
Pion electroproduction, partially conserved axial-vector current, chiral Ward identities,
and the axial form factor revisited

T. Fuchs and S. Scherer
Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Received 4 March 2003; published 11 November 2003)

We reinvestigate Adler’s partially conserved axial-vector current relation in the presence of an external
electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduc-
tion within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity
referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how
inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm
that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the
nucleon.
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I. INTRODUCTION

Pion photo- and electroproduction both have a long tradi-
tion as a tool to obtain information on strong as well as
electroweak properties of the pion and the nucleon. For ex-
ample, as early as 1954 Kroll and Ruderman[1], in their
famous low-energy theorem, discussed the possibility of ex-
tracting the renormalized pion-nucleon coupling constantgpN

from charged pion photoproduction at threshold. Besides
Lorentz covariance, the essential ingredient entering the deri-
vation of the Kroll-Ruderman theorem was the application of
the Ward identity[2] resulting from gauge invariance.

The algebra of currents and the hypothesis of a partially
conserved axial-vector current(PCAC) resulted in additional
constraints such as the theorem of Fubini, Furlan, and Ros-
setti [3] establishing a sum rule for pion photoproduction in
terms of the anomalous isovector and isoscalar magnetic mo-
ments of the nucleon. The potential of investigating the
axial-vector form factor of the nucleon through the electro-
production of charged pions was first realized by Nambu and
Shrauner in the framework of the chirality formalism[4,5].
Subsequently, their result has been recovered and extended
within various approaches[6–10] (for an overview, see Ref.
[11]).

The current-algebra and PCAC approaches of the 1960s
(see, e.g., Refs.[12–14]) had in common that they made no
explicit reference to the dynamical origin of the underlying
symmetry. In our present understanding, the symmetry cur-
rents originate in a global chiral SUsNfdL3SUsNfdR invari-
ance of QCD forNf massless quark flavors. As already
pointed out by Gell-Mann[15], even if a continuous symme-
try is violated by large effects, it will still have some physical
consequences, which can be studied if the symmetry break-
ing pattern is explicitly known. In the present context, the
symmetry breaking in question is associated with the finite
quark masses. It is rather straightforward to derive the so-
called chiral Ward identities among QCD Green functions
implied by the symmetry currents and the symmetry-
breaking pattern, while it is more difficult to actually satisfy
these constraints in practical calculations. However, in the
framework of effective field theory, the chiral Ward identities

will automatically be satisfied if the underlying chiral sym-
metry (and its breaking pattern) is systematically mapped
onto the most general effective Lagrangian in terms of the
relevant experimentally observed degrees of freedom
[16–19]. Turning this mapping into useful consequences re-
quires a method which allows for a rigorous analysis of a
particular contribution to a Green function in terms of some
expansion scheme. This is provided by Weinberg’s power
counting[16,20] which makes use of the special role played
by the pion as the approximate Goldstone boson of sponta-
neous chiral symmetry breaking. Its weak coupling to other
hadrons in the low-energy limit, in combination with its
small mass, allow for an analysis of the low-energy structure
of QCD Green functions in the framework of chiral pertur-
bation theory(ChPT) [16–19]. In the single-nucleon sector a
consistent power counting has been developed for both the
so-called heavy-baryon formulation[21,22] and, more re-
cently, also for the relativistic approach[23–25].

The present work aims at shedding additional light on the
importance of chiral Ward identities in the context of extract-
ing the axial form factor of the nucleon from pion electro-
production experiments[26–31]. We will first show that,
within the framework of QCD coupled to external fields, the
PCAC relation for a particular choice of the pion interpolat-
ing field is of the same form as the one originally obtained
by Adler [32] through minimal substitution. This is due to
the fact that, within QCD, the quark fields entering the sym-
metry currents are fundamental, i.e., pointlike degrees of
freedom.

Our subsequent discussion of the chiral Ward identities
will be performed in the framework of a tree-level approxi-
mation to chiral perturbation theory in order to keep the line
of arguments as transparent as possible. In terms of a loop
expansion such tree-level diagrams may be understood as the
leading order in an expansion in terms of" [33,34]. More-
over, chiral Ward identities are expected to be satisfied order
by order in the loop expansion[24,25]. Of course, ChPT also
allows one to systematically evaluate corrections to the tree-
level results. In the context of pion photo- and electroproduc-
tion this was done in a series of papers by Bernardet al.
[35–38].
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In the effective-field-theory approach we will point out
the distinction between the chiral Ward identities and the
so-called electromagnetic Ward-Takahashi identities
[2,39,40] applying to the effective degrees of freedom. The
origin of these additional identities resides in the fact that the
effective hadronic degrees of freedom, namely pions and
nucleons, are carriers of U(1) representations. As a conse-
quence, the building blocks of a calculation in the effective
theory also have to satisfy these identities.

