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KN interactions are investigated via an effective nonlinear chiral meson-baryon Lagrangian. The adjustable
parameters are determined by a fitting procedure on theK−p threshold branching ratios and total cross-section
data for pK

labø250 MeV/c. We produce predictions for theSp mass spectrum, and scattering lengthsaK−p,
ansK−n→K−nd, an

+ sK+n→K+nd, andaexsK−p→K+nd. TheKN amplitudes thus obtained, as well as those for other
two-body channels(pN, NN, andYN), are used as input to predict the scattering lengthAK−d, for which we
have devised a relativistic version of the three-body Faddeev equations. Results for all two- and three-body
coupled channels are reported both in isospin and particle bases. All availableKN data are well reproduced and
our best results for theK−p andK−d scattering lengths areaK−p=s−0.90+i0.87d fm andAK−d=s−1.80+i1.55d fm.
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I. INTRODUCTION

The present paper is devoted to the study of the
K−-deuteron scattering lengthAK−d by exploiting a relativistic
version of the three-body Faddeev equations in which the
principal two-body input is based on an effective nonlinear
chiral meson-baryon Lagrangian in the strangenessS=−1
sector. A preliminary version has been reported in Ref.[1].
Below we shall begin with a survey on the two-bodyKN
amplitudes which are the central input to our present enter-
prise, as well as the evolution of the low energyK−d physics.
In this way we hope that our motivation will be clear to the
reader.

While the low to medium energykaon-nucleonprocesses
(say,pK

labø1.5 GeV/c) have been known to show no signifi-
cant structure up to the pion production threshold in theKN
channel, itsu-channel counterpart—theKN channel, presents
quite a rich structure(resonances, possible bound states in
the continuum, etc.)—see, for example, Refs.[2,3]. For the
most recent discussions on both experimental and theoretical
fronts, see, for example, Olin and Park[4]. The thus men-
tioned characteristics may be understood within a simple
quark model where the quark structures ofK, K, andN are
known to beqs, qs, and qqq, respectively withq being u
and/ord quarks. In this picture theKN system may be rear-
ranged to become a combination such assqqdssqqd, which
may be identified, for example, aspYsY=L, Sd in terms of
the lowest-lying octet hadrons, or to generate strangenessS
=−1 hyperon resonances. On the contrary, such a scenario
does not materialize for theKN system in which the anti-
quark involved iss, hence the corresponding low energy pro-
cess is uniquely the elastic scattering ofK and N. So, both
theoretically and experimentally, theKN sS=−1d system has
been drawing much more attention than theKN sS=1d chan-
nel.

Of particular interest in this regard has been theK−p chan-
nel near threshold. It is dominated by the below-threshold
resonanceLs1405d to which it strongly couples. This reso-
nance decays almost exclusively topS. One of the intriguing
subjects related to this resonance has been its dynamical ori-
gin: whether it is a hadronic bound state ofK−p embedded in
continuum(since it is located above thepS threshold) or a
three-quark baryon resonance(or something more exotic).
Whereas no definite conclusion has been drawn based on the
scattering data analyses by forward dispersion relation[2,3],
a recent effective chiral Lagrangian approach[5] has pre-
sented a convincing picture in favor of theK−psI=0d bound
state, as we shall discuss later in the context of the objective
of the present paper. A more down to earth but quite impor-
tant problem has been theK−p scattering lengthaK−p, which
dictates the threshold characteristics of theK−p interaction.
For this quantity the so-calledkaonic hydrogen puzzle, see,
e.g., Ref.[6], had disturbed the community engaged in low
energy meson-baryon interactions for quite a long time.
Briefly, the puzzle originated from the fact that the real part
of aK−p extracted from the 1s atomic level shift(due to the
strong interaction) of the kaonic hydrogen[7] had an oppo-
site sign to that obtained from the analyses of theK−p scat-
tering amplitude.

Despite the persistence of this puzzle, several pioneering
works on the low energy negative kaon-deuteronsK−dd scat-
tering by solving three-body equations were performed by
simply disregarding the information from the kaonic hydro-
gen. The first study of that type on theK−d elastic scattering
at low energies was performed as early as 1965[8] by adopt-
ing simpleS-wave rank-1(non-local) separable interactions
for the I=0, 1 KN channels and for the3S1 deuteron channel
as basic two-body ingredients. For theKN interaction the
potentials were fitted to reproduce the complex-valuedK−p
scattering length known from the amplitude analysis at that
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time (see, for example, Ref.[9]). The principal objective of
the work was to see the convergence properties of the mul-
tiple scattering series: at low energies they found that the
single and double scattering contributions were far from suf-
ficient. An extension of this work to the three-body break-up
channelsK−d→K−np, K+nn was performed by the same au-
thors by deforming the momentum integration in the com-
plex plane to avoid the anomalous threshold branch cuts due
to the final stateNN interactions[10]. The result turned out
to be insufficient for discriminating the differentK−p input
amplitudes by comparing with the data, as the two-body in-
put were incomplete, along with insufficient statistics for the
data. However, the methods developed served to motivate
later attempts for studying the three-body final states from
the theoretical side. Also the same authors improved their
first elastic scattering calculation in Ref.[8] by incorporating
the isospin breaking effect manifested in the mass difference
betweenK+ and K− as well as betweenn and p, which re-
sulted up to an about 10% difference in the cross section
[11]. Later Myhrer[12] studied the role of theLs1405d reso-
nance in the thresholdK−d scattering by assuming a simple
resonance form for the inputK−p amplitude. Here again the
insufficiency of the first few iterations of the multiple scat-
tering series was found in the presence of a two-body reso-
nance. This was then followed by using improvedKN am-
plitudes that took into account the effect of coupling to the
physically accessiblepYsY=L, Sd channels and, though im-
plicitly, the effect ofLs1405d [13]. In this regard one should
be reminded that in the earliest works mentioned above
[8,11] those effects were implicitly represented only by the
complex-valuedKN scattering lengths. To summarize, all the
models mentioned here summed up multiple scattering series
driven by anS-waveKN scattering with a spectatorN and an
3S1 NN scattering in the presence of aK spectator. We will
refer to this type of models assingle-channel approach.

The next generation of theoretical endeavor[14–17] may
be characterized by explicitly taking into account the three-
body channels involving hyperons:pNYsY=L, Sd, whereY
is produced from theKN→pY reactions in the presence of a
spectator nucleon. Also included were the two-body interac-
tions pN with a spectatorY as well asYN with p as a spec-
tator. In this way genuine three-body unitarity was guaran-
teed to hold. Common to all three works cited here is the
way to construct all the two-body input amplitudes to the
three-body equations. Apart from theNN deuteron channel,
all the two-body amplitudes—coupledKN-pY channels,pN,
as well as coupledNY-NY channels—were assumed to be
obtained from rank-1 separable potentials(mostly in S
waves) where the strengths and ranges were adjusted to fit
the available cross sections, etc. Isospin was assumed to be
conserved exactly so that the number of channels to deal
with in the two-body input as well as in the three-body equa-
tions be kept manageable. This will be termed as themulti
channel approachas compared with the single-channel one
mentioned earlier.

The first two of those multichannel approaches[14,15]
were dedicated to the near threshold break-up reactions:
K−d→pNY, where data exist for the reaction rates, the final

mass spectramspLd, the neutron momentum spectra in the
final nS−p+ as well as innS+p− three-body channels[18,19].
The models were able to reproduce the experimental trends
depending upon which combinations of signs in the nondi-
agonal amplitudes such asKN→pS, LN→SN should be
adopted. Note that those amplitudes determined by fit to the
corresponding cross sections are unique up to an overall
sign, or phase in more general terms, unless additional con-
straints from, say, some symmetries were imposed; but in
three-body processes the sign difference does show up. Also
a difference in the two-body amplitudes responsible for the
final state interaction was found to be visible in the break-up
channels, so the data could be used to discriminate different
two-body models used. In both works the authors also cal-
culated theK−d scattering lengthAK−d. The best value ob-
tained for this quantity in those works may be identified as
s−1.34+i1.04dfm [15].

The third multichannel three-body calculation was carried
out in Refs.[16,17] for low energy elasticK−d scattering as
well as to find the best theoretical value forAK−d. The data
used to thex2-fits to determine the two-body separable inter-
actions were the same as in Ref.[15]. The novelty was to use
relativistic formalism, hence the correct kinematics was en-
sured when dealing with different total masses(or different
thresholds) in the entrance and exit channels, both in two-
body input amplitudes as well as in three-body coupled equa-
tions. With the3D1 partial wave component included in the
deuteron channel interaction, the best value wasAK−d
=s−1.51+i1.45dfm.

After the last theoretical calculation just discussed above
had come out in 1990[16], the low energyKd physics be-
came dormant for about ten years. One may identify some of
the possible reasons for that void.

(i) The kaonic hydrogen puzzlementioned earlier kept
persisting, so it was felt that without any solution to it, one
could not find any credible low energyK−p amplitude for use
to improveK−d models.

(ii ) The rank-1 separable potentials adopted to model the
essential ingredients, namely, the coupledKN-pY ampli-
tudes, lacked support from the underlying strong interaction
theory. So, even by adopting isospin symmetry to fit the ex-
isting data, there was no compelling reason to believe that
the best fitting amplitudesare really acceptable on physical
ground(a serious attempt of this type dated back to Henley
et al. and Finket al. [20]). In this respect some efforts to
constrain the fitting parameters by SUs3d symmetry deserve
to be noted[21,22]. However, the separable ansatz still
needed to be given a proper justification. It should be useful
to note that there were also local versions of the correspond-
ing potentials based upon physical constants from chiral La-
grangian to be somewhat tuned[23], but the local form had
no support from the supposedly more fundamental theory,
either. In addition to this, taking into account the isospin
breaking effects would have pushed the picture farther into
the mist. So why should one go forward under such circum-
stances?

Quite fortunately, there were two major breakthroughs:
one on the experimental and the other on the theoretical
front.
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First, the long hauntingkaonic hydrogen puzzlewas
finally put to an end by the KEK experiment[24], and
the K−p scattering lengthaK−p

c , where Coulomb effects
are not separated, was extracted to beaK−p

c =f−0.78
±0.15sstatd±0.03ssystdg+if0.49±0.25sstatd±0.12ssystdg fm,
by applying the Deser-Trueman formula[25] to the kaonic
hydrogen 1s level shift G, and widthe, by K−p strong inter-
action:

e + i
G

2
= 2a3m2aK−p

c ,

with a being the fine structure constant andm being the
K−p reduced mass. Although the thus obtained quantity
includes the effect of the Coulomb interaction, hence not
identical to the corresponding quantity due exclusively to
strong interaction, the difference is, even conservatively,
at most within a few percent: in the case of pionic hydro-
gen the difference appears to be below 1%, see, for ex-
ample, Refs.f26,27g, so the extracted ResaK−pd finally was
found to have the same sign as that from the analysis of
scattering data. The DEAR projectf28g with the DAFNE
facility sf factoryd at Frascati had been planning to repeat
the experiment with higher precisions, and the data taking
is reported to have been over. In addition, along with
other experiments involving variousK mesons, this
project has planned to measure the corresponding quanti-
ties for theK−d atom, and the experiment is expected to
start soonf29g. To obtain theK−n scattering length with-
out recourse to isospin symmetryshence to find out how
good that symmetry is realized in the kaon sector in this
quantityd is one of the objectives for this measurement.
But, a more ambitious picture such as using the quantities
obtained to extract the kaon-nucleon Sigma-termsKN,
with the help of theories such as chiral perturbation
theory, see, for example, Ref.f30g, has been some strong
driving force for the experimentf4,31,32g. In fact, such a
program has been put into practice recently using the pi-
onic hydrogen and deuteriumf33g. It should be useful to
mention here that extracting theCoulomb corrected K−d
scattering length through the Deser-Trueman formula may
not be as accurate as that for theK−p system, and that rela-
tion between the purely strong and Coulomb correctedK−d
scattering lengths may not be quite simple either. This was
discussed in terms of simple models by Barrett and Deloff
f34g, see alsof26g. This will be revisited in Sec. V.

