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Complex energy method in four-body Faddeev-Yakubovsky equations

PHYSICAL REVIEW C 68, 061001R) (2003

E. Uzu*
Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

H. Kamada
Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

Y. Koike
Science Research Center, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo 102-8160, Japan
and Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
(Received 1 October 2003; published 4 December 2003

The Complex Energy MethofProg. Theor. Phys109 869L (2003] is applied to the four-body Faddeev-
Yakubovsky equations in the four-nucleon system. We obtain a well converged solution in all energy regions
below and above the four-nucleon breakup threshold.
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Calcuéatio%s for sca;t_e_ring syr?_ter:n_s in configuration lspa_ce<MW Ma,B) ( +& j-‘l) . ( +& ]:1)
require boundary conditions which increase in complexity = T, LT T, LT
with growing particle numbers. These boundary conditions A7+ 75 0 A7+ 75 0
appear in the form of Green’s functions in momentum space H 0\ Muy Mg
which carry singularities of increasing complexity. Green'’s 0 G/\Mg, Mpgg)’
functions are expressed &=1/(E+ie—H) whereE andH,
are the total and kinetic energy, respectively, and the limiwvhere the M’s are the four-body amplitudesy and 8
£—0 has to be taken. In the two-body system there is onéndicate[3+1] and[2+2] configurations(see Fig. 2, £ is
(relative momentum variablegp and G, has a pole in the an exchange term frorf3+1] to [3+1] configurations of
complexp plane. It is easy to handle it using the principal which the plus sign corresponds to the four bosons and
value prescription anchalf) the residue theorePVR). In  minus sign to the fermionsF's are exchange terms from
the three-body case there arises already a difficulty in thé2+2] to [3+1] where the subscripts are related to the two
form of so-called moving singularitieid,2], however, PVR ~ diagrams in Fig. 3. More details may be found in R&X.
is still applicable[3], or one can use the contour deformation Further andg are the three-body ar{@+2] propagators
(CD) [4-7] technique. Summarizing these techniques, firsgnd they have a similar nature as Green’s function in the
one takes the limiting value—0 and next the equation is two-body Lippmann-Schwinge(ilS) equation.
solved avoiding the integration path on the complex plane. If one stays below the three-body breakup threshold the
This is illustrated in Fig. 1. FY equations can be solved with PVR, since only two-body
The situation is more complicated in the four-body sys-singularities occuf10-1§. Above the three-body threshold
tem. Employing a separable potential and a separable expafut still below the four-body threshold the FY equations have
sion technique for the three-body af@i2] subamplitudes, also been solved applying the CD techniq{&3-18. There
the four-body Faddeev-Yakubovsk§Y) equations[8] for  in the £ and F’s terms occur two-body propagators whose
four identical particles can be expressed as nature is similar to the three-body Green’s function in the
Born term of the three-body Alt-Grassberger-Sandhi&gor
() Amado-Mitra-Faddeev-Lovelacg.g., Ref.[20]) equations.
. . However, above the four-body threshold the four-body
i ] Green'’s function depends on dtelative momenta and the

Mpo Mpgg

D)

Re(p)

FIG. 1. lllustration of integration paths for PV@eft) and CD
(right). The cross in the left figure indicates a fixed pole. Moving
singularities occur in the shaded area of the right figure.

a-channel B-channel
FIG. 2. The two partitions in four-particle systekyp's, andq’s
*Electronic address: j-uzu@ed.noda.tus.ac.jp are standard Jacobi momenta.
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TABLE |. Parameters of the Yamaguchi potential.

o
X \ { State N (MeV fm™) State B (fm™) C (fm°)
F,

g Fi s, -68.942 626 s, 1.130 0
35,-°D, -74.506 955 33, 1.241 2
A N D, 1.947 6 -4.4950154
l\/l A
2 ‘g’ C given in Table I. We represent the three-body §2¢2]

subamplitudes by rank-4 separable forms employing the
FIG. 3. Diagrams for th&, 7, F», H, andG ingredients in Eq.  energy dependent pole expansidBDPE) [24] method.
(1). The shaded parts withindicate the two-body propagators. ~ We take the nucleon mass 838.918 97 MeV \hich is the

) ) o ) ) average of those for proton and neutron, and
behavior of those singularities is quite complicated. Thus- 197 327 054 MeV fm. Theintegrations are cut off at

neither PVR nor CD techniques have been successfully %00 tn1 for k. at 40 fii for p's, and at 16 frt for g's
tended at energies above the four-body breakup thresho% ’ ’

and we are not aware of a solution in this energy region.
Recently the complex energy meth¢GEM) [21] has above the BI+N threshold,(ii) 1 MeV above the R+2N

been revived and applied to the two- and three-nucleon sys:
tem. The first step of CEM is to solve the equation with Somjhreshold,(m) 1 MeV below the four-body breakup thresh-