Our approach will allow us to clarify a discussion trig-
gered by a paper of Haberzettl[41], where it was argued that
in the case of pion electroproduction PCAC does not provide
any additional constraints beyond the Goldberger-Treiman
relation. We will explicitly point out which step in the dis-
cussion of Ref.[41] is problematic(see also Refs.[42–45]
for additional discussion).

Our paper is organized as follows. In Sec. II we first re-
derive Adler’s PCAC relation in the framework of the QCD
Lagrangian coupled to external fields. We then define the
relevant Green functions and establish a chiral Ward identity
(Adler-Gilman relation[6]) entering pion photo- and electro-
production. In Sec. III we introduce the relevant parts of the
effective Lagrangians used. In Sec. IV we discuss various
matrix elements involving the axial-vector current and the
pseudoscalar density in order to illustrate the simplest chiral
Ward identity, namely the PCAC relation, at work. Those
readers familiar with the concepts of chiral perturbation
theory are invited to immediately move forward to Sec. V
containing the central piece of this work, namely, a discus-
sion of the Adler-Gilman relation and its relation to the pion
production amplitude. We will study the traditional soft-
momentum limit and comment on the method of Ref.[41].
Finally, we will explain how, in terms of the effective de-
grees of freedom, the constraints due to the chiral symmetry
of QCD are translated into relations among the vertices of
the effective theory. General conclusions are presented in
Sec. VI.

II. THE PCAC RELATION IN THE PRESENCE OF
EXTERNAL FIELDS

For Nf massless quarks, the QCD Hamiltonian is invariant
under the operation of the chiral group SUsNfdL3SUsNfdR on
the left- and right-handed quark fields[17]. Associated with
this invariance are 2sNf

2−1d symmetry currents. Here we will
restrict ourselves to a discussion of the approximate SUs2dL
3SUs2dR symmetry in the sector of two light flavors. The
finite u- andd-quark masses result in explicit divergences of
the symmetry currents. However, as first pointed out by Gell-
Mann, the equal-time commutation relations still play an im-
portant role even if the symmetry is explicitly broken[15]. In
general, the symmetry currents will lead to chiral Ward iden-
tities relating various QCD Green functions with each other.

A. The PCAC relation in the presence of external fields

The starting point of our discussion is a derivation of the
SU(2) PCAC relation from the QCD Lagrangian in the pres-
ence of general external fields. To that end, we consider the

two-flavor QCD Lagrangian coupled to externalc-number
fields vmsxd, vm

ssdsxd, amsxd, ssxd, andpsxd [17]:

L = LQCD
0 + Lext = LQCD

0 + qgmsvm + 1
3vm

ssd + g5amdq

− qss− ig5pdq, s2.1d

whereLQCD
0 refers to the QCD Lagrangian for masslessu

and d quarks.1 The external fields are color neutral, Her-
mitian 232 matrices, where we parametrize the matrix
character, with respect to thessuppressedd flavor indicesu
and d of the quark fields, asf17g

vmsxd =
1

2
frmsxd + lmsxdg = o

i=1

3
ti

2
vm

i sxd, s2.2ad

ssxd = 1232s0sxd + o
i=1

3

tisisxd, s2.2bd

amsxd =
1

2
frmsxd − lmsxdg = o

i=1

3
ti

2
am

i sxd, s2.2cd

psxd = 1232p0sxd + o
i=1

3

tipisxd. s2.2dd

Here, we do not consider a coupling to an external axial-
vector singlet field, because the corresponding singlet axial-
vector current has an anomaly such that the Green functions
involving the axial-vector singlet current are related to Green
functions containing the contraction of the gluon field-
strength tensor with its dual. The ordinary two-flavor QCD
Lagrangian is recovered by settingvm=vm

ssd=am=p=0 and
s=diagsmu, mdd in Eq. (2.1). For simplicity, we will disregard
the mass differencemu−md and consider the isospin-
symmetric casemu=md=m̂.