Second, based upon chiral perturbation theory, there has
been a steady progress in describing the low to medium en-
ergy meson-baryon interaction. And within the context of our
present interest, there was an important breakthrough made
by Oset and Ramos in describing the coupled meson-baryon
channel amplitudes for theS=−1 sector[5]. The channels
involved wereKN, pY, andhY. The driving(potential) terms
to the two-body coupled Bethe-Salpeter equations were
taken from the lowest order in the effective chiral Lagrang-
ian for the 0− octet mesons and 1/2+ octet baryons. Then, an
on-shell ansatz developed in Ref.[35] was introduced, which
enabled the authors to transform the coupled integral equa-
tions into a set of algebraic equations where the major task

was to deal with the integration of various meson-baryon
two-particle propagators which are ultraviolet divergent.
With only two parameters adjusted to very plausible values,
the cutoff atp=630 MeV/c in the momentum integrations to
be convergent and the average octet meson decay constant
set asf=1.15fp, the authors were able to reproduce various
low energy data associated with the above-mentioned
coupled channels impressively(the isospin breaking effect in
the particle masses was included). Particularly, theLs1405d
was generated dynamically as an unstable bound state ofK−p
in the I=0 channel whose decay intopY was also correctly
reproduced. As will be discussed in the following section,
what made this approach particularly noteworthy was that
the on-shell ansatz they adopted turned out to be interpreted
as a practical justification for a separable representation of
two-body meson-baryon potentials, where coupling strengths
were the product of two parts, one dictated by SUs3d sym-
metry, and the other depending on energy. Note that this
on-shell ansatz was made to be rewritten in a more elegant
form, viz., in the so-calledN/D representation, or cast into a
once-subtracted dispersion integral representation of the two-
particle propagators, etc. There, the dynamical left-hand cut
contributions were shown to be weak, and the divergent in-
tegrals were made finite by an introduction of several sub-
traction constants adjusted to reproduce the relevant data,
including theKJ channel[36–40].

Now, upon witnessing the experimental and theoretical
progress reviewed above, the time is ripe for starting theK−d
scattering study again. In fact, the Oset-Ramos result[5] was
applied to calculate the scattering lengthAK−d within what is
called the fixed center(or fixed scatterer) approximation
(FCA) by Kamalovet al. [41]. Here we want to claim that a
more refined approach should match the Oset-Ramos-type
amplitudes. More specifically, we think it necessary to ex-
ploit a reliable method in dealing with three-body scattering.

In this paper, we thus present a complete study of theK−d
scattering length within the Faddeev equations. In Sec. II A
we first adopt the approach due to Ref.[5] and construct the
coupleds-wave separableKN interactions, including the cou-
pling to the charge exchange, as well as thepY and hY
channels. We study different models, with parameters fitted
to the available experimental data, along with the constraint
to remain close to the SU(3) values. The results are presented
in both isospinandparticle bases where the latter takes into
account the isospin breaking effect in terms of the physical
meson and baryon masses. The parametrizations chosen for
the deuteron channel are described in Sec. II B. Then we
discuss other two-body interactions adopted in our study in
Sec. II C. In Sec III, we review the structure of the relativ-
istic three-body Faddeev equations. In Sec. IV, we calculate
theK−d scattering length by solving those equations, both in
isospin and in particle bases. To our knowledge, this is the
first calculation done in the particle basis, permitting to
evaluate the isospin breaking effects at the three-body level.
The sensitivity ofAK−d to the two-body input is investigated.
The discussion is developed in Sec. V, and our conclusions
are given in the last section.
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II. TWO-BODY INTERACTIONS

In this part, we describe the various two-body interactions
used as input in the three-body equations. In Sec. II A and
II B we present theKN and NN interactions, which are the
fundamental ingredients to theK−d problem. Section II C is
devoted to a brief description of thepN andYN interactions.

A. KN INTERACTIONS

Here, we intend to construct two-body coupled channel
KN interactions. The coupled channels involved areKN, pY,
and hY sY=L, Sd with different total charge states for the
mesons and baryons(in the particle basis) or in different total
isospin states(in the isospin basis). See Appendix A for the
relation between these two representations. The physical
masses used in the particle basis and average masses used in
the isospin basis may be found in Table I.

1. Separable models

Let us usei, j, k, ..., etc. as channel indices. Since our
present interest is in theKN near its threshold, we may safely
assume that any given meson-baryon system in the coupled
channel is in the relative orbital angular momentums state
s,=0d. So we may adopt thes-wave projected coupled
Bethe-Salpeter (or relativistic Lippmann-Schwinger)
t-matrix equations[42] for the transitionj→ i which takes
the following form:

Tij = Vij + o
k

VikG0
kTkj, s1d

where Vij is the transition potential, andG0
k is the free

meson-baryon propagator for the intermediate channelk.
We note here that implicit in the above expression is that
sid the meson-baryon systems are in the center-of-mass
sc.m.d frame, andsii d the integration is performed over the
off-shell four momentum associated with channelk.

We take two additional simplifications to make the
coupled equations manageable. The first one is to adopt the
Blankenbecler-Sugar procedure to reduce the momentum in-
tegration from four to three dimensions[43–45]. In particu-
lar, the two-particle propagator is reexpressed asG0

k

=G0
kspk;sd, where pk is the magnitude of the three-

dimensional relative momentum of the intermediate channel
k, ands is the square of the total center-of-mass energy. This
may be done by taking the discontinuity ofG0

k over the uni-
tarity branch cut and use it to representG0

k in a dispersion
integral form. We note that this procedure results in on-mass-

shell but off-energy-shell form of equations which may be
regarded as a relativistic extension from a familiar nonrela-
tivistic scattering theory. The second simplification step is to
assume that thes-wave potentials take a nonlocal separable
form:

Vij
I = gispidli j

I ssdgjspjd, I = 0, 1, s2d

where I is the total isospin for the meson-baryon system,
and gi is the cutoff form factor for channeli which is
assumed to be a function of the magnitude of the three-
dimensional relative momentum vector in the same chan-
nel. In general the coupling strengthli j

I is assumed to be a
function of s as indicated in the above equation with no
left-hand cutassumed. Some rudiments of how our coupled
two-body t matrices may be obtained with the separable in-
teractions are found in Appendix B.

Now, when we compare the expression for the coupled
KN channel t matrices, Eq.(20) in Ref. [5], with our
coupled-channelt matricesTij , Eq. (B6), for which the re-
lated quantities are defined in Eqs.(B7) and (B8), we see
immediately that the two results are identical provided that
(i) we setgispid;1 for all i, (ii ) impose a momentum cutoff
pmax in the integration in Eq.(8), and(iii ) set

li j
I ; − Cij

I 1

4f2sei + e jd. s3d

The expression forli j
I above is from Oset and Ramosf5g,

which was obtained from the lowest-order expansion in
1/f of the chiral Lagrangian for the octet 0− mesons
coupled to the octet 1/2+ baryons. The coefficientsCij

I are
due to SUs3d symmetry and tabulated asCij

I=0=Dij , Cij
I=1

=Fij in that publication. These are convenient for the iso-
spin basis, but may be trivially transformed to the corre-

sponding coefficientsCij sfor K−pd and C̃ij sfor the K−n
related channelsd, for use in particle basis, also tabulated
in Ref. f5g. The corresponding change to obtain the
strength parameters in the particle basis in terms of theli j

I

follows trivially, see, for example, Eq.sA2d. In our Eq.s3d
above,ei and e j are the meson energies in the center-of-
mass system for thei and j channels, respectively.

Though our argument above went just in the opposite di-
rection to what one finds in Oset and Ramos[5] (see also a
more formally trimmed version of the Oset-Ramos line of
derivation by Nieves and Arriola[38]), we have established a
practical equivalence between the separable potential and the
on-shell ansatz for the coupled meson-baryon equations. So
within the framework of effective meson-baryon field theory,

TABLE I. Particle masses(in MeV). The fourth row gives the average mass for each isospin multiplet,
and the last row specifies the phase convention used for the isospin states.

K− K+ p n p− p+ p+ S− S+ S+ L h

493.7 497.7 938.3 939.6 139.6 139.6 134.9 1197.4 1189.4 1192.6 1115.7 547.4

K N p S

495.7 938.9 138.0 1193.1
−u1

2− 1
2l u1

2
1
2l u1

2
1
2l u1

2− 1
2l u1−1l −u11l u10l u1−1l −u11l u10l u00l u10l
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it is now possible to claim that the separable ansatz is a very
reasonable starting point in describing thes-wave interac-
tions at low energies. In our present work we choose to retain
the form factors rather than imposing a sharp cutoff. This is
due to the fact that when solving the three-body equations
we rotate the momentum integration path off the real axis
and into the complex plane. For that purpose, a sharp cutoff
is not practical. Then in order to respect SUs3d symmetry, we
choose to use a single form factor for all the different chan-
nels with a monopole form:

gspd =
b2

p2 + b2 , s4d

whereb is the effective cutoff momentum. Based upon the
discussion above we adopt two slightly different types of
interactions. The first one which we call OS1 is justVij

I ,
Eq. s2d, with gi =gj ;gspd, andli j

I from Eq. s3d. We expect
this interaction to produce a very similar result to the
original Oset and Ramosf5g model. The second interac-
tion model is called OSA, which is a variant of OS1 in
that it incorporates the possible SUs3d breaking effect in
the coupling strengthssor in the meson decay constantfd
in terms of extra parametersbij

I with the substitutionCij
I

→bij
I Cij

I . We then adjust on the relevant datab, f, and
bij

I ’s, the last ones only for OSA, with a constraint that the
SUs3d breaking effect is reasonably contained.

It is important to stress here that we follow the observa-
tion by Oset and Ramos[5] and retain thehY channels in our
fit although this channel has a substantially higher threshold
as compared with that forKN, see Table I. The necessity for
the inclusion of these channels will be demonstrated later. As
a result we have three coupled channels,KN, pS, hL, to deal
with for I=0, and four coupled channels,KN, pS, pL, hS,
for I=1. In terms of physical(or particle) channels the fol-
lowing two groups are separately coupled:

K− p → K−p, K+n, Lp+, S+p−, S+p+, S−p+, Lh, S+h, s5d

K−n → K−n, Lp−, S+p−, S−p+, S−h. s6d

Below we briefly review available experimental data to
which the model interactions are fitted and compared.

2. Experimental data

Since there are no data associated with the initialK−n
channels in Eq.(6), we only discuss those in Eq.(5). Fur-
thermore, in the low energy range of our current interest, i.e.,
pK

labø250 MeV/c, the last two channels involving theh me-
son are physically closed as their thresholds are substantially
higher than the rest. Otherwise the remaining physically ac-
cessible coupled channels are now strongly influenced by the
I=0 Ls1405d resonance below theK−p threshold which de-
cays almost exclusively topS. Note also that while theK+n

TABLE II. K−p threshold strong branching ratios andK−p scattering length(in femtometers), calculated in the particle basis. The results
in the isospin basis are shown in italic characters. See text for experimental data references.

Authors [Ref.] g Rc Rn ResaK−pd ImsaK−pd Model

Present work 2.35 0.651 0.189 −0.90 0.87 OSA
3.17 0.650 0.257 −0.75 1.11 Isospin basis
1.04 0.655 0.130 −0.74 1.41 OSA,hY excluded
2.36 0.657 0.193 −0.98 0.80 OSB

Bahaouiet al. [1] 2.38 0.636 0.171 −1.04 0.83 OS1
3.37 0.626 0.244 −0.95 1.08 Isospin basis

Oset and Ramos
[5]

2.32 0.627 0.213 −1.00 0.94 Chiral,hY
included

3.29 0.617 0.292 −0.85 1.24 Isospin basis
1.04 0.637 0.158 −0.68 1.64 Chiral,hY

excluded
Experiment 2.36±0.04 0.664±0.011 0.189±0.015 −0.78±0.15±0.03 0.49±0.25±0.12

FIG. 1. Total cross sections initiated byK−p, calculated in the
particle basis with differentKN models: OSA(thick full line), OS1
(bold dashed line), OSA-hY excluded(regular dotted line). The
regular full line is obtained with model OSA in the isospin basis.
Experimental data are from Refs.[46–54].

LOW ENERGYKN INTERACTIONS AND FADDEEV… PHYSICAL REVIEW C 68, 064001(2003)

064001-5



has a slightly higher threshold, all thepY channels have
lower thresholds than that forK−p. So altogether there is a
very rich structure in this coupled set of channels[88]. In the
energy range considered here, some 90 data points are avail-
able [46–54]. These data, obtained between 1965 and 1983,
bear unequal accuracies, as briefly discussed later.

Moreover, accurate data[48,49,55–57] for threshold
branching ratios are also availabe, i.e.,

g = lim
k→0

GsK−p → p+S−d
GsK−p → p−S+d

= 2.36 ± 0.04, s7d

Rc = lim
k→0

G„K−p → scharged particlesd…
G„K−p → sall final statesd…

= 0.664 ± 0.011,

s8d

Rn = lim
k→0

GsK−p → p+Ld
G„K−p → sall neutral statesd…

= 0.189 ± 0.015.

s9d

There are also dataf58g on the invariant mass spectrum of
theS+p− system, which have been exploited to investigate
the nature of theLs1405d resonance.

Finally, the last piece of crucial experimental information
comes from the recent KEK measurement[24] of the K−p
scattering length. As explained in the Introduction, the ob-
tained value which includes the Coulomb effect,aK−p

c

=s−0.78±0.15±0.03d+is0.49±0.25±0.12dfm, resolves the
“kaonic hydrogen puzzle.”

