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Photoproduction of mesons from the nucleon
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A general formalism is established for constructing models for the photoproduction of mesons from the
nucleon. The essential ingredient is a mass operator which describes the coupling between meson-baryon,
photon-baryon, and single-baryon channels. The most general forms for the mass operator interactions which
produce these couplings are derived. These forms also provide generalizations of the Chew-Goldberger-Low-
Nambu amplitudes for pion-nucleon photoproduction to any meson-baryon final state. The models lead to
Smatrix elements that transform properly under inhomogeneous Lorentz transformations and are gauge in-
variant. The photoproduction amplitudes include final state interactions and satisfy Watson’s theorem. A spe-
cific model is constructed by deriving the mass operator interactions from effective Lagrangians that describe
the couplings of mesons, photons, and baryons. The electromagnetic interactions include direct and crossed
nucleon contributions, as well as direct contributions fromRgg1232), P,,(1440, D15(1520, andS;;(1535
resonances. A contact term and exchange terms due t@,theand w mesons are also included. The model
gives a good fit to the significant multipoles in the energy range from the single-pion, photoproduction
threshold up to a center-of-momentum energy\61550 MeV, which corresponds to a photon lab energy of
810 MeV.
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I. INTRODUCTION leads to a partial wave, pion-nucleon state is the same as the

The first reasonably successful calculation of the photo-e Iastlc'scatter}ng pha}sg shift for that par'tlal wave.
An interesting variation on the effective Lagrangian ap-

production of pions from the nucleon was carried out by . . ;

Chew and Low(1], based on a straightfoward extension of proach involves the use of an effective Lagrangian for a
) . ' - . quark-pseudoscalar-meson coupling in a constituent quark

their static cutoff model for pion-nucleon scattering. The Iackmodel [20-23. The quark-model wave functions for the

of Lorentz and gauge invariance in the Chew-Low model .
nucleon and the baryon resonances provide a form factor for

was remedied in a seminal paper by.C.hgw, Goldbgrger, I‘oweach interaction vertex, and the s- and u-channel resonances
and Nambu[2] who formulated relativistic dispersion rela-

. for the oh ducti litudes. A ) can be consistently included in calculating the meson pro-
tions for the photoproduction amplitudes. As an |mportantﬁjuction amplitudes.

by-product of their analysis, they established the general one of the most elaborate and complete models for the
form of the Lorentz and gauge invariant amplitudes forppotoproduction and electroproduction amplitudes is a uni-
single-pion photoproduction from the nucleon, i.e., the byiary isobar model by Drechset al. [24]. This model con-
now well-known Chew-Goldberger-Low-NambUCGLN)  tains the standard Born terms, along with five resonances,
amplitudes. A detailed study based on the CGLN approachnd vector-meson exchanges. It succeeds in describing the
was carried out by Berends, Donnachie, and Wef8fwho  data up to 1 GeV.
showed that dispersion relations can account for the main A dynamical model of pion photoproduction from the
features of the data up through the energy of 4(&232  nucleon has been developed by Surya and Gi@Ssbased
resonance. The early work om, 7, K, and vector-meson on a three-dimensional reduction of the Bethe-Salpeter equa-
photoproduction has been thoroughly reviewed by Dontion. This model satisfies unitarity and is gauge invariant.
nachie[4]. A more recent review has been presented by Di-The Born terms and kernels of their integral equations in-
eter and Tiatof5]. clude nucleonN), delta(A), Roper(R), andD,3 (D) direct
Dispersion relations continue to be used in the analysis ofjoles, crossed andR poles, as well as a contact term amd
photoproduction and electroproduction of mesons from the, and w exchange terms. The model gives a good fit to all
nucleon. A number of workers have used them to carry out. <2 multipoles up to a photon lab energy of 770 MeV.
multipole analyses of the da{&—8]. They have also been  Neutral pion photoproduction off protons and deuterons
used to extract th& (1232 contribution from theM3 E32,  provides an important test of chiral pion-nucleon dynamics.
and §’f electroproduction multipolef9]. Such a test has been provided by an investigation of near-
One of the most popular approaches for constructing phothreshold neutral pion photoproduction off protons to fourth
toproduction amplitudes is through the use of effectiveorder in heavy-baryon chiral perturbation thed®6]. This
Lagrangiang10-18. Typically, the tree level amplitudes ob- work solidifies the parameter-free third-order predictions,
tained from these Lagrangians are unitarized following someavhich are in good agreement with the data.
prescription so as to satisfy Watson’s theorglfi]. Accord- Hamiltonian models have provided a generally successful
ing to this theorem, below the threshold for two-pion photo-framework for carrying out photoproduction and electropro-
production, the phase of a photoproduction amplitude whictduction calculation$27-36. In these models a Hamiltonian
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acts in a limited Hilbert space such B=N®A® 7wN& yN. and he has also shown how to preserve the gauge invariance
Since these models are essentially coupled-channel potential meson production currents in the presence of explicit
models, they satisfy two-particle unitarity exactly and there-final-state interactionf48].
fore lead to photoproduction amplitudes that satisfy Watson’s A general method for incorporating an external electro-
theorem[19]. The electromagnetic parts of the Hamiltonian magnetic field into descriptions of few body systems whose
are defined in terms of matrix elements which describe transtrong interactions are described by integral equations has
sitions, such agN«+ 7N andyN« A. These matrix elements been developed by Kvinikhidze and Blankleidd®]. Their
are calculated from effective Lagrangians in lowest ordemethod involves the idea of gauging the integral equations
perturbation theory. The strong interaction part of the Hamil-themselves and leads to conserved currents which in turn
tonian provides a model fo#N scattering in the absence of ensures gauge invariance.
electromagnetic couplings, and accounts for the rescattering Here we develop a model for meson photoproduction
that occurs after the photon has interacted with the nucleorftom the nucleon that leads to amplitudes that satisfy both
It contains potentials which couple meson-baryon channelanitarity and gauge invariance. Our model is closest in spirit
directly to meson-baryon channels as well as vertex interacto the Hamiltonian modelg27-34. It differs in two impor-
tions. The potentials are either purely phenomenologicatant aspects. There is a more careful treatment of relativity,
separable potential®27-29, or are taken from a meson- and gauge invariance is implemented in a very general way.
exchange moddi30-3§. The Hamiltonian models are three Some features of the model have already been presented
dimensional in character, with the total three-momentuni50,53. The model is developed within the framework of
conserved in intermediate states, but not the fourtelativistic quantum mechanics, where by relativistic quan-
momentum. This can create problems with ensuring gaugeim mechanics is meant a theory in which the quantum me-
invariance. Nozawat al. [29] were able to maintain gauge chanical state vectors of a system transform according to a
invariance by requiring that in the second-order matrix ele-unitary representation of the Poincaré grdsg]. The con-
ments that describe the transitiopN«< 7N, the four- tinuous transformations, which form the proper subgroup,
momentum is conserved at th&IN vertex, but not necessar- can be expressed in terms of ten generators; four of which
ily at the 7NN vertex. This approach is rather limited in that generate translations in space tifmé=x+b), while the other
it is necessary to use a common form factor for the Borrsix generate the homogeneous Lorentz transformatighs
term interactions. =ax). These ten generators satisfy a set of commutation re-
Maintaining gauge invariance is a problem that has atlations known as the Poincaré algebra. Several subsets of
tracted the attention of many workers. In dealing with thisthese generators satisfy a closed subset of these commutation
problem several authors have focused on the Ward-Takahastglations and thereby generate a subgroup of the proper
(WT) identities[37]. Ohta[38] has derived an electromag- Poincaré transformations. Some of these subgroups are asso-
netic current operator from the most general form of theciated with three-dimensional hypersurfaces in Minkowski
extended pion-nucleon vertex function using the minimalspace that do not contain timelike directions. Each form of
substitution prescription, and has shown that the resultingielativistic quantum mechanics is associated with such a hy-
current operator and the isolated pole contribution satisfy th@ersurface and its corresponding subgrgsp,53. In rela-
WT identities. He has also showB9] that it is possible to tivistic quantum mechanics the generators are Hermitian op-
derive electromagnetic interactions that are nonlocal and #rators in the Hilbert space of the system. In each form the
the same time maintain local gauge invariance. Neal. ~ 9enerators of the su_bgro_up of transformations that map the
[40] have used the WT identities to enforce gauge invarianc€Pm’s hypersurface into itself are chosen to be noninteract-
at the operator level, rather than on just the amplitude levefNd- The remaining generators contain interactions. The in-
Van Antwerpen and Afnan[41] have derived coupled- stant form is based on the hypersurfaseonst., the front

channel integral equations that lead to photoproduction amform uses the null plaznetﬂ;z:O, and the point form is based
n the hypersurface’t>-x?=const.

\F;\lll'trui?jeei:i?iaet'sse(glrzfgsb;r:z tRV\ilglézgdﬁ;vneltzﬂf))(/vint(:]z?tetﬂj\a}\llﬁe Here we will use the instant form for which the three-
' ] momentum operatd? and the angular momentum operaior

identities play a central role in ensuring that the electromagére noninteracting, while the Hamiltoni&hand the genera-
netic coupling to a two-body system described by the Bethet— f

) : . ) or of rotationless boost& are interacting. The operatoPs
Salpeter equatiof43] or one of its three-dimensional reduc- g4 j generate translations and rotations respectively in or-

tions [44,43 leads to a conserved current and thereby tQ4inary three-dimensional space, which of course is the hy-
gauge Invariance. persurfaceg=const. Here we will use the Bakamjian-Thomas
Haberzettl[46] has developed a gauge invariant model of yrocedure54] for constructing the generators. In this proce-
pion photoproduction starting with an effective field theory dure the generators are expressed in terms of the set of ten
of hadrons. His equations are nonlinear integral equationgperators{M, P, S, X} whereM, S, andX are the mass op-
which can be difficult to solve in practice. He has discussearator, the spin operator, and the Newton-Wigner position
approximations that make the nonlinear formalism manageeperator{55], respectively. The s¢M, P, S, X} satisfies sim-
able and yet preserve gauge invariance. He and his collab@ler commutation rules than the generators. In the
rators[47] have shown how to implement his formulation at Bakamjian-Thomas constructidh S, andX are noninteract-
tree level with form factors describing composite nucleonsjng and only the mass operatisk contains an interaction. As
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a result of this, in order to ensure Poincaré invariance it ifour-vectorx associated with one inertial frame to the com-
only necessary to choose the interactionMnhso thatM ponents of a four-vectox’ associated with another inertial

commutes withP, S, and X. frame according to the relation
The outline of the paper is as follows. In Sec. Il the fun-
damentals of the Poincaré group are summarized and the X" =ax+b. (2.1