The Lagrangian of Eq.(2.1) is invariant underlocal
SUs2dL3SUs2dR3Us1dV transformations of the left-handed
and right-handed quark fields,

qLsxd ;
1

2
s1 − g5dqsxd ° expS− i

usxd
3 DVLsxdqLsxd,

s2.3ad

qRsxd ;
1

2
s1 + g5dqsxd ° expS− i

usxd
3 DVRsxdqRsxd,

s2.3bd

where

VL/Rsxd = expS− io
i=1

3
ti

2
uL/R

i sxdD , s2.4d

provided the external fields transform as

1The remaining flavorss, …, t appear with their respective mass
terms.
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rm ° VRrmVR
† + iVR]mVR

† , s2.5ad

lm ° VLlmVL
† + iVL]mVL

†, s2.5bd

vm
ssd ° vm

ssd − ]mu, s2.5cd

s+ ip ° VRss+ ipdVL
†, s2.5dd

s− ip ° VLss− ipdVR
† . s2.5ed

Applying the method of Gell-Mann and Lévy[46] to identify
currents and their divergences by investigating the variation
of the Lagrangian under local infinitesimal transformations,

Jm =
] dL

] s]med
, s2.6ad

]mJm =
] dL
] e

, s2.6bd

leads to the following expressions for the vector and axial-
vector currents:

Vi
m = qgm

ti

2
q, s2.7ad

Ai
m = qgmg5

ti

2
q. s2.7bd

If the external fields are not simultaneously transformed and
one considers aglobal chiral transformation only, the diver-
gences of the currents read

]mVi
m = iqgmF ti

2
, vmGq + iqgmg5F ti

2
, amGq − iqF ti

2
, sGq

− qg5F ti

2
, pGq, s2.8ad

]mAi
m = iqgmg5F ti

2
, vmGq + iqgmF ti

2
, amGq + iqg5H ti

2
, sJq

+ qH ti

2
, pJq. s2.8bd

In the present case we intend to consider the QCD Lagrang-
ian for a finite light quark massm̂ in combination with a
coupling to an external electromagnetic fieldAm given by2

− eAmJm = − eAms 2
3ugmu − 1

3dgmdd = 1
3qgmvm

ssdq + qgmvmq,

s2.9d

from which we conclude

vm
ssd = −

e

2
Am, vm = −

e

2
t3Am, am = p = 0, s= m̂1232.

s2.10d

In this case the expressions for the divergence of the vec-
tor and axial-vector currents, respectively, read

]mVi
m = − e3i jeAmqgm

t j

2
q = − e3i jeAmVj

m, s2.11ad

]mAi
m = − eAme3i jqgmg5

t j

2
q + m̂iqg5tiq = − eAme3i jAj

m + m̂Pi ,

s2.11bd

where we have introduced the isovector pseudoscalar density

Pi = iqg5tiq. s2.12d

From Eq. s2.11bd we see that the axial-vector current is
conserved, if there is no external electromagnetic field
and if the quark mass vanishesschiral limitd. Strictly speak-
ing, the right-hand side of Eq.s2.11bd should also involve
the anomaly term contributing to]mA3

m f47–49g. However,
this term is of second order in the elementary charge and
thus not relevant for the following discussion of pion elec-
troproduction which will only be considered to first order in
e. We note the formal similarity of Eq.s2.11bd to the spre-
QCDd PCAC relation obtained by Adler through the inclu-
sion of the electromagnetic interactions with minimal elec-
tromagnetic couplingssee the appendix of Ref.f32gd.3 Since
in QCD the quarks are taken as truly elementary, their inter-
action with ansexternald electromagnetic field is of such a
minimal type.

B. Green functions

Before investigating the consequences of Eq.(2.11b) with
respect to the pion-electroproduction amplitude, we first
have to define the nucleon matrix elements of the relevant
quark bilinears and their time-ordered products(Green func-
tions). The first one is the nucleon matrix element of the
axial-vector current,

MA,i
m = kNspfduAi

ms0duNspidl, s2.13d

where the subscriptsA and i refer to axial-vector current
and isospin componenti, respectively. The matrix element of
the time-ordered product of the electromagnetic currentJm

and the isovector axial-vector currentAi
n is defined as4

2We use natural units"=c=1,e.0, e2/s4pd<1/137.

3In Adler’s version, the right-hand side of Eq.(2.11b) contains a
renormalized field operator creating and destroying pions.

4Strictly speaking one should work with the covariant time-
ordered productsTpd which, typically, differs from the ordinary
time-ordered product by a noncovariant(seagull) term [50].
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MJA,i
mn =E d 4x e−ik·xkNspfduTfJmsxdAi

ns0dguNspidl

s2.14ad

=E d 4x eiq·xkNspfduTfJms0dAi
nsxdguNspidl.

s2.14bd

Finally, the Green function involving the electromagnetic
currentJm and the isovector pseudoscalar densityPi reads

MJP,i
m =E d 4x e−ik·xkNspfduTfJmsxdPis0dguNspidl

s2.15ad

=E d 4x eiq·xkNspfduTfJms0dPisxdguNspidl.

s2.15bd

The Green functions of Eqs.(2.13)–(2.15) are related
through the chiral Ward identity(for a pedagogical introduc-
tion to this topic see, e.g., Refs.[51,52])5

qnMJA,i
mn = im̂MJP,i

m + e3i jMA,j
m . s2.16d

We will refer to Eq. s2.16d as the Adler-Gilman relation
ssee Sec. II B of Ref.f6g for their pre-QCD versiond. An
alternative way of obtaining the analog of Eq.s2.16d con-
sists of evaluating the PCAC relation of Adlerf32g,

s]mdi j + eAme3i jdAj
m = mp

2FpFi , s2.17d

between a final nucleon state and an initial state consist-
ing of a nucleon and asvirtuald photon ssee, e.g., Refs.
f8–10,54–57gd.