3. Results of the fit

For model OS1 interaction, we have adopted the same
strategy as in Ref.[5] by fitting our parametersf andb to the
threshold branching ratios, withf constrained to deviate from
fp by less than ±20%. All other observables are “predicted,”
i.e., they are evaluated with the values of the parameters
reached at the end of minimization(these values can be
found in Ref.[1]). The branching ratios and theaK−p scatter-
ing length obtained in this model are comparable to the val-
ues from the Oset-Ramos model, see Table II.

The same conclusion holds when we compare the total
cross sections and thepS mass spectrum given in Figs. 1
and 2 with the corresponding results in Ref.[5].

TABLE III. Minimization results for the adjustable SU(3)-
symmetry breaking coefficients of models OSA and OSB for the
KN interactions. For OS1, these coefficients are equal to 1, the
average meson decay constant isf=1.20fp, and the range is
870 MeV. We usefp=93 MeV/c. The reducedx2 are roughly 1.2.

Isospin Channel OSA OSB

f 1.20 fp 1.12 fp

0 KN 0.994 1.048

KN-pS 1.108 0.917

KN-hL 0.851 0

pS 0.903 0.926
1 KN 1.056 0.833

KN-pS 1.293 1.209

KN-pL 0.943 0.933

pS 0.991 1.290

KN-hS 0.757 0

Range(MeV) 888.7 879.6

FIG. 2. pS mass spectrum, obtained with the same models as in
Fig. 1. The thick dotted line is model OSB. The OSA results in the
isospin and particle bases are practically identical. Experimental
data are from Ref.[58].

FIG. 3. S−p→S−p, S°n, Ln, andLp→Lp total cross sections,
calculated in the particle basis(full line) and in the isospin basis
(dashed line). Experimental data are from Refs.[64–70].
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For the OSA interaction, the parameters aref, b, andbij
I ’s,

which are fitted to the threshold branching ratios and theK−p
initiated cross sections, with thebij

I ’s constrained to remain
within ±30% of their exact SU(3)-symmetry values. The ob-
tained values are given in Table III[89].

Note that in the lowest order chiral Lagrangian approach,
some coupling coefficients,Cij

I=0=Dij , Cij
I=1=Fij , as found in

Tables 2 and 3 in Ref.[5] are equal to zero. We have chosen
to keep these zero values, thus we do not need the corre-
sponding SUs3d breaking coefficientsbij

I , which is reflected
in Table III.

Our results for OSA are presented in Table II and Figs. 1
and 2 along with available data as well as values from a few
earlier models. We first discuss the result forK−p initiated
channels in the particle basis. As shown in Table II, the
threshold reaction ratiosg, Rc, Rn are better reproduced by
OSA than by OS1. Regarding theK−p scattering length, our
result is a prediction since we have not used the value ex-
tracted from the kaonic hydrogen atom[24] as part of the
constraint in the fitting procedure. The real part is obtained
closer to the data[24] by OSA than by OS1. As for the
imaginary part, both models give the values at the limit of
the experimental uncertainties within 2 standard deviation.
We point out that this trend for ImsaK−pd is systematically
observed with either the present separable models or with the
Oset-Ramos approach. The cross sections are also better re-
produced with OSA than with OS1, see Fig. 1, especially
those for theK−p→p−S+ and theK−p→K+n channels which
now have the correct magnitude as compared with the data.
The position of theLs1405d resonance predicted by the
present models is quite similar, and in good agreement with
the data, see Fig. 2(and also Fig. 4). Finally, we have calcu-
lated the cross section of theK−p→hL reaction near thresh-
old. We have found that the results predicted by models OSA
and OS1 are in reasonable agreement with the recent data
[59] from the Crystal Ball detector at Brookhaven: the steep

rise juste above the threshold and thes-wave behavior ex-
pected for pseudoscalar meson production at threshold are
correctly reproduced.

As for the results obtained in the isospin basis we only
discuss the case with the OSA interaction, as the character-
istic feature is the same with the results from the OS1 inter-
action. Here, we use the average masses of the hadron iso-
spin multiplets everywhere(see Table I); hence now, for
example, the charge exchange reactionK−p→K+n becomes
elastic energywise. Note that to calculate reaction cross sec-
tions, the entrance channel energies are taken using the
physical particle masses, which are also used to find the final
state phase space volumes. In Table II, we observe large
differences between the values of the threshold ratiosg and
Rn calculated in the two bases. The shift of the cusps in the
cross sections when using the isospin basis are clearly exhib-
ited in Fig. 1. On the contrary, the position of theLs1405d
resonance is only slightly affected. These differences be-
tween the results in the two bases are similar to those ob-
served in Ref.[5].

Next we study the effect due to the contribution from the
hY channels. Given that the difference between the two
thresholds for hL and K−p final states is as large as
,230 MeV(with hS the difference is about 75 MeV larger),
hencea priori the effect from the coupling to these channels
is expected to be insignificant. However, in Ref.[5] the au-
thors observed the importance of retaining these channels. So
we want to check their claim. Very qualitatively, the role of
these channels may be best understood in the exact isospin
symmetry limit. ThenhY channels are the only ones whose
thresholds are above that for theKN. Hence, they provide a
definite attraction to the elasticKN process. As a result the
coupling tohY states controls the binding properties of the
KN (in the effective chiral interaction adopted here, theI
=0 Ls1405d is a bound state ofKN embedded in the con-
tinuum state of thepS channel). As a first step, we have
discarded these channels from model OSA by forcing the
KN-hL andKN-hS strengths to zero, without changing other
parameters. Then, we have recalculated the amplitudes and
observables. This model will be hereafter referred to as
“OSA, hY excluded.” The results are given in Table II and
Fig. 1. The only observables that are not affected are the
threshold ratioRc and the K−p→p+S− cross section. All
other quantities are significantly modified, especiallyg and
Rn as well as theK−p→K−p andK−p→p−S+ cross sections
which become unrealistic. Also, the maximum of thepS
mass spectrum is shifted towards the higher values of the
momentum, thus incompatible with the data. Similar effects
have been pointed out in Ref.[5]. This situation can be un-
derstood by examining the values of the strength parameters
in Table III. The KN-hY strengths deviate from unity by
about 15% –25%, and it is not possible to obtain a correct
overall fit if they are constrained to stay closer to unity[in
particular, the position of theLs1405d resonance is not cor-
rectly reproduced]. This does indicate that theKN-hY
strengths take part in the minimization procedure at about the
same level of importance as the other ones, and it is mean-
ingless to turn them off entirely without readjusting other

FIG. 4. K−p elastic scattering amplitude as a function of the c.m.
total energy, calculated in the particle basis with the OSA model.
Full line, real part; dashed line, imaginary part.
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parameters. In order to see this problem from a somewhat
different angle we have introduced yet another model: OSB,
a variant of OSA in which thehY channels are excluded
from the beginning. The values of the parameters are given
in Table III. The results obtained for theK−p branching ratios
and scattering length are close to those obtained with OSA,
see Table II. This is also the case for the total cross sections.
However, the position of theLs1405d resonance is now
shifted towards lower values of the momentum, see Fig. 2,
which means that OSB is not able to reproduce the properties
of the Ls1405d. We thus need to retain thehY channels.

Lastly, we use the parameters thus obtained both for OS1
and OSA to calculate the amplitudes(or t matrices) for the
K−n initiated processes, see Eq.(6), for which, as mentioned
earlier, there are no data to be confronted with. We still need
those amplitudes for ourK−d three-body calculations. Here
along with the corresponding quantity in theK−p initiated
channels, we only present the scattering lengths as found in
Table IV.

The differences between the results given by the two
models do not exceed,30%. For comparison we give also
the values obtained by Oset and Ramos[5]. Our OS1 results
agree with those values within,15%, in line with the dif-
ferences previously observed on the other observables. The
symmetry breaking effect in the mass of the hadron isospin
multiplets is quite visible, especially in the real parts, since
in the limit of isospin symmetry, one hasap=an

+ andaex=ap
−an. Note that the scattering lengths in Table IV have been
obtained at theK−p threshold (except for the elasticK−n
process). In fact, these quantities are very sensitive to the
value of the threshold at which they are calculated, which is
then reflected in the values obtained for theAK−d scattering
length. These aspects have been discussed in our previous
paper[1], and will be revisited at the beginning of Sec. IV.

In conclusion, the OS1 and OSA parametrizations are
good candidates to be used in the three-body calculation. It is
clear that such interactions, the parameters of which are de-
termined by a fit to the available observables in the particle
basis with the chiral SU(3)-symmetry constraint, must defi-
nitely be preferred to previous separable interactions with
parameters determined in the isospin basis, without any sym-
metry constraint, as was the case in Refs.[13–16,20].

B. NN INTERACTION

We have considered three different relativistic separable
potentials to describe the deuterond channel. The structure

of the equations may be read off from the coupled-channels
case described in Appendix B by replacing the particle labels
with the angular momentum labels relative to the3S1 and3D1
coupled partial waves.

All the interactions considered are of rank 1. Characteris-
tic to such potentials, the static parameters are correctly re-
produced, namely, the triplet effective range parametersat
and rt, theD-state percentage valuePD, the quadrupole mo-
ment Q, and the asymptotic ratioh=AD/AS. On the other
hand, the3S1 and 3D1 phase shifts cannot be reproduced si-
multaneously.

The first model(hereafter called modelA) is that pro-
posed in our work on thepd system[61], namely, the pa-
rametrization denoted bySFs6.7d therein, with PD=6.7%.
This model is an extension of the usual Yamaguchi-type in-
teractions, using form factors which are expressed as ratios
of polynomials. The parameters are fitted to the static prop-
erties, the3S1 phase shift, and also to the deuteron monopole
charge form factor up to about 6 fm−1. All details can be
found in Ref.[61].

Besides this model fitted to on-shell properties only, we
have considered a second model derived from the PEST1
potential constructed by Haidenbauer and Plessas in Ref.
[62]. The authors have constructed a separable representation
of the Paris potential to reproduce both its on-shell and off-
shell characteristics. Among variousNN partial waves, spe-
cial care is devoted to the coupled3S1-

3D1 state. The best
approximation to the Paris potential requires a rank-4 inter-
action. However, for applications where only the deuteron
bound state enters, a rank-1 parametrization was proposed,
called PEST1, with all deuteron properties(including the
wave functions) being practically the same as those given by
the Paris potential. The price to pay is that the form factors
are chosen as sum of rational functions, with many param-
eters, see Ref.[62]. As the PEST1 parametrization is non-
relativistic, we have extended it by means ofthe minimal
relativity rule. More specifically, the relativistic potentialVR

between nucleons 1 and 2 is obtained from the nonrelativistic
one VNR according to the following transformation in mo-
mentum space:

VRsp, p8d = s2pd3Î2e1p2e2pV
NRsp, p8dÎ2e1p82e2p8,

s10d

with eip=Îpi
2+mi

2 the total energy of nucleoni. Taking
VNR as separable,VNRsp, p8d=lgspdgsp8d, VRsp, p8d has the
same form, withgspd multiplied by 2Îs2pd3Îp 2+m2. We
have checked that this transformation induces only slight
changes in the deuteron properties. For example, the origi-
nal PD value is 5.8%, and thevalue obtained after the
relativistic transformation is6.1%. So, we cankeep the
original parameters. In our present work this is denoted as
model B.

Finally, in order to assess the importance of theD-state
contribution in the low energyK−d scattering, we have used
a pure3S1 relativistic potential, with form factor as given in
Eq. (4). The values of the strength and range parameters
fitted to ED and at are ld=−5974.2,bd=1.412 fm−1, respec-
tively. This model is called modelC.

TABLE IV. KN scattering lengths(in femtometers) calculated in
the particle basis with models OS1 and OSA. The values in the last
column have been evaluated by Ramos[60] at the same energy.ap,
an

+ , andaex (calculated atW=MK−+Mp) are the scattering lengths for
elasticK−p, K+n, and charge exchangeK−p↔K+n, respectively.an

(calculated atW=MK−+Mn) is the scattering length for elasticK−n.

Reactions OSA OS1 Oset-Ramos

apsK−p→K−pd −0.888+i 0.867 −1.035+i 0.828 −1.013+i 0.947
ansK−n→K−nd 0.544+i 0.644 0.573+i 0.452 0.540+i 0.531

an
+ sK+n→K+nd −0.444+i 0.998 −0.602+i 0.894 −0.516+i 1.053

aexsK−p→K+nd −1.215+i 0.393 −1.365+i 0.484 −1.289+i 0.484
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C. OTHER TWO-BODY INPUT

We have also considered the contributions of thepN-P33
and coupledYN interactions. As will be explained in Sec.
IV C, these two-body channels start to contribute from the
second order in the multiple scattering expansion of the Fad-
deev equations, so their contribution in the low energyK−d
observables is expected to be moderate or even small.

