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A general formalism is established for constructing models for the photoproduction of mesons from the
nucleon. The essential ingredient is a mass operator which describes the coupling between meson-baryon,
photon-baryon, and single-baryon channels. The most general forms for the mass operator interactions which
produce these couplings are derived. These forms also provide generalizations of the Chew-Goldberger-Low-
Nambu amplitudes for pion-nucleon photoproduction to any meson-baryon final state. The models lead to
S-matrix elements that transform properly under inhomogeneous Lorentz transformations and are gauge in-
variant. The photoproduction amplitudes include final state interactions and satisfy Watson’s theorem. A spe-
cific model is constructed by deriving the mass operator interactions from effective Lagrangians that describe
the couplings of mesons, photons, and baryons. The electromagnetic interactions include direct and crossed
nucleon contributions, as well as direct contributions from theP33s1232d, P11s1440d, D13s1520d, andS11s1535d
resonances. A contact term and exchange terms due to thep, r, andv mesons are also included. The model
gives a good fit to the significant multipoles in the energy range from the single-pion, photoproduction
threshold up to a center-of-momentum energy ofW=1550 MeV, which corresponds to a photon lab energy of
810 MeV.
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I. INTRODUCTION

The first reasonably successful calculation of the photo-
production of pions from the nucleon was carried out by
Chew and Low[1], based on a straightfoward extension of
their static cutoff model for pion-nucleon scattering. The lack
of Lorentz and gauge invariance in the Chew-Low model
was remedied in a seminal paper by Chew, Goldberger, Low,
and Nambu[2] who formulated relativistic dispersion rela-
tions for the photoproduction amplitudes. As an important
by-product of their analysis, they established the general
form of the Lorentz and gauge invariant amplitudes for
single-pion photoproduction from the nucleon, i.e., the by
now well-known Chew-Goldberger-Low-Nambu(CGLN)
amplitudes. A detailed study based on the CGLN approach
was carried out by Berends, Donnachie, and Weaver[3], who
showed that dispersion relations can account for the main
features of the data up through the energy of theDs1232d
resonance. The early work onp, h, K, and vector-meson
photoproduction has been thoroughly reviewed by Don-
nachie[4]. A more recent review has been presented by Di-
eter and Tiator[5].

Dispersion relations continue to be used in the analysis of
photoproduction and electroproduction of mesons from the
nucleon. A number of workers have used them to carry out
multipole analyses of the data[6–8]. They have also been
used to extract theDs1232d contribution from theM1+

3/2, E1+
3/2,

andS1+
3/2 electroproduction multipoles[9].

One of the most popular approaches for constructing pho-
toproduction amplitudes is through the use of effective
Lagrangians[10–18]. Typically, the tree level amplitudes ob-
tained from these Lagrangians are unitarized following some
prescription so as to satisfy Watson’s theorem[19]. Accord-
ing to this theorem, below the threshold for two-pion photo-
production, the phase of a photoproduction amplitude which

leads to a partial wave, pion-nucleon state is the same as the
elastic scattering phase shift for that partial wave.

An interesting variation on the effective Lagrangian ap-
proach involves the use of an effective Lagrangian for a
quark-pseudoscalar-meson coupling in a constituent quark
model [20–23]. The quark-model wave functions for the
nucleon and the baryon resonances provide a form factor for
each interaction vertex, and the s- and u-channel resonances
can be consistently included in calculating the meson pro-
duction amplitudes.

One of the most elaborate and complete models for the
photoproduction and electroproduction amplitudes is a uni-
tary isobar model by Drechselet al. [24]. This model con-
tains the standard Born terms, along with five resonances,
and vector-meson exchanges. It succeeds in describing the
data up to 1 GeV.

A dynamical model of pion photoproduction from the
nucleon has been developed by Surya and Gross[25] based
on a three-dimensional reduction of the Bethe-Salpeter equa-
tion. This model satisfies unitarity and is gauge invariant.
The Born terms and kernels of their integral equations in-
clude nucleon(N), delta sDd, Roper(R), andD13 (D) direct
poles, crossedN andRpoles, as well as a contact term andp,
r, andv exchange terms. The model gives a good fit to all
Lø2 multipoles up to a photon lab energy of 770 MeV.

Neutral pion photoproduction off protons and deuterons
provides an important test of chiral pion-nucleon dynamics.
Such a test has been provided by an investigation of near-
threshold neutral pion photoproduction off protons to fourth
order in heavy-baryon chiral perturbation theory[26]. This
work solidifies the parameter-free third-order predictions,
which are in good agreement with the data.

Hamiltonian models have provided a generally successful
framework for carrying out photoproduction and electropro-
duction calculations[27–36]. In these models a Hamiltonian
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acts in a limited Hilbert space such asH=N% D % pN% gN.
Since these models are essentially coupled-channel potential
models, they satisfy two-particle unitarity exactly and there-
fore lead to photoproduction amplitudes that satisfy Watson’s
theorem[19]. The electromagnetic parts of the Hamiltonian
are defined in terms of matrix elements which describe tran-
sitions, such asgN↔pN andgN↔D. These matrix elements
are calculated from effective Lagrangians in lowest order
perturbation theory. The strong interaction part of the Hamil-
tonian provides a model forpN scattering in the absence of
electromagnetic couplings, and accounts for the rescattering
that occurs after the photon has interacted with the nucleon.
It contains potentials which couple meson-baryon channels
directly to meson-baryon channels as well as vertex interac-
tions. The potentials are either purely phenomenological
separable potentials[27–29], or are taken from a meson-
exchange model[30–36]. The Hamiltonian models are three
dimensional in character, with the total three-momentum
conserved in intermediate states, but not the four-
momentum. This can create problems with ensuring gauge
invariance. Nozawaet al. [29] were able to maintain gauge
invariance by requiring that in the second-order matrix ele-
ments that describe the transitiongN↔pN, the four-
momentum is conserved at thegNN vertex, but not necessar-
ily at the pNN vertex. This approach is rather limited in that
it is necessary to use a common form factor for the Born
term interactions.

Maintaining gauge invariance is a problem that has at-
tracted the attention of many workers. In dealing with this
problem several authors have focused on the Ward-Takahashi
(WT) identities [37]. Ohta [38] has derived an electromag-
netic current operator from the most general form of the
extended pion-nucleon vertex function using the minimal
substitution prescription, and has shown that the resulting
current operator and the isolated pole contribution satisfy the
WT identities. He has also shown[39] that it is possible to
derive electromagnetic interactions that are nonlocal and at
the same time maintain local gauge invariance. Nauset al.
[40] have used the WT identities to enforce gauge invariance
at the operator level, rather than on just the amplitude level.
Van Antwerpen and Afnan[41] have derived coupled-
channel integral equations that lead to photoproduction am-
plitudes that satisfy both two-body unitarity and generalized
WT identities. Gross and Riska[42] have shown that the WT
identities play a central role in ensuring that the electromag-
netic coupling to a two-body system described by the Bethe-
Salpeter equation[43] or one of its three-dimensional reduc-
tions [44,45] leads to a conserved current and thereby to
gauge invariance.

Haberzettl[46] has developed a gauge invariant model of
pion photoproduction starting with an effective field theory
of hadrons. His equations are nonlinear integral equations
which can be difficult to solve in practice. He has discussed
approximations that make the nonlinear formalism manage-
able and yet preserve gauge invariance. He and his collabo-
rators[47] have shown how to implement his formulation at
tree level with form factors describing composite nucleons,

and he has also shown how to preserve the gauge invariance
of meson production currents in the presence of explicit
final-state interactions[48].

A general method for incorporating an external electro-
magnetic field into descriptions of few body systems whose
strong interactions are described by integral equations has
been developed by Kvinikhidze and Blankleider[49]. Their
method involves the idea of gauging the integral equations
themselves and leads to conserved currents which in turn
ensures gauge invariance.

Here we develop a model for meson photoproduction
from the nucleon that leads to amplitudes that satisfy both
unitarity and gauge invariance. Our model is closest in spirit
to the Hamiltonian models[27–36]. It differs in two impor-
tant aspects. There is a more careful treatment of relativity,
and gauge invariance is implemented in a very general way.
Some features of the model have already been presented
[50,51]. The model is developed within the framework of
relativistic quantum mechanics, where by relativistic quan-
tum mechanics is meant a theory in which the quantum me-
chanical state vectors of a system transform according to a
unitary representation of the Poincaré group[52]. The con-
tinuous transformations, which form the proper subgroup,
can be expressed in terms of ten generators; four of which
generate translations in space timesx8=x+bd, while the other
six generate the homogeneous Lorentz transformationssx8
=axd. These ten generators satisfy a set of commutation re-
lations known as the Poincaré algebra. Several subsets of
these generators satisfy a closed subset of these commutation
relations and thereby generate a subgroup of the proper
Poincaré transformations. Some of these subgroups are asso-
ciated with three-dimensional hypersurfaces in Minkowski
space that do not contain timelike directions. Each form of
relativistic quantum mechanics is associated with such a hy-
persurface and its corresponding subgroup[52,53]. In rela-
tivistic quantum mechanics the generators are Hermitian op-
erators in the Hilbert space of the system. In each form the
generators of the subgroup of transformations that map the
form’s hypersurface into itself are chosen to be noninteract-
ing. The remaining generators contain interactions. The in-
stant form is based on the hypersurfacet=const., the front
form uses the null planect+z=0, and the point form is based
on the hypersurfacec2t2−x2=const.

Here we will use the instant form for which the three-
momentum operatorP and the angular momentum operatorJ
are noninteracting, while the HamiltonianH and the genera-
tor of rotationless boostsK are interacting. The operatorsP
and J generate translations and rotations respectively in or-
dinary three-dimensional space, which of course is the hy-
persurfacet=const. Here we will use the Bakamjian-Thomas
procedure[54] for constructing the generators. In this proce-
dure the generators are expressed in terms of the set of ten
operatorshM, P, S, Xj whereM, S, andX are the mass op-
erator, the spin operator, and the Newton-Wigner position
operator[55], respectively. The sethM, P, S, Xj satisfies sim-
pler commutation rules than the generators. In the
Bakamjian-Thomas constructionP, S, andX are noninteract-
ing and only the mass operatorM contains an interaction. As
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a result of this, in order to ensure Poincaré invariance it is
only necessary to choose the interaction inM so that M
commutes withP, S, andX.

The outline of the paper is as follows. In Sec. II the fun-
damentals of the Poincaré group are summarized and the
Bakamjian-Thomas construction is outlined. In Sec. III we
define our single-particle states both for massive and mass-
less particles and describe how they transform under rota-
tions and space inversion. For the photon we work with both
helicity states and special combinations of them that trans-
form similarly to massive particle states. Section IV intro-
duces our photon-baryonsgBd and meson-baryonsmBd states
and shows how they transform under rotations and spatial
inversions. We note at this point that throughout, mesons are
indicated bym’s and baryons are indicated byB’s or b’s. In
Sec. V we write our mass operator in the formM=M0+U,
whereM0 is the mass operator for the system without inter-
actions andU is the interaction. We deduce the most general
form for the matrix elements ofU consistent with Poincaré
invariance. Our interactionU describes the couplings;
gB↔b, mB↔b, gB↔mb, andmB↔m8B8. We consider ma-
trix elements in both an angular momentum basis and a
“plane wave” basis. Section V also introduces a set of vector
spherical harmonics that are used to describe the photon-
baryon states and which make it possible to satisfy gauge
invariance in a particularly simple way. The analysis of Sec.
V also gives the general forms for thegB→b andgB→mb
photoproduction amplitudes. In Sec. VI we give the relations
we use for calculating the photoproduction amplitudes from
the electromagnetic interactions and the off-shell, pion-
nucleon, strong interactionT matrix. Section VII gives our
method for constructing mass operator interactions from ef-
fective Lagrangians using the Okubo method[56]. Here we
construct the vertex interactions that describe the processes
gN↔N andpN↔N. These interactions give rise to an elec-
tromagnetic potential through the direct processgN→N
→pN. We also derive an electromagnetic potential from a
contact interaction and from the crossed processgN
→gpN, NNN→pN. We also use the processgN
→gpN, ppN→pN, in which the photon couples directly to
a pion, to construct an electromagnetic potential. The vector
mesonsm=r, v also contribute potentials through the pro-
cessesgN→gmN, pmN→pN. The resonancesP33s1232d,
P11s1440d, D13s1520d, andS11s1535d contribute electromag-
netic potentials through direct processes in which they pro-
vide the intermediate states. Besides coupling to apN final
state, the nucleon, theP11s1440d, and theD13s1520d also
couple to apD final state. TheS11s1535d couples to both a
pN and ahN final state. In Sec. VIII we present the results of
our multipole calculations with these electromagnetic poten-
tials and the Elmessiri-Fuda model[57] for the off-shell,
pion-nucleon, strong interactionT-matrix. A discussion of
our results and suggestions for future extensions and im-
provements of our model are given in Sec. IX.