C. Interpolating field and pion electroproduction amplitude

The connection to the pion electroproduction amplitude is
established by noting that the pseudoscalar density serves as
an interpolating pion field. The matrix element of the pseu-
doscalar quark density evaluated between a single-pion state
and the vacuum is defined in terms of the coupling constant
Gp [17],

k0uPis0dup jsqdl = di jGp. s2.18d

With the help of this constant we can define an interpo-
lating pion field6

Fisxd =
Pisxd
Gp

=
Pisxd
2BF

=
m̂Pisxd
mp

2Fp

, s2.19d

where the second and third equality signs refer to the
lowest-order result of mesonic chiral perturbation theory
f17,52g.

In the one-photon-exchange approximation, the
invariant amplitude for pion electroproduction7

gpskd+Nspid→pisqd+Nspfd can be written asMi=−ieemMi
m,

whereem=eugmu/k2 is the polarization vector of the virtual
photon andMi

m the transition-current matrix element,

Mi
m = kNspfd, pisqduJms0duNspidl. s2.20d

Using the reduction formalism of Lehmann, Symanzik,
and ZimmermannsLSZd f58g with the interpolating pion
field of Eq. s2.19d in combination with the chiral Ward
identity of Eq. s2.16d, one obtains a relation for the
transition-current matrix element in terms of QCD Green
functions,

Mi
m = − i

m̂

mp
2Fp

lim
q2→mp

2
sq2 − mp

2dMJP,i
m

=
1

mp
2Fp

lim
q2→mp

2
sq2 − mp

2dse3i jMA,j
m − qnMJA,i

mn d.

s2.21d

This type of relation has been the starting point for study-
ing the consequences of the PCAC hypothesis on thresh-
old photo- and electroproduction. Note that the QCD chi-
ral Ward identity of Eq.s2.16d holds for any value ofq2,
i.e., there is no need to stay in the vicinity of the squared
pion mass,q2<mp

2. However, the connection to the physi-
cal pion-production process requiresq2=mp

2.

III. THE EFFECTIVE LAGRANGIAN

As already emphasized in the 1960s by Weinberg, phe-
nomenological Lagrangians provide a straightforward way of
obtaining the results of current algebra in the so-called phe-
nomenological approximation, i.e., at tree level[59–62]. Fur-
thermore, modern techniques of effective field theory allow
one to also systematically calculate higher-order corrections
to tree-level results in the framework of chiral perturbation
theory [16–22,24,25].

In order to study the consequences of the chiral Ward
identities for threshold pion electroproduction, we will start
from the most general effective chiral Lagrangian up to and
including Osp3d in the baryonic sector. However, for peda-
gogical purposes, we will make use of two(drastic) simpli-
fications. First, we will restrict ourselves to tree-level results
only, because they already reveal the main features regarding
the connection between chiral Ward identities and pion pro-
duction. The chiral corrections due to meson loops have been
studied in detail by Bernardet al. [35–37] and are beyond

5The standard derivation in terms of the ordinary time-ordered
product leads to equal-time commutators of current densities and
symmetry currents. A naive application of the canonical commuta-
tion relations neglects the so-called Schwinger terms[53]. Accord-
ing to Feynman’s conjecture these Schwinger terms cancel with the
above seagull terms. For a discussion of the validity of this hypoth-
esis, the interested reader is referred to Ref.[50].

6Every field Fisxd, which satisfies the relationk0uFisxdupjsqdl
=dije

−iq·x, can serve as an interpolating pion field.

7For a discussion of the relevant kinematics and formalism see,
e.g., Refs.[10,11].
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the scope of this work(see Ref.[38] for an overview). In
particular, a discrepancy between the determination of the
root-mean-square axial radius from anti-neutrino-proton
scattering and charged threshold pion electroproduction, re-
spectively, was explained in terms of such chiral pion-loop
corrections [36]. Second, even at the phenomenological
level, we only consider a subset of terms which give rise to
nontrivial contributions to the Green functions. In the end,
we will always comment on the full result at the one-loop
level.

