in the behavior of wave functions at very large
Eo>00=-1/2 distances.
The four component$n=1, ...,4 of the HFB bispinor
©  +1/2 wave functiony;(r, 2) are expanded in terms of a product of
P == 2 X 43 ro)¢lro). (3)  Bsplines
E,>0 0=-1/2 N N
In the wave functions, the dependence on the quasiparticle Un(ra 29) = 2 2 B (r)B) (Zg)c). ()
energyE, is denoted by the index for simplicity. ==
In the present work, we use Skyrme effectiMeN inter- We construct the derivative operators contained in the

actions in thep-h channel, and & interactions in thep-p  Hamiltonian with theB spline Galerkin method24] while
channel. For these types of effective interactions, the particlocal potentials are represented by the collocation method
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[22,23. The numerical solution of the HFB equations results L e e e e e
in a set of quasiparticle wave functions at the lattice points.
The corresponding quasiparticle energy spectrum contains
both bound anddiscretizeg continuum states. We diagonal- P
ize the HFB Hamiltonian separately for fixed isospin projec- 5
tion g and angular momentum projectidd. Note that the §=
number of quasiparticle eigenstates is determined by the di- o
mensionality of the lattice HFB Hamiltonian. For fixed val-
ues ofg and(), we obtain 4,N, eigenstates, typically up to 0
1000 MeV.
In Ref. [14,25,26 we have investigated the numerical 32 34 36 38 40 42 44 46 48 50 52 54 56 S8
convergence of several observables as a function of lattice A

box size, grid spacing, and maximum angular momentum |G, 1. (Color onling Two-neutron separation energies for sul-

projectionQ,,, In the case of spherical nuclei, our calcula- fyr isotopes. The dripline is located where the separation energy
tions have been compared with the 1D radial HFB results ohecomes zero.

Dobaczewsket al. [8], and indeed there is good agreement

between the two. Production runs of our HFB code are cardeformed intrinsic shapes as a result of “intruder” states.
ried out on an IBM-SP massively parallel supercomputer usFurthermore, in some of these isotopes shape coexistence has
ing OPENMP/MPI message passing. Parallelization is posbeen predictedi7]. All these phenomena depend strongly on
sible for different angular momentum stat@sand isospins the interplay between the mean field and the pairing field
(p/n). which is correctly described in the HFB theory. Furthermore,
the neutron-richN=28 nuclei play a crucial role in astro-
physics for the nucleosynthesis of the heavy Ca-Ti-Cr iso-
topes|[2§].

In radial(r) direction, our lattice extends from O to 12 fm,

In this section we present numerical results of our 2D-and in symmetry axi¢z) direction from ~12 to+12 fm, with
HFB code and compare these to experimental data and oth@rlattice spacing of about 0.8 fm in the central region. Angu-
theoretical methods. In all of our calculations we utilized thelar momentum projection§)=1/2,3/2, ..., 21/2 were taken
Skyrme(SLy4) [10] effectiveN-N interaction in thep-h and ~ Into account. _

h-p channel, and for the-p and h-h channel we use @ Figure 1 shows the calculated two-neutron-separation en-
interaction with the same parameter set as in Rb4]: a  ergies for the sulfur isotope chain. The two-neutron separa-
pairing strength of/,=—170.0 MeV fn#, with an equivalent tion energy is defined as

single-particle energy cutoff parametey,,,=60 MeV. All _ _ _

calgula?ions reported in this paper were carried out with Son(Z, N) = Eping(Z, N) = Eping(Z, N - 2). 8
B-spline ordeM =7 and maximum angular momentum pro- Note that in using this equation, all binding energies must
jection Qmaxz%l. be entered with gositive sign. The position of the two-
neutron dripline is defined by the conditi®;,(Z, N)=0, and
nuclei with negative two-neutron separation energy are un-
stable against the emission of two neutrons.