1. pN-P33 interaction

We have chosen a conventionalD-isobar model where the
D resonance is parametrized according to a one-term sepa-
rable potential:

Vsp, p8;sd = gspd
lD

s − m0
2gsp8d. s11d

Here,s is thepN total c.m. energy squared, andm0 is the
bareD mass. Ap-wave monopole form factor is assumed
with cutoff L:

gspd =
p

p2 + L2 . s12d

The strength parameterlD, together withm0 and L, is
fitted to theP33 phase shift. In the relativistic approach, we
have obtained the following values:lD=218.582, m0
=1308.8 MeV, andL=290.9 MeV/c.

In order to solve the three-body equations in the particle
basis, it is necessary to introduce different charge states of
the pion and nucleon. So, the following states will contrib-
ute: the sp+p, p+nd and sp−p, p+nd coupled states and the
sp−nd state. The corresponding separable two-body potentials
are obtained by choosing the same form factors as Eq.(12)
in all channels, and expressing the strength parameters in
terms oflD, see Appendix A. The resulting two-bodyt ma-
trices entering the three-body equations are obtained straight-
forwardly.

2. YN interactions

The hyperon-nucleon interaction has been well studied in
the past. One of the most popular approaches is meson-
exchange potential models with SUs3d symmetry constraints
used in the coupled-channels equations, see Ref.[63], and
references therein. Besides the intrinsic interest in investigat-
ing the availableYN experimental data, these interactions
serve as input to hypernuclear physics. Concurrently, sepa-
rable models have been developed, and some of them have
been used as input toK−d three-body calculations. In particu-
lar, the effect of the final stateYN interaction(limited to s
waves) on the Lp invariant mass distribution near theSN
threshold was studied in Refs.[14,15]. One of the main con-
clusions was that the best reproduction of the shoulder in the
Lp mass spectrum favored models which do not support an
unstableSN bound state. The interactions that we have
elaborated in Refs.[16,17] and that presented in this work
fulfill this condition.

The data to which the adjustable parameters of the sepa-
rable potential should be fitted are scarce and exhibit rather
large error bars. To our knowledge, there are no new data in

addition to those used in our previous work; namely,(i) the
S+p→S+p, S−p→S−p, S+n, Ln, and Lp→Lp total cross
sections, in the hyperon momentum rangepY

labø300 MeV/c,
(ii ) the S+p→S+p, S−p→S−p, and S−p→Ln differential
cross sections forpY

lab,300 MeV/c. See Refs.[64–70].
In Refs. [16,17], we have used most of these data to de-

termine the parameters of two models: one nonrelativistic
and the other relativistic. The calculations were done in the
isospin basis, where one must consider theSN-LN sI=1/2d
coupled channels and theSN sI=3/2d single channel. The
main conclusion was that the total cross sections are domi-
nated by the3S1 partial wave, except forS+p→S+p which is
dominated by the1S wave, while theP andD partial waves
have a significant contribution only in theS−p→Ln total
cross section(of course, these higher partial waves must be
taken into account if the differential cross sections are added
to the data to be fitted).

The model used in the present study is an extension of the
above-mentioned relativistic model to calculate the observ-
ables in the particle basis. Only the3S1 partial wave contri-
butions are included, thus the parameters are fitted to the
total cross sections, except forS+p→S+p. Note that neglect-
ing the 1S0 partial wave is justified in the three-body calcu-
lation at low energies, since the contribution from the singlet
S-waveYN interactions is excluded for parity considerations.
We take as adjustable parameters the coupling strengths and
the ranges of the form factors in the isospin basis. The ob-
servables are calculated in the particle basis, where the fol-
lowing channels contribute: thesS+p, S+n, Lpd and
sS−p, S+n, Lnd coupled channels and theS−n andS+p single
channels. The relations between the strength parameters in
the two bases can be found in Appendix A, and the transition
matrices for the different reactions are obtained from the
general expressions given in Appendix B. We take monopole
form factors, Eq.(4), with isospin-independent ranges. The
values of the fitted parameters are given in Table V, and the
cross sections in Fig. 3. The selected data can be well repro-
duced by this simple model, but a large reduction effect is
observed when isospin basis is adopted in the total cross
sections for theS−p induced reactions at low values of the
hyperon momentum.

We give in Table VI theYN scattering lengths calculated
in the particle basis. Except foraS+p−S+p and aS−n−S−n that
are practically equal, the symmetry breaking effects are
large. For example, at the limit of exact isospin symmetry,
one should haveaS−p−S+n=Î2saS+n−S+n−aS−p−S−pd=−aS+n−S+p

=Î2saS+p−S+p−aS+n−S+nd, which is clearly not the case.

TABLE V. Strength and range parameters of theYN interac-
tions.

Isospin Channel Parameters

1/2 SN −3209.69
SN-LN −1739.22

LN −1794.16
3/2 SN 3072.26

SN range(MeV) 452.300
LN range(MeV) 356.981
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III. THREE-BODY EQUATIONS FOR THE K−d SYSTEM

In this section, we describe the three-body equations for
theK−d system, in which the two-body input described in the
preceding section will enter. In Sec. III A, we recall the gen-
eral form of the three-body equations written in the isospin
basis, in the case of coupled two-body input channels, and
we give the equations for the rotationally invariant ampli-
tudes. Then, the antisymmetrization due to the identity of the
two nucleons in the isospin basis is examined. In Sec. III B
the extension to the particle basis is given. Some important
aspects concerning the practical calculation are considered in
Sec. III C.

A. Three-body equations in the isospin basis

The extension of the usual three-body equations to the
case where the two-body operators connect two states in-
volving particles that are different(i.e., inelastic channels)
results in the following system of coupled equations, written
in operator form:

Xabssd = Zabssd + o
c,c8

ZacssdRcc8ssdXc8bssd, s13d

with s being the 3-body total energy. Here,a, b, c, andc8
are the indices that specify the particles involved in the
various three-body channels, namely, the spectator and the
interacting pair.Xab is the transition amplitude between
channelsa andb, andZab is the corresponding Born term.
The main difference with respect to the usual case is that
the two-body operatorRcc8 connects two different two-
body states labeled asc and c8.

We now specify the values taken by the channel indices in
Eq. (13). Taking into account all the two-body input consid-
ered in Sec. II, one must consider the following types of
three-body channels in the isospin basis:dfKsNNdg,
yfNsKNdg, afNspYdg, mfNshYdg, bfpsYNdg, and DfYspNdg.
Here, the first letter is thelabel of the channel, and in square
braces we specify thespectatorand the associatedpair of
particles. In fact, labelsy, a, m, andb can be considered as
“generic” names. In practice, extra indices are needed to

fully describe the physical situation. For example, for the
pairs corresponding to theKN interactions, there are threeI
=0 coupled channels(KN-pS-hLd and four I=1 coupled
channelssKN-pS-pL-hLd. A similar situation occurs in the
case of theb channels corresponding to theSN-LNsI=1/2d
coupled channels. The corresponding three-body channels
are labeled as summarized in Table VII. Note that in channel
D, the spectator hyperonY is restricted toS, from isospin
considerations.

In the formal equations(13), the channel indicesa, b, c, c8
take their values in the set defined above:hd, y, a, m, b, Dj,
and the different quantitiesX, Z, R can be considered as
matrices with respect to these indices.

The transitions between different two-particle states are
induced by the two-body operatorsRcc8: for example,Rya is
the quantityRKN−pY corresponding to the two-bodyt matrix
for the KN→pY transition, evaluated in the presence of a
spectator nucleon. Written in matrix form, the nonzeroR
operators appear as block matrices as shown in Table VIII.

Concerning the Born terms, only those which connect ini-
tial and final states involving the same three particles are
different from zero. These terms are shown in matrix form in
Table IX.

For example,Zdy is the Born term for the exchange of a
nucleon between theKsNNd andNsKNd states. Note thatZdd

is equal to zero, since no particle can be exchanged between
the initial and finalNN pairs. We note also that, using the
two-body input channels considered here, there is no Born
term involving anhY pair. To have such terms, it would be
necessary to take into account the contributions of three-
body channels such ashsYNd, YspNd, andYshNd. (The last
two channels necessitate to introduce thepN-hN two-body
coupled system.) These contributions are expected to be neg-
ligible at theK−d threshold.

The successive steps leading from the formal equations
(13) to the relativistic equations for the rotationally invariant
amplitudes are the same as in the usual case. We refer the
reader to Ref.[17,44,45,71,72] for all details. The final equa-
tions read

TABLE VII. Labels of the three-body channels. The second row specifies the isospin of the two-body subsystem.

Channel KsNNd NsKNd NspSd NshLd NsKNd NspSd NspLd NshSd SspNd psSNd psLNd psSNdd

Isospin 0 0 0 0 1 1 1 1 3/2 1/2 1/2 3/2
Label d y1 a1 m1 y2 a2 a3 m2 D b1 b2 b3

TABLE VI. YNscattering lengths(in femtometers) calculated atW=MS++Mn for channelssS+n, S+p, Lpd, andW=MS−+Mp for channels
sS−p, S+n, Lnd. The single channels values areaS−n=−0.454sW=MS−+Mnd andaS+p=−0.455sW=MS++Mpd.

Channel S+n S+p Lp Channel S−p S+n Ln

S+n 0.609+i 3.618 0.834+i 2.837 −0.113−i 1.595 S−p −0.528+i 2.505 −0.192−i 1.762 0.241−i 0.996
S+p 0.145+i 2.225 −0.089−i 1.251 S+n −0.137+i 1.277 −0.072+i 0.721
Lp 1.893 Ln 1.851
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Xtatc

J I spa, pc;sd = Ztatc

J I spa, pc;sd

+ o
b,tb;b8,tb8

E dpb pb
2

2eb
Ztatb

J I spa, pb;sd

3R
bb8

cb=cb8ssbdXtb8tc

JI spb, pc;sd, s14d

wheresb is the invariant energy of the pair in channelb
expressed in the three-body center-of-mass system,ca

=sJa, Sa, Iad specifies the conserved quantum numbers of
the pair in channela, and ta=sca, la, Sad specifies the
three-body quantum numbers in this channel. Note that
labelsc andt refer to the spin-isospin variables in a given
channel. For example, assuming that channela is com-
posed with particlei as spectator and the pairs jkd, we
define the following quantities:s1d si, spin of particlei;
s2d Sis=sj +skd, L i, and Jis=L i +Sid, respectively, the spin,
orbital angular momentum, and total angular momentum,
of pair s jkd; s3d Sis=si +Jid, l i, andJs=l i +Sid, respectively,
the channel spin, orbital angular momentum ofi and s jkd,
and three-body total angular momentum.

The isospin variables are defined in the same way:(1) ti,
isospin of particlei; (2) I is=tj+tkd, isospin of pairsjkd; (3)
Is=ti+I id, three-body total isospin.

The notations used in Eq.(14) for the two-body propaga-
tors are the following: the lower indicesb andb8 refer to the
involved coupled channels, and the upper “index”cb=cb8
means that the spin-isospin quantum numbers are conserved
by the interaction, i.e.:Jb=Jb8, Sb=Sb8, Ib=Ib8 (the latter
equality holds only in the isospin basis). For the uncoupled
propagators, the single indexcb specifies completely the in-
teracting pair.

The two-body propagators are calculated as explained in
Sec. II and Appendix B, and the general expression of the
Born term can be found in Ref.[17].

We end this section with two specific aspects concerning
the calculation of the Born terms in the isospin basis. The
first one concerns the problem of antisymmetrization. In the
isospin basis, the particles in the different multiplets are con-
sidered as identical. In particular, the neutron and proton are
treated as identical particles: the nucleonN. Therefore, one
must properly antisymmetrize the amplitudes and Born terms

TABLE VIII. Matrix of propagators in the isospin basis.

Channel d y1 a1 m1 y2 a2 a3 m2 D b1 b2 b3

KsNNd d R

NsKNd y1 R R R

NspSd a1 R R R
NshLd m1 R R R

NsKNd y2 R R R R

NspSd a2 R R R R
NspLd a3 R R R R
NshSd m2 R R R R
SspNd D R
psSNd b1 R R
psLNd b2 R R
psSNd b3 R

TABLE IX. Matrix of Born terms in the isospin basis. For the nonzero Born terms, the exchanged particle
is shown in parentheses.