A. Mesonic Lagrangian

The most general lowest-order mesonic chiral Lagrangian
can be written as[17]

L2 =
F2

4
TrfDmUsDmUd† + xU† + Ux†g,

Usxd = expFi
tW · pW sxd

F G , s3.1d

where the covariant derivative

DmU = ]mU − ir mU + iUl m s3.2d

involves the external fields of Eqs.s2.5ad and s2.5bd, and

x = 2Bss+ ipd s3.3d

contains the external scalar and pseudoscalar fields of
Eqs. s2.5dd and s2.5ed. Furthermore,F is the pion-decay
constant in the chiral limit,Fp=Ff1+Osm̂dg=92.4 MeV,
and B is related to the scalar quark condensate in the
chiral limit, k0uuuu0l0=k0uddu0l0=−F2B. Inserting s
=m̂1232 in Eq. s3.1d, one finds, at lowest order in the
momentum and quark-mass expansion, the relationmp

2

=2Bm̂. Combining Eqs.s2.5d with the transformation

U ° VRUVL
†, s3.4d

the effective Lagrangian of Eq.s3.1d has the samelocal
SUs2dL3SUs2dR3Us1dV symmetry as the QCD Lagrangian
of Eq. s2.1d.

According to the power counting scheme for processes
involving a single nucleon[16,20], anOsp3d calculation con-
tains mesonic contributions ofOsp4d. Thus, strictly speaking,
we would also need theOsp4d mesonic Lagrangian of Gasser
and Leutwyler[17] for a full discussion. However, we re-
strict ourselves to theOsp2d contributions, because, in the
above sense, they already illustrate the relevant features re-
garding the chiral Ward identities.

B. Pion-nucleon Lagrangian

The most general lowest-order relativistic pion-nucleon
chiral Lagrangian reads[19]

LpN
s1d = CSiD” − m+

g̊A

2
gmg5umDC, s3.5d

where

C = Sp

n
D s3.6d

is the nucleon isospin doublet. The covariant derivative is
defined as

DmC = s]m + Gm − ivm
ssddC s3.7d

with

Gm = 1
2fu†s]m − ir mdu + us]m − il mdu†g s3.8d

and

um = ifu†s]m − ir mdu − us]m − il mdu†g, s3.9d

whereu=ÎU. At this order the effective Lagrangian con-
tains two snewd low-energy constants, namely, the
nucleon massm and the axial-vector coupling constantg̊ A
in the chiral limit, respectively. The Lagrangian of Eq.
s3.5d is invariant underlocal transformations, provided

C ° expf− iusxdgsVRUVL
†d−1/2VRÎUC, U ° VRUVL

†.

s3.10d

We will neglect the next-to-leading-order pion-nucleon
LagrangianLpN

s2d f19,63,64g, except for the terms giving
rise to the isoscalar and isovector anomalous magnetic
moments of the nucleon, respectively,

Leff
s2d =

c6

2
Csmnfmn

+ C +
c7

2
CsmnCs]mvn

ssd − ]nvm
ssdd,

s3.11d

where

fmn
± = ufmn

L u† ± u†fmn
R u, s3.12ad

fmn
R = ]mrn − ]nrm − ifrm, rng, s3.12bd

fmn
L = ]mln − ]nlm − iflm, lng. s3.12cd

Inserting for the external fields the electromagnetic case of
Eq. (2.20), the constantsc6 andc7 are given in terms of the
isovector and isoscalar anomalous magnetic moments of the
nucleon in the chiral limit, respectively,

c6 =
k̊v

4m
, s3.13ad

c7 =
k̊s

2m
. s3.13bd

To the order we are considering, all chiral limit values enter-
ing Eq.(3.13) can be replaced by their empirical values. The
respective numerical values areks=kp+kn=−0.120 andkv
=kp−kn=3.706.

In principle, the most generalLpN
s2d also generates quark-

mass corrections ofOsm̂d to the nucleon mass and the axial-
vector coupling constant, respectively. The first one is not
really important for our discussion, whereas the second one
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will, in a similar fashion, also be provided by anOsp3d term,
which for illustrative purposes we will keep.

Finally, out of the 23 terms of the third-order pion-
nucleon Lagrangian[63], rewritten in relativistic notation,
we only keep the following three terms:8

Leff
s3d =

1

2s4pFd2Cgmg5hb17umTrsx+d + ib19fDm, x−g

+ b23fDn, f−mngjC s3.14d

with

x± = u†xu† ± ux†u. s3.15d

The constantsb17, b19, andb23 will be discussed below.
In order to summarize, in the following analysis we em-

ploy as the effective Lagrangian

Leff = L2 + LpN
s1d + Leff

s2d + Leff
s3d, s3.16d

where the explicit expressions are given in Eqs.s3.1d,
s3.5d, s3.11d, ands3.14d. Within the tree-level approxima-
tion, it is consistent to replace the nucleon mass in the
chiral limit, m, by the physical nucleon massmN.