Bakamjian-Thomas construction is outlined. In Sec. lll Weyo oy g 4 four-vector ands is a Lorentz transformation.
define our smgle-pamclg states both for massive and masg-y proper transformationa can be parametrized in the
less particles and describe how they transform under rotae m (52,58

tions and space inversion. For the photon we work with both '

helicity_ sFates and spe_cial combinations of the_m that_trans- a=exi(w-k+0-))]. (2.2)
form similarly to massive particle states. Section IV intro-

duces our photon-baryanB) and meson-baryo(uB) states Herej is the generator of three-rotations,is the genera-
and shows how they transform under rotations and spatidpr of rotationless boost, and and @ are three-vectors
inversions. We note at this point that throughout, mesons ar¢hose components provide the necessary six parameters.
indicated byu’s and baryons are indicated s or b's. In In a satisfactory relativistic model, there exists a unitary
Sec. V we write our mass operator in the foMEMy+U,  operatorU(a, b), corresponding to the Poincaré transfor-
whereM, is the mass operator for the system without inter-mation(a, b) that maps a quantum mechanical state vector
actions andJ is the interaction. We deduce the most general) associated with the-frame to the vectoty’) associ-
form for the matrix elements dff consistent with Poincaré ated with thex’-frame according to

invariance. Our interactionU describes the couplings;

yBb, uB«b, yB> ub, and uB«< u'B’. We consider ma- ¢y =U(a b)|). 2.3
trix_elements in both an angular momentum basis and &qr proper transformations the unitary operator can be
“plane wave” basis. Section V also introduces a set of VeCtObarametrized in the form

spherical harmonics that are used to describe the photon-

baryon states and which make it possible to satisfy gauge U(a, b) = explib - P)exfi(w - K + 6-J)], (2.4)
invariance in a particularly simple way. The analysis of Sec. .
V also gives the general forms for th—b and yB—ub  With
photoproduction amplitudes. In Sec. VI we give the relations
we use for calculating the photoproduction amplitudes from P=(H,P). (2.9
the electromagnetic interactions and the off-shell, piOﬂ-HereK is a boost operatorJ is the angu|ar momentum
nucleon, strong interactiom matrix. Section VII gives our operatorH is the Hamiltonian of the system, amlis the
method for constructing mass operator interactions from efthree-momentum operator. Since the law of combination
fective Lagrangians using the Okubo mett{é@]. Here we  for the Poincaré transformations iga’,b’)e(a,b)
construct the vertex interactions that describe the processega’a, a’b+b’), the unitary operators must combine ac-
W« N and 7N« N. These interactions give rise to an elec- cording to

tromagnetic potential through the direct procegd—N

—aN. We also derive an electromagnetic potential from a U(a',b)U(a,b)=U(a’a,a’b+b’) (2.6)

contact interaction and from the crossed procegs . . . .
= so as to provide a representation of the Poincaré group.

:VWH’NNH:W“' inv\\//verzwicr?ltshoe E(S)fon Toeu IgrsogiEiZ?t,I'\l 1o This implies a set of commutation relations for the gen-
YN, TN N, photol pie: Y10 erators{H, P, K, J}, which is commonly known as the
a pion, to construct an electromagnetic potential. The VeCtOIBOincaré algebris8]
?eissc;r;if:\l:_’)) : wl\?lso lflo_)ntn,l\alut(_arhpeotfgsc?rllsart]r;;o;g?1t2h3eapro— In constructing the ten generatdis, P, K, J}, it is conve-
YRIT, TR ™ 33 ' nient to work with another set of ten hermitian operators, i.e.,

P11(1440, D15(1520, and$,(1539 contribute electromag- {M, P, S, X} whereM is the mass operato is a spin opera-

netic potentials through direct processes in which they pro; . ) N "
vide the intermediate states. Besides coupling teN\afinal tor, andX s the so-called Newton-Wigner position operator

state, the nucleon, they;(1440, and theDi5(1520 also [52,55. This second set of operators satisfies a much simpler

couple to amA final state. TheS;;(1535 couples to both a ts;:et 21;“(: O?org;;?gocnogjrlﬁjt;?gg t:fe Poincaré algebra; in fact,

7N and azN final state. In Sec. VIII we present the results of y

our multipole calculations with these electromagnetic poten- m — i i

tials andpthe Elmessiri-Fuda modg7] for the gof“f-shepll, [P7 X0 = =160 [, ST] = ieimeS @7

pion-nucleon, strong interactiof-matrix. A discussion of which are familiar from nonrelativistic quantum mechan-

our results and suggestions for future extensions and im<s. The three-momentum operatBris common to both

provements of our model are given in Sec. IX. sets, while the other generators can be expressed in terms
of the operators of the second set by the relatiB®

Il. GENERAL BACKGROUND H = (P2+M2)12, (2.89

A Poincaré transformation is a linear, inhomogeneous
transformation that maps the components of a space-time J=XXP+S, (2.8b
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1 P X r(p)es=p. (3.5
K = - Z(XH+HX) - . (2.89

2 M+H We follow the Jacob-Wick conventiof63] and choose
It can be shown that if the commutators of the set o g . e
{M,P, S, X} are zero, except for those given by HE.7), [(p) = exp=igjslexp(- i Jexplidia),  (3.69
then the generators given by E&.8), in combination with R . ] .
P, satisfy the Poincaré algebra. p = (sin 6 cos ¢, sin ¢ sin ¢, cos ),

In the Bakamjian-Thomas constructigb4] of the set 0< <0< ¢<2m. (3.6h

{M, P, S, X}, the operator$, S, andX are chosen to be the
same as those for the system of particles without interacln order to see how the stat¢8.4) rotate, we can write
tions, while the mass operatt# contains interactions. The IT(P)=r(rp)rs(r, p), where

mass operator can be written in the form . A . . A
P ra(r, p) =17 rp)rr (p) =exd-ia(r, Plial.  (3.7)

M=My+U, (2.9 The fact that; is a rotation about the 3-axis follows from

whereM, is the non interacting mass operator dids an ~ the observation thaty(r, p)e;=e. It now follows that
interaction. The commutation rules fét, S, and X are

then automatically satisfied, and it is only necessary to UnIpN) = rp, Mexd =i ¢(r, pIN]. (3.8
ensure that We now consider spatial inversion, i.€ct, x) — (ct, =x),
which we denote bya=s. We denote the unitary operator
[U,P]=[U, S]=[U, X]=0. (210 corresponding te by P=U(s). Under spatial inversions the

It is important to note that it has been provi@9—67 that ~ Poincaré generators satisffys]

the Smatrix elements that arise in models based on the PHPL=H PPPl=—pP PIPLl=] PKP1=—K.
Bakamjian-Thomas construction transform properly in go-
ing from one inertial frame to another. The probability of (3.9

a physical process is Poincaré invariant. Using the inverse relations to E¢2.8), which are given

by Egs.(2.7)—(2.9) of Ref.[64], we can show that
Ill. SINGLE-PARTICLE STATES
_ _ PMP =M, PSPl=S, PXP1l=-X. (3.10
For massive particles of madd,, states can be con-

structed by boosting a rest frame stie) according to Since the massive particle rest frame stae) is an
eigenstate ofS?> and S; with eigenvaluess(s+1) and m,
lpsm = U[l(p)][sm, (3.1)  respectively; it follows from Eq(3.10 that P|sm is also

. _ such a state; therefor®|sm=|sm 7, where 5 is a phase
where s and m are the particle’s spin and three- ¢q¢6r Application 0fS, =S, iS, shows thaty is indepen-
component, respectively; and the so-called canonicalignt of m. Since P2=U(s?)=1 and thereforeP-1=p=p'
boost is given by we see thaty is real andz?=1. It now follows from Eqgs.

UlI(p)] = expl= ipf - K), p = tank {|pl/e,(p)], (3.1). (3.2, and(3.9) that

(3.2a Plpsm=|-p,smz, 7= *1. (3.1)
The polar angles for f-are(7— 6, ¢+ ), where the upper
ex(p) = (p? + M2, (3.2p)  sign is used for &¢<m and the lower sign form

< ¢$<2w. SinceP is a three-vector operator andP is a
pseudoscalar operator, it follows from Eq@8.4) and (3.5
that [p\) is an eigenstate o and J-P with eigenvaluep
and\|p|, respectively; while according to Eg&.9) the cor-
responding eigenvalues f@{p\) are § and -A|p|. This im-
s plies thatP|p\)=|-p, -\)é&(p, \) whereé&(p, \) is a phase fac-
_ (9 tor. We can determine this phase factor using results obtained
UMlpsm = 2, Irp, sm)Diy(r). 3.3 by Tung [58]. Instead of Eq.(3.69 Tung usesr(p)
=exp—i¢gjz)exp-ifj,) so our helicity states, Eq3.4), are
HereD® is a standard matrix representation of QWU For  related to his bYPA)=|PA)run@XpliN ). It follows from his
the state of a massless particle with helickywe can  Eq.(11.3-23 that
write

Assuming thatsm) is an SU2) basis state and using the fact
that K is a three-vector operator, which implies that
U(r)p-KU™X(r)=(rp)-K, it follows that the stat€3.1) rotates
according to

m’'=-s

PlpN) =|-p, =N DM exp2ing).  (3.12
[PA) = Ulr(p)]llples, \), S For photonspy=-1 and|\|=1.
where ||p|e;, \) describes a massless particle with three- Rather than work with the helicity states, we will work

momentum|p|e;, wheree;=(0,0, 1), and \ is an eigen- with a linear combination of them, which has simpler trans-
value ofJs. The rotationr(p) has the property formation properties. We define
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lpm) = > [pPODSrYP)], s=[A=1, (3.13

A=%s

where we have used the curved bracket to distinguish
these states from E¢3.1). Using Eqs(3.7) and(3.8), and

DY [r(r, p)1= 8y, exd—i 4(r, PN, it follows that

umlpm = [rp,m)DE (1), (3.14

m'=-s

pa(gs,)Isy, jmty = 2 > [ [pam,myty)dQqYge()

mmy mgm,/
x(gs,mgm, [Im}Isymm|jm),  (4.5)
which transform according to

U(n)|pa(gs,)lsy, imty) = > [rp, a(gs,)Is,, jm’t,)DY) (1),

(4.6)

which is just like Eq.(3.3). Using Eq.(3.6) we can derive

the identity

Plpa(gs,)ls,, jmty) = |- p, q(gs,)Isp, jmty) 7, 7,(— 1)°.

r(p) = explim,Jexp2igjgr (-p),  (3.19 “.7
which when combined with Eq$3.12) and(3.13 leads to  Her® Yg9(@) is a spherical harmonic and thé)'s are

Clebsch-Gordon coefficients.