II. GENERAL BACKGROUND

A Poincaré transformation is a linear, inhomogeneous
transformation that maps the components of a space-time

four-vectorx associated with one inertial frame to the com-
ponents of a four-vectorx8 associated with another inertial
frame according to the relation

x8 = ax+ b. s2.1d

Hereb is a four-vector anda is a Lorentz transformation.
For proper transformationsa can be parametrized in the
form f52,58g

a = expfisv ·k + u · j dg. s2.2d

Here j is the generator of three-rotations,k is the genera-
tor of rotationless boost, andv and u are three-vectors
whose components provide the necessary six parameters.
In a satisfactory relativistic model, there exists a unitary
operatorUsa, bd, corresponding to the Poincaré transfor-
mationsa, bd that maps a quantum mechanical state vector
ucl associated with thex-frame to the vectoruc8l associ-
ated with thex8-frame according to

uc8l = Usa, bducl. s2.3d

For proper transformations the unitary operator can be
parametrized in the form

Usa, bd = expsib · Pdexpfisv ·K + u ·Jdg, s2.4d

with

P = sH, Pd. s2.5d

Here K is a boost operator,J is the angular momentum
operator,H is the Hamiltonian of the system, andP is the
three-momentum operator. Since the law of combination
for the Poincaré transformations issa8, b8d + sa, bd
=sa8a, a8b+b8d, the unitary operators must combine ac-
cording to

Usa8, b8dUsa, bd = Usa8a, a8b + b8d s2.6d

so as to provide a representation of the Poincaré group.
This implies a set of commutation relations for the gen-
erators hH, P, K , Jj, which is commonly known as the
Poincaré algebraf58g.

In constructing the ten generatorshH, P, K , Jj, it is conve-
nient to work with another set of ten hermitian operators, i.e.,
hM, P, S, Xj whereM is the mass operator,S is a spin opera-
tor, andX is the so-called Newton-Wigner position operator
[52,55]. This second set of operators satisfies a much simpler
set of commutation rules than the Poincaré algebra; in fact,
the only nonzero commutators are

fPm, Xng = − idmn, fSl, Smg = i«lmnS
n, s2.7d

which are familiar from nonrelativistic quantum mechan-
ics. The three-momentum operatorP is common to both
sets, while the other generators can be expressed in terms
of the operators of the second set by the relationsf52g

H = sP2 + M2d1/2, s2.8ad

J = X 3 P + S, s2.8bd
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K = −
1

2
sXH + HXd −

P 3 S

M + H
. s2.8cd

It can be shown that if the commutators of the set
hM, P, S, Xj are zero, except for those given by Eq.(2.7),
then the generators given by Eq.(2.8), in combination with
P, satisfy the Poincaré algebra.

In the Bakamjian-Thomas construction[54] of the set
hM, P, S, Xj, the operatorsP, S, andX are chosen to be the
same as those for the system of particles without interac-
tions, while the mass operatorM contains interactions. The
mass operator can be written in the form

M = M0 + U, s2.9d

whereM0 is the non interacting mass operator andU is an
interaction. The commutation rules forP, S, and X are
then automatically satisfied, and it is only necessary to
ensure that

fU, Pg = fU, Sg = fU, Xg = 0. s2.10d

It is important to note that it has been provenf59–62g that
the S-matrix elements that arise in models based on the
Bakamjian-Thomas construction transform properly in go-
ing from one inertial frame to another. The probability of
a physical process is Poincaré invariant.

III. SINGLE-PARTICLE STATES

For massive particles of massMx, states can be con-
structed by boosting a rest frame stateusml according to

upsml = Uflcspdgusml, s3.1d

where s and m are the particle’s spin and three-
component, respectively; and the so-called canonical
boost is given by

Uflcspdg = exps− irp̂ ·K d, r = tanh−1fupu/«xspdg,

s3.2ad

«xspd = sp2 + Mx
2d1/2. s3.2bd

Assuming thatusml is an SU(2) basis state and using the fact
that K is a three-vector operator, which implies that
Usrdp̂·KU−1srd=srp̂d·K , it follows that the state(3.1) rotates
according to

Usrdupsml = o
m8=−s

s

urp, sm8lDm8m
ssd srd. s3.3d

HereDssd is a standard matrix representation of SUs2d. For
the state of a massless particle with helicityl we can
write

upll = Ufrsp̂dguupue3, ll, s3.4d

where uupue3, ll describes a massless particle with three-
momentumupue3, where e3=s0, 0, 1d, and l is an eigen-
value of J3. The rotationrsp̂d has the property

rsp̂de3 = p̂. s3.5d

We follow the Jacob-Wick conventionf63g and choose

rsp̂d = exps− if j3dexps− iu j2dexpsif j3d, s3.6ad

p̂ = ssin u cosf, sin u sin f, cosud,

0 ø u ø p, 0 ø f , 2p. s3.6bd

In order to see how the states(3.4) rotate, we can write
rr sp̂d=rsrp̂dr3sr, p̂d, where

r3sr, p̂d = r−1srp̂drr sp̂d = expf− ifsr, p̂d j3g. s3.7d

The fact thatr3 is a rotation about the 3-axis follows from
the observation thatr3sr, p̂de3=e3. It now follows that

Usrdupll = urp, llexpf− ifsr, p̂dlg. s3.8d

We now consider spatial inversion, i.e.,sct, xd→sct, −xd,
which we denote bya=s. We denote the unitary operator
corresponding tos by P=Ussd. Under spatial inversions the
Poincaré generators satisfy[58]

PHP−1 = H, PPP−1 = − P, PJP−1 = J, PKP−1 = − K .

s3.9d

Using the inverse relations to Eq.s2.8d, which are given
by Eqs.s2.7d–s2.9d of Ref. f64g, we can show that

PMP−1 = M, PSP−1 = S, PXP−1 = − X . s3.10d

Since the massive particle rest frame stateusml is an
eigenstate ofS2 and S3 with eigenvaluessss+1d and m,
respectively; it follows from Eq.s3.10d that Pusml is also
such a state; thereforePusml= usmlh, whereh is a phase
factor. Application ofS±=S1± iS2 shows thath is indepen-
dent of m. SinceP2=Uss2d=1 and thereforeP−1=P=P†,
we see thath is real andh2=1. It now follows from Eqs.
s3.1d, s3.2d, and s3.9d that

Pupsm= u− p, smlh, h = ± 1. s3.11d

The polar angles for −p̂ aresp−u, f±pd, where the upper
sign is used for 0øf,p and the lower sign forp
øf,2p. Since P is a three-vector operator andJ·P is a
pseudoscalar operator, it follows from Eqs.(3.4) and (3.5)
that upll is an eigenstate ofP and J·P with eigenvaluesp
andlupu, respectively; while according to Eqs.(3.9) the cor-
responding eigenvalues forPupll are −p and −lupu. This im-
plies thatPupll=u−p, −lljsp, ld wherejsp, ld is a phase fac-
tor. We can determine this phase factor using results obtained
by Tung [58]. Instead of Eq. (3.6a) Tung uses rsp̂d
=exps−ifj3dexps−iuj2d so our helicity states, Eq.(3.4), are
related to his byupll=upllTungexpsilfd. It follows from his
Eq. (11.3–23) that

Pupll = u− p, − llhs− 1dulu−lexps2ilfd. s3.12d

For photonsh=−1 andulu=1.
Rather than work with the helicity states, we will work

with a linear combination of them, which has simpler trans-
formation properties. We define
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upmd = o
l=±s

upllDlm
ssd fr−1sp̂dg, s= ulu = 1, s3.13d

where we have used the curved bracket to distinguish
these states from Eq.s3.1d. Using Eqs.s3.7d ands3.8d, and
D

ll8
ssd fr3sr, p̂dg=dll8expf−ifsr, p̂dlg, it follows that

Usrdupmd = o
m8=−s

s

urp, m8dDm8m
ssd srd, s3.14d

which is just like Eq.s3.3d. Using Eq.s3.6d we can derive
the identity

r−1sp̂d = expsip j2dexps2if j3dr−1s− p̂d, s3.15d

which when combined with Eqs.s3.12d ands3.13d leads to

Pupmd = u− p, mdh, s3.16d

which is just like Eq.s3.11d.

IV. PHOTON-BARYON AND MESON-BARYON STATES

Our photon-baryon states are obtained by boosting
photon-baryon states from the photon-baryon center-of-mass
(c.m.) frame according to

upqmgmbtbl = Uflcspdguqmgd ^ u− q, sbmbibtbl, s4.1ad

r = tanh−1fupu/Egbsp, qdg, s4.1bd

where the boost is the canonical boost defined by Eq.(3.2)
but with r given by Eq. (4.1b), p is the total three-
momentum, andq is the photon’s c.m. three-momentum.
Here uqmgd and u−q, sbmbibtbl are defined by Eqs.(3.13) and
(3.1), respectively; with the baryon’s total isospin and three-
component given byib and tb, respectively. The total four-
momentum is given by

p = fEgbsp, qd, pg, s4.2ad

Egbsp, qd = fp2 + Wgb
2 sqdg, s4.2bd

Wgbsqd = vgsqd + «bsqd, s4.2cd

with vg and «b the photon and baryon c.m. energy, respec-
tively. It follows from Eqs.(3.3), (3.14), (3.11), (3.16), and
(3.9) that under spatial rotations and inversions, the states
(4.1) transform according to

Usrdupqmgmbtbl = o
mg8mb8

urp, rq , mg8mb8tblDm
g8mg

ssgd srdDmb8mb

ssbd srd,

s4.3d

Pupqmgmbtbl = u− p, − q, mgmbtblhghb. s4.4d

We refer to the statess4.1d as “plane-wave” states. We
define partial-wave states by

upqsgsgdlsb, jmtbl = o
mlmb

o
mgmg

E upqmgmbtbldVqYg
mgsq̂d

3kgsgmgmgulmllklsbmlmbu jml, s4.5d

which transform according to

Usrdupqsgsgdlsb, jmtbl = o
m8

urp, qsgsgdlsb, jm8tblDm8m
s jd srd,

s4.6d

Pupqsgsgdlsb, jmtbl = u− p, qsgsgdlsb, jmtblhghbs− 1dg.