The two-neutron separation energies have been calculated

The sulfur isotope§Z=16) have been investigated several using various methods: in addition to HFB calculatigis.,
years ago by Werneet al. [7] using self-consistent mean self-consistent mean field with pairipgve have also carried
field models: both Skyrme-HF and relativistic mean fieldout Hartree-Fock calculations with added Lipkin/Nogami
(RMF) model calculations were carried out using a simplepairing (HF+LN), and we compare our results to the relativ-
heuristic “constant pairing gap” approximation. Because ofistic mean field with BCS pairindRMF) calculations by
the well-known deficiencies of standard pairing theory in thelalazissiset al. [16]. Experimental data based on measured
exotic neutron-rich region, we have decided to reinvestigat®inding energieg29] are available up to the isotog€S.
the sulfur isotope chain, starting at the line of stabilily  Figure 1 shows that both the HFB and RMF calculations are
=16) up to the two-neutron driplinéwhich turns out to be in good agreement with experiment where available but there
N=36 in our HFB calculations Based on the above- are dramatic differences as we approach the two-neutron
mentioned earlier calculations, one may expect a wide rangeripline: Our HFB calculations prediéfS to be the last iso-
of ground state deformations, and in addition there has beetope that is stable against the emission of two neutrons. By
some evidence for shape coexistence in this re¢iignBe-  contrast, the RMF approach predi@g(Z, N)>0 at least up
cause our HFB codgl4] has been specifically designed to to °6S. Our HF+LN calculations also yield positive
describe deformed exotic nuclei, the sulfur isotopes are ex2n-separation energies in the mass region investigated here.
pected to provide a rich testing ground for our calculations.It should be stressed that, on theoretical grounds, neither

Within the single-particle shell model, one would expectBCS-type nor Lipkin-Nogami-type pairing is justified for the
nuclei such aﬁg‘szg with “magic” neutron numbeN=28 to  very neutron-rich isotopes. The problem of the Lipkin-
be spherical. But the mean field theories predict, in factNogami method is the poorness of the approximation at

IV. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

A. Sulfur isotope chain up to the two-neutron dripline; shape
coexistence studies
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FIG. 2. (Color onling Quad_rupole moment for protoris units FIG. 3. (Color onling Quadrupole moment for neutror@
of barn for even-even sulfur isotopes. units of barn for even-even sulfur isotopes.

magic numbers, i.e., the obtained nonzero pairing gap is not N Fig. 3 we show a comparison of the quadrupole mo-
projection method for magic nuclei. RMF results of Ref[16]. In both cases, the general trend is

In Fig. 2 we show a comparison of the HFB and RMF Very similar to the result obtained for protons. )
results for the intrinsic electric quadrupole moments of the In Fig. 4 we compare the root-mean-square radii of pro-
sulfur isotopes. In most cases, the HFB and RMF calculatons and neutrons predicted by our HFB calculations and the
tions show a similar trend: we observe a region with pre-RMF calculations with BCS pairinf6]. Near the line of3.
dominantly prolate deformation. Note, however, that for theStability, the proton and neutron radii are almost identical,
most neutron-rich sulfur isotopes, our HFB theory predicts Ut as we approach the Zripline, we see clearly the devel-
prolate ground state whereas RMF theory yields an oblat@Pment of a “neutron skin” as evidenced by the large differ-
shape. Direct measurements of electric quadrupole momenf1ce between the neutron and proton rms radii. For example,
are only available for two of the sulfur isotopes. The dataln 16534 our HFB calculations yieldr,=3.935 fm andr,
compilation of Stong30] yields intrinsic electric quadrupole =3.364 fm, respectively. In general, the RMF calculations
moments ofQ¥P=-0.15 b for32S and Q®P=+0.04 b for ~ predict larger neutron rms radii for mass numbévs 38
345, Our HFB code vyield®,rs=+0.113 b and +0.203 b for than do our HFB calculations.
these two isotopes. The RMF calculations of Lalazissial.