Channel d y1 a1 m1 y2 a2 a3 m2 D b1 b2 b3

KsNNd d ZsNd ZsNd
NsKNd y1 ZsNd ZsKd ZsKd
NspSd a1 Zspd ZsSd ZsSd
NshLd m1

NsKNd y2 ZsNd ZsKd ZsKd
NspSd a2 Zspd ZsSd ZsSd
NspLd a3 ZsLd
NshSd m2

SspNd D Zspd Zspd ZsNd ZsNd
psSNd b1 ZsSd ZsSd ZsNd
psLNd b2 ZsLd
psSNd b3 ZsSd ZsSd ZsNd
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where the initial and final three-body states involve two
nucleons. As a result, one must introduce antisymmetrization
coefficients as explained in Appendix C. The second aspect
concerns the problem relative to the “ordering” of particles
when evaluating the Born terms. For example, let us consider
the Zyy Born term forK exchange between twoKN states.
The antisymmetrized expression is, according to Appendix
C,

Z̃yy = − Zy1y2 = − kN2sKN1duG0uN1sKN2dl, s15d

with G0 being the three-body propagator. Usually, the ex-
pression given for the Born term assumes a cyclic order-
ing of the particle labels, see, for example, Refs.f17,73g;
namely, one calculates, for example,Zij =kis jkduG0u jskidl
for the exchange of particlek between pairss jkd and skid,
where i, j , k are assumed to be cyclically ordered both in
the initial and in the final state. In the case ofZy1y2, Eq.
s15d, the spectator particles in the initial and final states
are labeled asN2= i, N1= j , thus the Born term has the
“noncyclic” form: kiskjduG0u jskidl. We obtain the cyclic
form by exchanging particlesj andk si.e., N andKd, in the
pair of the final state. This introduces the following phase
coefficient:

s− 1dLKNs− 1dSKN−sN−sKs− 1dI KN−t N−t K. s16d

The first factor is due to changing the direction of the
relative momentum of the pair, and the secondsthirdd fac-
tor results from the property of the Clebsch-Gordan coef-
ficients when the coupling order of the spinssisospinsd of
two particles is changed.

B. Extension to particle basis

In the particle basis, we consider the deuteron as com-
posed of two distinct particles: the neutronn and the proton
p, and the particles of the different multiplets take their
physical masses. The number of three-body channels to be
considered increases considerably as compared to the isospin
basis case. For example, we have seen in Sec. II A that for
theKN interactions in the particle basis we must consider the
coupled channels related toK−p, namely,K−p, K+n, p−S+,
p+S−, p+S+, p+L, hS+, hL, and those related toK−n: K−n,
p−S+, p+S−, p−L, hS−. So, if we retain only these contribu-
tions in addition to the deuteron, the three-body channels to
be considered are theK−spnd channel, the eight above chan-
nels with the neutron as spectator, and the five remaining
channels with the proton as spectator. So, we have a 14
314 Born terms matrix. However, the number of nonzero
Born terms is very limited. In the case considered here, we
have only the following different Born terms:
kK−spnduG0unsK−pdl [proton exchange between the deuteron
and thesK−pd pair], kK−spnduG0upsK−ndl (neutron exchange
between the deuteron and thesK−nd pair), knsK−pduG0upsK−ndl
[K− exchange between thesK−pd and sK−nd pairs],
knsK+nduG0unsK+ndl [K+ exchange between the initial and final
sK+nd pairs], and the symmetric terms.

The matrix of propagators has a block structure similar to
that in the isospin basis(Table VIII): single term for the

deuteron propagator, 838 matrix for the channels coupled to
K−p, and 535 for the channels coupled toK−n.

If we take into account the contributions of thepN and
YN interactions, the following additional three-body chan-
nels must be considered(see Sec. II C): hS−sp°pd, S−sp+ndj,
hS°sp−pd, S°sp°ndj, and S+sp−nd, coming from the
pN interaction, and hp−sS+nd, p−sS°pd, p−sLpdj,
hp°sS−pd, p°sS°nd, p°sLndj, and p+sS−nd, coming from the
YN interactions.

The derivation of the equations for the rotationally invari-
ant amplitudes and the calculation of the Born terms are
done along the same lines as in the isospin basis. The main
difference is that there is no problem relative to antisymme-
trization, except forknsK°nduG0unsK°ndl which must be anti-
symmetrized with respect to the two identical neutrons, as in
the case of theZyy Born term calculated in the isospin basis,
see Appendix C. Another important difference concerns the
isospin dependence. In the isospin basis, the expression of
the Born term involves a “6-j” coefficient originating from
the transformation from initial to final three-particle isospin
states, see Refs.[17,73]. This coefficient depends on the val-
ues of the particle isospins, total isospin of the initial and
final pairs, and three-body total isospin. In the particle basis,
the individual isospins of all particles are well defined, but
not the total isospin of the pairs[consequently, thec labels in
Eq. (14) do not depend on the isospinI of the pairs]. As the
initial and final three-body states involve the same three par-
ticles, the isospin coefficient simply reduces to unity.

C. Practical calculation

For the practical calculation, we must first define the val-
ues of the various isospins, spins, and angular momenta. At
first, we consider the isospin basis case. The total isospin of
the K−d system isI=1/2. Now, in a given three-body chan-
nel, the quantum numberssL, S, J, Id of the pair and the spin
s of the spectator particle are fixed. The channel spinS is
then given byus−JuøSøs+J, and the angular momentuml
of the spectator relative to the pair is given byuJ−Suø l
øJ+S, with J being the three-body total angular momen-
tum. For a given value ofJ, the possible values ofl can be
ordered in two sets corresponding to opposite parities of the
three-body system. The situation is summarized in Table X.

In the present paper, we consider only theK−d scattering
length which is defined as

AK−d = − lim
pK→0

1

32p2Îs
Xdd, s17d

whereXdd is the sJ=1−, l = l8=0d partial amplitude forK−d
elastic scattering, evaluated at the zero limit for the kaon
momentum. If we retain the contributions of thed+KN
+D+YN two-body channels, we have a system of 12
coupled three-body channelsssee Table VIId. After angu-
lar momentum reduction, we obtain forJ=1− a system of
25 coupled equations, see Table X. The singularities of
the kernelZX are avoided by using the rotated contour
methodf10g, and, after discretization of the integrals, this
system is transformed into a system of linear equations.
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It is well known that the iterated form of the three-body
equations does not converge. This is illustrated with the fol-
lowing results obtained(in the isospin basis) with the OSA
+deuteron-A model. The values ofAK−d obtained at first, sec-
ond, and third order of iteration are, respectively(in femtom-
eters): s0.303+i 3.258d, s−0.572+i 3.684d, and s−1.366
+i 4.131d, which clearly do not converge. To obtain the exact
value, we solve the linear system by matrix inversion. In the
above example, we gets−1.636+i 2.618dfm. We can also use
the Padé approximants technique which leads to a conver-
gent solution from the successive iterated terms. In practice,
we have used a diagonalf5/5g Padé(constructed with the 11
first iterates), which was found to be sufficient to achieve
convergence. The dimension of the matrix to be inverted is
rather large, especially when the contributions of the “small”
two-body partial waves are taken into account. However, this
is a sparse matrix because of the limited number of nonzero
Born terms. Thus, it is much less time consuming to solve
the linear system with using the Padé approximants method.

The extension to the particle basis case is straightforward.
As explained above, in this case the Padé approximant
method must be even more preferred to the usual methods
for solving the linear system, since the number of coupled
channels is much larger than in the isospin basis for a given
choice of two-body contributions, but with a large number of
Born terms equal to zero.

Note also that we have checked that, using the particle
basis computer program with the particle masses in the mul-
tiplets replaced with the mean values used in the isospin
basis, we have obtained again the isospin basis results.

IV. RESULTS

In this section, we present our result for the scattering
length AK−d. As an introduction, we argue why we think it
necessary to go beyond the fixed center approximation

(FCA) as adopted by Kamalovet al. [41]. Then we discuss
some general aspects regarding the choice of the basis(viz.,
particle vs isospin) and the use of different coupled two-body
KN input, and we investigate the effects due to the choice of
different deuteron models. At the end, the effect of “small”
two-body input on theK−d scattering length is discussed.

A. Why need to go beyond FCA?

In the Introduction, it has been stated that we need to go
beyond the FCA and to solve the three-body equation ex-
actly. We justify that claim here.

In the FCA the deuteron is viewed as composed of a pro-
ton and a neutron with a fixed separationr. The incoming
zero energyK− meson then makes multiple scattering off the
proton and neutron with no recoil of the target particles.
Within this approximation the three-body scattering equation
may be solved algebraically: see Eq.(23) of Ref. [41], to find

the scattering length operatorÂK−dsrd expressed in terms of
theKN scattering lengthsap, an, an

°, aex as in Table IV, and the
separationr. The actualK−d scattering length is then identi-

fied as the expectation valuekcduÂK−ducdl over r with respect
to the deuteron wave functioncdsrWd. So essentially,AK−d is
determined by the two-bodyKN scattering lengths men-
tioned above.

As discussed in Sec. II, theLs1405dsI=0d resonance is
generated as a bound state ofK−p embedded in thepY con-
tinuum. Now the position of this resonance is fairly close to
the threshold forK−ps<1432 MeVd and K°ns<1437 MeVd,
respectively. Thus the elasticK−p, charge exchangesK−p
→K°nd, and hence the elasticK°n scattering are all affected
by this resonance, and the corresponding amplitudes vary
rapidly near their thresholds: see Fig. 4 for the case of the

TABLE X. Two-body sL, S, J, Id and three-bodysl, S,Jd quantum numbers in the isospin basis. The
two-body partial waves are labeled as:2S+1LJ for NN andYN, L2I,2J for pN, andLI,2J for KN and pY. The
column labeled aslaslbd corresponds to negative(positive) parity states for odd values ofJ, and to positive
(negative) parity states for even values ofJ. Only the valueslù0 are retained.

Channel L S J I S la lb

KsNNd3S1−3D1
d 0,2 1 1 0 1 J+1 J

J−1

NsKN-pS-hLdS01
y1-a1-m1 0 1/2 1/2 0 0 J

1 J+1 J
J−1

NsKN-pS-pL-hSdS11
y2-a2-a3-m2 0 1/2 1/2 1 0 J

1 J+1 J
J−1

SspNdP33
D 1 1/2 3/2 3/2 1 J J+1

J−1
2 J+2 J+1

J J−1
J−2

psSN-LNd3S1
b1-b2 0 1 1 1/2 1 J+1 J

J−1
psSNd3S1

b3 0 1 1 3/2 1 J+1 J
J−1
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elastic K−p amplitude which shows strong variations, par-
ticularly in its real part. The question then arises as to at
which energy these amplitudes should be calculated to pro-
duce the corresponding scattering length in use for calculat-
ing AK−d in FCA. In Fig. 5 we show the values of the two-
body scattering lengths which enter the FCA calculation and
the resultantAK−d for different values adopted for theKN
threshold W. We immediately notice that because of the
strong variation of the two-body scattering lengths, the cor-
respondingAK−d varies also rapidly with a slight shift inW,
the real part in particular. This demonstrates that just because
of the proximity to theLs1405d resonance, the FCA is not
very reliable. In full three-body results, the quantity corre-
sponding toW is Îs; the energy available to any two-body
amplitude in the presence of a spectator. This is smeared out
due to a loop momentum integration. Consequently, the full
three-body results do not suffer from this excessive sensitiv-
ity.

B. Calculations including only the KN and NN interactions

Here we retain only the deuteron and theKN two-body
input in the three-body calculation of theK−d scattering
length. This means that in the multiple scattering expansion
of the equations only the following three-body states do en-
ter: K−spnd, nsK−pd, nsK°nd, andpsK−nd. Although no explicit
three-body states with hyperons enter in the calculation in
this approximation, there is an implicit effect from thepY
channels through the two-bodyKN input. Hence it is more
than thesingle channelapproximation studied in Ref.[74].
Within the present context we first confront the results from
the particle and isospin bases, which makes us keep the re-

sult with particle basis in the subsequent sections. We then
study the results with differentKN models.

1. Isospin and particle bases

The isospin symmetry breaking effects in theKN sector
have been clearly demonstrated in Sec. II A, by comparing
theK−p observables obtained in both the isospin and particle
bases(see Table II, and Figs. 1 and 2). In particular, upon
going from the particle to isospin basis, we find that the
magnitude of the real part ofaK−p obtained from model
OSA+deuteron-A decreases by about 20% whereas the
imaginary part increases by as much as 30%(see Table II).
This last tendency should be due to the fact that in the
isospin basis(we reiterate here that in this case the isospin
symmetry is exact) two-body channel thresholds become
identical among differentKN channels within the same iso-
multiplets. Consequently, these effects are reflected inAK−d,
as one can see in Table XI for differentKN models: by going
from the particle to isospin basis, the magnitude of its real
part gets smaller by about 10%, while its imaginary part gets
strongly enhanced by,70%. In what follows we will mostly
comment on the results from the particle basis since they are
more realistic.

2. Results using differentKN models

We give in Table XI the values ofAK−d obtained from
models OS1, OSA, and OSB of theKN interactions de-
scribed in Sec II A. We briefly recall that by construction all
the models have adopted the SU(3)-symmetry constraint on
the strength parameters, with the possible breaking effects
introduced in OSA and OSB, and the contributions of thehY
channels have been taken into account, except for OSB.