s4.7d

Here Yg
mgsq̂d is a spherical harmonic and thekul’s are

Clebsch-Gordon coefficients.
For the purpose of dealing with gauge invariance, it is

convenient to defined special linear combinations of the
states (4.5), which we denote byupqnlsb, jmtbl, with n
=0, 1, 2; i.e.,

upq0lsb, jmtbl = upqsl − 1,sgdlsb, jmtblÎ l

2l + 1

− upqsl + 1,sgdlsb, jmtblÎ l + 1

2l + 1
,

s4.8ad

upq1lsb, jmtbl = upqsl, sgdlsb, jmtbl, s4.8bd

upq2lsb, jmtbl = upqsl − 1,sgdlsb, jmtblÎ l + 1

2l + 1

+ upqsl + 1,sgdlsb, jmtblÎ l

2l + 1
.

s4.8cd

These states transform according to

Usrdupqnlsb, jmtbl = o
m8

urp, qnlsb, jm8tblDm8m
s jd srd,

s4.9d

Pupqnlsb, jmtbl = u− p, qnlsb, jmtblhghbs− 1dn+l+1.

s4.10d

Meson-baryon states are defined similar to Eq.s4.1d, but
with sg, bd→ sm, Bd in Eqs. s4.1bd and s4.2ad–s4.2cd. We
write

upqmmmBtmtBl = Uflcspdguqsmmmimtml ^ u− q, sBmBiBtBl.

s4.11d

Partial wave, meson-baryon statesupqsgsmdlsB, jmtmtBl are
defined as in Eq.s4.5d, and transform similar to Eqs.s4.6d
and s4.7d.
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V. VERTEX FUNCTIONS, POTENTIALS,
AND AMPLITUDES

A. The transition operator

The transition operator which arises from the mass opera-
tor (2.9) is defined by

Tszd = U + U
1

z− M
U, s5.1d

where z is a complex parameter which is given byz=W
+ i« for a physical process. The operatorsP, S, and X
commute withM andU, and therefore with the transition
operatorTszd. We assume that the parity operatorP also
commutes withM, U, and Tszd. As far as isospin is con-
cerned, we make the standard assumption thatM, U, and
Tszd can be decomposed into an isoscalar and the third
component of an isovector, e.g.,

U = Us + U3. s5.2d

B. Photon-baryon̂ baryon vertex functions

As a result of the commutation rules(2.10), a partial wave
matrix element of the interaction that couples a photon-
baryon state to a single-baryon state can be expressed in the
form [57,64]

kksBmBiBtBuUupqnlsb, jmtbl = s2pd32f«BskdEgbsp, qdg1/2

3 d3sk − pddsBjdmBmdtBtb

3
UB,gbsqnltbd

2fMBWgbsqdg1/2, s5.3ad

UB,gbsqnltbd = 0 if hB Þ hghbs− 1dn+l+1. s5.3bd

We can justify this form as follows. The commutatorfU, Pg
=0 leads to thed3sk−pd, while the commutatorfU, Xg=0
implies that UB,gbsqnltbd is independent ofk=p. Since
fU, Sg=0, it follows from Eq.(2.8b) that fU, Jg=0 and there-
fore U−1srdUUsrd=U. Along with Eqs.(3.3) and(4.9), this in
turn implies that

kksBmBiBtBuUupqnlsb, jmtbl

= o
mB8m8

Dm
B8mB

ssBdp srdkksBmB8 iBtBuUupqnlsb, jm8tblDm8m
s jd srd.

If we integrate over the parameters that labelr and use the
identity

E dtrDmB8mB

ssBdp srdDm8m
s jd srd =

N

2j + 1
dsBjdmBmdmB8m8, N =E dtr ,

we have justified the factordsBjdmBm in Eq. s5.3ad along
with the fact thatUB,gbsqnltbd is independent ofmB=m.

We now use Eq.(5.3a) to find the structure of the plane-
wave matrix elementskksBmBiBtBuUupqmgmbtbl. We introduce
spherical three-vectors«m by

«± = s71, − i, 0d/Î2, «0 = s0, 0, 1d, s5.4d

along with s2sb+1d-dimensional baryon spin vectorsxmb

sb ,
and use them to define the generalized vector harmonics,

Y sgsgdlsbj
m sq̂d = o

mlmb

o
mgmg

Yg
mgsq̂d«mg

xmb

sb kgsgmgmgulmll

3klsbmlmbu jml. s5.5d

In parallel with Eq.s4.8d we also define the vector har-
monics

Z0lsbj
m sq̂d = Y sl−1,sgdlsbj

m sq̂dÎ l

2l + 1
− Y sl+1,sgdlsbj

m sq̂dÎ l + 1

2l + 1
,

s5.6ad

Z1lsbj
m sq̂d = Y sl,sgdlsbj

m sq̂d, s5.6bd

Z2lsbj
m sq̂d = Y sl−1,sgdlsbj

m sq̂dÎ l + 1

2l + 1
+ Y sl+1,sgdlsbj

m sq̂dÎ l

2l + 1
.

s5.6cd

By using the orthogonality of the Clebsch-Gordon coeffi-
cients and the completeness relation for the spherical har-
monics, we can invert Eq.(4.5) to express the plane-wave
states upqmgmbtbl in terms of the partial-wave states
upqsgsgdlsb, jmtbl, and then with the help of Eqs.(4.8), (5.5),
and (5.6), we can show that

upqmgmbtbl = o
jm

o
nl

upqnlsb, jmtblZnlsbj
m† sq̂d · «mg

xmb

sb .

s5.7d

Combining this relation with Eq.s5.3ad, we arrive at the
plane-wave matrix element

kksBmBiBtBuUupqmgmbtbl

= s2pd32f«BskdEgbsp, qdg1/2d3sk − pddtBtb

3 xmB

sB† UB,gbsq, tbd
2fMBWgbsqdg1/2 · «mg

xmb

sb , s5.8d

where the vertex functionUB,gbsq, tbd is given by

UB,gbsq, tbd = o
mBl

o
n=1

2

xmB

sB UB,gbsqnltbdZnlsbsB

mB† sq̂d. s5.9d

We note that we have excluded then=0 term from the
sum onn. We now show that this is required by gauge
invariance.

We define alternative plane-wave states by

upqlgmbtbl = o
mg

upqmgmbtblDmglg

ssgd frsq̂dg

= Uflcspdguqlgl ^ u− q, sbmbibtbl, s5.10d

where the second equality follows from Eqs.s4.1ad and
s3.13d. Now we have
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kksBmBiBtBuUupqlgmbtbl

= s2pd32f«BskdEgbsp, qdg1/2d3sk − pddtBtb

3 xmB

sB† UB,gbsq, tbd
2fMBWgbsqdg1/2 · «sq, lgdxmb

sb , s5.11d

where the polarization vector«sq, lgd is given by

«sq, lgd = o
mg

«mg
Dmglg

ssgd frsq̂dg = rsq̂d«lg
, lg = ± 1.

s5.12d

Gauge invariance requires that Eq.s5.11d should be in-
variant under the replacement

«sq, lgd → «sq, lgd + constsqd. s5.13d

Using the development given in Sec. 25 of Rosef65g, we
can show that

Z0lsbj
m sq̂d = q̂Ylsbj

m sq̂d, s5.14ad

Z1lsbj
m sq̂d =

1

Îlsl + 1d
si¹q 3 qdYlsbj

m sq̂d, s5.14bd

Z2lsbj
m sq̂d = − iq̂ 3 Z1lsbj

m sq̂d, s5.14cd

with

Ylsbj
m sq̂d = o

mlmb

Yl
mlsq̂dxmb

sb klsbmlmbu jml. s5.15d

We see that excluding then=0 term in Eq.s5.9d ensures
that Eq. s5.11d is invariant under the replacement Eq.
s5.13d.

C. Meson-baryon̂ baryon vertex functions

We now consider the meson-baryon↔baryon vertices. We
recall that our notation for the meson-baryon, partial-wave
states isupqsgsmdlsB, jmtmtBl. Since the strong interaction con-
serves isospin, it is convenient to define eigenstates of the
total isospin by

upqsgsmdlsb, jm, itl = o
tmtb

upqsgsmdlsb, jmtmtblkimibtmtbuitl.

s5.16d

By using the same sort of arguments as those that led to
Eq. s5.3d, we can show that the partial-wave matrix ele-
ment for the transitionB→m+b has the structure

kpqsgsmdlsb, jm, it uUuksBmBiBtBl

= s2pd32fEmbsp, qd«Bskdg1/2d3sp − kddii B
dttB

d jsB
dmmB

3
Umb,Bsqgld

2fWmbsqdMBg1/2, s5.17ad

Umb,Bsqgld = 0 if hmhbs− 1dg Þ hB. s5.17bd

The same sort of procedure that led to Eq.(5.7) can be used
to show that the meson-baryon, plane-wave states are related
to the partial-wave states by

upqmmmb, itl = o
jm

o
gl

upqsgsmdlsb, jm, itlYsgsmdlsbj
m† sq̂dzmm

sm xmb

sb ,

s5.18d

whereYsgsmdlsbj
m sq̂d is defined similar to Eq.s5.5d but with

«mg
replaced with thes2sm+1d-dimensional meson spin

vectorzmm

sm . It follows from Eqs.s5.18d and s5.17d that the
plane-wave matrix element for the transitionB→m+b is
given by

kpqmmmb, it uUuksBmBiBtBl

= s2pd32fEmbsp, qd«Bskdg1/2d3sp − kddii B
dttB

3 zmm

sm†xmb

sb† Umb,Bsqd
2fWmbsqdMBg1/2xmB

sB , s5.19d

with

Umb,Bsqd = o
mBgl

YsgsmdlsbsB

mB sq̂dUmb,BsqgldxmB

sB†. s5.20d

D. Photon-baryon̂ meson-baryon potentials

For the processg+b→m+B the partial-wave matrix ele-
ment of the interaction has the form

kp8q8sgsmdl8sB, j8m8, it uUupqnlsb, jmtbl

= s2pd32fEmBsp8, q8dEgbsp, qdg1/2

3d3sp8 − pddttb
d j8 jdm8m

UmB,gb
j sq8gl8i, qnltbd

2fWmBsq8dWgbsqdg1/2,

s5.21ad

UmB,gb
j sq8gl8i, qnltbd = 0 if hmhBs− 1dg Þ hghbs− 1dn+l+1.

s5.21bd

Using Eqs.(5.18), (5.10), (5.7), and(5.12), we can show that
the plane-wave matrix element is given by

kp8q8mmmB, it uUupqlgmbtbl

= s2pd32fEmBsp8, q8dEgbsp, qdg1/2d3sp8 − pddttb

3 zmm

sm†xmB

sB† UmB,gbsq8i, qtbd
2fWmBsq8dWgbsqdg1/2 · «sq, lgdxmb

sb , s5.22d

where

UmB,gbsq8i, qtbd = o
jm

o
gl8l

o
n=1

2

Ysgsmdl8sBj
m sq̂8d

3UmB,gb
j sq8gl8i, qnltbdZnlsbj

m† sq̂d.

s5.23d

It should be noted that Eq.s5.23d also gives the most
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general form for the amplitude for the physical photopro-
duction processg+b→m+B, and thereby provides a gen-
eralization for the CGLN amplitudes for pion-nucleon
photoproductionf2g.