8Id, and(iv) 12 MeV above it(see Fig. 4. We define thee

are no singularities on the real momentum axis. After obtaint€™ of the four-body Green’s function &s+{, wheree and
ing solutions with various’s, the limiting values—0 is & @re real. Thus, tums intoGo=1/(E+is+{=Hy). Solutions
taken numerically with an analytical continuation method. ©f the FY equation satisfy uniqueness even at the limit for
Our aim is to generate solutions applying this method tof —0; Which is not the case for simple four-body LS equa-
the FY equations in all energy regions including energiedion [25]. Therefore the res_ults by the_analyuca! continuation
above the four-body breakup threshold. We performed calcyd® Not depend on the choice &6 within the radius of con-
lations in theJ™=0* and T=0 state for the four-nucleon sys- Vergence. Thus we empirically choose 0.5 MeV as the mini-
tem. For this feasibility study thé =1/2" state is included in Mume value for the case§)iii ) and 0.75 MeV for the case
the three-body subsystem and #8 and 3S;-3D; states in (iv) (sge crosses in Flg.),4W|th attention only to a be.tter
the two-body subsystem. All allowed spins and angular monumerics. They are increased in steps of 0.125 MéVs
menta within this restriction are included; in short, there are“hosen as 0 and £0.125 MeV. _
14 channels. The Coulomb force is neglected. The Yamagu- e employ the point methofP6] as an analytical con-
chi potential[22,23 is employed as the nucleon-nucleon in- tinuation technique in CEM. Its convergence behavior is

ee Fig. 3.
The FY equations are solved at four energi@sl.5 MeV

teraction. The potentia¥ has a separable form as shown in Table Il where the phase shifand the inelasticity
parametery are defined byS=7 exp(2i6). HereSis the S
Veer(K K') =ge(K)Nger (K'), (2 matrix of elastic BI+N scattering and is related to the on-
H H on — X on
where g,'s are the two-body form factors for the partial \?vr;]ee"r:;:niz“:rl:geor?-f/s\ﬁgﬁ I;frﬂéaltzjr(nj\_/l““ asS=1-AxMa,
wavest as In case(i) » must be 1 due to unitarity and our result
1 CK satisfies it within six digits. Also in casg$) and (iii) we
do(k) = s 92(K) = rayac (3)  reach a very high accuracy. In cage), we still obtain con-

verged solutions within four digits. In the casg@y and (ii)
andk’s are the initial and final momenta between the twoour results agree very well with the solutions based on PVR.

nucleons, respectively. We adopt the parameker8, and We showed that well converged solutions of the FY
le
lxo le le § Z 2
§ 12 § 12 § 12 46
S 4 6 5 4 6 5 4 6
x x X X x x ¥ x X )2‘ ’1‘ ;
2 1 3 2 1 3 2 1 3
x x x x X x x x x
3N+N 2N+2N IN+N+N  N+N+N+N (E=0) E
| | | | >
| . —_— | - 1 ~ T e - = 1
1.5MeV 1.0MeV 1.0MeV 12MeV
0 (In m av)

FIG. 4. lllustration of threshold energies for th&l 4ystem. We choosg=0 at the four-body threshold. The various energies for the
calculations are measured relative to the thresholds. The crosses indicate the complex energies where we solve the FY equations in the CEM.
They are numbered by for each choice of the energy regigriv).
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TABLE II. Phase shiftgin degreesand inelasticity parameters foN3N— 3N+N elastic scatteringiay
denotes the number of sample energies which are included in the point method. For instgpe® means
that the solutions fromm=1 to 5(see Fig. 4 are included. The row PVR shows results from a direct solution
of the FY equations using PVR. The agreement is perfect.

(i) (i) (i) (iv)

Nmax o 7 o 7 o ] o ]

1 53.31351 1.018810 14.62234 0.675088 -8.0617 0.692391 -62.093 0.83875
2 46.21307 0.973139 10.47942 0.853658 -5.9428 0.815698 -61.965 0.75946
3 4427898  0.989232 12.38204 0.948787 -5.5022 0.899150 -61.620  0.74499
4 4427129 1.000623 12.38254 0.948044 -5.5101 0.898666 -61.676 0.74570
5 44.34441 0.999787 12.38211 0.948046 -5.5095 0.898656 -61.682 0.74589
6 4434157 0.999994  12.38284 0.948053 -5.5094 0.898655 -61.669  0.74580
7 4434022 1.000005 12.38198 0.948070 -5.5096 0.898654 -61.666 0.74570
8 4434012 0.999997 12.38198 0.948069 -5.5095 0.898657 -61.669 0.74581
9 4434013 0.999999 12.38198 0.948069 -5.5096 0.898656 -61.670  0.74580
10 4434016 1.000000 12.38198 0.948069 -5.5095 0.898657 -61.669  0.74582

PVR 4434016 1.000000 12.38198 0.948069

equations are obtained in all energy regions. In relation to theounced in the high energy region and the presented method
application of EDPE we confirmed that converged solutiongs applicable there, now in the four-nucleon system.

are obtained in the casegiii). In the casgiv), however, The authors would like to thank Professor W. Glockle for
there is a report that EDPE is not applicapfy]. We also  helping us to read this manuscript carefully. The calculations
found that EDPE did not converge. Therefore, in this StUdYare performed on SX-5/128|\/($Qesearch Center for Nuclear
we just kept the rank fixed bi#). We plan to investigate this  Physicg, SX-5/6B (National Institute for Fusion Scienge
problem in a forthcoming study. HP X4000(Frontier Research Center for Computational Sci-

Further we shall include higher partial waves and employence, Tokyo University of Sciengén Japan, and partly on
realistic nucleon-nucleon forces to discuss physics. One exditachi  SR8000 (Leibnitz-Rechenzentrum  fur die
pects that evidence for three-nucleon forces is more proMinchener Hochschulen Germany.
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