Plom) = |-p, m 7, (3.16 For the purpose of dealing with gauge invariance, it is

which is just like Eq.(3.11).

IV. PHOTON-BARYON AND MESON-BARYON STATES

Our photon-baryon states are obtained by boosting  [PGOIsy, jmt,) = [pq(l = 1,s,)lsp, jmty)

convenient to defined special linear combinations of the
states (4.5, which we denote by|pgnls,, jmt,), with n
=0,1,2; i.e,

21+1

photon-baryon states from the photon-baryon center-of-mass

(c.m) frame according to

lpgm,myt,) = U[le(p)llam,) ® |- g, s;myipty), (4.18

) I+1
= |pa(l +1,s,)ls,, jmty,) A+1

(4.83
- 1
where the boost is the canonical boost defined by (B®)
but with p given by Egq. (4.1b, p is the total three-
momentum, andy is the photon’s c.m. three-momentum. 2ls.. imt.) = =1 s)ls.. imt
Here|gm,) and |-q, s,myipty) are defined by Eqg3.13 and [Pa2Isy, jmty) =[pa(l = 1,5,)Isp, jmty) 20+ 1
(3.2), respectively; with the baryon'’s total isospin and three- I
component _give_n by, andt,, respectively. The total four- +|pq(l + 1,5,)ISp, jMty) 3 / )
momentum is given by 2l+1
©.9) 4.2 (4.80
=|E ,a),pl, 4.
P=Ey(p.a).p] 3 These states transform according to
En(P. ) =[p* + Wog(@)], (4.2 U(n)lpanls, jmty) = >, |rp, qnls,, jm' DY, (1),
m/
W,p(0) = w,(q) + ep(a), (4.20 (4.9
with w, and e, the photon and baryon c.m. energy, respec-
tively. It follows from Egs.(3.3), (3.14), (3.11), (3.16), and Plpanls,, jmty,) = |- p, anls,, jmty) 7, 75(— 1)+
(3.9 that under spatial rotations and inversions, the states (4.10

(4.1) transform according to

U(nlpam,myty) = 35 Irp, rd, mimit)D 7, (ND (1),

’ot
m ymb

(4.

Plpam,myty) = |- p, = g, M,Myty) 7,75 (4.
We refer to the state$4.1) as “plane-wave” states.

define partial-wave states by

Meson-baryon states are defined similar to E41), but

with (y, b)— (u, B) in Eqgs. (4.1b and (4.28—(4.2¢. We

write

3) |pqm,u.th,utB> = U[Ic(p)]|qsumﬂl,u.t/¢> ® |_ d. SBrnBI BtB> .
(4.11

4 Partial wave, meson-baryon staﬂpq(gsﬂ)lss, jmt,tg) are

We defined as in Eq(4.5), and transform similar to Eq$4.6)
and (4.7).
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V. VERTEX FUNCTIONS, POTENTIALS,
AND AMPLITUDES

A. The transition operator

PHYSICAL REVIEW C 68, 064002(2003

£.=(F1,-i,0/\2, £=(0,0,1, (5.4)

along with (2s,+1)-dimensional baryon spin vecto;\zﬁb,
and use them to define the generalized vector harmonics,

The transition operator which arises from the mass opera-

tor (2.9) is defined by

1
T@=U+U——U,

— (5.1)

wherez is a complex parameter which is given aygW
+ie for a physical process. The operatdPs S, and X
commute withM and U, and therefore with the transition
operatorT(z). We assume that the parity operatBralso
commutes withM, U, andT(z). As far as isospin is con-
cerned, we make the standard assumption lhat), and

Yigs i@ = 2 2 Ygu(@)em xik (gs,mgm,fimy)
mmy, mgm,,

X (Isymmy|jm). (5.5

In parallel with Eq.(4.8) we also define the vector har-
monics

T(z) can be decomposed into an isoscalar and the third

component of an isovector, e.g.,

U=Ug+ U,. (5.2
B. Photon-baryon—baryon vertex functions

As a result of the commutation rulé3.10), a partial wave
matrix element of the interaction that couples a photon
baryon state to a single-baryon state can be expressed in t
form [57,64

(kssmgigta|U|panls,, jmty,) = (2)%2 eg(K)E (p, @)1+
X 53(k - p) 5sBj 5m3m5tBtb

Ug,,p(anlty)
AMW (g 33
Ug (anlty) = 0 if 75 # 7,75(- D™ (5.3D)

We can justify this form as follows. The commutafds, P]
=0 leads to thes®(k—-p), while the commutatofU, X]=0
implies that Ug ,,(gnlty) is independent ofk=p. Since
[U, S]=0, it follows from Eq.(2.8b) that[U, J]=0 and there-
fore U™(r)UU(r)=U. Along with Egs.(3.3) and(4.9), this in
turn implies that

(ksgmgigtg|U[panls,, jmty)

3 Dy (N(ksmigts|U[paniss, jm't) Dy (r).

i

If we integrate over the parameters that labahd use the
identity

27 + 1% omem

6ml’3mr, N :J dTr,
we have justified the factobs ;6n.m in Eqg. (5.3a along
with the fact thatUg ,,(qnlty) is inaependent ofMmg=m.

We now use Eq(5.39 to find the structure of the plane-
wave matrix elementéssmgigts|U|pgm,myt,). We introduce
spherical three-vectors,, by

f drDpfr (Dl (1) =

m Ay —ym ~ I m . l+1
Zolsbj(Q) = Y(I—l,sy)lsbj(q) I+l Y(|+1,sy)|sbj(Q) A+l
(5.6a
stbj((j) = Y?F,sy)lsbi(‘j)= (5.6b
m AN — m a I + m A~
Zzlsbj(q) = Y(|—l,S~,)|5bi(q) m + Y(|+1vs'y)|sbj @) m
(5.60

By using the orthogonality of the Clebsch-Gordon coeffi-

ﬁL'ents and the completeness relation for the spherical har-
monics, we can invert Eq4.5) to express the plane-wave
states |pqm,/motb> in terms of the partial-wave states

Ipa(gs,)lsy, jmty), and then with the help of Eqé4.8), (5.5),
and(5.6), we can show that

lpam,myty =3 3 [panls, IMZRL(@) - £m X
jm n
(5.7

Combining this relation with Eq(5.3a, we arrive at the
plane-wave matrix element

(ksgmgigtg|U[pgm,mty,)
= (2m)*2[eg(K)Eb(p, D)%%k - p) &,
st Ug,,0(d, tp)

slh

X 2T W) T2 Em X (5.9
where the vertex functiotg ,(q, t,) is given by
2
Ug (0, to) = 2 2 X% Up (ANt ZTE (@), (5.9

mgl n=1

We note that we have excluded time=0 term from the
sum onn. We now show that this is required by gauge
invariance.

We define alternative plane-wave states by

Ipa\,mpty) = > |pqmymbtb>DETS1$\y[r(Q)]
m

=U[l(p)]lax,) @ |- a, symyipty), (5.10

where the second equality follows from Eqg.19 and
(3.13. Now we have
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(ksgmgigtg|U[paX ,mytp)
= (2m)32eg(K)E (P, )T26%k - p) &,

st Ug,,0(d, tp)
X 2IMaW,5(0) 12

where the polarization vecta(q, \,) is given by

slh

~e(d, N)XR (5.11)

(g, \,) = Esm A r@]=r@e,, A, =£1.

(5.12
Gauge invariance requires that E¢.11) should be in-
variant under the replacement

£(q,\,) — &(q, \,) + constq). (5.13

Using the development given in Sec. 25 of R)66], we
can show that

Zgis(@) =aYig;(@), (5.143
Zrlrllsbj((j) /ﬁ(lv q)YIrrs]bj(CI)i (5-140
Z3,5(@) = =i X Z35,;(@), (5.140
with
Yig, (@) = > YA  (Ispmymy|jm). (5.19

mmy,

We see that excluding the=0 term in Eq.(5.9) ensures

that Eq. (5.11) is invariant under the replacement Eq.

(5.13.

C. Meson-baryon—baryon vertex functions

We now consider the meson-baryefaryon vertices. We
recall that our notation for the meson-baryon, partial-wave

PHYSICAL REVIEWGS, 064002(2003

U,ps(@gh) =0if 7,m(-1)9# 5. (5.17b
The same sort of procedure that led to Ej7) can be used

to show that the meson-baryon, plane-wave states are related

to the partial-wave states by
[pam,m, it) = > 3 pa(gs,)iss, im, it)Y(gs s (D2 X2

jm gl
(5.18

WhereY(gs Jis, ](q) is defined similar to Eq(5.5) but with
€m, replace with the(2s,+1)-dimensional meson spin
vectorg"m It follows from Eqgs.(5.18 and(5.17) that the
plane-wave matrix element for the transiti@- u+b is
given by

(pgm,my, it|U|ksgmgigts)
= (2m)32[E .p(p, 9)2g(k)V28%(p ~ k) &
ub, B(Q)

S

IIB

?nfxﬁaf—z[w @OV (5.19
with
Upnsf®)= 3 Vg1 @00 (520

D. Photon-baryon—meson-baryon potentials

For the procesg+b— u+B the partial-wave matrix ele-
ment of the interaction has the form

(p'q'(gs)!'sg, j'm’, it|U|pqnls,, jmt,)
= (2m)%2[E,5(p’, q’)Eyb(p, Q)2

,86(0'9l'i, anlty)
><53(p p)éttb i’ Sy mz[ By:(q’)Wyb(q)]l/z’
(5.219

ULB,yb(q'gl’ia gnlty) =0 if 77,u778(_ 1)9 # 77y77b(_ 1)n+|+1.
(5.21b

states igpq(gs,)Iss, jmt,tg). Since the strong interaction con- Using Eqs(5.18), (5.10), (5.7), and(5.12), we can show that
serves isospin, it is convenient to define eigenstates of thine plane-wave matrix element is given by

total isospin by

|pq(gsl,l,)|sb' jmr |t> = 2 |pq(gSM)ISbv ]mt,u,tbxl/.l,l bt,utb||t>

tt
(5.1

u'b

By using the same sort of arguments as those that led to
Eq. (5.3, we can show that the partial-wave matrix ele- "

ment for the transitioB— w+b has the structure

(Pa(gs,)Isy, jm, it|U[ksgmgigts)
_(ZW)BZ[E/Lb(p el k)]1/253(p k) ”B(SttB isg mrrb

/Lb,B(qgl)