The calculations have been done with modelA for the
deuteron. The variations observed on the real and imaginary
parts ofAK−d calculated in the particle basis are moderate: for
example, the real part increases by about 9% and the imagi-
nary part decreases by about 6%, when replacing model OS1
by model OSA. The absolute values of these variations are
comparable to those observed in theK−p scattering length
(see Table II): by going from OS1 to OSA we find an in-
creases in the real part by about 13%. For the imaginary part
the corresponding increase is less than 1%.

Concerning the contribution from thehY channels in the
KN interactions, we observe the same type of effects, both on
aK−p and on AK−d. Specifically, compared with the values
given by model OSA, both real and imaginary parts ofaK−p
decrease by,9% when using OSB(see Table II), while the
real part ofAK−d increases by,4% and the imaginary part

FIG. 5. KN andK−d scattering lengths calculated in the particle
basis for the following values of the two-body threshold energyW:
MK−+Mp=1432 MeV, MK−+Mn=1432.65 MeV,MK−+sMp+Mnd/2
=1433.3 MeV, andMK°+Mn=1437.3 MeV. Model OSA is used for
theKN interaction. TheK−d scattering length is calculated with the
FCA approximation, using the OSA+deuteron-A model. Symbols
are placed at the threshold values. The lines are to guide the eye.

TABLE XI. Sensitivity of theK−d scattering length to the model
used for theKN interaction. The deuteron is modelA. The calcula-
tions are done in the particle and isospin bases.

Model OS1 OSA OSB

particle basis −1.985+i 1.642 −1.802+i 1.546 −1.722+i 1.354
isospin basis −1.759+i 2.907 −1.636+i 2.618 −1.709+i 2.247
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decreases by,12%. Now we recall the result in Sec. II A:
using model OSA and excluding the contributions of thehY
channels, we have seen that allKN observables were strongly
affected. In particular, the imaginary part ofaK−p increases by
as much as,60%, and the real part by,18% (see Table II).
A similar tendency is observed onAK−d, as the OSA value of
s−1.802+i 1.546d fm has been transformed tos−1.705
+i 2.360d fm when the hY channel contributions are ex-
cluded(as discussed in Sec. II A this means that the coupled-
channels equations were solved again with the parameters of
OSA but excluding the coupling to thehY channels). In con-
junction with the observation in Sec. II A just mentioned
above, we conclude here that it is important to retain these
hY channels forAK−d. Before ending this section we should
mention that, as shown in our previous publication[1], we
have also tested theKN amplitude from Ref.[5] in the three-
body equation, and the result turned out to be very close to
that with OS1, as expected.

3. Dependence on deuteron models

We have tested three different deuteron models:A, B, C as
described in Sec. II B. TheirD-state probabilitiesPD are
6.7%, 5.8%, and 0%, respectively. These deuteron models
are used in combination with the OS1, OSA, and OSB pa-
rametrizations of theKN interaction, and results are summa-
rized in Table XII.

Irrespective of whichKN model is adopted, there is a
definite pattern: the imaginary part of the scattering length
increases in accordance with the corresponding increase in
the D-state probability of the deuteron. The increase in this
quantity due to a change,PD=0→6.7%, is as large as 20%.
The real part appears to stay more or less the same in the
meantime. We have looked at a few first terms in the three-
body multiple scattering series, but that does not tell us why
the change is almost exclusively in the imaginary part. But
whether it is in the real or the imaginary part, the following
simple observation should suffice in understanding the
change of this magnitude. First, we introduce theS and D
components of the deuteron wave function in momentum
space ascSspd, cDspd, such that

PS=E
0

`

cS
2spdp2dp, PD =E

0

`

cD
2 spdp2dp, PS+ PD = 1,

s18d

where, for example, we may takePS,0.93, PD,0.07 for
model A deuteron. We may then rewrite

cSspd = ÎPSfSspd, cDspd = ÎPDfDspd, s19d

such that bothfS and fD are normalized to unity. Note
here thatÎPS,0.97 andÎPD,0.26,respectively. Then we
may express the scattering length in the following manner:

AK−d = PSkfSuÃSSufSl + 2ÎPDPSkfDuÃDSufSl

+ PDkfDuÃDDufDl, s20d

where Ã are operators in the space of the deuteron wave
function, and the angle brackets mean the integration over
the initial and final loopsor off-shelld momenta. In the
above expression, it is easy to see that due to the second
S-D interferenceterm the result with and without the deu-
teronD state could differ up to a few tens of a percent, even
thoughPD is just about,6%. Of course it is likely that the

matrix elementkfDuÃDSufSl may well be smaller than that for

the first term:kfSuÃSSufSl, due to a slight angular momentum
mismatch between theS and D states. However, when we
study the behavior ofcSspd andcDspd, it is easy to observe
the following trend: the former is very large atp=0 and
decreases rather rapidly down top,0.6 fm−1. The latter is
zero atp=0 to start with, but its magnitude increases rapidly
up to aboutp=0.6 fm−1, then decreases moderately down to
aboutp=2.5 fm−1. The result is that the wave function com-
ponents become of the same order of magnitude from about
pequal=0.75 fm−1. On the other hand, we find thatpequal is in
the subthreshold region for theK−p amplitude dominated by

the Ls1405d resonance, see Fig. 4. This is embedded inÃDS.

For this reason it may be fairly likely thatkfDuÃDSufSl and

kfSuÃSSufSl are not very different in magnitude, hence a
,20% increase in the imaginary part ofAK−d due to the deu-
teron D state is possible. So it is important to retain that
component.

C. Effects of the small two-body input

What we term here as small two-body input are(i) thepY
channels resulting from the initialKN interaction,(ii ) pN
appearing with a spectator hyperon, and(iii ) the YN interac-
tions with a spectator nucleon in the three-body equations.
Here we exclude the channels involving theh meson, recall
Table VII. In this manner, in principle, our equations do sat-
isfy three-body unitarity exactly. It was shown in Refs.
[14,15] that these interactions were very important in the
threshold break-up reactions,K−d→pNY, as they control the
final state interactions. Here we want to study these effects in
the threshold elastic case. For some convenience, calcula-
tions in the isospin basis come back in our discussion.

We take models OS1 and OSA for theKN interactions,
and modelA for the deuteron. Then, we add successively the
pN-P33 and YN interactions described in Sec. II C. The re-
sults are given in Table XIII: the third and fourth columns
give the values obtained when only thepN-P33 or YN input
are added to theKN+d input, and in the last column both
contributions are taken into account.

TABLE XII. Sensitivity of theK−d scattering length, calculated
in the particle basis, to the model used for the deuteron channel.
Models A and B have D-state values of 6.7% and 5.8%, respec-
tively, and modelC is pure3S1. Models OS1, OSA, and OSB of the
KN interactions are considered.

Model A B C

OS1 −1.985+i 1.642 −1.966+i 1.515 −1.975+i 1.313
OSA −1.802+i 1.546 −1.788+i 1.435 −1.780+i 1.243
OSB −1.722+i 1.354 −1.703+i 1.263 −1.685+i 1.128
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The effect of the additional two-body input is negligible.
This can be easily understood by explicitly writing the three-
body equations. For example, let us consider Eq.(13) written
in the isospin basis, with the following simplified two-body
input: d+KN (limited to I=0, without thehL channel contri-
bution) +pN-P33. Using the channel labels as defined in
Table VII (with y1, a1 simplified intoy, a, respectively), the
explicit form of the coupled three-body equations is:

Xdd = ZdyRyyXyd + ZdyRyaXad,

Xyd = Zyd + ZydRdXdd + ZyyRyyXyd + ZyyRyaXad, s21d

Xad = ZaDRDXDd,

XDd = ZDaRayXyd + ZDaRaaXad.

Using the last equation to expressXad in the first three
equations, we see that thepN-P33 channel contributes in
terms of second or higher order, thus its effect on the low
energyK−d observables, such asAK−d, should be small, al-
though the resultingpN-P33 state in the absence of a specta-
tor Y is nearly on theD resonance peak in its two-body
center of mass energy. This is consistent with a semiquanti-
tative estimate of the effect by Kamalovet al. [41]. Similar
arguments hold for the contribution of theYN interactions,
and also when the particle basis is used.

Now, we may need to discuss the problem associated with
the fact that the signs of the off-diagonal parameters of the
KN and YN interactions are undetermined. Let us consider,
for example, the OSA model of theKN interaction. As ex-
plained in Sec. II A, the signs of the off-diagonal strengths
are those of the SU(3) coefficients given in Tables II and III
of Ref. [5]. Now, if these signs are changed, the signs of the
corresponding off-diagonal two-body propagators are also
changed, but theKN observables are not(except the signs of
the corresponding scattering lengths). For example, changing
the signs oflKN−pS for both I=0 andI=1, and/or the sign of
lKN−pL (which contributes only forI=1) does not affect the
observables. Similar conclusions hold for theYN interactions
when the sign oflSN−LN is reversed. Now, the situation is not
so simple in the three-body sector. To examine what happens,
we consider the following cases in the isospin basis(we
choose the isospin basis for the sake of simplicity in han-
dling labels, but the conclusions are the same in the particle
basis).

(i) Only thed+KN interactions(without thehY channels
contributions) are adopted. The corresponding three-body
equations have the form of Eq.(21), with ZaD=ZDa=0. Thus

Eqs. (21) reduce to the first two equations withXad=0. As
these equations do not involve the off-diagonalKN-pY
propagators, the reaction amplitudes do not depend on the
sign of the off-diagonalKN-pY coupling constants.

(ii ) Next, we add thepN-P33 two-body channel to the one
just mentioned above. Going back to Eqs.(21), it is clear that
we obtain the same system of equations if we change the
signs of both the off-diagonalKN-pY propagators and the
Xad andXDd amplitudes. Therefore, theK−d scattering length
will not be affected when changing the signs of the off-
diagonalKN-pY coupling constants.

(iii ) Now, we addYN interactions to the model with the
d+KN interactions, and change the sign of theSN-LN cou-
pling constant. Then, contrary to the previous case, theK−d
scattering length gets changed. This can be understood by
noting that, due to isospin conservation, theL exchange in
the three-body sector is possible only between thepsLNdI=1/2
and NspLdI=1 states(Born term Zb2a3

, see Table IX). This
“dissymmetry” (comparing with the situation for theS ex-
change) implies that we cannot change simultaneously the
signs of theSN-LN propagators and of some of the three-
body amplitudes without changing the original system of
equations. However, as explained before, the change inAK−d
does not exceed a few percent(see Table XIII), therefore this
problem will not be regarded as an important issue worth
extensive discussion in the present paper. It should be appro-
priate to stress in this regard that we do not anticipate any
significant lack of precision because we have adopted a sepa-
rable rank-1 form for the hyperon-nucleonS-wave interac-
tions (which are the part of the “small” input): we have
clearly witnessed that these channels have been found to give
only a small effect in the calculation ofAK−d. In particular, if
we accept that theYN interactions are dictated by SUs3d
symmetry, just as ourKN two-body input, and thus adjust all
the signs of strengths in our separable potentials, for ex-
ample, to the correspondingS-wave projected Nijmegen me-
son exchange potentials[63], then the sign ambiguity will
also be gone out of our discussion. In fact the related prob-
lem was already studied by Dalitz and co-workers, Ref.[15],
who found important variations in theLp mass spectrum in
the threshold break-up reaction:K−d→pNY. This will neces-
sitate us to reexamine the break-up channels within our
present approach. At present, we assess that the effect of the
“small” two-body input is actually not important for the cal-
culation ofAK−d.

V. DISCUSSION

In this section we present the best estimate for the theo-
retical value forAK−d in our three-body approach. Then we

TABLE XIII. Contributions of the small two-body input to theK−d scattering length(values in femtom-
eters). Models OS1 and OSA are used for theKN interaction, and modelA for the deuteron. The calculations
are done in the particle basis.

Model d+KN +D +YN +D+YN

OS1 −1.985+i 1.642 −1.985+i 1.663 −1.975+i 1.611 −1.974+i 1.634
OSA −1.802+i 1.546 −1.793+i 1.562 −1.805+i 1.511 −1.796+i 1.529
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discuss what kind of uncertainty should be associated with
this value which derives from the effects we have left out in
the present calculation.

From the results presented in the preceding section, we
make the following choice for our preferred value: the one
from the combination of the two-body input OSA
+deuteron-A, in the particle basis, see Tables XI and XII for
the whole set of the results. We have not adopted the values
from the calculation explicitly incorporating the hyperon
channels which are associated with what we calledsmall
two-body inputin Sec. II: as should be clear from Table XIII,
the effects are found to be quite smalls,3%d. Besides, ef-
fects due to thesign ambiguityin the off-diagonalYN am-
plitudes do not exceed 1%. So we take a conservative esti-
mate of theK−d scattering length to be

AK−d = s− 1.80 +i1.55d fm, s22d

to which we may assign a possible uncertainty of a few
percent.