E. Photon-nucleon̂ pion-nucleon potentials

An obviously important special case of the result(5.23) is
for the transitiong+N→p+N for which b=B=N, m=p, sN
=1/2,sp=0,hp=hg=−1,hN=1. Since sp=0 we can use
Ysg0dl8,1/2,j

m sq̂8d=dgl8Yl,81/2,j
m sq̂8d where the right hand side is de-

fined by Eq.(5.15). Looking at Eqs.(5.14) and(5.15) we see
that we must havel8, l= j 71/2 which when combined with
the parity constraint(5.21b) implies that the nonzero terms in
Eq. (5.23) must havel8=l andn=1 or l8=2j−l andn=2. The
result for the transitiong+N→p+N is

UpN,gNsq8i, qtNd = o
jml

Yl,1/2,j
m sq̂8dfU1l

j sq8i, qtNdZ1,l,1/2,j
m† sq̂d

+ U2l
j sq8i, qtNdZ2,2j−l,1/2,j

m† sq̂dg, s5.24ad

U1l
j sq8i, qtNd = UpN,gN

j sq8, l, l, i ;q, 1, l, tNd, s5.24bd

U2l
j sq8i, qtNd = UpN,gN

j sq8, l, l, i ;q, 2, 2j − l, tNd.

s5.24cd

The well-known CGLN representation[2] can be used to
obtain formulas for the partial-wave amplitudesU1l

j andU2l
j

in terms of the plane-wave amplitudes. We have

UpN,gNsq8i, qtNd = s'U1sq8i, qtNd + iss · q̂8dsq̂ 3 sd

3U2sq8i, qtNd + q̂'8 ss · q̂dU3sq8i, qtNd

+ q̂'8 ss · q̂dU4sq8i, qtNd, s5.25ad

v' = v − q̂sq̂ ·vd. s5.25bd

The functionsUnsq8i, qtNd are invariant under spatial rota-
tions and inversions. We can show that the various spin fac-
tors can be expanded according to

s' = − 4pÎ2o
m

Y0,1/2,1/2
m sq̂8dZ2,1,1/2,1/2

m† sq̂d, s5.26ad

iss · q̂8dsq̂ 3 sd = 4pÎ2o
m

Y1,1/2,1/2
m sq̂8dZ1,1,1/2,1/2

m† sq̂d,

s5.26bd

q̂'8 ss · q̂d =
4p

3Î2F2o
m

Y1,1/2,1/2
m sq̂8dZ1,1,1/2,1/2

m† sq̂d

− o
m

Y1,1/2,3/2
m sq̂8dZ1,1,1/2,3/2

m† sq̂d

− Î3o
m

Y1,1/2,3/2
m sq̂8dZ2,2,1/2,3/2

m† sq̂dG ,

s5.26cd

q̂'8 ss · q̂8d = −
4pÎ2

3 o
j ,m

Y2j−1,1/2,j
m sq̂8dZ2,1,1/2,j

m† sq̂d.

s5.26dd

We can expand the functionsUnsq8i, qtNd in the form

Unsq8i, qtNd = o
l,m

Yl
msq̂8dUnlsq8i, qtNdYl

mpsq̂d,

s5.27ad

Unlsq8i, qtNd = 2pE
−1

1

dxPlsxdUnsq8i, qtNd, x = q̂8 · q̂.

s5.27bd

Using the orthonormality of theY’s and Z’s, we can solve
Eq. (5.24a) for the partial-wave amplitudes(5.24b) and
(5.24c). Combining these results with Eqs.(5.25)–(5.27), we
find that the integrals that occur are given by

E dVYl8,1/2,j8
m8† sq̂dYL

Msq̂dYl,1/2,j
m sq̂d

= F s2l8 + 1ds2j + 1ds2l + 1d
4p

G1/2

s− 1d j+1/2kl8l00uL0l

3 H j L j 8

l8 1/2 l Jk jLmMu j8m8l, s5.28ad

E dVY sg8,1dl8,1/2,j8
m8† sq̂d ·YL

Mpsq̂dY sg,1dl,1/2,j
m sq̂d

= F s2j8 + 1ds2g8 + 1ds2l8 + 1ds2l + 1ds2g + 1d
4p

G1/2

3s− 1dL+l8+l+j8−1/2 3 kg8g00uL0lH l L l 8

g8 1 gJ
3H j L j 8

l8 1/2 l Jk j8Lm88Mu jml. s5.28bd

Evaluating the Clebsch-Gordon coefficients and the 6j sym-
bols, we find that the partial-wave amplitudes are given in
terms of the CGLN amplitudes by the relations

U1l
l+1/2 =

Îlsl + 1d
l + 1 FU1l − U2,l+1 +

1

2l + 1
sU3,l+1 − U3,l−1dG,

l = 1, 2, 3,¯ s5.29ad

U1l
l−1/2 =

Îlsl + 1d
l F− U1l + U2,l−1 +

1

2l + 1
sU3,l−1 − U3,l+1dG,

l = 1, 2, 3,¯ s5.29bd
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U2l
l+1/2 =

Îsl + 1dsl + 2d
l + 1 F− U1l + U2,l+1 +

l

2l + 1
sU3,l+1

− U3,l−1d+
l + 1

2l + 3
sU4,l+2 − U4,ldG, l = 0, 1, 2,¯

s5.29cd

U2l
l−1/2 =

Îsl − 1dl
l FU1l − U2,l−1 +

l + 1

2l + 1
sU3,l+1 − U3,l−1d

+
l

2l − 1
sU4l − U4,l−2dG, l = 2, 3, 4,¯ .

s5.29dd

The so-called charge amplitudes, for which both the final
meson and baryon have definite three-components of isospin,
are related to the amplitudes for which the final state has a
definite total isospin by

UmB,gbsq8tmtB, qtbd = o
i

kimiBtmtBuitblUmB,gbsq8i, qtbd.

s5.30d

If we compare this relation for the transitiong+N→p
+N with Eq. s3.2d of Arndt et al. [66], we find that our
isospin amplitudes are related to those commonly used in the
literature by

UpN,gNsq8, i = 1/2;q, tNd = − Î3 p,nH
1/2,

UpN,gNsq8, i = 3/2;q, tNd = Î2/3 H3/2. s5.31d

VI. THE T MATRIX

Our T matrix is defined by Eqs.(5.1) and (2.9) and ac-
cording to standard scattering theory[62] it satisfies the
Lippmann-Schwinger equations

Tszd = U + Tszd
1

z− M0
U = U + U

1

z− M0
Tszd. s6.1d

In our model there are one-baryon channels, meson-
baryon channels, and photon-baryon channels; accord-
ingly, our interaction has the general structure

U = U11 + U12 + U21 + U22, s6.2d

whereUmn couples anm-particle channel to ann-particle
channel. We have shown previouslyf57,67g that it is pos-
sible to eliminate the one-baryon channels and replaceU
by an effective interactionV22szd which only couples two-
particle channels. Instead of Eq.s6.1d we can work with
the equations

T22szd = V22szd + T22szd
1

z− M0
V22szd

= V22szd + V22szd
1

z− M0
T22szd, s6.3d

where

V22szd = U22 + o
B,mB,tB

E U21uksBmBiBtBl

3
d3k

s2pd32«Bskdsz− mB
s0dd

kksBmBiBtBuU12,

s6.4d

with mB
s0d the bare mass of baryonB. For the photoproduc-

tion processes we work to first order ine, so the relevant
T operator is given by

TmB,gbszd = VmB,gbszd + o
m8,B8

TmB,m8B8szd
1

z− M0
Vm8B8,gbszd

+ ¯ . s6.5d

When written out in terms of partial-wave amplitudes for
a physical process this equation takes on the form

TmB,gb
j sq8gLi, qnltb;W+ i«d

= VmB,gb
j sq8gLi, qnltb;Wd

+ o
m8B8

o
g8L8

E TmB,m8B8
i j sq8gL, q9g8L8;W+ i«d

3
q92dq88Vm8B8,gb

j sq9g8L8i, qnltb;Wd

Dm8B8sq9d2Wm8B8sq9dfW+ i« − Wm8B8sq9dg
,

s6.6ad

WmBsq8d = Wgbsqd = W, s6.6bd

DmBsqd = s2pd32vmsqd«Bsqd/WmBsqd. s6.6cd

HereTmB,m8B8
ij is theT-matrix for meson-baryon scattering in

the absence of electromagnetic interactions. It follows from
Eq. (6.4) that the partial-wave, effective potentials are given
by

VmB,gb
j sq8gLi, qnltb;Wd

= UmB,gb
j sq8gLi, qnltbd + o

B8

UmB,B8sq8gLd

3
d jsB8

dii b8

2mBsW− mB8
s0dd

UB8,gbsqnltbd. s6.7d

By comparing Eq.(5.29) with, for example, Eqs.(B1) and
(B2) of Nozawaet al. [29], and using the conversion factors
in Eq. (5.31), we find that the multipoles given in the litera-
ture and in theSAID database[68] are related to our partial-
wave,T-matrix elements by

sLd2I,2JNM =
iC2I

2s4pd2WÎLsL + 1d

3TpN.gN
J sq8, L, L, I ;q, 1,L, tN;W+ i«d,

s6.8ad
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sLd2I,2JNE=
2sL − JdiC2I

2s4pd2WÎs2J − Lds2J − L + 1d

3 TpN.gN
J sq8, L, L, I ;q, 2, 2J − L, tN;W+ i«d,

s6.8bd

WpNsq8d = WgNsqd = W, C1 = − 1/Î3, C3 = Î3/2.

s6.8cd

HereL, I, andJ are the relative orbital angular momentum,
total isospin, and total angular momentum, respectively, of
the final pion-nucleon state;N=n or p designates the target
nucleon; andM andE refer to magnetic and electric multi-
poles, respectively.

VII. INTERACTIONS AND EFFECTIVE LAGRANGIANS

A. General formalism

We obtain our interactions from effective Lagrangians us-
ing a method due to Okubo[56]. The quantum field theory
Hamiltonian is divided into a noninteracting partH0 and an
interactionH1 according to

HQFT = H0 + H1, s7.1d

where the eigenstates ofH0, designated here byuzl, are
assumed known, and satisfy

H0uzl = Eszduzl. s7.2d

The Fock space of the field theory is divided into a sub-
space consisting of various single-baryon states, i.e.,
uNl, uDl, uRl, . . .; and various meson-baryon and photon-
nucleon states, i.e.,upNl, upDl, ugNl, . . .; and the comple-
ment to this subspace. We denote the projection operator
onto this subspace byP and the projection operator onto
its orthogonal complement byL, so that

P + L = 1. s7.3d

The effective Hamiltonian in theP subspace is given to
second order inH1 f69g by

kzuHPuz8l = kzuHQFT +
1

2
H1F L

Eszd − H0
+

L

Esz8d − H0
GH1uz8l

+ ¯ . s7.4d

The vertex functions forg+b→B are obtained from the
quantum field theory matrix element

kpBmBtBuH1upglg, pbmbtbl = s2pd3d3spB − pg

− pbddtBtb
HB,gbspBmB, pglgmbtbd.

s7.5d

If we put k =0 in Eq. s5.11d and pB=0 in Eq. s7.5d and
compare, we find

xmB

sB†UB,gbsq, tbd · «sq, lgdxmb

sb = HB,gbs0mB, qlgmbtbd.

s7.6d

For the transitionm+b→B the field theory matrix element
is

kpmmm, pbmb, it uH1upBmBtBl

= o
tm,tb

kimibtmtbitlkpmmmtm, pbmbtbuH1upBmBtBl

= s2pd3d3spm + pb − pBddii B
dttB

Hmb,Bspmmmmb,pBmBd.

s7.7d

Comparing with Eq.s5.19d we find

zmm

sm†xmb

sb†Umb,BsqdxmB

sB = Hmb,Bsqmmmb, 0mBd. s7.8d

The interactions forg+b→m+B are obtained from the
matrix elements

kpmmm, pBmB, it uHPupglg, pbmbtbl

= o
tm,tB

kimiBtmtBuitlkpmmmtm, pBmBtBuHPupglg, pbmbtbl

= s2pd3d3spm + pB − pg − pbddttb

3 HmB,gbspmmm, pBmB, i ;pglg, pbmbtbd. s7.9d

We set pg+pb=p=0 and compare to Eq.s5.22d with p
=0 to obtain

zmm

sm†xmB

sB†UmB,gbsq8i, qtbd · «sq, lgdxmb

sb

= HmB,gbsq8mm, − q8, mB, i ;qlg, − q, mb,tbd.

s7.10d

In order to deduce the formsUB,gbsq, tbd·«sq, lgd and
UmB,gbsq8i, qtbd·«sq, lgd from the quantum field theory ma-
trix elements we exploit the fact that these matrix elements
are of the formJ·« with k·«=0, and in principle,J·k=0.
Assuming this is so, we can write«0=−q·«/vgsqd=−q̂·« and
J0=−q̂·J, which in turn implies that

J · «sk, ld = − fJ − sJ · q̂dq̂g · «sq, ld = − J' · «sq, ld.

s7.11d

B. The Lagrangians

Here we give the effective Lagrangians that are used to
construct our mass operator interactions. It is important to do
so as there is some variation in the literature having to do
with the coupling constant normalizations and the signs of
some of the terms. We begin with the Lagrangians that lead
to the so-called Born term for pion photoproduction.