2W, ()M ]2 (6.173

(p'q'm,mg, it|U|pgX ,myty)
= (2m)32[E,a(p’, d")E,p(p, )]V2%(p’ -

U,g,,0(a'i, atp) _
8(A )W, () ]2

P) o,

s, T, sgt
gr# mB 2[

@A, (5.22

where

,LLB yb q I qtb) 2 E E Y(gs I,SB]

jm gl’l = 1
XUJ}LB,yb(q gl’ia qnltb)znlsbJ(Q)
(5.23
It should be noted that Eq5.23 also gives the most
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general form for the amplitude for the physical photopro- 477\,

duction procesgy+b— u+B, and thereby provides a gen- g (d-§)=- E Y3i-1.112(@’ )z 1172(@)-
eralization for the CGLN amplitudes for pion-nucleon

photoproductior 2]. (5.260

) ) We can expand the functiori$,(q'i, gty) in the form
E. Photon-nucleor—pion-nucleon potentials

An obviously important special case of the reg6I23) is

for the transitiony+N— +N for which b=B=N, u=, sy Un(@', gty) = 2 YIG)Un(@'i, aty) Y™ (),
=1/2,s,=0,7n,= 777— 1,7=1. Since s,=0 we can use
Yioonr172;@)=85:Y\'1,,(G) where the right hand side is de- (5.273
fined by Eq.(5.15. Looking at Eqs(5.14) and(5.15 we see
that we must havé’, =]+ 1/2 which when combined with
the parity constraings.21b implies that the nonzero terms in . _ - A A
Eq. (5.23 must havd’=l andn=1 or|’=2j-| andn=2. The Uni(@'i, aty) = 2 . dxR(x)Un(q'i, gty), x=§" - §.
result for the transitiony+N— 7+N is

(5.27b

Uann(a'i, gty) = E Y@’ UL (a'i, gt Z T 172§(@) Using the orthonormality of th&’s and Z’s, we can solve
Eq. (5.249 for the partial-wave amplitudes5.24bh and

+UbL(q'i, gty 23T, Ti12;@],  (5.248 (5.249. Combining these results with Eq$.25—(5.27), we
find that the integrals that occur are given by

1

UL (@', aty) = Uy n(@' 11050, 1,1, ty), (5.24D
_ _ Y] @YY@ Y@
UJZl(q’iiqtN):UJﬂ'N,)’N(q’vlvlvi;qi272] _IitN)' f "y - i
(5.249 _ [ @+ 1@+ D2 +1) } ‘e 1)1*1/2(1/100/L0)
The well-known CGLN representatiof2] can be used to 4

obtain formulas for the partial-wave amplitude$ and U, i Lol _
in terms of the plane-wave amplitudes. We have U1y | (JLmM[j'm’), (5.283
Uanon(@'l aty) = 0, Ua(Q'i, gty) +io-§7)(@ X o)

XUp(q'i, qty) + 8’ (- Q)Us(a'i, aty) Q) - YM (@)Y 6
fdQY(g 12725 (@) - Y @Y (g1y,2724(@)

+0' (o - QU4Q'i, aty), (5.253
_[@"+ ey + D@+ @+ 129+ 1) |2
v, =v-4(§-v). (5.25bh - 4o
The functionsU,(q'i, gty) are invariant under spatial rota- Lo |’
tions and inversions. We can show that the various spin fac- X (= DHHHHZ 5 (g7 g00L0) 1
tors can be expanded according to 9 9
i |
o, =-4m2> qu,llz,lliq,)221,1:1,1/2,146]): (5.269 ><{I’ 1/2 | }<J L' Mljm). (5.28
m
Evaluating the Clebsch-Gordon coefficients and theyén-
) R . . bols, we find that the partial-wave amplitudes are given in
’ _ 23 ’ 1)
i(o-9")(G % 0)= 477\'2% Y1112,140)251 112,1/49) terms of the CGLN amplitudes by the relations
(5.26b
+ v l(l + 1) 1
an ult2= T+ | Yo Y2t 5 (U3|+1 Usj-d) |,
Q'(0-8) = == 2> Y1'12.140)Z1% 172.1/40)
1 3\’ - 1,1/2, l/é 1,1,1/2, 1/£ |:1'2,3,.“ (5.293
= 2 V112,540 2T 112.5/49)
m
J—
~ ~ _ \r’l(l + 1) 1
=B Y15 04025 112, 540) |, U= — [— Uy +Uzpa + 57 (Usia u3,|+1)],
m
(5.269 1=1,2,3,- (5.29b
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(1+1)(1+2)
l+1/2_ N _ Vox(z2) = Uy + U4 ksgmgigt
Uy 1 { Uy+Uyqt i+ 1(U3|+1 22(2) =Up, B,mEB,tB 21/ksgMgigte)
—Ug )+ (u -U )] 1=0,1,2 dk 5-(k ts|U
+ ’ = £ il 1. o m I ]l
3l-1 4l+27 Ya) (277)3285(k)(2— 0) SgMelpls| V12
(5.290 (6.4)
= " with m? the bare mass of barydd For the photoproduc-
gz N - (U Uspq) tion processes we work to first order & so the relevant
2l 1 2|—1 31417 Y3l-1 . .
| 20+1 T operator is given by
+——(Uy,-U _)}, 1=2,3,4,
218 e Tup(d =Vygn(@ * 2 T @)=y -Viwrer 2
(5.299 wB
oo (6.5

The so-called charge amplitudes, for which both the final
meson and baryon have definite three-components of isospivhen written out in terms of partial-wave amplitudes for
are related to the amplitudes for which the final state has a physical process this equation takes on the form
definite total isospin by

T.,(0'gLI, anlty; W+ ie)
= Vi,g,,6(Q' gL, anlty; W)
22 f ,U,B#/B'(q,gl—x q'g'L";W+ig)
n'B g'L’
q2dg’' V2 g p(@'g'L'T, anlty; W)
i e (A)2W,, g (@) [W+ie =W, g/ (0]’

U u80(0"tute, Oto) = 2 (i uiatutelito)U e ,0(a'T, ty) -
I

(5.30

If we compare this relation for the transitioptN—

+N with Eq. (3.2) of Arndt et al. [66], we find that our
isospin amplitudes are related to those commonly used in the
literature by

U@’ 1= 21259, ty) = =3 p iHY?, (6.69
Uonon(@'s1=3/2;0, ty) = 2/3H%2, (5.3))
W,g(q") =W,5(q) =W, (6.6b
VI. THE T MATRIX
A ,g(0) = (272w, (0 ep(aQ)/W,5(q). (6.60

Our T matrix is defined by Eqs(5.1) and(2.9) and ac-
cording to standard scattering theof§2] it satisfies the
Lippmann-Schwinger equations

HereT'}JL B is the T-matrix for meson-baryon scattering in
the absence of electromagnetic interactions. It follows from
Eq. (6.4 that the partial-wave, effective potentials are given

6.1 by

! u=U+U
-My p

T(2=U+ T(z)Z
0

! o
“M; (2).

j ’ H .
In our model there are one-baryon channels, meson\—/#vab(q gLi, gnit,; W)
baryon channels, and photon-baryon channels; accord- :UJMB,yb(q/gLi!qnltb)"'EUMB,B’(q/gL)

ingly, our interaction has the general structure B/
U=Ug+ Ut U+ Uy, (6.2) Ojsg By
whereU,,, couples am-particle channel to am-particle XZmB(W— (O)UB' ylanlty). 6.7

channel. We have shown previougl7,67] that it is pos-
sible to eliminate the one-baryon channels and repldce
by an effective interactioW,,(z) which only couples two-
particle channels. Instead of E¢.1) we can work with
the equations

By comparing Eq(5.29 with, for example, Eq¥B1) and
(B2) of Nozawaet al. [29], and using the conversion factors
in Eqg. (5.3), we find that the multipoles given in the litera-
ture and in thesalD databasg68] are related to our partial-
wave, T-matrix elements by

1
T22) = V2i(2) + Tpy(2) - MOV22(Z) ic
2
(D)2, NM = ]
1 2(4m)2WL(L + 1)
=Vpl(2) + Vpol2) — Y T2o(2), (6.9
z 0 7TN’yN(q L L I qal L tN!W+|8)

(6.8

where

064002-9



MICHAEL G. FUDA AND HAMOUD ALHARBI

~ 2(L - J)iCy
2(4m)2W\(2J-L)(21- L + 1)
X Thun(@ L L, 150, 2, 20— L, ty; Wie),
(6.8b)

(L)212)NE

Wn(Q') =Won(g) =W, Cy=-1/43, C3=43/2.
(6.80

HerelL, I, andJ are the relative orbital angular momentum,

PHYSICAL REVIEW C 68, 064002(2003

X%BTUB,yb(q! tb) : s(q, )\y)X;bb = HB,yb(omB! q)\'ymbtb) .
(7.6
For the transitionw+b— B the field theory matrix element
is
(P,,M,,, PoMy, it|H1|pgmgts)

= (i ipttoit) (P M, t,., PoMytp|H1|Pemsts)
tulh

= (2m)*6*(p . + Po = PB) Gi ySitgH ub,8(P .MMy, PEMe)

total isospin, and total angular momentum, respectively, of 7.7)

the final pion-nucleon statéy=n or p designates the target

nucleon; andV andE refer to magnetic and electric multi- Comparing with Eq(5.19 we find

poles, respectively.

VII. INTERACTIONS AND EFFECTIVE LAGRANGIANS

A. General formalism

XU s(@X3E, = Hupp(am,my, Omg).  (7.8)

The interactions fory+b— u+B are obtained from the
matrix elements

We obtain our interactions from effective Lagrangians us- (p,m,, pgme, it|Hp|p,\,, PoMyty)

ing a method due to Okubf®6]. The quantum field theory
Hamiltonian is divided into a noninteracting paig and an
interactionH; according to

Hqrr=Ho+ Hy, (7.7)

where the eigenstates &f,, designated here bj), are
assumed known, and satisfy

Hol &) = E(Q[0). (7.2

The Fock space of the field theory is divided into a sub-
space consisting of various single-baryon states, i.e.,
[N), |A),|R), ...; and various meson-baryon and photon-

nucleon states, i.e|aN), |7A), [yN), ...; and the comple-

= <|p,| Bt/.LtB||t><pp,th/.u meBtB|HH|py>\y! pbmbtb>
t,.0

wB
=(2m)°8(p,+ Ps = Py~ Po) S,
X H g (P My, PeMg, 15PN, PoMblp) - (7.9

We setp,+p,=p=0 and compare to Eq(5.22) with p
=0 to obtain

GHIXRIU u ('], Olt) - £(0, X)X

= HMB,yb(q,m,w _q,! Mg, [ ;q)\yi —dq, mb,tb)'
(7.10

In order to deduce the formdlg (. tp)-€(g,\,) and

ment to this subspace. We denote the projection operatay g .+(q'i, qty) -€(qg, \,) from the quantum field theory ma-
onto this subspace b and the projection operator onto trix elements we exploit the fact that these matrix elements

its orthogonal complement by, so that

M+A=1. (7.3

The effective Hamiltonian in thél subspace is given to
second order iH; [69] by

A
1 +
E(Q)-Ho E(') —Ho
+ o (7.9

The vertex functions fory+b— B are obtained from the
quantum field theory matrix element

1
<§|HH|§,>:<£|HQFT+§H HqlZ")

(PsMats|H1lp, N, PuMuty) = (27)°8%(pg - p,,
=~ Pb) Sigt,He.op(PeMe, PN, Mpty).
(7.5

If we put k=0 in Eq.(5.11) and pg=0 in Eq. (7.5 and
compare, we find

are of the formJ-e with k-¢=0, and in principle,J-k=0.
Assuming this is so, we can writ¥=-q-&/w.(q)=-0-& and
J°=-§-J, which in turn implies that

J-e(k,\)==[J=(3-0)4]-&(a,N\)==J, - &(q,N).
(7.11

B. The Lagrangians

Here we give the effective Lagrangians that are used to
construct our mass operator interactions. It is important to do
so as there is some variation in the literature having to do
with the coupling constant normalizations and the signs of
some of the terms. We begin with the Lagrangians that lead
to the so-called Born term for pion photoproduction.