[16] give values ofQgye=+0.339 b and +0.159 b, respec- B. Strongly deformed neutron-rich zirconium, cerium,
tively. neodymium, and samarium isotopes

In intermediate-energy Coulomb excitation experiments, Recently, tripley coincidence experiments have been car-
the energies anB(E2) values of the lowest excited" tate  ied out with Gammasphere at LBNR7] which have deter-
were measured foi*#945 [32] and for**S[33]. The analy-  mined half-lives and quadrupole deformations of several
sis of the measure@E(2) values in terms of the simple neytron-rich zirconium, cerium, and samarium isotopes. Fur-
quadrupole-deformed rotor model vyields the following thermore, laser spectroscopy measuremédits for zirco-
experimental quadrupole deformations for the even sulfufiym isotopes have yielded precise rms radii in this region.
isotopes  ¥4%5: |551=0.24616),0.28416),0.30024),  These medium/heavy mass nuclei are among the most
0.25836); our corresponding Skyrme-HFB theory results areneutron-rich isotopeN/Z~1.6) for which spectroscopic

$'F5=0.16,0.26,0.25,0.29. Apparently, the HFB results fordata are available. It is therefore of great interest to compare

404245 are in good agreement with experiment, but there ishese data with the predictions of the self-consistent HFB
a discrepancy in the case ¥6: Skyrme-HFB predicts a less mean field theory.

deformed shape than the experimental value. There is an
even larger discrepancy between experiment and the RMF 42
calculations which yield an almost spherical shapgM” |
=0.054. I
Both HFB and RMF calculations reveal shape coexistence 38
in this region, with an energy difference between the ground =
state and the shape isomer that is usually quite small. For £ 36
example, in the case qgsaz our HFB code yields a ground -
state binding energy of —362.56 MeV with a quadrupole de- 34
formation of 8,=0.11, and an oblate minimum g=-0.15 I
which is only 0.49 MeV higher than the ground state. The , L
RMF predicts in this case a ground state binding energy of 32 34 36 38 40 ‘X 44 46 48 50 52
-362.97 MeV with oblate deformation ¢#,=-0.25, and a
shape isomer with3,=+0.179 which is located 0.29 MeV FIG. 4. (Color onling Root-mean-square radii of protons and
above the ground state. neutrons for even-even sulfur isotopes.

4

32r @
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TABLE |. Our HFB results for neutron-rich zirconium, cerium, neodymium, and samarium isotopes. The first column lists the neutron-
to-proton ratioN/Z. Subsequent columns display quadrupole deformatB (), 8,(n) and rms radiir,, r, of protons and neutrons. Recent
experimental data for quadrupole deformations are taken from[R@&f. The rms radius fot%%Zr was measured in Ref31].

N/Z B2(p) B> (p) Bo(n) rp(fm) roPfm) ro(fm)
1027y 1.55 0.43 0.4%) 0.43 4.47 4.54 4.65
1047y 1.60 0.45 0.48) 0.45 4.49 4.70
152Ce 1.62 0.32 0.38) 0.33 5.01 5.22
156N d 1.60 0.37 0.36 5.08 5.27
1605m 1.58 0.38 0.37 5.13 5.31

A comparison of our HFB results and experimental data is Figure 6 shows the corresponding pairing density for neu-
given in Table I. The theoretical quadrupole deformations oftrons and protons; as discussed in H&f, this quantity de-
the proton charge distributions agree very well with the meascribes the probability oforrelatednucleon pair formation
sured data of Ref[27]. In addition, our calculated proton with opposite spin projection, and it determines the pair
rms radius fort%%Zr is in good agreement with recent laser transfer form factor. We can see that most correlated pair
spectroscopic measuremersgee Fig. 4 of Ref[31]). Theo- formation inéggsm takes place outside the central region of
retical HFB predictions are also given for the neutron densitythe nucleus.
distributions.

In Table 1l we give a more detailed comparison of various
theoretical calculations fgf;Sm. As stated earlier, only the
HFB theory provides a self-consistent treatment of both In this paper, we have performed Skyrme-HFB calcula-
mean field and pairing properties. In contrast, the HF+ions in coordinate space for several neutron-rich exotic nu-
Lipkin/Nogami and the RMF calculations treat mean fieldclei. The coordinate space method has the advantage that
and pairing as separate entities. By comparing the HFB andell-bound, weakly bound, anddiscretized continuum
HF+LN results in the first two columns with the measuredstates can be represented with the same numerical accuracy.
binding energies and quadrupole deformatidast column  The novel feature of our lattice HFB code is that it takes into
we find that our HFB lattice calculation yields values which account high-energy continuum states with an equivalent
are closer to the experimental data. Table Il also shows thaingle-particle energy of 60 MeV or more. This feature is
while the RMF theory reproduces the experimental bindingcrucial when one studies nuclei near the neutron dripline
energy quite well, it seriously underpredicts the strong quadf14].
rupole deformation measured in RE27]. In addition, Table We have calculated the ground state properties of the sul-
[l compares theoretical results for other observables such dar isotope chain(Z=16), starting at the line of stability
rms radii for neutrons and protons, Fermi energigs \,), (N/Z=1) up to the two-neutron dripline with a neutron-to-
pairing gaps(A,, Ap), and pairing energieBp,;(n), Epai(p). proton ratio ofN/Z=2.2. In particular, we have calculated