LgNNsxd = − eNsxdF1 + t3

2
A” sxd + S1 + t3

2
kp

+
1 − t3

2
knD smn

2mN
]mAnsxdGNsxd, s7.12d
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LpNNsxd = −
gpNN

2mN
Nsxdg5gmtNsxd · ]mpsxd, s7.13d

LpNgNsxd = −
gpNN

2mN
eNsxdg5gmft 3 psxdg3NsxdAmsxd,

s7.14d

Lgppsxd = ehf]mpsxdg† 3 psxdj3A
msxd, s7.15d

LrNNsxd = frNNNsxdFSgm +
kr

2mN
smn]

nDt · rmsxdGNsxd,

s7.16d

Lrpgsxd =
grpg

mp

«abgdf]aAbsxdgpsxd · ]grdsxd, s7.17d

LvNNsxd = fvNNNsxdFSgm +
kv

2mN
smn]

nDvmsxdGNsxd,

s7.18d

Lvpgsxd =
gvpg

mp

«abgdf]aAbsxdgp0sxd · ]gvdsxd.

s7.19d

For the Lagrangians that describe the couplings to theD
=P33s1232d resonance wef10g take

LgNDsxd = LgND
s1d sxd + LgND

s2d sxd, s7.20ad

LgND
s1d sxd =

ieg1gND

2mN
DmsxdQmlsXdgng5TND,3

† NsxdFnlsxd + s†d,

s7.20bd

LgND
s2d sxd = −

eg2gND

4mN
2 DmsxdQmnsYdg5TND,3

† f]lNsxdgFnlsxd

+ s†d, s7.20cd

QmnsXd = gmn + F1

2
s1 + 4XdA + XGgmgn, s7.20dd

Fmnsxd = ]nAmsxd − ]mAnsxd, s7.20ed

LpNDsxd = −
gpND

mp

DmsxdTND
† Nsxd · ]mpsxd + s†d.

s7.21d

Here the vector matrixTND is an isospin transition opera-
tor f57g.

For the Lagrangians that describe the coupling to the
Roper resonanceR=P11s1440d, we take

LgNRsxd = − eRsxdS1 + t3

2
kRp+

1 − t3

2
kRnD

3
smn

mN + mR
]mAnsxdNsxd + s†d, s7.22d

LpNRsxd = −
gpNR

mN + mR
Nsxdg5gmtRsxd · ]mpsxd + s†d,

s7.23d

LpRDsxd = −
gpRD

mp

DmsxdTRD
† Rsxd · ]mpsxd + s†d.

s7.24d

For the couplings to theD=D13s1520d resonance we use
[13,14]

LgND
s1d sxd = −

ie

2mN
DmsxdQmlgnSkDp1

1 + t3

2

+ kDn1

1 − t3

2 DNsxdFnlsxd + s†d, s7.25ad

LgND
s2d sxd =

e

4mN
2 DmsxdQmnSkDp2

1 + t3

2
+ kDn2

1 − t3

2 D
3f]lNsxdgFnlsxd + s†d, s7.25bd

LpNDsxd =
gpND

mp

DmsxdQmntg5Nsxd · ]npsxd + s†d,

s7.26d

LpDDsxd =
gpDD

mp

DmsxdfTDD · psxdgDmsxd + s†d.

s7.27d

We note that both theR and theD couple to not only the
gN and pN channels, but also to thepD channel.

For theS=S11s1535d couplings we take[13,14]

LgNSsxd = − eSsxdS1 + t3

2
kSp

+
1 − t3

2
kSnD g5smn

mS− mN
]mAnsxdNsxd + s†d,

s7.28d

LpNSsxd =
gpNS

mS− mN
SsxdgmtNsxd · ]mpsxd + s†d,

s7.29d

LhNSsxd =
ghNS

mS− mN
SsxdgmNsxd · ]mhsxd + s†d. s7.30d

We see that theScouples to thegN, pN, andhN channels.
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For each interaction LagrangianLIsxd, we take for the
corresponding interaction Hamiltonian

HI = −E d3xLIsxdut=0. s7.31d

C. The g+N^N and p+N^N vertex functions

As our first application of the above relations, we con-
struct vertex functions forg+N↔N andp+N↔N from the
effective Lagrangian densities(7.12) and (7.13).

It follows from Eq. (7.5) that

HN,gNs0m8, qlmtd = eusp8, m8dFdtpgn − isdtpkp

+ dtnknd
smnk

m

2mN
G«nsk, ldusp, md,

s7.32ad

p8 = smN, 0d, k = fvgsqd, qg, p = f«Nsqd, − qg.

s7.32bd

Now using Eqs.(7.6) and (7.11) we find

xm8
1/2†UN,gNsq, tdxm

1/2 = eusp8, m8dg'F− dtp + sdtpkp

+ dtnknd
WgNsqdg0 − mN

2mN
Gusp, md,

s7.33d

and putting in the explicit forms for the Dirac spinors, we
obtain the vertex function

UN,gNsq, td = ieF 2mN

«Nsqd + mN
G1/2Fdtp + sdtpkp

+ dtnknd
WgNsqd + mN

2mN
Gsq 3 sd. s7.34d

Using Eq.s5.14d and the identity

s · q̂Yl,1/2,j
m sq̂d = − Y2j−l,1/2,j

m sq̂d, s7.35d

we can write

Z1,1,1/2,1/2
m sq̂d = −

1

Î2
si¹q 3 qdss · q̂dY0,1/2,1/2

m sq̂d

=
i

Î8p
sq 3 sdxm

1/2, s7.36d

which allows us to expand Eq.s7.34d in the forms5.9d and
deduce that the partial-wave, vertex function is given by

UN,gNsqnltd = − dn1dl1Î8peqF 2mN

«Nsqd + mN
G1/2Fdtp + sdtpkp

+ dtnknd
WgNsqd + mN

2mN
G . s7.37d

Using Eqs.(7.13), (7.7), and(7.8), we find

xm
1/2†UpN,Nsqdxm8

1/2 = − Î3 i
gpNN

2mN
uspN, mdg5p”puspN8 , m8d,

s7.38ad

pp = fvpsqd, qg, pN = f«Nsqd, − qg, pN8 = smN, 0d.

s7.38bd

Putting in the explicit forms for the Dirac spinors we find
that thep+N↔N vertex function can be expanded in the
form (5.20) with

UpN,Nsqgld = dgldl1Î12p igpNNF 2mN

«Nsqd + mN
G1/2

3
WpNsqd + mN

2mN
q. s7.39d

D. The g+N\p+N interactions

In constructing the interactions for the processg+N→p
+N that follow from Eqs.(7.9) and(7.10) it is convenient to
introduce the notation

kk8u8, p8m8t8uHPukl, pmtl = s2pd3d3sk8 + p8 − k − pd

3Vsk8u8, p8m8t8;kl, pmtd,

s7.40ad

where

k8 = pp8 , u8 = tp8 , p8 = pN8 , m8 = mN8 , t8 = tN8 ,

k = pg, l = lg, p = pN, m= mN, t = tN. s7.40bd

With this notation Eq.s7.10d becomes

xm8
1/2†UpN,gNsq8i, qtd · «sq, lgdxm

1/2

= o
u8,t8

k1, 1/2,u8t8uitlVsk8u8, p8m8t8;kl, pmtd,

s7.41ad

k8 = sv8, q8d, p8 = s«8, − q8d, k = sv, qd, p = s«, − qd,

s7.41bd

v8 = vpsq8d, «8 = «Nsq8d, v = vgsqd, « = «Nsqd.

s7.41cd

A g+N→p+N interaction that comes from theH1 term in
Eq. (7.4) arises from the Lagrangian density(7.14) which
leads to the so-called contact interaction

VpN,gN
contactsk8u8, p8m8t8;kl, pmtd

= i
gpNN

2mN
ext8

1/2†s− u8tu8
† dxt

1/2

3usp8, m8dg5gmusp, md«msk, ld. s7.42d
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We now consider interactions that come from the second-
order term in Eq.(7.4). Here we use a slight variation of the
Okubo method and replace the second-order term by a sum
of terms of the form

kk8u8, p8m8t8uHmNN

L

v + « − H0
Hem

+ Hem

L

v8 + «8 − H0
HmNNukl, pmtl. s7.43d

For the direct and crossed nucleon interactionsm=p and
Hem=HgNN. For the p exchange interactionm=p and
Hem=Hgpp. For ther or v exchange interactionsm=r or v
and Hem=Hrpg or Hvpg, respectively. This procedure,
which was introduced in Ref.f50g, leads to a photopro-
duction Born term that looks like a Feynman diagram re-
sult with the four-momentum conserved at the electromag-
netic vertex but not necessarily at the strong interaction
vertex. Moreover, the complete Born term is gauge invari-
ant. The various contributions are given by

VpN,gN
direct sk8u8, p8m8t8;kl, pmtd

= i
gpNN

2mN
ext8

1/2†
tu8

†
xt

1/2usp8, m8dg5k”8
p” + k” + mN

sp + kd2 − mN
2

3 Fdtpgm + sdtpkp + dtnkndismn

kn

2mN
Gusp, md«msk, ld,

s7.44d

VpN,gN
cross sk8u8, p8m8t8;kl, pmtd

= i
gpNN

2mN
ext8

1/2†
tu8

†
xt

1/2usp8, m8d

3Fdt8pgm + sdt8pkp + dt8nkndismn

kn

2mN
G

3
p”8 − k”8 + mN

sp8 − kd2 − mN
2 g5k”8usp, md«msk, ld, s7.45d

VpN,gN
p sk8u8, p8m8t8;kl, pmtd

= i
gpNN

2mN
ext8

1/2†s− u8tu8
† dxt

1/2

3 usp8, m8dg5

sk”8−k”dsk − 2k8dm

sk8 − kd2 − mp
2 usp, md«msk, ld,

s7.46d

VpN,gN
r sk8u8, p8m8t8;kl, pmtd

= igrpg

frNN

mp

xt8
1/2†

tu8
†

xt
1/2QpN,gN

r sk8, p8m8;kl, pmd, s7.47d

VpN,gN
v sk8u8, p8m8t8;kl, pmtd

= igvpg

fvNN

mp

xt8
1/2†du80xt

1/2QpN,gN
v sk8, p8m8;kl, pmd,

s7.48d

with

QpN,gN
m sk8, p8m8;kl, pmd

= usp8, m8dFgd +
km

2mN
isdnsk8 − kdnG

3i«jabzsk8 − kdakbDzdsk8 − k, mmdusp, md«jsk, ld,

m = r, v, s7.49ad

Dzdsq, md =
− gzd + qzqd/m2

q2 − m2 + i«
. s7.49bd

We collect the interactions that involve the coupling
gpNNe in defining

xm8
1/2†UpN,gN

ppN sq8i, qtd · «sq, lgdxm
1/2

= o
u8,t8

k1, 1/2,u8t8uitlfVpN,gN
direct sk8u8, p8m8t8;kl, pmtd

+ VpN,gN
cross sk8u8, p8m8t8;kl, pmtd

+ VpN,gN
contactsk8u8, p8m8t8;kl, pmtd

+ VpN,gN
p sk8u8, p8m8t8;kl, pmtdg, s7.50d

and write for the vector meson interactions

xm8
1/2†UpN,gN

m sq8i, qtd · «sq, lgdxm
1/2

= o
u8,t8

k1, 1/2,u8t8uitlVpN,gN
m sk8u8, p8m8t8;kl, pmtd.