+
2

1+'7'3

— 1 73
ﬁyNN(x>:—eN<x>{ A(x>+< o

G177 )M&“A” N 7.1
> Kn my (x) [Nx), (7.12
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. g”NNN(X)Vsy,JN(X) Fax, (713
L) = = 22NN ysy,[7 X 7 NKOAA(X),

(7.19

L) = el[0,70]" X 70)AX),  (7.19

%ﬁ”) T p"“(X)} N(x),
(7.1

Lnn(X) = prNN(X) [ ( Yut

Lm0 = 22y [P0 - 79, (717

e O-/J-V&V> w*(X) i| N(x),

LX) = waNN(X) { ( Yot 2my

(7.18

gwﬂ'y

‘cwwy(x) = saﬁyé{aaAﬁ(x)]WO(x) ' a'ywﬁ(x) .

T

(7.19

For the Lagrangians that describe the couplings toAhe
=P35(1232 resonance w¢l0] take

Loaa() = L5 %) + LR ), (7.208

£, = g“”AM(xwmoo 75Tl sNOOFA() + (1),
(7.20b

£2,(x)=- ng“L‘M(xm) L) 75T LANKTFA(X)

N
+ (1), (7.200
@Mv<x>=gw+[§(1+4x>A+x] Yave  (7.209
FAY(X) = 0"A*(X) — *A”(X), (7.20e
£ons(0) = = I REOTLN) - 3, 77(x) + (1)

T

(7.23

Here the vector matrixX y, iS an isospin transition opera-

tor [57].

PHYSICAL REVIEWGS, 064002(2003

— 1+ 73 1- 73
L nr(X) =~ €eR(X) 5 Krpt 5 KRn

><m S AN (), (722
L) == I N0 57, 7R00 - 00 + (1)
(7.23
LX) = = ZERHOTERK) - 3,70(x) + ().
(7.24)

For the couplings to th®=D;5(1520 resonance we use
[13,14

1+T3

Lo = —2—Dﬂ<x>®M(KDp1 5

* Kpn1

_ TS)N(X)F”)‘(X) +(t), (7.253

r®@ (x) = ia"(x) Ko 22 + Kkp 22
O A wr\ 7DP2 5 2o

X[ANOITF™(x) + (1), (7.25b

9aND<

D#(X) 0, 7ysN(X) - ¢"ar(x) + (1),

(7.26

L#ND(X)

T

97aD=<

Laap(X) = D#(X)[Tpa - w(x)]A,(x) + ().

(7.27)

We note that both th&® and theD couple to not only the
¥N and 7N channels, but also to theA channel.
For theS=S,,(1535 couplings we takg13,14

— 1+ 73
LngX)=- eS(X)(TKSp

1_7'3
+ 2 KSn)

ST guprON) + (1),
Ms— My

(7.29

gaNs

LandX) = — &x)WNm Fam(x) + (1),

(7.29

gﬂNS

LX) = é(x)y,ﬂ(x) dp(x) +(1). (7.30

For the Lagrangians that describe the coupling to the

Roper resonancB=P,,(1440, we take

We see that th& couples to theyN, 7N, and »N channels.
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For each interaction Lagrangiafy(x), we take for the

corresponding interaction Hamiltonian

H|:—Jd3x£,(x)|t:0. (7.31)

C. The y+N«N and @w+N+N vertex functions

As our first application of the above relations, we con-

struct vertex functions foy+N« N and 7+N«<N from the
effective Lagrangian densiti€3.12 and(7.13.
It follows from Eg.(7.5) that

HN,yN(Om,v q)\mt) = ea(p’1 m’)|:5tp’)/1/_ i(é\tpr

}SV(K Mu(p, m),
(7.32a

T, K-
+ 5InKn) om
N

p, = (mN! 0)1 k: [w'y(q)! q]v p = [8N(q)1 - q]
(7.32h

Now using Eqs(7.6) and(7.11) we find

XoZUy on(a, DX = et(p, m'm{— Sip+ (Bipip

Won() Y- my
2my

+ Ginkn) :|U(p, m),

(7.33

and putting in the explicit forms for the Dirac spinors, we

obtain the vertex function

2mN 1/2
- - + 5
SN(Q)*'mN] |:5Ip ( tp e

WyN(q) +Mmy

N

UN,yN(q’ t) = |e|:

+ Sinin) }(q X o). (7.34

Using Eq.(5.14 and the identity

o - GY25(0) == Y511 1125(6), (7.39

we can write

~ 1 . A m ~
Z7112140) = - E('Vq X q)(o-§)Ypl1/2,149)

= 8_(q X o) xH?, (7.36)
AY

which allows us to expand Eq7.34) in the form(5.9) and

deduce that the partial-wave, vertex function is given b

2mN 1/2
] [ S+ (Gpkp

en(q) +my

Won(Q) + my
2my

Un,n(@nlt) = — nlﬁl\"STTGQ{

+ Sinkn) (7.37)
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Using Eqs«(7.13), (7.7), and(7.8), we find

OaNN_ .
Xt U@ Xy = = V3 157 TPy, M)y U Py ),
N
(7.383
p’?T = [ww(q)! q]! pN = [SN(q)v - q]! p[,\l = (va 0) .
(7.38b

Putting in the explicit forms for the Dirac spinors we find
that the m+N« N vertex function can be expanded in the
form (5.20 with

U n(agh = 8y 81y127 | [—Zm“‘ ]1/2
p- = 112719,
n,N(GD 91011\ (SPENIN] en(Q) + My
W n(Q) +my
X——(. .
2my q (739

D. The y+N—a+N interactions
In constructing the interactions for the processN—
+N that follow from Eqs(7.9) and(7.10) it is convenient to
introduce the notation
(k'u’, p'm't'|Hpkn, pmb = (2m)38° (k' +p’ —k - p)
XV(K'u', p'm't";k\, pmb,
(7.40a

where
K'=p,, u'=t, p'=p, m=my t'=t,

k=p,, N=\,, p=py, Mm=my, t=ty. (7.40b

With this notation Eq(7.10 becomes

1/21,

X U7TN 'yN(q i qt) 8(q A )Xllz

=S (1, 12,u't’[ipV(K'U’, p'm't’;kx, pmi),

u’'t’

(7.413
K=(w',q), p'=("-0q), k=(0,q), p=(s-0),

(7.410
o' =0/q), &'=ey0), 0=0/q), &=ey0Q).

(7.419

A y+N— m+N interaction that comes from the; term in
Eq. (7.4) arises from the Lagrangian density.14) which
leads to the so-called contact interaction
VoRiatk'u’, p'm't’ ;ka, pmb

NPV
_ 9mn 1/21( U )22

2mN
XU(p,! m,)VSYMU(pu m)slu(k! )\) .

)X

(7.42
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We now consider interactions that come from the seconde
order term in Eq(7.4). Here we use a slight variation of the
Okubo method and replace the second-order term by a sum

KU, p' Mt kN, pmb

waN 1/2’r5 1/2,

= , K, ‘KA,
of terms of the form 'Yomy m, oxi Qunn(k', p'm’ pm),
(7.48
VNS A with
<k u’,p'm't |H#NNT_HOHem
Qv (K, p'M’ KN, pm)
+ HemmHMNN“O\’ pmt) (7.43

K
=U(p', m)| ys+ 5 ok = k)
For the direct and crossed nucleon interactigssm and 2my
Hem=H,nn- FOr the 7 exchange interactionu=7 and

_ _ Xiggap(K' = K)*KPDE(K ~ k, m,)u(p, mes(k, \),
Hem=H,. For thep or o exchange interactiong=p or

(7.493

and Hep=H,,, or H,., respectively. This procedure, H=p, @,

which was introduced in Ref50], leads to a photopro-

duction Born term that looks like a Feynman diagram re- o+ gan?

sult with the four-momentum conserved at the electromag- D(q, m) = g n?zq . (7.49b
- +le

netic vertex but not necessarily at the strong interaction

vertex. Moreover, the complete Born term is gauge invari- We collect the interactions that involve the coupling

ant. The various contributions are given by

TNk, p'm't’;kx, pmb

12+ 1/2— p+K+my

NN ’
TwXt U(p’, m))’skm
N

=i="—ey;
2my Xt

4

k
5tp7,u (5tpr+ 5tnKn)|0',uu2 u(p, me*(k, N),

(7.44)
(KU, p'm't’ sk, pmb
_9eNN_ a2t t 1,
= om X Xt U’ m)
. K”
X 5tlp')/p,+(5t/pr+ (st/nKn)IO"u,/z—rnN
B K+
XW?’SK u(p, me*(k,\), (7.45

Von (KU, p'm't’;kn, pmy

_.OaNN 12t 1/2
=1 2my Xy (-u )X
_ (K" =K)(k—2k")
Xu(p’, m')y 5#2” u(p, me*(k, N),

(7.46)

Vf,Nny(k’u’, p'm’t’;k\, pm?)

fNN 2% _t [
zlgp’iT’)/r!;] X;L'Z /X'EL/Z 7N, yN(k:p m vk)\l pm)l (747)

m

e in defining

le//ZT 7TN yN(q i,qt) - e(q, N )X

= > (1, 12,ut' i Vire(k'u’, p'm't’ sk, pmi)
u't’
+VfTr,‘ijSN(k’u’ p'm’'t";kn, pmi
+VoRintk U, p'm't sk, pmb