IV. AXIAL-VECTOR-CURRENT MATRIX ELEMENTS

A. First example

As the most simple application of the PCAC relation
without an external electromagnetic field, we first consider
the matrix elements of the axial-vector current and the pseu-
doscalar density evaluated between a one-pion state and the
vacuum. To that end, we insert the relevant external fields in
the effective Lagrangian and identify the vertices by apply-
ing the usual Feynman rules. This example serves as the
most elementary illustration of how chiral Ward identities are
satisfied in our(simplified) approach and, more generally, in
chiral perturbation theory.

Using Lorentz covariance and isospin symmetry, the ma-
trix element of the axial-vector current can be parametrized
as (see Fig. 1)

k0uAi
msxdup jsqdl = iqmFpe−iq·xdi j . s4.1d

From the Lagrangian of Eq.s3.1d one obtains atOsp2d,

Lext = i
F2

2
Trfs]mUU† − ]mU†Udamg = − Fam,i]

mpi + ¯ ,

s4.2d

which results inFp=F at this order. For the divergence of
the axial vector current one then finds

k0u]mAi
msxdup jsqdl = iqmFp]me−iq·xdi j

= mp
2Fpe−iq·xdi j

= 2m̂BFe−iq·xdi j , s4.3d

where, in order to obtain the last equality sign, use has
been made of theOsp2d predictions forFp andmp

2, respec-
tively. On the other hand, the matrix element of the pseu-
doscalar densityssee Fig. 2d, Eq. s2.18d, results from

Lext = i
F2B

2
TrspU† − Upd = 2BFpipi + ¯ , s4.4d

yielding Gp=2BF. Thus we have—atOsp2d—explicitly
verified the relationFpmp

2 =m̂Gp implied by the PCAC
relation. The corresponding one-loop expressions can be
found in Eqs.s12.4d and s12.6d of Ref. f17g.

Thus, within the framework of working in the phenom-
enological approximation of the effective Lagrangian of Eq.
(3.16), it is consistent to replaceF→Fp and 2m̂B→mp

2.

B. Nucleon matrix element of the
pseudoscalar density

The nucleon matrix element of the pseudoscalar density
(see Fig. 3) can be parametrized as

m̂kNspfduPis0duNspidl =
mp

2Fp

mp
2 − t

GpNstd iuspfdg5tiuspid,

t = spf − pid2. s4.5d

Sincem̂Pisxd/smp
2Fpd serves as an interpolating pion field

fsee Eq.s2.19d, GpN is also referred to as the pion-nucleon
form factorsfor this specific choice of interpolating fieldd.
In the framework of the effective chiral Lagrangian of Eq.
s3.16d one obtains two contributions with vertices from

8In rewriting the heavy-baryon Lagrangian of Ref.[63] we made
use of the replacementNySmNy°Cgmg5C/2. We do not consider
the b7 andb8 terms which generate aq2 dependence of the electro-
magnetic form factors. For the discussion of the Adler-Gilman re-
lation these terms do not create any significant new features.

µ
A 

π (q)j
i

FIG. 1. Matrix element of the axial-vector current between a
one-pion state and the vacuum.

π (q)

i
j

P

FIG. 2. Matrix element of the pseudoscalar density between a
one-pion state and the vacuum.

pi f

^

p

im P

FIG. 3. Matrix element of the pseudoscalar density between
one-nucleon states.
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LpN
s1d andLeff

s3d, respectivelyssee Fig. 4d,9

GpNstd =
mN

Fp
Sg̊A +

b17mp
2

4p2Fp
2 −

b19

8p2Fp
2 tD . s4.6d

The pion-nucleon coupling constant is defined att=mp
2,

gpN = GpNsmp
2d =

mN

Fp
Sg̊A +

s2b17 − b19dmp
2

8p2Fp
2 D . s4.7d

As will be seen below,gA= g̊A+b17mp
2/s4p2Fp

2d, such that
the parameterb19 reflects the so-called Goldberger-
Treiman discrepancy, i.e., the numerical violation of the
Goldberger-Treiman relation,10

DpN ; 1 −
gAmN

gpNFp

= − b19

mNmp
2

8p2gpNFp
3 . s4.8d

The effective Lagrangian of Eq.s3.16d reproduces exactly
the same result forDpN as the full one-loop calculation
fsee Eq.s69d of Ref. f66gg.