s7.51d

Upon inserting Eqs.s7.44d–s7.46d in Eq. s7.50d and using
Eq. s7.41bd, we find

UpN,gN
ppN sq8i, qtd = i

gpNN

2mN
es«8 + mNd1/2s« + mNd1/2s− Î3d

3 o
u8,t8

k1, 1/2,u8, t8ui, tlk1, 1/2,u8, t8u1/2,tl

3hdtpAsq8, qd + sdtpkp + dtnkndBsq8, qd

+ dt8pCsq8, qd + sdt8pkp + dt8nkndDsq8, qd

− u8fEcsq8, qd + Esq8, qdgj, s7.52d

where we have also used

xt8
1/2†

tu8
†

xt
1/2 = − Î3k1, 1/2,u8, t8u1/2tl. s7.53d

The functions that appear are given by
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Asq8, qd =
W8 − mN

W+ mN
s' +

W8 + mN

W− mN
ss . x8disx 3 sd,

s7.54ad

Bsq8, qd = −
sW8 − mNdsW− mNd

2mNsW+ mNd
s'

+
sW8 + mNdsW+ mNd

2mNsW− mNd
ss . x8disx 3 sd,

s7.54bd

Csq8, qd =
1

2s«8v + q8 ·qdH− 2q'8 ss ·xdsW8 − W− 2mNd

− 2q'8 ss . x8dsW8 − W+ 2mNd + fs'sW− mNd

− ss . x8disx 3 sdsW+ mNdgsW8 + Wd
mN

W

− 2s«8v + q8 ·qdfs' + ss . x8disx 3 sdgJ ,

s7.54cd

Dsq8, qd =
1

2s«8v + q8 ·qdHfq'8 ss ·xdsW+ mNd + q'8 ss . x8d

3sW− mNd + s'mNsW− mNd − ss . x8disx

3 sdmNsW+ mNdg
sW8 + Wd

W
− 2s«8v + q8 ·qd

3Fs'

sW8 + mNd
2mN

− ss . x8disx

3 sd
sW8 − mNd

2mN
GJ , s7.54dd

Ecsq8, qd = s' + ss ·x8disx 3 sd, s7.54ed

Esq8, qd =
1

v8v − q8 ·q
f− q'8 ss ·xdsW8 − W− 2mNd

− q'8 ss ·x8dsW8 − W+ 2mNdg. s7.54fd

Here

W= v + «, W8 = v8 + «8, s7.55d

x =
q

« + mN
, x8 =

q8

«8 + mN
. s7.56d

It should be noted that some care must be taken in com-
bining the interaction(7.52) with the contributions coming
from the second terms on the right hand sides of Eqs.(6.4)
and (6.7) since these terms already contain poles whenz
=W=mN

s0d, wheremN
s0d is the bare nucleon mass. The bare pole

term gets dressed by the interactions and leads to a pole at
z=W=mN [67], therefore in order not to include the dressed

pole twice we must drop the pole terms in Eqs.(7.54a) and
(7.54b). This we do by making the replacements

Asq8, qd → W8 − mN

W+ mN
s', s7.57ad

Bsq8, qd → −
sW8 − mNdsW− mNd

2mNsW+ mNd
s'. s7.57bd

After a great deal of algebra we find that the vector-meson
potentials are given by

UpN,gN
m sq8i, qtd = s'U1

msq8i, qtd + iss · q̂8dsq̂ 3 sd

3U2
msq8i, qtd + q̂'8 ss · q̂dU3

msq8i, qtd

+ q̂'8 ss · q̂8dU4
msq8i, qtd, s7.58d

where

Un
rsq8i, qtd = igrpg

frNN

mp

di,1/2s− Î3d

3s«8 + mNd1/2s« + mNd1/2Fn
rsq8, qd,

s7.59ad

Un
vsq8i, qtd = igvpg

fvNN

mp
Fdi,1/2S−

2t

Î3
D + di,3/2Î2

3G
3s«8 + mNd1/2s« + mNd1/2Fn

vsq8, qd,

s7.59bd

with

F1
msq8, qd = H− FsW8 − mNd +

kmmp
2

2mN
GsW− mNd

+ F1 +
km

2mN
sW8 + W− 2mNdGsk8 ·kdJ

3
1

sk8 − kd2 − mm
2 , s7.60ad

F2
msq8, qd = H− FsW8 + mNd −

kmmp
2

2mN
GsW+ mNd

+ F1 −
km

2mN
sW8 + W+ 2mNdGsk8 ·kdJ

3
ux8uuxu

sk8 − kd2 − mm
2 , s7.60bd

F3
msq8, qd = F1 +

km

2mN
sW8 − mNdGsW+ mNd

q8uxu
sk8 − kd2 − mm

2 ,

s7.60cd

F4
msq8, qd = F1 −

km

2mN
sW8 + mNdGsW− mNd

q8ux8u
sk8 − kd2 − mm

2 .

s7.60dd
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E. The D resonance

With the help of Eqs.(7.20), (7.31), (7.5), and(7.6), and
the analysis of Ref.[57], we find that the vertex function for
g+N→D is given by

UD,gNsq, td = ek1, 1/2, 0,tu3/2tlÎ2mDf«Nsqd + mNg1/2

3 Hg1gND

2mN
f− q̂ 3 sq̂ 3 SND

† dqss ·xd

+ SND
† ss ·qd − sSND

† ·qdsg +
g2gND

4mN
2 fqWgNsqdq̂

3 sq̂ 3 SND
† dss ·xdgJ . s7.61d

Here the spin transition vector matrix is defined by

Xbb8 = o
m,n,n8

«mxn
bk1,b, m, nub8, n8lxn8

b8†

= s− 1db−b8Î2b8 + 1

2b + 1
Xb8b

† , X = S, T . s7.62d

According to Eqs.s5.3ad and s4.8d the only nonzero,
partial-wave vertex functionsUD,gNsqnltd are those for
which l =1, 2, which in combination with Eq.s5.3bd im-
plies that forn=1 we havel =1 while for n=2 we havel
=2. It follows from Eqs.s5.14d ands7.35d, and the identity

sSND · q̂dxm
3/2 = Î4p/3Y1,1/2,3/2

m sq̂d s7.63d

that

Z1,1,1/2,3/2
m sq̂d = − iÎ 3

8p
sq̂ 3 SNDdxm

3/2, s7.64d

Z2,2,1/2,3/2
m sq̂d =

1

Î8p
fq̂ 3 sq̂ 3 sdsSND · q̂d + ss · q̂dq̂

3 sq̂ 3 SND
† dgxm

3/2. s7.65d

Using the fact thats=−Î3SNN f57g and the definition
s7.62d, we can show thats ·SND=0. By writing out 0
=ss ·Vdss ·SNDd we can show in turn thats3SND=
−iSND. Now by manipulating −iq̂3SND we arrive at the
alternative expressions

Z1,1,1/2,3/2
m sq̂d =Î 3

8p
fssSND · q̂d − ss · q̂dSNDgxm

3/2,

=Î 3

8p
fss . q̂dq̂ 3 sq̂ 3 SNDd − q̂ 3 sq̂ 3 sd

3sSND · q̂dgxm
3/2. s7.66d

Combining Eqs.s7.61d, s7.64d, and s7.65d, we obtain the
partial-wave vertex functions

UD,g,Nsq, n = 1, l = 1, td

= −Î4p

3
e
Î3q

mN

ÎmDWgNsqdGMfWgNsqdg,

s7.67ad

UD,g,Nsq, n = 2, l = 2, td

= −Î4p

3
e

3q

mN

ÎmDWgNsqdGEfWgNsqdg,

s7.67bd

with

GMsWd =
mN

3 Fs3W+ mNd
g1gND

2mNW
− sW− mNd

g2gND

4mN
2 G ,

s7.68ad

GEsWd =
mN

3
sW− mNdS g1gND

2mNW
−

g2gND

4mN
2 D . s7.68bd

These results forGMsWd andGEsWd agree with Eq.(B7) of
Nozawaet al. [29] whenW=mD. It should be noted that there
is ambiguity in these functions. For real photons, the Jones
and Scadron[70] analysis of theg+N→D vertex, which is
based on a consideration of covariants, leads to the following
alternatives:

G̃MsWd =
mN

3 Fs3W+ mNd
g1gND

2mNW
− sW− mNd

W+ mD

2W

g2gND

4mN
2 G ,

s7.69ad

G̃EsWd =
mN

3
sW− mNdS g1gND

2mNW
−

W+ mD

2W

g2gND

4mN
2 D .

s7.69bd

The two sets agree whenW=mD.
Using Eqs.(7.7), (7.8), and (7.21), we find that thep

+N→D vertex function is given by

UpN,Dsqd = − i
gpND

mp

f«Nsqd + mNg1/2s2mDd1/2sq ·SNDd,

s7.70d

which with the help of Eq.s7.63d, is easily shown to lead
to the partial-wave vertex function

UpN,Dsqgld = − dgldl1iÎ4p

3

gpND

mp

f«Nsqd + mNg1/2s2mDd1/2q.

s7.71d

The Lagrangian density(7.21) also leads to a vertex func-
tion for the virtual processp+D→N. According to Eq.
(5.17), the only non zero partial-wave, vertex function
UpD,Nsqgld hasg=l=1. We find
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UpD,Nsqgld = − dgldl1i4Îp

3

gpND

mp

qf«Dsqd + mDg1/2

3s2mNd1/2WpDsqd
mD

. s7.72d

Including the virtual processN→p+D leads to the photo-
production of ap and aD through the processg+N→N
→p+D.

F. The Roper resonance

The derivations of the Roper resonance,R=P11s1440d,
vertex functions are very similar to those for the nucleon
sinceR andN have the same spin and isospin. For the pro-
cessesg+N→R, R→p+N, R→p+D we find, respectively,

UR,gNsqnltd = − dn1dl1Î8peqF 2mR

«Nsqd + mN
G1/2

3sdtpkRp+ dtnkRnd
WgNsqd + mN

mR + mN
,

s7.73d

UpN,Rsqgld = dgldl1Î12pigpNRF 2mR

«Nsqd + mN
G1/2

3
WpNsqd + mN

mR + mN
q, s7.74d

UpD,Rsqgld = − dgldl1i4Îp

3

gpRD

mp

3 qf«Dsqd + mDg1/2s2mRd1/2WpDsqd
mD

·

s7.75d

In our model the Roper resonance is involved in the pro-
cessesg+N→R→p+N and g+N→R→p+D.