We then need to assess the effects that may not have been
taken into account in an ordinary three-body equations ap-
proach as the present one. The first such processes are pos-
sible four-body intermediate states: those with two mesons
and two baryons. Diagrammatically, they may be divided
into partially and totally connected ones. Of partially con-
nected diagrams, those associated with baryon self-energies
should be dropped from consideration since we assume to
have been dealing with the initialKd channel. Then the re-
maining partially connected diagrams are(i) those in which
there is a spectator meson and two baryons exchanging a
meson, and(ii ) those with a spectator baryon, and a meson
and a baryon exchanging a meson. For the first ones they
have already been included effectively in the input baryon-
baryon (NN or YN) interactions. Likewise, the second ones
are effectively included in the coupledKN and pN input
since they have been fitted to data. So we have only to worry
about the completely connected diagrams. Quite fortunately,
except practically for a couple of diagrams[90], they are
reduced to two baryonsYNd interactions: crossed two meson
exchanges, and one meson exchanges with meson-baryon-
baryon vertex corrections due to virtual meson creation and
absorption across the vertex. So those completely connected
diagrams are just the pure two-body intermediateYN chan-
nels resulting from absorbingK (or p).

We thus should consider only the effects of the meson
sK−d absorption in theK−d elastic scattering at threshold.

In Ref. [77] the p-wave effect in the low energyKN in-
teraction has been studied within the context of an effective
chiral Lagrangian. In that work, the effect derives from the
s-channel pole contributions(the absorption/reemission ofK
by a nucleon:KN→Y→KN). So this could be used as a
measure for the meson absorption effect under consideration.
The authors have stated that thep-wave effect is quite small:
total cross sections change very little, whereas the differen-
tial cross sections have improved to follow the trend seen in
experimental data. From this publication, what we could pos-
sibly exploit as the indicators of theK− absorption effect

semiquantitatively may be the bare mass ofL, viz., M̃L, or

the ratio Rc, recall Sec. II for discussion on the available
experimental data for the coupledK−p channels. In this re-
gard, as found in Table II, the other two ratiosg andRn are
too sensitive to be used for our objective. We have observed
that the change inRc by the K− absorption effect(viz., the
inclusion of thep wave in the language of Ref.[77]) is at
most ,2%, whereas the shift from the bare mass to the
physical one due to the same effect forL is about 3%[the
corresponding values following Eq.(26) in that publication
cannot be used since the basis model for thes-wave KN
interaction has been modified by readjusting the subtraction
constants in Eq.(26)]. Since the kinetic energy available to
the YN system after theK− absorption in theK−d system at
threshold corresponds topY

labù1 GeV/c, the effect of theYN
interaction is expected to be small(a reasonable guess may
be reached from Fig. 3 in the present paper and in Ref.[63]).
In such a situation what we have just estimated above may
well be interpreted as the effect of theK− absorption. To be
on the conservative side we set this to be a possible correc-
tion of a few percent.

Not directly applicable but rather useful information re-
garding the effect of meson absorption comes from thep−d
scattering length:Ap−d. With the exception of some small
effects fromp−d→p°nn andp−d→gnn, the scattering length
in this process is purely real if no strong pion absorption
effect is in effect, viz., no imaginary part in the absence of
pion absorption. With this in mind, earlier model calculations
indicated that the effect creates contributions both to real and
imaginary parts of the scattering length. An earlier three-
body model calculation[78] obtained ResAp−dd;−0.035, and
ImsAp−dd to be between 0.0062 and 0.0075, both in units of
the inverse pion massmp

−1. What should be emphasized here
is that the pion absorption contributes to the real part(com-
monly termed as the dispersive effect) with just about the
same magnitude as the imaginary part, but with the negative
sign. This characteristic feature was confirmed by a later
calculation in multiple scattering in Ref.[79], and the pion
absorption contribution was evaluated to be

DAp−d
abs ; s− 0.008 +i0.011dmp

−1. s23d

A more complete three-body calculation explicitly includ-
ing the pion absorption in a fully consistent mannerf80g
obtained

Ap−d = s− 0.047 +i0.0047dmp
−1. s24d

The pion absorption may be seen as contributing roughly
10% to the real part.

A couple of recent papers have reported an extraction of
Ap−d from the pionic deuterium atomic transitions, Refs.
[33,81,82], using the Deser-Trueman formula[25] to find
(Coulomb interaction included)

Ap−d
c = s− 0.0259 ± 0.0011d + is0.0054 ± 0.0011d s25d

from Refs.f33,81g, and
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Ap−d
c = s− 0.0261 ± 0.0005d + is0.0063 ± 0.0007d s26d

from Ref. f82g, both in units of the inverse pion mass as
before. Both of these data are consistent with each other,
and particularly the imaginary parts are also consistent
with the model calculations in Refs.f78,80g. However, the
real parts are about half the magnitude of the model result
in Ref. f80g. If we assume that the experimental result be
correct and that the result of the model calculation men-
tioned above be also correct regarding the sign and size of
the absorption contribution to the real part, then the real
part of the scattering length without the pion absorption
effect should be about −0.020mp

−1. Then it appears that the
data indicate the pion absorption effect to be very close to
30%. And supposing that we translate this to our present
K−d scattering length, the pure three-body result could not
be acceptable. But there is a possible way out of this
impasse: in Refs.f33,81g, by combining the data from the
pionic hydrogen and pionic deuterium, the value of the
scattering lengthp−n, or more precisely the isoscalar com-
bination

2b0
c = ap−p

c + ap−n
c , s27d

turned out to be consistent with zero. Thisnear vanishing
of b0

c should be expected from current algebra calculations
f83g, and particularly in the soft pionsviz., zero pion massd
limit showever, we should be reminded in this respect that
the extraction of this latter quantity is still rathermodel de-
pendent, see Refs.f33,81g for details, as well as the conse-
quence from thepN partial wave analyses, see, for example,
Ref. f84gd. So if one accepts this result, the lowest-order
pion-deuteron scattering length in a static calculation van-
ishes, and this is the basic origin of the smallness of
ResAp−dd. Consequently, one might well come up with that
large pion absorption effect.

Now, this is far from true in the case of theK−d scattering
length where(i) because the kaon cannot be regarded assoft
and(ii ) because of the predominantly exoenergetic nature of
the associated coupled channels, even the lowest-order scat-
tering length is neither vanishingly small nor purely real to
start with, even withoutK− absorption. Hence we may safely
abide by the estimate of the kaon absorption effect as dis-
cussed earlier, and so we set the effect to be less than 10%.
Of course, a more quantitative study will have to be done.

Our present calculation does not include any electromag-
netic interactions, of which the Coulomb interaction plays
the dominant role in the actual hadronic quantities measured.
So we now come to discuss the effect of the Coulomb inter-
action as our last subject for this section. Here just like what
we have done above, we will borrow a good part of our
argument below from thep−p and p−d scattering length
problems. In fact, as long as the aspect related to the elec-
tromagnetic interactions is concerned, replacingp− by K−

should not alter it in an essential manner. So the first impor-
tant point to be stressed is the following: all the experimental
determination of thep−p elastic(and p−p→p°n charge ex-
change) scattering lengths extracted from the pionic hydro-
gen atom level shift and width have taken care of various

electromagnetic corrections(including the finite electromag-
netic size of the pion, vacuum polarization effect, etc.) to the
Deser-Trueman formula only[33,81,82]. As found, for ex-
ample, in Ref.[85], this correction is up to about 2%. But the
effect of the point Coulomb interaction, which is the very
basis for the use of the Deser-Trueman formula, has not been
taken out. Thus to be more precise, the extracted quantities
should carry an index “c” to indicate that the Coulomb effect
is still there. This we have done explicitly in what we have
written above. In the case of the pion-deuteron scattering
length, even this type of electromagnetic corrections to the
Deser-Trueman formula has not been attempted. To a large
extent the reason should be that the calculation is far more
complicated than for thep−p case. But one may well suspect
that a straightforward application of the Deser-Trueman for-
mula to this already explicitly extended system would obvi-
ously introduce an error far larger than these sophisticated
corrections to that very formula.

There have been model dependent but rather detailed cal-
culations relatingap−p

c and ap−p, the latter being due to the
purely strong interaction[27,86]. It was stated that the dif-
ference between the two quantities is just a fraction of a
percent. As the same method cannot be applied, a simple
estimate was carried out to relate the corresponding quanti-
ties for thep−d scattering length[27]:

Ap−d
c /Ap−d =E

0

`

udeu
2 s2rdf0

2s0, rddrYE
0

`

udeu
2 s2rdr2dr,

s28d

whereudeusrd is theS-wave radial deuteron wave function
andf0s0, rd is theS-wave zero momentum Coulomb wave
function for a unit charge. Clearly, this is just to semi-
quantitatively introduce the distortion of the incoming
charged pion due to Coulomb interaction. The result is
about 4% increase in the magnitude forAp−d as compared
with its Coulomb included counterpart. However, as we
see in the experimentally extractedAp−d

c reported above
f81,82g, the error bars are just about the size estimated
here. So here again, the Coulomb correction seems to ap-
pear quite small. Likewise, the same line of reasoning
might well apply to the case of theK−d scattering length.
When translated into the model prediction, a possible al-
lowance should be taken into consideration between the
purely strong and Coulomb included scattering lengths,
although by its very nature the estimate should be re-
garded qualitative. To this end it should be useful to refer
to the work of Barrett and Delofff34g. They introduced a
set of rather simpleK−d optical potentials and calculated
the strong interaction shift and width of the 1S atomic
level for the kaonic deuterium. Also the optical potentials
were used to calculate the purely strongsAK−dd, as well as
the Coulomb includedsAK−d

c d K−d scattering lengths. The
observation they made was that the Deser-Trueman for-
mula might be inaccurate, and that a blind application of
that formula and the identification of the extracted quan-
tity as theK−d scattering length due only to strong inter-
action might introduce an error as large as 20%. A word of
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caution should be due regarding this work: the optical
potentials constructed there were quite simple, and strong
nonlocality expected from the dominance of theLs1405d
was absent. So a more realistic optical potential should be
constructed in order to give more reliable statements on
the issues. Otherwise, if one wants to simply obtain the
Coulomb includedK−d scattering length, it is possible to
use the pure-strongK−d amplitude and apply Coulomb
corrections as found, for example, in Ref.f87g.

VI. SUMMARY AND CONCLUSIONS

The scope of the present work being to develop a reliable
formalism to calculate theK−d scattering length, our starting
point was a thorough study of various appropriate two-body
processes. For that purpose, we first focused on the highly
inelastic K−p initiated reactions in the kinematics region
pK

labø250 MeV/c. The elastic, as well as the relevant seven
inelastic coupled-channels, is investigated via an effective
nonlinear chiral meson-baryon Lagrangian. Within a broken
SU(3)-symmetry scheme, the adjustable parameters of the
formalism were determined by a fitting procedure on the
threshold branching ratios and total cross-section data, lead-
ing to reducedx2’s close to 1.2. This was done in the particle
basis, where the isospin breaking effect is introduced by tak-
ing the physical masses of the particles within each multip-
let.

To make clear the sensitivity of the observables to the
phenomenological ingredients, three models were con-
structed. They were then exploited to predict other measured
quantities, which are as follows.

(i) K−p scattering length, for which our best value ob-
tained with model OSA is

aK−p = s− 0.90 +i0.87d fm,

in agreement, within the experimental uncertainties, with
the recent KEK data,

aK−p
c = s− 0.78 ± 0.15 ± 0.03d + is0.49 ± 0.25 ± 0.12d fm.

(2) The Sp mass spectrum, measured at CERN some 20
years ago, was reproduced in an acceptable manner. This
quantity was found quite sensitive to thehY intermediate
state within the used coupled-channel approach.

Model OSA is preferred to the other models(OS1 and
OSB) as it gives a better overall description of the available
K−p data, with a reasonable breaking of SU(3) symmetry.

In view of theK−d system investigations, besides the in-
teractions, one of course needs another elementary ampli-
tude: K−n, for which no data is available. We hence per-
formed predictions for the elastic and the four inelastic
coupled channels[91]. Moreover, predictions for various
scattering lengths were made, i.e.,ansK−n→K−nd, an

°sK°n
→K°nd, and aexsK−p→K°nd. Finally, the implementation of
the two-body sector was completed by studying other rel-
evant channels: pion-nucleon, nucleon-nucleon(the deu-
teron), and nucleon-hyperon interactions.