In terms ofDpN andgpN, the pion-nucleon form factor—at
this order—can be rewritten as

GpNstd = gpNS1 + DpN

t − mp
2

mp
2 D . s4.9d

The full Osp3d calculation including pion loop corrections
generates exactly the same functional form with all quan-
tities replaced by theirOsp3d expressionsssee Sec. III 7 of
Ref. f67gd.

C. The pion-nucleon vertex

The pion-nucleon vertex resulting from Eq.(3.16) reads

Sg̊A +
b17mp

2

4p2Fp
2 −

b19mp
2

8p2Fp
2 D 1

Fp

q”g5

ti

2
=

gpN

2mN
q”g5ti,

q = pi − pf , s4.10d

where we made use of Eq.s4.7d. In particular, for q2

Þmp
2 the pion-nucleon vertex doesnot contain the form

factorGpNsq2d of Eq. s4.5d. In general, the pion-nucleon ver-
tex depends on the choice of the field variables in theseffec-
tived Lagrangian. In the present case, the pion-nucleon vertex
is only an auxiliary quantity, whereas the “fundamental”
quantity sentering chiral Ward identitiesd is the QCD Green

function of Eq. s4.5d. Only at q2=mp
2, we expect the same

coupling strength, since bothFi of Eq. s2.19d andpi of Eq.
s3.1d serve as interpolating pion fields.

D. Nucleon axial-vector-current matrix element

We now turn to the results for the axial form factors of the
nucleon.11 The matrix element of the axial-vector current
evaluated between initial and final nucleon states—excluding
second-class currents[68]—can be written as(see Fig. 5)

kNspfduAi
ms0duNspidl = uspfdFgmGAstd +

spf − pidm

2mN
GPstdG

3g5

ti

2
uspid, s4.11d

where t=spf −pid2, and GAstd and GPstd are the axial and
induced pseudoscalar form factors, respectively. Within
the framework of Eq.s3.16d we obtain to this orderssee
Fig. 6d

GAstd = gAs1 + 1
6kr2lA td , s4.12ad

GPstd = 4mN
2SFpgpN

mN

1

mp
2 − t

−
1

6
gAkr2lAD , s4.12bd

where

gA = GAs0d = g̊A +
b17mp

2

4p2Fp
2 , s4.13ad

−
1

6
gAkr2lA =

b23

s4pFpd2 . s4.13bd

In the present framework, the parameterb17 signifies a
deviation of the axial-vector coupling constantgA from its
value g̊A in the chiral limit. The parameterb23 is related to
the axial radius. The full one-loop calculation atOsp3d
f66g has the same functional form as Eqs.s4.12d. In addi-
tion to the b17 term, the pion loops generate a further
contribution togA=GAs0d of order m̂ and m̂ lnsm̂d. Its in-
finite piece is compensated by an infinity in thebare pa-
rameterb17

0 .
It is now straightforward to verify that the form factors of

Eqs.(4.9) and (4.12) satisfy the relation9At the order we are working it is consistent to replaceF→Fp and
m→mN.

10Using mN−938.3 MeV, gA=1.267, Fp=92.4 MeV, and gpN

=13.21[65], one obtainsDpN=2.6%.

11For simplicity, we often refer toboth form factors parametrizing
the axial-vector-current matrix element as axial form factors.

FIG. 4. Feynman diagrams contributing to the
pseudoscalar density between one-nucleon states
at Ospd andOsp3d, respectively.
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2mNGAstd +
t

2mN
GPstd = 2

mp
2Fp

mp
2 − t

GpNstd, s4.14d

as implied by the PCAC relation, Eq.s2.11bd, in the ab-
sence of an electromagnetic fieldAm. Evaluating Eq.
s4.14d at t=0, one obtains

2mNGAs0d = 2FpGpNs0d, s4.15d

where we made use of the fact thatGPs0d is finite for
nonvanishingmp

2. By use of GpNs0d=gpNs1−DpNd<gpN

=GpNsmp
2d, we see that the Goldberger-Treiman relation is

only approximately satisfied. Of course, in the chiral limit
we recover

2m G̊Astd +
t

2m
G̊Pstd = 0, s4.16d

which also implies that the Goldberger-Treiman relation is
exactly satisfied in this case.