G. The D13„1520… resonance

With the help of Eqs.(7.25), (7.31), (7.5), (7.6), (7.62),
and(5.25b), we find that the vertex function forg+N→D is
given by

UD,gNsq, td = es2mDd1/2f«Nsqd + mNg1/2

3H skDp1dtp + kDn1dtnd
2mN

fsSND
† d'fWgNsqd − mNg

− sSND
† . q̂disq̂ 3 sdf«Nsqd − mNgg

−
skDp2dtp + kDn2dtnd

4mN
2 fsSND

† d'WgNsqdqgJ .

s7.76d

We now make a partial-wave expansion of the form(5.9)
for this vertex function. According to Eqs.(5.3) and(4.8) the

only terms that contribute are those for whichn=1, l=2 and
n=2, l=1. Using Eqs.(5.14) and (7.63), we find

Z1,2,1/2,3/2
m sq̂d =

i

Î8p
fsq̂ 3 sdsq̂ ·SNDd + ss · q̂dsq̂

3 SNDdgxm
3/2, s7.77ad

Z2,1,1/2,3/2
m sq̂d =Î 3

8p
fSND − q̂sq̂ ·SNDdgxm

3/2.

s7.77bd

Comparing Eqs.(7.64) and (7.65), and using a property of
the Pauli matrices, we can derive the identity

iss . q̂dsq̂ 3 SNDd = SND − q̂sq̂ . SNDd + isq̂ 3 sdsq̂ . SNDd,

s7.78d

which allows us to rewrite Eq.s7.84d as

Z1,2,1/2,3/2
m sq̂d =

i

Î8p
fSND − q̂sq̂ ·SNDd + 2isq̂ 3 sd

3sq̂ . SNDdgxm
3/2. s7.79d

It is now straightforward to show that the nonzero partial-
wave, vertex functions are given by

UD,gNsq, n = 1, l = 2, td

=
e

2mN

Î2ps2mDd1/2skDp1dtp + kDn1dtnd
qfWgNsqd − mNg

f2WgNsqdg1/2 ,

s7.80ad

UD,gNsq, n = 2, l = 1, td

=
e

2mN
Î2p

3
s2mDd1/2qf2WgNsqdg1/2

3 FskDp1dtp + kDn1dtnd
3WgNsqd + mN

2WgNsqd

− skDp2dtp + kDn2dtnd
WgNsqd + mN

2mN
G . s7.80bd

Using results from Ref.[57], we can show that theD
→p+N and D→p+D partial-wave vertex functions are
given, respectively, by

UpN,Dsq, g = 2, l = 2d = − Î4pi
gpND

mp
F 2mD

«Nsqd + mN
G1/2

q2,

s7.81d
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UpD,Dsq, l, ld = − Î8p i
gpDD

mp

f«Dsqd + mDg1/2s2mDd1/2

3fWpDsqd − mDgHdl0F1 +
«Dsqd − mD

3mD
G

− dl2

«Dsqd − mD

3mD
J . s7.82d

H. S11„1535… The resonance

The derivations of the vertex functions for theS
=S11s1535d resonance from the Lagrangians(7.28)–(7.30)
are very similar to those for the nucleon. For the processes
g+N→S, S→p+N, S→h+N we find, respectively,

US,gNsqnltd = dn2dl1Î8pes2mSd1/2f«Nsqd + mNg1/2sdtpkSp

+ dtnkSnd
WgNsqd − mN

mS− mN
, s7.83d

UmN,Ssqgld = dgldl0SÎ3

− 1
DÎ4pigmNSf«Nsqd

+ mNg1/2s2mSd1/2WgNsqd − mN

mS− mN
, m = p, h.

s7.84d

In Eq. s7.84d the upper and lower factors go withp andh

respectively. In our model theS11s1535d resonance is in-
volved in the processesg+N→S→p+N and g+N→S
→h+S.

VIII. RESULTS

Here we present the results of our multipole calculations
for the processg+N→p+N. The multipoles we calculate are
designated bysLd2I,2JNsM or Ed where sLd2I,2J specifies the
final pion-nucleon state withL the relative orbital angular
momentum,I the total isospin, andJ the total angular mo-
mentum. The target is specified byN=n or p, andM andE
indicate magnetic and electric multipoles, respectively. These
multipoles are related to theT-matrix elements by Eq.(6.8).
TheT-matrix elements are calculated from Eq.(6.6) with the
electromagnetic potentials determined by Eq.(6.7). In Eq.
(6.6) b=N, mB=pN, andm8B8=pN, pD, hN. We recall that
the quantum numberg that appears in Eq.(6.6) is the relative
orbital angular momentum ofm andB, andL is obtained by
coupling sm, the spin ofm, to g. Since heresm=sp=0, we
haveg=L. In the rescattering term in Eq.(6.6a), m8=p or h,
so g8=L8.

In Eq. (6.7)

UmB,gb
j sq8LLi, qnltbd = dmpdBNdbNUpN,gN

j sq8LLi, qnltNd,

s8.1d

where the partial-wave matrix elements are obtained from
the plane-wave matrix elementsUpN,gNsq8i, qtNd by using
Eqs. s5.24d, s5.25d, s5.27d, and s5.29d. These plane-wave
matrix elements are given by

UpN,gNsq8i, qtNd = UpN,gN
ppN sq8i, qtNd + o

m=r,v
UpN,gN

m sq8i, qtNd

s8.2d

with UpN,gN
ppN given by Eqs.s7.52d, s7.54cd–s7.54fd, and

s7.57d; and with UpN,gN
m given by Eqs.s7.58d–s7.60d. The

pole terms in Eq.s6.7d arise from the baryons listed in
Table I, where the associated vertex functions and the
equations that define them are also indicated. The strong
interactionT matrix TmB,m8B8

i j that appears in the rescatter-

TABLE I. Pole term contributions.

Baryon Vertex functions Equations

N UN,gN (7.37)
UpN,N (7.39)
UpD,N (7.72)

D=P33s1232d UD,gN (7.67) and (7.69)
UpN,D (7.71)

R=P11s1440d UR,gN (7.73)
UpN,R (7.74)
UpD,R (7.75)

D=D13s1520d UD,gN (7.80)
UpN,D (7.81)
UpD,D (7.82)

S=S11s1535d US,gN (7.83)
UmN,S (7.84)

FIG. 1. S11pE multipoles. The solid lines are theory. The dashed
lines and points with error bars are the SM95[68,71] energy-
dependent and single-energy values, respectively. The am unit
(attometer)5mfm (milli Fermi).

FIG. 2. S11nE multipoles. Curves and points as in Fig. 1.

FIG. 3. S31NE multipoles. Curves and points as in Fig. 1.
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ing term in Eq.s6.6ad is taken from the Elmessiri-Fuda
model of pion-nucleon scatteringf57g except for modifi-
cations in the parameters associated with theP33 partial
wave. In this partial wave thes-exchange parameters
were changed to improve the fit to theP33 phase shifts and
inelasticites. The new parameters aregsppgsNN/4p
=489.71, g̃sppgsNN/4p=541.06, ms=1617.0 MeV, Lspp

=3347.5 MeV, LsNN=3846.1 MeV, and mD
threshold

=1200.1 MeV.
The strong interaction vertex functions given by the indi-

cated equations in Table I are modified in practice in two
ways. First of all, the coupling constants are replaced by bare
coupling constants since the vertices are dressed by the in-
teractions[67,57]. To be consistent with the notation of Ref.
[57] we let gpNN→gpNN

s0d , gpND→gpND
s0d , etc. Second we

modify the strong vertex functions in Eq.(6.7) by multiply-
ing them by cutoff functions according to Ref.[57],

UmB,B8sq8gLd → fmB,B8sq8dUmB,B8sq8gLd, s8.3d

fmB,B8sq8d =FLmBB8
s0d2 + q8pole

2

LmBB8
s0d2 + q82 Gn

, s8.4ad

q8pole
2 = fsmm

2 + mB
2 − mB8

2 d2 − 4mm
2mB

2g/s2mB8d
2. s8.4bd

Here L
mBB8
s0d is a cutoff mass andqpole8 is determined by the

condition

WmBsqpole8 d = vmsqpole8 d + «Bsqpole8 d = mB8, s8.5d

which normalizes the cutoff function so thatfmB,B8sqpole8 d
=1. The strong interaction coupling constantsg

mBB8
s0d , the

cutoff massesL
mBB8
s0d , and the bare massesmB

s0d, which ap-
pear in Eq.s6.7d are given in Table II of Ref.f57g.

We also modify the electromagnetic vertex for the process
g+N↔D by making the replacement

gjgND → gjgND
s0d f jgN,Dsqd, j = 1, 2 s8.6d

in Eq. s7.69d. This greatly improves our ability to fit the
P33NE multipoles.

We put in a strong interaction cutoff function in the anti-
nucleon contributionsA and B, that appear in Eq.(7.52).
Specifically we modify theA and B given by Eq. (7.57)
according to

Asq8, qd → fpN,Nsuq8udAsq8, qd,

Bsq8, qd → fpN,Nsuq8udBsq8, qd, s8.7d

where fpN,N is given by Eq.(8.4). The contact interaction
termEc that appears in Eq.(7.52) also requires a cutoff func-
tion, which we introduce according to

Ecsq8, qd → S Lc
2

Lc
2 + q82D2

Ecsq8, qd. s8.8d

For the crossed contributionsC andD and the exchange
contribution E in Eq. (7.52); as well as the vector-meson
exchange interactionsUpN,gN

m given by Eqs.(7.58)–(7.60);
we use cutoff functions defined by

FsQ, mx, Lxd ; F Lx
4

Lx
4 + sQ2 − mx

2d2G2

. s8.9d

Here mx is the mass of the intermediate exchanged par-
ticle, Lx is a cutoff mass, andQ is a four-momentum
associated with the exchanged particle. Since these cutoffs
are associated with the strong interaction vertex, we de-
termine Q by conservation of four-momentum at the
strong interaction vertex. The replacements are given by

Csq8, qd → Fsp − k8, mN, LNdCsq8, qd, s8.10d

Dsq8, qd → Fsp − k8, mN, LNdDsq8, qd, s8.11d

Esq8, qd → Fsp8 − p, mp, LpdEsq8, qd, s8.12d

FIG. 4. P11pM multipoles. Curves and points as in Fig. 1.

FIG. 5. P11nM multipoles. Curves and points as in Fig. 1.

FIG. 6. P13pE multipoles. Curves and points as in Fig. 1.

FIG. 7. P13pM multipoles. Curves and points as in Fig. 1.
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UpN,gN
m sq8, qd → Fsp8 − p, mm, LmdUpN,gN

m sq8, qd, m = r, v.

s8.13d

The four-momenta that appear in Eqs.s8.10d–s8.13d are
defined in Eqs.s7.41bd and s7.41cd. On-shell, i.e., when
k+p=k8+p8, these cutoff functions become one at the pole
of the accompanying Feynman propagator.

In our model there are a number of fixed parameters. The
physical masses of the various particles are given in Ref.
[57] except for the mass of thev meson which we take to be
mv=782.6 MeV. The coupling constants that are fixed are
given [24] by

e= Î4p/137, kp = 1.79, kn = − 1.97,

gpNN = Î4ps3.7815d, grpg = 0.103e, gvpg = 0.314e.

s8.14d

The parameters that were varied in fitting the multipoles
are the strong interaction coupling constants for the vector
mesons, the electromagnetic coupling constants for the
D=P33s1232d, R=P11s1440d, D=P13s1520d, and S
=S11s1535d resonances, and the cutoff parametersL andn.
We fit to the SM95 analysisf68,71g of the photoproduc-
tion data. We chose this analysis because the phases of the
multipoles for energies below the two-pion production
threshold are the pion-nucleon phase shifts to which we fit
our model for pion-nucleon scatteringf57g. Our fits are
shown in Figs. 1–14 and the resulting parameters are
given in Table II. We have also calculated theE2/M1 ratio
from our fits. We find E2/M1=P33NE/P33NM=−2.09%,
which is consistent with the ranges−2.5±0.5d% given by
the Particle Data Groupf72g.