1/2

+ VI (KU, p'mt’ Sk, pm], (7.50

and write for the vector meson interactions

1/2T

Xow Uon(@'i, at) - £(a, X)) xm’

= 2 (1, L2,u't'[i)VEy (KU, p’m't kN, pmd).

u' t’
(7.51)

Upon inserting Eqs(7.44—(7.46) in Eq. (7.50 and using
Eq. (7.41b, we find

UZ0in(at, a) = e’ + mg (e + my - |3

X DA, 22, i, 14, 1/2,u”, t[1/2,1)
u't’

X{é\tpA(qla Q)+ (51pr+ dnkn)B(Q', Q)

+ 5t’pc(q,= q)+ (5t’pr+ dnkn)D(Q’, )

-U'[EYq’,q) +E@', 9]}, (7.52
where we have also used
X2 2= =31, 12,0, |12y, (7.53

The functions that appear are given by
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W —my W +my ) pole twice we must drop the pole terms in E¢&549 and
A(Q',q)= wem, T Wem, (o.xX)i(x X a), (7.54b. This we do by making the replacements
(7.54a , W' —my
A(Q',q) — W my o, (7.573
B(q', q) = - (W' = my)(W-my)
T o M Wemy , (W = my)(W-my)
B q) —-—— Wemy O (7.57h
(W' +my)(W+my) . N N
2my(W=-my) (0. x)i(x X o), After a great deal of algebra we find that the vector-meson
(7.54D potentials are given by
UZnn(@'i, at) = o, UT(q'i, gt) +i(e-§)(G X o)
c(q',a)= W:LW(D{_ 20" (o - X)(W' = W~ 2my) XU5(a'i, qt) + ' (o - 9U5(Q'i, gt
g w . .
, +4' (o-q")U5 (@', qt), (7.58
=29 (. X)W =W+ 2my) + [0, (W-my)
where
. My
= (o . X)i(x X o)(W+my (W +W)— _ . f
w UA(Q'T, at) = ig,my2 81— 3)
m7T
—2e'w+q" -glo, +(o.X)i(x X 0’)]}, X (&' +myY(e + my)Y3FA(q’, ),
D(a’,q) = Awrq -q) [d (- x)(W+my +q' (o.X") @ QU= Gumy T, 7 Gar 3/ N3
X(W-my) + o, myW-my) - (a.x")i(x X (&' +myY4e + mytFr(q’, g),
(W/ +VV) , ) (759b
X U)mN(W+mN)]T—2(8 w+q'-q) with
(W +my) _ K, M2
X _— - X! ! —{_ r_ w! _
{‘H 2 (o . X")i(x Fi(d’,a) (W' —my) + 2my (W-my)
X ,,)—(W/ ~ My (7.549 A1+ W W= 2 K K
2my ’ : Z_mN( my) | (K" - K)
1
EYQ. @) =0, +(o-X)i(x X o), (7.54¢ X, (7.60a
(K" =k =,
EQQ,q)=————[-q (- X)(W - W-2my) , , K M2
A e A " F5<q.q):{—[<w+mN)— S (W my)
N
=g (- x") (W =W+ 2my)]. (7.54%
R IYY »
Here + {1 2mN(W +W+ 2mN)](k k)}
W=w+e, W =0'+¢’, (7.55 x'[|x]
—_—, 7.60
(K = k)2=n, (7.608
Xz xr=— (7.56 i i
Fr M L F4q',q) =1+ “u (W' =my) [(W+my) il
It should be noted that some care must be taken in com- ° L 2my e Yk -k2-m2’
bining the interaction7.52 with the contributions coming (7.600
from the second terms on the right hand sides of E6€)
and (6.7) since these terms already contain poles whken r p 7 q'Ix|
=W=m?, wherem? is the bare nucleon mass. The bare pole F4(q’,q)=|1-—2(W +my) [(W- mN)r—sz'
term gets dressed by the interactions and leads to a pole at L 2my J (k' —k)=—mj,
z=W=my, [67], therefore in order not to include the dressed (7.609
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E. The A resonance
With the help of Eqs(7.20), (7.3)), (7.5, and(7.6), and

the analysis of Refl57], we find that the vertex function for

y+N—A is given by

X {M[—q X (@ % Slya(e - x)

2my
+Sly(0-q) - (Shy - q)a]+g”'“[q W,(0)d
X (g X SLA)(U'-X)]}. (7.61)

Here the spin transition vector matrix is defined by

Xpp = 2 Ean<1 b, m, nlb’, '))(E,T
m,n,n’

2b’" +

2b+1

According to Egs.(5.39 and (4.8 the only nonzero,
partial-wave vertex functiondJ, ,(qnlt) are those for
which 1=1, 2, which in combination with Eq(5.3b) im-
plies that forn=1 we havel=1 while for n=2 we havel
=2. It follows from Eqs(5.14) and(7.35), and the identity

= (-1

xg,b, X=S,T. (7.62

(Sua - X2 = AmI3YT 1 5/40) (7.63
that

N /3
ZT112340) =i aT(q X Sux?, (7.64

1
Z35112,340) = J,=[C] X (GX o) (Sya- Q) +(o-0)q

X (§ X Sl (7.65

Using the fact thate=—\3Syy [57] and the definition
(7.62, we can show thaio-Sy,=0. By writing out 0
=(o-V)(e-Syy) we can show in turn thato X Sy,=
-iSya. Now by manipulating +) X Sy, we arrive at the
alternative expressions

2111/23/£Q)—\/ [U'(SNA ) - (o §)SwalxZ?

3

= \/5l(e 98X @ X S -8 @ X o)
'

X (Swa - I (7.66)

Combining Eqs(7.61), (7.64), and(7.65, we obtain the
partial-wave vertex functions

PHYSICAL REVIEWGS, 064002(2003

UA,y,N(q! n= 1 | = 1 t)

[Ar q o
= 3 e\— \ mAW.yN(q)GM[WyN(q)]

(7.67a
Up (@ n=2,1=2,1)
_ 47 30 ———
=7\ ?em_NVmAwyN(q)GE[WyN(q)],
(7.67H

with

J1yNA B J2,NA
Gu(W) = — {(3W mN) 2m W -(W-my) 4m'2\l},

(7.68a

_ My Jiyna D29na

Ge(W) = 3 (W mN)(ZmNW 4er\1 ) (7.68b
These results fo),(W) and Ge(W) agree with Eq(B7) of
Nozawaet al.[29] whenW=m,. It should be noted that there
is ambiguity in these functions. For real photons, the Jones
and Scadror70] analysis of they+N— A vertex, which is
based on a consideration of covariants, leads to the following
alternatives:

My PPN | LN ¢ PO
GM(VV) = {(3W My o 2m W ( my) oW 4mﬁ,
(7.693
~ My O W+my goyna
CelW) = (W (ZmNW 2W  4md

(7.690

The two sets agree wha'=m,.
Using Egs.(7.7), (7.8), and (7.21), we find that thew
+N— A vertex function is given by

gﬂ'NA

[en(@) + myJ¥2(2my)YA(q - Sya),

(7.70

7TN A(q) -

T

which with the help of Eq(7.63), is easily shown to lead
to the partial-wave vertex function

U nasl00) = i | o S i)+ myJ 2my) g,
(7.71

The Lagrangian densit{7.21) also leads to a vertex func-
tion for the virtual processr+A—N. According to Eg.
(5.17, the only non zero partial-wave, vertex function
U,an(qgl hasg=I=1. We find
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. TG
U an(agh =- 5gl5lll4\/; mNA [ea(@) +my]M2

T

)1/2W7rA(Q)
N m :

X (2m (7.72

Including the virtual procesil— 7+A leads to the photo-

production of arr and aA through the procesg+N—N
—m+A.

F. The Roper resonance

The derivations of the Roper resonané&;P,4(1440),

vertex functions are very similar to those for the nucleon
sinceR and N have the same spin and isospin. For the pro-

cessesy+tN—R, R—7+N, R—7+A we find, respectively,

2mR :|1/2
en(q) + my

Win(a) +m
X(atpKRp"' @nKRQW,

Ugrn(Qnlt) =— nlﬁlw’@w{

(7.73

sz :| 1/2

U, ) = 8y 017/ 12mig r| —————
nR(AGD = 6y 011V12mig NR[sN(q)+mN

% W, n(Q) + my
Mg + My

. T J7RA
U, ar(0gl) =- 5gI5I1|4\/; m_

X glea(q) + myJ2(2mg) 2

a, (7.74)

Wﬂ'A ( Q) .
My

(7.79

PHYSICAL REVIEW C 68, 064002(2003

only terms that contribute are those for whigh1, [=2 and
n=2,1=1. Using Eqs(5.14) and(7.63), we find

2T, 100h) = %m X )@ - Sup) *+ (0 §)(@
AY o

X Syp) I, (7.773

3
Z31112,349) =/ gT[SND - 8(8 - Swp) I3
(7.77

Comparing Eqs(7.64) and (7.65, and using a property of
the Pauli matrices, we can derive the identity

i(or.8)(@ X Syp) =Snp—G(G . Syp) +i(q X 0)(§ . Syp),
(7.79

which allows us to rewrite Eq¢(.7.84) as

N [ R o
Z7512340) = _/—[SND_ q(G - Syp) + 2i(q X o)
V8w

X (8- Sup) X2 (7.79

It is now straightforward to show that the nonzero partial-
wave, vertex functions are given by

UD,'yN(q! n= l,l = 2,t)

€ AL W,n(a) — my]
= Z_rnN\’/ZT(2mD)l/2(KDp15tp + Kpn16n) —Ta =17

In our model the Roper resonance is involved in the pro-

cessesytN—R—7+N and y+N—R— 7+A.

G. The D;5(1520 resonance

With the help of Eqs(7.25, (7.3)), (7.5), (7.6), (7.62),
and(5.25b, we find that the vertex function fop+N—D is
given by

Up (g, 1) = e(2mp) ¥ en(q) + my]*?

X{ (Kpp1Gip + Kpn1dm)

2my

[(Slip) 1 [W,n(@) — my]

~(Slp- D)@ X o)[en(q) ~ my]]

(Kpp2Sip + Kpn2Gin)

T [(SLanyN(q)q]}.
(7.76)

We now make a partial-wave expansion of the fq&rD)
for this vertex function. According to Eqé5.3) and(4.8) the

[2Wn ()]
(7.809
Upn(0,n=2,1=1,1)
= NC NI
x {(xnplatp o) gy
~ (KopaBip + Konzat,o%)gm“] . (7.800

Using results from Ref[57], we can show that th®
—a+N and D—m+A partial-wave vertex functions are
given, respectively, by

2mD :|1/2 )

.gaND
U,np(@0=2,1=2) = - 4z ,
no(0, g ) Va4 |:8N(q)+mN q

m’TT

(7.8
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TABLE |. Pole term contributions.