In Fig. 5 we depict contour plots of the density distribu- two-neutron separation energies, quadrupole moments, and
tions for neutrons and protons ﬁiSSm. The large prolate rms radii for protons and neutrons. In comparing our HFB
quadrupole deformation is clearly visible. We also observecalculations with other theoretical method@®MF with BCS
small density enhancements near the center of the nucleysiring and HF+Lipkin/Nogamiwe find similar results near
which are caused by the nuclear shell structure. stability but dramatic differences near the 2n driplifsee

V. CONCLUSIONS

TABLE II. Ground state properties f@EBSm. The first two columns give the results of our present work in the Hartree-Fock-Bogoliubov
theory(HFB) and in the Hartree-Fock plus Lipkin-NogautiiF+LN) pairing theory. The third column shows RMF theory resii§] and
the last column gives a comparison with recent experimental [@da

HFB HF-+LN RMF Expt.
BE(MEV) -1,290.2 -1,286.6 -1,291.98 -1,291.9
B2Ap) 0.375 0.359 0.292 0.45)
ro(fm) 5.27 5.376

ro(fm) 5.15 5.098

M(MeV) -5.63 -5.37

Ap(MeV) -9.21 -8.93

An(MeV) 0.31 0.65

Ap(MeV) 0.37 0.75

Epair(N(MeV) -0.96 ~4.90

Epair(P)(MeV) -1.19 —4.57
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0 10 0 10 10

FIG. 5. (Color onling Density distribution for neutrongleft) FIG. 6. (Color onling Pairing density distribution of neutrons
and protongright) in %ggsm- The vertical axis is the axis (sym-  (left) and protong(right) in g°Sm. The vertical axis is the axis
metry axig and the horizontal axis denotes the radial directiohl  (symmetry axigand the horizontal axis denotes the radial direction
lengths are given in femtometer. r. All lengths are given in femtometer.

Figs. 1-4. For example, our HFB calculations prediég to ~ n€utron and proton rms radii of,=3.935fm andr,
=3.364 fm, respectively.

be the last isotope that is stable against the emission of two In connection with recent experiments at Gammasphere,
neutrons WQereaSg‘e RMF approach prediitZ, N)>0at e have carried out HFB calculations of medium/heavy
least up to*S. For S, the last even-even isotope for which a<c " clei with/z~1.6. In particular, we have examined
experimental binding energies are availa@tey. 1), the ex- the isotoped0210%r, 152Ce, 156N, andlés,ls(sm_ The theo-
perimental value for the two-neutron separation energy isetical quadrupole charge deformations for zirconium and ce-
3.64 MeV, as compared to our HFB calculation result ofyjym are in very good agreement with the new data. Also, our
3.49 MeV and the RMF result of 5.24 MeV. Both our HFB calculated proton rms radius f&%2Zr agrees with recent la-
calculations and the RMF calculations of RgL6] predict  ser spectroscopic measurements. Table | gives a summary of
the existence of shape isomeric states in the neutron-ricthese results and presents predictions for two neutron-rich
sulfur isotopes. In Fig. 2 we compare calculated electridsotopes,'®®Nd and*6°Sm, for which experimental data are
guadrupole moments. In most cases, the HFB and RMF cakxpected to become available in the near future.

culations yield prolate quadrupole deformations. However,

for the most neutron-rich sulfur isotopes, our HFB theory

predicts a prolate ground state whereas RMF theory yields an ACKNOWLEDGMENTS
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