We note that the majority of the parameters in Table II are
associated with the form factors, which are purely phenom-
enological. In commenting on the role of form factors in
their photoproduction model, Surya and Gross[25] state
“Unfortunately, our results are sensitive to the form factors,
which are purely phenomenological.” This has also been our
experience. In Sec. IX we discuss how we propose to im-
prove on the treatment of the form factors. Drechselet al.

[24] point out that the vector-meson strong coupling con-
stants are not well determined. In surveying earlier results
they found 8ø fvNNø20, −1økvø0, 1.8ø frNNø3.2, 4.3
økrø6.6. For their fit to the multipoles they foundfvNN
=21.0,kv=−0.57, frNN=2.0, kr=6.5. Our fvNN, kv, and frNN
are in reasonable agreement with the ranges they have indi-
cated, however, ourkr is quite different. In contemplating
the bare electromagnetic coupling constants that characterize
the strength of the various resonances, it should be kept in
mind that these parameters are not observables. Wilhelmet
al. [73] have shown that it is possible to introduce into a
model such as ours a unitary transformation that alters the
relative mix of the background and resonance contribution to
a multipole without changing the total multipole amplitude.
As a result of this the electromagnetic coupling constants
given in Table II only have significance within the context of
the present model.

In Figs. 1–14 the dots with the bars through them are the
SM95 [68,71] single-energy values, the dashed lines are the
SM95 energy-dependent fits, and the solid lines are our fits
to the SM95 energy-dependent fits. We have labeled the iso-
spin triplet plots withN rather thann or p since these mul-
tipoles are independent of the target nucleon. There is gen-
erally good agreement between theory and the SM95 energy-
dependent fits for the following multipoles:S11sp, ndE,
P11sp, ndM, RefP13pMg, RefP31NMg, ImfP33NEg, P33NM,
and ImfD13sp, ndEg. There is mediocre agreement forS31NE,
however, it is interesting to note that the theoretical
ImfS31NEg agrees better at high energies with the SM95
single-energy values then the SM95 energy-dependent fit
does. The agreement for the variousP13 multipoles is medio-
cre except for RefP13pMg. It should be noted, however, that
these multipoles are quite small and therefore get less atten-
tion in the least-squares fitting procedure. For ImfP31NMg
both theory and the SM95 energy-dependent fit do not follow
the single-energy values at high energies. At both the low-
and high-energy ends the theory for RefP33NEg lies above
the SM95 energy-dependent fits.

It is satisfying that in the imaginary parts of theP33, P11,
D13, andS11 multipoles the resonances show up very clearly
at their physical masses. The nucleon and these resonances

FIG. 9. P13nM multipoles. Curves and points as in Fig. 1.

FIG. 10. P31NM multipoles. Curves and points as in Fig. 1.

FIG. 11. P33NE multipoles. Curves and points as in Fig. 1.

FIG. 8. P13nE multipoles. Curves and points as in Fig. 1.
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contribute to the electromagnetic interaction through the sec-
ond term on the right hand side of Eq.(6.7). The poles in
these terms are determined by the bare masses of the par-
ticles, which are quite different from the physical masses
(see Table II of Ref.[57]). The physical masses arise from
the dynamics of the model and are not put in by hand, so it is
quite clear that our way of treating resonances is satisfactory.

Recently, the multipole analysis of the photoproduction
multipoles has been updated[74] to SM02. It would be in-
consistent for us to fit to the SM02 analysis since the pion-
nucleon phase shifts to which we fit our model[57] for pN
elastic scattering differ somewhat from the phases of the
SM02 multipoles for energies below the 2p production
threshold. It is interesting to note that our theoretical result
for ImfS31NEg agrees very well with the SM02 analysis. The
RefP33NEg energy-dependent fit has changed quite a bit in
going from SM95 to SM02. In fact, our low-energy
RefP33NEg agrees quite well with SM02.

We do not wish to imply that our disagreements with
SM95 are due simply to problems with the analysis of the
experimental data. There are exchange processes that can be
added to our model and these may very well improve agree-
ment with the energy-dependent fits to experiment
[68,71,74]. The present model only includes crossed pro-
cesses withgpN andNNN intermediate states. Clearly, there
are crossed processes withgpB andNNB intermediate states
whereB is any of the resonances in the energy range. Also in
the present model electromagnetic coupling to the inelastic
channels is limited to the processesgN→sN, R, Dd→pD and
gN→S→hN. We should also consider crossed processes
such asgN→sgpN, DNNd→pD. We plan to improve our
photoproduction model accordingly and to refit ourpN elas-
tic scattering model[57] and the improved photoproduction
model to the more recent analyses of the experimental data
[74]. This will take some time.

It is of interest to compare the results of our photoproduc-
tion model with other dynamical models for photoproduc-
tion. The models that are closest to ours are the Hamiltonian
models[27–33], but unfortunately there is not a lot to com-
pare. The oldest models[27–29] employ separable potentials

to describepN elastic scattering and so are not complete
exchange models. The more recent models[30–33] are com-
plete exchange models, but the authors do not give a com-
plete set of multipoles. References[30] and [31] only give
threshold results, while the Sato-Lee[32,33] papers only
give P33NM andP33NE multipoles. The spaces of these mod-
els are limited toD % pN% gN or N% D % pN% gN, and do
not includepD and/orhN channels.

It appears that the only dynamical model that is compa-
rable to ours is the Surya-Gross model[25]. This model goes
up to a maximum photon lab energy of 770 MeV, while ours
goes up to 810 MeV. They include the following direct
poles:N, P33s1232d=D, P11s1440d=R, andD13s1520d=D. We
include these, but alsoS11s1535d=S. They include crossedN
andR interactions, whereas we include the crossedN but not
the crossedR. We both include a contact or Kroll-Ruderman
interaction[75], as well asp, r, andv exchanges. They use
a mixture of pseudoscalar and pseudovectorppN coupling,
while we use pure pseudovector coupling. In their model
electromagnetic coupling to an inelastic channel is provided
by the processesg+N→sR, Dd→sp+N wheresp is an arti-
ficial scalar meson with the mass of two pions. Our inelastic
electromagnetic coupling is due to the processesg+N
→sN, R, Dd→p+D and g+N→S→h+N. The dynamical
equations in the two models are quite different. Gross and
co-workers use a three-dimensional reduction[25,45,76] of
the Bethe-Salpeter[43] equation in which the intermediate
pion is put on-mass-shell, except for one of the pion polegN
driving terms. We on the other hand use standard Lippmann-
Schwinger equations as described in Sec. VI. We feel that it

TABLE II. Adjusted parameters.

Interaction parameters Cutoff masses(MeV)

UpN,gN
ppN

L
pNN
s0d =813.4,n=10,
LN=815.7,n=5,

Lc=1727.0,n=10,
Lp=752.5,n=1

UpN,gN
r frNN=3.206,kr=0.8935,

Lr=1933.0,n=4
UpN,gN

v fvNN=7.119,kv=−1.092,
Lv=2748.0,n=5

UD,gN g1gND=3.105,L1gND
s0d =1290.0,n=9,

g2gND=−30.74,L2gND
s0d =442.6,n=9

UR,gN kRp=−0.2105,kRn=0.9063
UD,gn kDp1=−67.21,kDp2=−88.87,

kDn1=66.45,kDn2=87.12
US,gN kSp=0.2833,kSn=−0.2026

FIG. 12. P33NM multipoles. Curves and points as in Fig. 1.

FIG. 13. D13pE multipoles. Curves and points as in Fig. 1.

FIG. 14. D13nE multipoles. Curves and points as in Fig. 1.
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is fair to say that the Surya-Gross dynamical scheme requires
a much more complicated treatment of gauge invariance than
does our approach. In particular, the Surya-Gross model re-
quires extra driving terms to satisfy gauge invariance,
whereas in our approach gauge invariance is satisfied as long
as the electromagnetic vertex interactionsUB,gb and poten-
tials UmB,gb have the structures(5.9) and(5.23), respectively.

Surya and Gross present results for the following multi-
poles:S11pE, S31NE, P11pM, P31NM, P33NM, P33NE, and
D13pE. OurS11pE results are quite similar to theirs, however,
their ImfS11pEg is off at the high energy end since they do
not include theS11s1535d resonance. It must be admitted that
their RefS31NEg is superior to ours, however, their ImfS31NEg
differs from SM02[74] at high energies. OurP11pM results
are quite similar to each other although our ImfP11pMg
agrees somewhat better with the SM95 energy-dependent
analysis. The two fits for theP31NM andP33NM multipoles
are of comparable quality. The two fits forP33NE are quite
similar, however, the Surya-Gross result for RefP33NEg is
somewhat better than ours at the high energy end. The two
fits for D13pE are of similar quality. Surya and Gross do not
give results for theP13 multipoles. In summary, we think it is
fair to say that the two models give the same overall level of
agreement with the multipoles extracted from the data. It is
of some comfort that two such very different dynamical
schemes yield such similar results.

IX. DISCUSSION

The work of Nozawa and Lee[77] makes it quite clear
that the formalism developed here can be extended to elec-
troproduction. As is well known, electroproduction can be
viewed as photoproduction by a space-like virtual photon.
The mass operator developed here describes transitions be-
tween physical particle states, so in particular, the photon is
lightlike. This would appear to present a problem, however,
this is not the case. According to(6.6) and(6.7), the photon’s
four-momentum occurs only in the electromagnetic poten-
tials UmB,gb and vertex interactionsUB,gb. These interactions
can easily be extended to spacelike photons. In the approach
pursued here, which is three dimensional in character, rela-
tive three-momenta play an essential role. The relative three-
momentum of a particle such as the photon or pion is defined
as the three-momentum of the particle in a c.m. frame. The

relative three-momentum of the virtual photon can still be
defined since the total four-momentum of the virtual photon
–initial baryon system is timelike. The unphysical nature of
the photon in the electroproduction process is due not only to
its spacelike four-momentum, but also to the fact that it can
have polarizations that are not transverse; they can also be
scalar or longitudinal. Again, because of the fact that the
photon’s properties only appear in the electromagnetic poten-
tials UmB,gb and vertex interactionsUB,gb, these unphysical
polarizations do not cause a problem. Among other things,
we will have to include the longitudinal vector functions
Z0lsbj

m sq̂d given by Eq.(5.14a) in the general expansions of
UmB,gb andUB,gb.

In the present work we have derived our mass operator
interactions from effective Lagrangians using a variation of
Okubo’s method[50,56]. The resulting interactions have
been modified by the introduction of purely phenomenologi-
cal form factors or cutoff functions so as to take into account
the extension of the hadrons. At the present time we are
pursuing a more microscopic approach that starts with the
constituent quark model. The virtue of such an approach is
that the form factors emerge as a consequence of the quark
wave functions. Other authors have already achieved some
success in deriving meson-baryon and photon-baryon inter-
actions from constituent quark models. At the present time it
appears that the most tractable approach is based on what
have been calledelementary meson emissionmodels (see,
e.g., Refs.[22,78] ). In this class of models the mesonsm are
treated as elementary particles that couple directly to the
quarksq through a vertex that describes the processq↔q8
+m. This approach can be thought of as originating from an
effective theory of hadrons discussed by Manohar and
Georgi [79] in which a Lagrangian is constructed that de-
scribes the coupling of constituent quarks, gluons, and Gold-
stone bosons. Starting from such a Lagrangian along with
one that describes the electromagnetic coupling of quarks
and photons, it is possible to derive analytic expressions for
meson-baryon and photon-baryon interactions that take into
account the extended nature of the hadrons. These interac-
tions can then be used to calculate meson-baryon reactions as
well as the photoproduction and electroproduction of mesons
from baryons. What we can bring to such an approach is a
general framework that ensures that the probabilities for the
various processes are Poincaré and gauge invariant.
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