Baryon Vertex functions Equations

N Un, N (7.37
U.nN (7.39
U.an (7.72

A=P35(1232 Ua,on (7.67) and(7.69
Uana (7.77)
R=P;4(1440 URJ,N (7.73
U.nR (7.74
U.ar (7.75
D=D;5(1520 Up, (7.80
U.np (7.8)
U,ap (7.82
S=S5,41(153H Usn (7.83
U.ns (7.89)

~— .9zAD
U J,h=-+8
=000 1,1) Vo | m

[ea(@) + my]H4(2mp) Y2

T

1+ ea(q) —my
3m,

|

(7.82

X[Wa(q) - mA]{ @0{

_s £a(q) —my
|2—3mA .
H. S;1(1539 The resonance

The derivations of the vertex functions for th&
=S,,(1535 resonance from the Lagrangiaii®.28—(7.30

PHYSICAL REVIEWGS, 064002(2003
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FIG. 2. S;1nE multipoles. Curves and points as in Fig. 1.

respectively. In our model th&;;(1539 resonance is in-
volved in the processey+N—S— 7+N and y+N—S
—n+S

VIIl. RESULTS

Here we present the results of our multipole calculations
for the procesg+N— 7+N. The multipoles we calculate are
designated by(L)y »N(M or E) where (L), »; specifies the
final pion-nucleon state witl. the relative orbital angular
momentum,| the total isospin, and the total angular mo-
mentum. The target is specified Bi=n or p, andM andE
indicate magnetic and electric multipoles, respectively. These
multipoles are related to thE-matrix elements by Eq6.8).
The T-matrix elements are calculated from E§.6) with the
electromagnetic potentials determined by E8.7). In Eq.
(6.6) b=N, uB=xN, and u'B'=#N, 7A, »N. We recall that
the quantum numbegthat appears in E@6.6) is the relative
orbital angular momentum qf andB, andL is obtained by
coupling s, the spin ofu, to g. Since heres,=s,=0, we
haveg=L. In the rescattering term in E¢6.69, u'=m or 7,

are very similar to those for the nucleon. For the processes

y+N—S S—7+N, S— 7»+N we find, respectively,

Usn(anlt) = 8,281 V8me(2me) Y en(a) + MY Spks,

Win(a) —m
wN N
+5mf<s&—ms_mN : (7.83
V”é A
Uins(@8h = dgdio| _ VAmig,nd en(a)
Win(@) —m
1/2 1/2_ "N N -
+my]7(2mg) me-my, ' KT
(7.84)

In Eq. (7.84) the upper and lower factors go withand »

14 8
z12 =7
8 10 Ss
w g w5
< 5 24
2 4 23
T2 =2 s

*eq 1 T
1100 1200 1300 1400 1500 1100 1200 1300 1400 1500

W (MeV) W (MeV)

FIG. 1. S;4pE multipoles. The solid lines are theory. The dashed
lines and points with error bars are the SMP8B,7] energy-

sog'=L".
In Eq. (6.7)
Ulg (@' LLI, anlty) = 8, dandunUl iy (0’ LLI, anlty),
(8.1

where the partial-wave matrix elements are obtained from
the plane-wave matrix elements y ,n(d'i, qty) by using
Egs. (5.29), (5.25, (5.27), and(5.29. These plane-wave
matrix elements are given by

Unon(@'i, aty) = UZENN(@'E, aty) + ) Uy (@' aty)

u=p,0

(8.2

with UTTN given by Eqs.(7.52, (7.549—(7.549, and
(7.57); and with UZnn given by Egs.(7.58—(7.60). The
pole terms in Eq.6.7) arise from the baryons listed in
Table I, where the associated vertex functions and the
equations that define them are also indicated. The strong
interactionT matrix T'IJLB’M,B, that appears in the rescatter-

0
-5
g -10
-15
-20
-25
-30

1100 1200 1300 1400 1500

W (MeV)

am)

NE

ImS3y NE (am)

ReS;

8
7
]
5
4
3
2
1

100 1200 1300 1400 1500
W (MeV)

dependent and single-energy values, respectively. The am unit

(attometey=mfm (milli Fermi).

FIG. 3. $3;NE multipoles. Curves and points as in Fig. 1.
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FIG. 4. P,;pM multipoles. Curves and points as in Fig. 1. FIG. 6. P13pE multipoles. Curves and points as in Fig. 1.
i i i o (0) P
ing term in Eq.(6.63 is taken from the Elmessiri-Fuda giwa — Gonafimal@, j=1,2 (8.6

model of pion-nucleon scatterind7] except for modifi-
cations in the parameters associated with Eag partial

wave. In this partial wave ther-exchange parameters “\ye nyt in a strong interaction cutoff function in the anti-
were changed to improve the fit to tf; phase shifts and |, ,cleon contributionsA and B, that appear in Eq(7.52.

inelasticites. The new parameters am,..g.n47  gpecifically we modify theA and B given by Eq.(7.57
=489.71, Gy, God47=541.06, M,=1617.0 MeV, Ay according to

=3347.5 MeV, A,\=3846.1 MeV, and mireshold
=1200.1 MeV. Adg’ o f =(la’DA(a’
The strong interaction vertex functions given by the indi- @) = faslla’DA@" @),

cated equations in Table | are modified in practice in two

ways. First of all, the coupling constants are replaced by bare B(q',q) — fnw(a’)B@’, q), (8.7)

coupling constants since the vertices are dressed by the in- . . .

teractiong67,57. To be consistent with the notation of Ref. wherecf aNN IS gIven .by Eq.(8.4. The contact Interaction
termE° that appears in Eq7.52) also requires a cutoff func-

57] we let @ © . etc. Second we

(571 9NN Do I — G €1C : tion, which we introduce according to

modify the strong vertex functions in E¢6.7) by multiply-

ing them by cutoff functions according to R¢&7],

in Eq. (7.69. This greatly improves our ability to fit the
P3sNE multipoles.

2

2
EC(q’,q)H<AZT°q,2> EYQ’, q). (8.8
U/LB,B'(q,gL) — f,uB,B'(q,)U/.LB,B/(q’gL)i (83) ¢
For the crossed contributiorts and D and the exchange

contribution E in Eq. (7.52; as well as the vector-meson

A2 yg2 " exchange interaction§” _, given by Egs.(7.58~7.60);
, uBB pole - N, N
fee(d)= 07 2 | (8.49  we use cutoff functions defined by
AMBB' + qu

A4 2
F(Q, my, Ay = [sz_m)z()z} : (8.9
’ — 2
0’ poie= LM, + Mg — mg,)? — 4mZmg/(2mg,)?. (8.4b) . x ’
Here m, is the mass of the intermediate exchanged par-
HereAi?éB, is a cutoff mass andy, is determined by the ticle, A, is a cutoff mass, and) is a four-momentum
condition associated with the exchanged particle. Since these cutoffs
are associated with the strong interaction vertex, we de-
termine Q by conservation of four-momentum at the

W,.8(0pote) = @u(Gpote) + €8(CApote) = Me, (8.9 strong interaction vertex. The replacements are given by
which normalizes the cutoff function so thég g (dyqe) ) ) ,
=1. The strong interaction coupling constar@é%B,, the €@’ @) —Flp-K,my ANC(@’.a),  (8.10

cutoff masses\ (%, and the bare massesy, which ap-

! L’ ’
pear in Eq.(6.7) are given in Table Il of Ref[57]. D(@’,q) — F(p-K,my, AyD(@', @),  (8.1D
We also modify the electromagnetic vertex for the process
v+N«<—A by making the replacement E(',q) — F(p’' -p,m,, ADE(Q’, q), (8.12
- 0 0 03 {
£ £ -1 T € 025
s s g S 02
z z _2 Z -2 2015 +
f s : 23 o 01
£ £ _‘; g, E 00 | ]
1100 1200 1300 1400 1500 1100 1200 1300 1400 1500 1100 1200 1300 1400 1500 1100 1200 1300 1400 1500
W (MeV) W (MeV) W (MeV) W (MeV)
FIG. 5. P;1nM multipoles. Curves and points as in Fig. 1. FIG. 7. P13pM multipoles. Curves and points as in Fig. 1.
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Ulua(@’, @) — F(p' = p,my, A ULy (@', Q) 1=p, @. [24] point out that the vector-meson strong coupling con-
(8.13 stants are not well determined. In surveying earlier results
they found 8<f <20, -1<k,<0, 1.8<f,\=3.2, 4.3
The four-momenta that appear in Eq8.10—(8.13 are  <k,<6.6. For their fit to the multipoles they foundyy
defined in Eqgs.(7.41b and (7.419. On-shell, i.e., when =21.0,«,=-0.57,f \y\=2.0, x,=6.5. Ourf . «,, andf,yy
k+p=Kk’+p’, these cutoff functions become one at the poleare in reasonable agreement with the ranges they have indi-
of the accompanying Feynman propagator. cated, however, ouk, is quite different. In contemplating
In our model there are a number of fixed parameters. Théhe bare electromagnetic coupling constants that characterize
physical masses of the various particles are given in Rethe strength of the various resonances, it should be kept in
[57] except for the mass of the meson which we take to be mind that these parameters are not observables. Wille¢Im
m,=782.6 MeV. The coupling constants that are fixed areal. [73] have shown that it is possible to introduce into a
given [24] by model such as ours a unitary transformation that alters the
relative mix of the background and resonance contribution to
a multipole without changing the total multipole amplitude.
As a result of this the electromagnetic coupling constants
O.nn= V4m(3.7815, Opmy=0.102, 9¢,,,=0.314. given in Table Il only have significance within the context of
(8.14) the present model.
In Figs. 1-14 the dots with the bars through them are the
The parameters that were varied in fitting the multipolesSM95 [68,71] single-energy values, the dashed lines are the
are the strong interaction coupling constants for the vectoBM95 energy-dependent fits, and the solid lines are our fits
mesons, the electromagnetic coupling constants for the the SM95 energy-dependent fits. We have labeled the iso-
A=P33(1232, R=P.(1440, D=P.51520, and S spin triplet plots withN rather tham or p since these mul-
=85,1(1539 resonances, and the cutoff paramet&randn.  tipoles are independent of the target nucleon. There is gen-
We fit to the SM95 analysi§68,71] of the photoproduc- erally good agreement between theory and the SM95 energy-
tion data. We chose this analysis because the phases of tdependent fits for the following multipolesS;;(p, n)E,
multipoles for energies below the two-pion production Py;(p, MM, ReP;3pM], RegP3;NM], Im[P3NE], P3NM,
threshold are the pion-nucleon phase shifts to which we fiand InfD4(p, n)E]. There is mediocre agreement 8y;NE,
our model for pion-nucleon scatterirf7]. Our fits are  however, it is interesting to note that the theoretical
shown in Figs. 1-14 and the resulting parameters arém[S;;NE] agrees better at high energies with the SM95
given in Table Il. We have also calculated t82/M1 ratio  single-energy values then the SM95 energy-dependent fit
from our fits. We find E2/IM1=P33NE/P33NM=-2.09%, does. The agreement for the varides multipoles is medio-
which is consistent with the range2.5+0.5% given by  cre except for RgP;3pM]. It should be noted, however, that
the Particle Data Group72]. these multipoles are quite small and therefore get less atten-
We note that the majority of the parameters in Table Il aretion in the least-squares fitting procedure. Fofl PjaNM]
associated with the form factors, which are purely phenomboth theory and the SM95 energy-dependent fit do not follow
enological. In commenting on the role of form factors in the single-energy values at high energies. At both the low-
their photoproduction model, Surya and Grd®$] state and high-energy ends the theory for[RgNE] lies above
“Unfortunately, our results are sensitive to the form factorsthe SM95 energy-dependent fits.
which are purely phenomenological.” This has also been our It is satisfying that in the imaginary parts of tfas, Py,
experience. In Sec. IX we discuss how we propose to imD;5 andS;; multipoles the resonances show up very clearly
prove on the treatment of the form factors. Drechesell.  at their physical masses. The nucleon and these resonances