Then, we moved to the central topic of the present work
and developed a relativistic version of the three-body Fad-

deev equations for theK−d system, to which we embodied
the above elementary operators. As expected, this formalism
allows us to go far beyond previous investigations, such as
single-channel and multichannel approaches and fixed center
approximation. As in the case ofKN interactions, we per-
formed our studies in both isospin and particle bases.

The main improvements that the present work brings,
over earlier calculations, are(i) the use of sophisticatedKN
interactions, combined with a deuteron model including the
D-state component, and(ii ) the use of a relativistic three-
body model, including for the first time the isospin breaking
effects.

Investigating theK−d system brings in phenomena with
small contributions. In particular, we have shown that both
pN-P33 and coupledYN interactions produce negligible ef-
fects. We have also tried to evaluate qualitatively the impor-
tance of other phenomena, namely, possible contributions
from four-body intermediate states,K− absorption, and Cou-
lomb correction(this latter being also present in the elemen-
tary two-body channels). The quantitative determination of
such phenomena goes beyond the scope of the present work.

Finally, our best value for theK−d scattering length ob-
tained with the OSA+deuteronA model is

AK−d = s− 1.80 +i1.55d fm.

Given the quality of the phenomenological input and ap-
proximations introduced, our estimations lead us to attribute
to the above values an uncertainty of about 10%.

The awaited data will soon make clear how realistic our
predictions are. These experimental results will come from
DAFNE on the KN and K−d scattering lengths, as well as
from COSY, ELSA, JLab, and SPring-8 on the lowest mass
L resonances, including theSp mass spectrum. From theo-
retical side, several topics deserve to be studied, such as
Coulomb effects andK−d break-up channels.

ACKNOWLEDGMENTS

A.B. would like to thank DSM/DAPNIA, CEA/Saclay,
and IPN-Lyon for their kind hospitaly. T.M. would like to
acknowledge a very pleasant hospitality extended to him at
IPN-Lyon where the final phase of the present work was
performed. We are grateful to Angels Ramos for informative
correspondences on some of her works pertinent to the
present one. Thanks go also to Andrzej Deloff for discus-
sions on the subject of Coulomb interactions in low energy
hadronic systems.

APPENDIX A: PARTICLE AND ISOSPIN BASIS
We consider two particles with isospinsI1, I2, projections

I1z, I2z, and total isospinsI, Iz. The transformation from
isospin to particle basis is written as

uI1I1zI2I2zl = o
I=uI1−I2u

I1+I2

kI1I1zI2I2zuII 1z + I2zluII 1z + I2zl.

sA1d
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Next, we specify the values of the isospins of the particles
and their projections, following the phase convention given
in Table I for the isospin states. Calculating the appropriate
Clebsch-Gordan coefficients, we easily obtain the linear re-
lations between the states in the two bases.

1. KN states

For theK−p interactions, the eight physical states defined
in Eqs.(5) are expressed as linear combinations of theI=0,
1, and 2 states, according to the following relations:

uK−pl =
1

Î2
fu00lKN − u10lKNg,

uK°nl =
1

Î2
fu00lKN + u10lKNg,

up−S+l = −
1

Î3
u00lpS +

1

Î2
u10lpS −

1

Î6
u20lpS,

up+S−l = −
1

Î3
u00lpS −

1

Î2
u10lpS −

1

Î6
u20lpS,

up°S°l = −
1

Î3
u00lpS +Î2

3
u20lpS,

up°Ll = u10lpL,

uhS°l = u10lhS,

uhLl = u00lhL.

From these expressions, we can deduce the relations be-
tween the transition potentials in the two bases. Choosing a
separable form as Eq.(2), with isospin-independent form
factors, we obtain the relations between the strength param-
eters in the two bases. Neglecting the contributions of theI
=2 states, we have, for example,

lK−p−K°n =
1

2
flKN−KN

0 − lKN−KN
1 g,

lK°n−p+S− = −
1

Î6
lKN−pS

0 +
1

2
lKN−pS

1 , sA2d

and so on for the other parameters, with the symmetry
property,li j =l ji .

In the case of theK−n and related states, only theI=1 and
2 states contribute, and the five physical states, Eq.(6), are
expressed as follows:

uK−nl = − u1 − 1lKN,

up−S°l = −
1

Î2
u1 − 1lpS +

1

Î2
u2 − 1lpS,

up°S−l =
1

Î2
u1 − 1lpS +

1

Î2
u2 − 1lpS,

up−Ll = u1 − 1lpL,

uhS−l = u1 − 1lhS.

The relations between the strength parameters in the two
bases are obtained along the same lines as in theK−p case.
Neglecting as before theI=2 states contributions, we obtain,
for example,

lK−n−K−n = lKN−KN
1 , lK−n−p−S° =

1

Î2
lKN−pS

1 , sA3d

etc.

2. pN states

The differentpN states in the particle basis are expressed
as linear combinations of theI= 1

2, 3
2 isospin states. Consider-

ing the possible charge states of the pion and nucleon, we
have the following two sets of coupled states:

up°pl =Î2

3
U3

2

1

2LpN

−
1

Î3
U1

2

1

2LpN

,

up+nl = −
1

Î3
U3

2

1

2LpN

−Î2

3
U1

2

1

2LpN

;

up−pl =
1

Î3
U3

2
−

1

2LpN

−Î2

3
U1

2
−

1

2LpN

,

up+nl =Î2

3
U3

2
−

1

2LpN

+
1

Î3
U1

2
−

1

2LpN

;

and the single state

up−nl = u 3
2 − 3

2lpN.

Retaining only the contributions with total isospin 3/2, we
deduce from the above expressions the following relations
between the strength parameters in the two bases:

lp°p−p°p = lp°n−p°n = 2
3lD, lp+n−p+n = lp−p−p−p = 1

3lD,

sA4d

etc.

3. SN-LN states

The SN-LN states in the particle basis are expressed as
linear combinations of theI= 1

2, 3
2 states. We have two sets of

three coupled states,

uS°pl =Î2

3
U3

2

1

2LSN

−
1

Î3
U1

2

1

2LSN

,
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uS+nl = −
1

Î3
U3

2

1

2LSN

−Î2

3
U1

2

1

2LSN

,

uLpl = U1

2

1

2LLN

;

uS−pl =
1

Î3
U3

2
−

1

2LSN

−Î2

3
U1

2
−

1

2LSN

,

uS°nl =Î2

3
U3

2
−

1

2LSN

+
1

Î3
U1

2
−

1

2LSN

,

uLnl = U1

2
−

1

2LLN

;

and the two following single states:

uS−nl = u 3
2 − 3

2lSN,

uS+pl = u 3
2

3
2lSN.

From these relations, we can express the strength param-
eters in the particle basis in terms of those in the isospin
basis. For example, we have

lS°p−S+n = − lS−p−S°n =
Î2

3
flSN−SN

1/2 − lSN−SN
3/2 g,

lS+n−Lp = lS−p−Ln = −Î2

3
lSN−LN

1/2 , sA5d

and so on.

APPENDIX B: SEPARABLE MODEL FOR
COUPLED CHANNELS

The Bethe-Salpeter equation[42] is the relativistic gener-
alization of the Lippmann-Schwinger equation describing the
scattering of two particles. In the case ofn coupled two-body
channels, we have a system ofn coupled equations, which
reads, in operator form,

Tijssd = Vij + o
k

VikG0
kssdTkjssd, sB1d

with s being the square of the total center-of-mass energy.
The indiceshi, j , kj run over then two-body channels.G0
is the two-body propagator,Vij is the transition potential
between channeli and j , and Tij is the t matrix for that
transition.

After projecting in the four-momentum space representa-
tion, we obtain a system of four-dimensional integral equa-
tions. Using the Blankenbecler-Sugar method(Refs.
[43–45]), this equation can be reduced to the following set of
coupled three-dimensional equations:

Tijspi, pj ;sd = Vijspi, pj ;sd + o
k
E d3pkVikspi, pk;sd

3G0
kspk;sdTkjspk, pj ;sd, sB2d

where pi is the momentum in channeli. The relativistic
two-body propagator has the following relativistic expres-
sion:

G0
kspk;sd =

1

s2pd3

e1 + e2

2e1e2fse1 + e2d2 − sg
, sB3d

where the two particles in channelk are labeled 1 and 2,
and ei =Îpi

2+mi
2 is the energy of particlei with massmi.

Finally, in the case ofs-wave interactions, Eq.(B2) re-
duces to the following set of coupled one-dimensional inte-
gral equations:

Tijspi, pj ;sd = Vijspi, pj ;sd + o
k
E

0

`

pk
2dpkVikspi, pk;sd

3G0
kspk;sdTkjspk, pj ;sd. sB4d

Now, we assume thatVij ’s are separable, i.e., we write

Vijspi, pj ;sd = gispidli jssdgjspjd. sB5d

The g’s are the form factors, andli jssd is the strength for
the transitioni ↔ j . Here we assume that in generall’s are
functions ofs. Using this expression in Eq.sB4d, we ob-
tain T as separable:

Tijspi, pj ;sd = gispidRijssdgjspjd, sB6d

whereRij is an element of the followingsn3nd matrix:

Rssd = fl−1ssd − G̃ssdg−1. sB7d

Herelssd is ann3n matrix of the strengths, andG̃ssd is a
diagonal matrix with the following elements:

G̃ijssd = di jE
0

`

p2dp gi
2spdG0

isp;sd, sB8d

whereG0
i is the relativistic two-body propagator for chan-

nel i, calculated from Eq.sB3d.
Note that in the case where the strength matrix has no

inverse, Eq.(B7) must be rewritten as

Rssd = f1 − lssdG̃ssdg−1lssd, sB9d

where 1 is the sn3nd unit matrix. This situation occurs,
for example, when theKN interactions are considered in
the particle basis, as the strength parameters obtained as
linear combinations of the isospin basis values constitute a
matrix with its determinant equal to zero.

APPENDIX C: ANTISYMMETRIZATION
In the isospin basis, the two nucleons are considered as

identical particles. Therefore, one must construct Born terms
and three-body amplitudes properly antisymmetrized with
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respect to the two nucleons. We present hereafter the prin-
ciple of the method, and we refer the reader to Refs.[17,45]
for more details.

Let us label the two nucleons asN1 andN2. Thed channel

corresponds toK sN1N2̃d, where the tilde means that the deu-
teron wave function is properly antisymmetrized. We must
also add the nucleons labels to the labels defined in Table
VII: Di=SspNid, bi=psYNid, ai=NispYd, with i=1, 2, andyi

=NjsKNid, with i, j=1, 2 siÞ jd. (Note that the lower indices
have been removed, since they do not participate in this dis-
cussion).

Now, we have two types of Born terms, depending on
whether one or two nucleons are involved. In the first cat-
egory, we haveZDa, ZDb, andZab. For these terms, we only
need to introduce the nucleon index. For example, we define
ZD1a1=kSspN1duG0uN1spSdl, ZD2a2=kSspN2duG0uN2spSdl,
whereG0 is the three-body propagator. Since nucleons 1 and
2 are identical, it is clear that these two Born terms are iden-

tical, and we will setZ̃Da=ZD1a1=ZD2a2. In the same way, we

defineZ̃Db=ZD1b1=ZD2b2 and Z̃ab=Za1b1=Za2b2.
The Born terms involving two nucleons, namely,Zdy and

Zyy, must be antisymmetrized. As thed state is already anti-
symmetric, we only need to antisymmetrize they state. So,
using the notations defined above, the antisymmetricZdy
Born term will be defined as

Z̃dy = kK sN1N2̃duG0

1

Î2
fuN2sKN1dl − uN1sKN2dlg

=
1

Î2
fZdy1 − Zdy2g. sC1d

ExchangingN1 and N2 in Zdy1, it is obvious thatZdy1

=−Zdy2, thus

Z̃dy = Î2Zdy1. sC2d

We proceed along the same lines to define the antisym-
metric Zyy Born term:

Z̃yy =
1

Î2
fkN2sKN1du − kN1sKN2dugG0

1

Î2
fuN2sKN1dl

− uN1sKN2dlg. sC3d

As K can be exchanged only between thesKN1d andsKN2d
pairs, we have:

Z̃yy = − 1
2fkN2sKN1duG0uN1sKN2dl + kN1sKN2duG0uN2sKN1dlg

= − 1
2fZy1y2 + Zy2y1g. sC4d

Due to the identity of the two nucleons, we haveZy1y2

=Zy2y1, and thus

Z̃yy = − Zy1y2. sC5d

For practical calculation, only the coefficients appearing
in the expressions of the antisymmetric Born terms are
important, and we can ignore the nucleons labels.

Concerning the two-body propagators, the nucleons labels
can be ignored, since only one nucleon is eventually in-
volved in the propagating pair.(The deuteron propagator cor-
responds to a properly symmetrized3S1 or 3S1-

3D1 state.)
Finally, the three-body equations can be rewritten in the

same form as Eq.(13), where now the Born terms are the
antisymmetric terms as defined above.
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