e=\4n/137, k,=1.79, ky=-1.97,
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FIG. 9. P;3nM multipoles. Curves and points as in Fig. 1. FIG. 11. P33NE multipoles. Curves and points as in Fig. 1.
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FIG. 12. P33NM multipoles. Curves and points as in Fig. 1. FIG. 14. D13nE multipoles. Curves and points as in Fig. 1.

contribute to the electromagnetic interaction through the sed0 describenN elastic scattering and so are not complete
ond term on the right hand side of E.7). The poles in €xchange models. The more recent mo@ig(s-33 are com-
these terms are determined by the bare masses of the p&ete exchange models, but the authors do not give a com-
ticles, which are quite different from the physical massegPlete set of multipoles. Referencg30] and [31] only give
(see Table Il of Ref[57]). The physical masses arise from threshold results, while the Sato-L¢82,33 papers only
the dynamics of the model and are not put in by hand, so it i€ive PssNM andP3NE multipoles. The spaces of these mod-
quite clear that our way of treating resonances is satisfactor!s are limited toA® 7N® N or N6A® 7N© N, and do

Recently, the multipole analysis of the photoproductionnot includewA and/orzN channels. _
multipoles has been updat§@4] to SM02. It would be in- It appears that the only dynamical model that is compa-
consistent for us to fit to the SM02 analysis since the pionfable to ours is the Surya-Gross mo{izh]. This model goes
nucleon phase shifts to which we fit our modgv] for N UP to @ maximum photon lab energy of 770 MeV, while ours
elastic scattering differ somewhat from the phases of thgoes up to 810 MeV. They include the following direct
SMO02 multipoles for energies below ther2production — Poles:N, P33(1232=A, P;4(1440=R, andD,3(1520=D. We
threshold. It is interesting to note that our theoretical resulinclude these, but als§;;(1535=S They include crossebl
for Im[S;;NE] agrees very well with the SM02 analysis. The andR interactions, whereas we include the crosSidolt not
Re P3;NE] energy-dependent fit has changed quite a bit in_the cros_sedR. We both include a contact or Kroll-Ruderman
going from SM95 to SMO02. In fact, our low-energy mter_actmn[?ﬂ, as well asm, p, andw exchanges. The_y use
Re P3;NE] agrees quite well with SMO2. a mixture of pseudoscalar and pseudovget@N coup_llng,

We do not wish to imply that our disagreements with While we use pure pseudovector coupling. In their model
SM95 are due simply to problems with the analysis of theelectromagnetic coupling to an inelastic chann.el is proyided
experimental data. There are exchange processes that can®ethe processeg+N— (R D)—o"+N whereo™ is an arti-
added to our model and these may very well improve agreefjcial scalar meson with the_mass of two pions. Our inelastic
ment with the energy-dependent fits to experimentlectromagnetic coupling is due to the processesN
[68,71,74. The present model only includes crossed pro-—(N,R D)—7+A and y+N—S—»+N. The dynamical
cesses withymN andNNN intermediate states. Clearly, there €duations in the two models are quite different. Gross and
are crossed processes withB andNNB intermediate states co-workers use a three-d|m§n5|pnal r.educmﬁa’%’?@ O.f
whereB is any of the resonances in the energy range. Also ir’ihe B_ethe-SaIpete[r43] equation in which the mte_rmedlate
the present model electromagnetic coupling to the inelasti lon Is put on-mass-shell, except for one of the pion pote
channels is limited to the processg¥— (N, R, D)— mA and riving terms. We on the other hand use standard Lippmann-

N—S—yN. We should also consider crossed processe?ChWinger equations as described in Sec. VI. We feel that it

such asyN— (ymN, ANN)—wA. We plan to improve our TABLE II. Adjusted parameters.
photoproduction model accordingly and to refit ati elas-
tic scattering mode]57] and the improved photoproduction |nteraction parameters Cutoff masgtteV)
model to the more recent analyses of the experimental data .
[74]. This will take some time. UTon A9-=813.4n=10,
It is of interest to compare the results of our photoproduc- AN=815.7n=5,
tion model with other dynamical models for photoproduc- A=1727.0n=10,
tion. The models that are closest to ours are the Hamiltonian A,=752.5n=1
models[27-33, but unfortunately there is not a lot to com- Ul f n=3.206,k,=0.8935,
pare. The oldest mode]27—29 employ separable potentials ' A,=1933.0n=4
Ul fn=7.119k,=-1.092,
e 8 A,=2748.0n=5
&, §e Ua o 01,na=3.105,A0),=1290.0n=9,
S 2 g4 Gona=—30.74A%) \=442.6n=9
2 Z EE ‘ Uryn Krp=—0.2105 xg,=0.9063
B 0 = UD m KDp1:_67.21,KDp2:_88.87,
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Usn Ksp=0.2833 k5=-0.2026

FIG. 13. D13pE multipoles. Curves and points as in Fig. 1.

064002-20



PHOTOPRODUCTION OF MESONS FROM THE NUCLEON PHYSICAL REVIEWGS, 064002(2003

is fair to say that the Surya-Gross dynamical scheme requiraglative three-momentum of the virtual photon can still be
a much more complicated treatment of gauge invariance thagiefined since the total four-momentum of the virtual photon
does our approach. In particular, the Surya-Gross model re-initial baryon system is timelike. The unphysical nature of
quires extra driving terms to satisfy gauge invariancethe photon in the electroproduction process is due not only to
whereas in our approach gauge invariance is satisfied as lofg spacelike four-momentum, but also to the fact that it can
as the electromagnetic vertex interactidd., and poten- ~have polarizations that are not transverse; they can also be
tials U 5 ., have the structure®.9) and(5.23), respectively. scalar or Iongltgdlnal. Again, bgcause of the fact Fhat the
Surya and Gross present results for the following multi-Photon’s properties only appear in the electromagnetic poten-
poles: S;;pE, S;NE, P;pM, Py;NM, P33NM, P33NE, and  tials U, and vertex interactiondg ., these unphysical
D,spE. OurS;pE results are quite similar to theirs, however, polarizations do not cause a problem. Among other things,
their Im[S;,pE] is off at the high energy end since they do We Will have to include the longitudinal vector functions
not include theS;;(1535 resonance. It must be admitted that Zgs (@) given by Eq.(5.143 in the general expansions of
their RéS;;NE] is superior to ours, however, their [By;NE] U5, andUg .
differs from SM02[74] at high energies. OuP,,pM results In the present work we have derived our mass operator
are quite similar to each other although our[RppM]  interactions from effective Lagrangians using a variation of
agrees somewhat better with the SM95 energy-dependeftkubo’s method[50,5. The resulting interactions have
analysis. The two fits for th®3;NM and P33NM multipoles  been modified by the introduction of purely phenomenologi-
are of comparable quality. The two fits fBB3NE are quite  cal form factors or cutoff functions so as to take into account
similar, however, the Surya-Gross result forfR&NE] is  the extension of the hadrons. At the present time we are
somewhat better than ours at the high energy end. The twpursuing a more microscopic approach that starts with the
fits for D,4pE are of similar quality. Surya and Gross do not constituent quark model. The virtue of such an approach is
give results for thé®;; multipoles. In summary, we think itis that the form factors emerge as a consequence of the quark
fair to say that the two models give the same overall level ofvave functions. Other authors have already achieved some
agreement with the multipoles extracted from the data. It issuccess in deriving meson-baryon and photon-baryon inter-
of some comfort that two such very different dynamical actions from constituent quark models. At the present time it

schemes yield such similar results. appears that the most tractable approach is based on what
have been calleglementary meson emissionodels (see,
IX. DISCUSSION e.g., Refs[22,78 ). In this class of models the mesonsare

treated as elementary particles that couple directly to the
The work of Nozawa and Lefr7] makes it quite clear quarksq through a vertex that describes the processq’

that the formalism developed here can be extended to elee-u. This approach can be thought of as originating from an
troproduction. As is well known, electroproduction can beeffective theory of hadrons discussed by Manohar and
viewed as photoproduction by a space-like virtual photonGeorgi[79] in which a Lagrangian is constructed that de-
The mass operator developed here describes transitions beeribes the coupling of constituent quarks, gluons, and Gold-
tween physical particle states, so in particular, the photon istone bosons. Starting from such a Lagrangian along with
lightlike. This would appear to present a problem, howeverpne that describes the electromagnetic coupling of quarks
this is not the case. According {6.6) and(6.7), the photon’s  and photons, it is possible to derive analytic expressions for
four-momentum occurs only in the electromagnetic potenimeson-baryon and photon-baryon interactions that take into
tials U g ,», and vertex interactiontlg ., These interactions account the extended nature of the hadrons. These interac-
can easily be extended to spacelike photons. In the approations can then be used to calculate meson-baryon reactions as
pursued here, which is three dimensional in character, relawell as the photoproduction and electroproduction of mesons
tive three-momenta play an essential role. The relative thredrom baryons. What we can bring to such an approach is a
momentum of a particle such as the photon or pion is definedeneral framework that ensures that the probabilities for the
as the three-momentum of the particle in a c.m. frame. Thearious processes are Poincaré and gauge invariant.
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