V. PION ELECTROPRODUCTION

We will now address with the help ofLeff of Eq. (3.16)
how the PCAC relation enters the pion electroproduction
amplitude. Neglecting isospin-symmetry-breaking effects
due to differentu- and d-quark masses as well as higher-
order electromagnetic corrections, the amplitude for produc-
ing a pion with Cartesian isospin indexi can be decomposed
as [69]

Mspid = x f
†s− ie3i jt jMs−d + tiMs0d + di3Ms+ddxi ,

s5.1d

where xi and x f denote the isospinors of the initial and
final nucleons, respectively, andti are the ordinary Pauli
matrices. With this decomposition the amplitudes for the
physical processes read

Msgpp → np+d = Î2sMs0d + Ms−dd, s5.2ad

Msgpn → pp−d = Î2sMs0d − Ms−dd, s5.2bd

Msgpp → pp0d = Ms+d + Ms0d, s5.2cd

Msgpn → np0d = Ms+d − Ms0d. s5.2dd

A. Direct calculation

The natural way to find the pion electroproduction ampli-
tude associated with the effective Lagrangian of Eq.(3.16) is
to determine the relevant vertices involving pions, nucleons,
and the electromagnetic field and to calculate the corre-
sponding Feynman diagrams. The calculation is straightfor-
ward and involves the diagrams shown in Fig. 7:

Ms = − e
gpN

mN
uspfdS1 −

2mNq”

s− mN
2 Dg5

ti

2
e · Gskduspid,

s5.3ad

Mu = − e
gpN

mN
uspfde · GskdS1 −

2mNq”

u − mN
2 Dg5

ti

2
uspid,

s5.3bd

Mt = iegpNe3i jt juspfdg5uspid
1

t − mp
2 e · s2q − kd,

s5.3cd

Mcontact= iee3i jt j

gpN

2mN
uspfde”g5uspid

+ iee3i jt j

gA

2Fp

1

6
kr2lAuspfdfsk − qd ·ke”

− sk − qd · ek”gg5uspid, s5.3dd

where s=spi+kd2, t=spi−pfd2, and u=spi−qd2 are the usual
Mandelstam variables, satisfyings+t+u=2mN

2 +k2+mp
2.12 The

expressions forgpN, gA, and kr2lA are given in Eqs.(4.7),

12In the case of an off-shell pion one has to replacemp
2 by q2.

pi f

i

p

µ
A

FIG. 5. Matrix element of the axial-vector current between one-
nucleon states.

p
i

p
f

p
i

p
f

p
i

p
f

Ai
µ

Ai
µ

Ai

3

µ
Ai

µ

p
i

p
f

11 3

FIG. 6. Feynman diagrams contributing to the axial-vector cur-
rent matrix element between one-nucleon states atOspd andOsp3d.

(contact)

(s) (u)

(t)

FIG. 7. Feynman diagrams contributing to pion electroproduc-
tion in the framework ofLeff of Eq. (3.16).
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(4.13a), and (4.13b), respectively. Furthermore, we intro-
duced the abbreviation

Gmskd = gm
1 + t3

2
+ i

smnkn

2mN
Sks

2
+

kv

2
t3D, k = pf − pi ,

s5.4d

for the electromagnetic vertex of the nucleonsas obtained
in the framework of the effective Lagrangiand. First of all,
it is straightforward to check the constraints of gauge in-
variance for Eqs.s5.3d f70g,

kmMi
m = − gpNe3i jt juspfdg5uspidD−1sqd D sq − kd.

s5.5d

Equation s5.5d is the electromagnetic Ward-Takahashi
identity for the production of an off-shell pion consistent
with the vertices and propagators obtained fromLeff fsee,
e.g., Eq.s4d of Ref. f71gg, where the external nucleon lines
are on shell. This result is not surprising, because the
transformation law of Eq.s3.4d for the chiral matrixU
implies for the pion fieldpi °pi −usxde3i jp j under electro-
magnetic Us1d transformations. In particular, if the pion is
on its mass shell,q2=mp

2, one obtains the usual current
conservation condition,kmMi

m=0, becauseD−1sqd=0 in
this case.

At this point we can now point out the distinction between
chiral Ward identities relating QCD Green functions and
(electromagnetic) Ward-Takahashi identities relating Green
functions of the effective theory containing off-shell legs of
the effective degrees of freedom, here pions and nucleons.
The chiral Ward identities originate in the chiral symmetry of
the underlying QCD Lagrangian. By considering the(most
general) chiral effective Lagrangian exhibiting the same in-
variances as the QCD Lagrangian coupled to external fields,
the constraints of the chiral Ward identities are automatically
transported to the effective-Lagrangian level. On the other
hand, the effective degrees of freedom are carriers of, e.g.,
U(1) representations resulting, in addition, in conventional
Ward-Takahashi identities involving off-shell pion and
nucleon vertices.13 An example of such a Ward-Takahashi
identity is given by Eq.(5.5). Note that neither the left-hand
nor the right-hand side constitute QCD Green functions.

Finally, Eq. (5.3d) which, according to Eqs.(5.2), only
enters charged pion production, involves the axial radius. In
fact, this is not a coincidence, but will be shown to also
follow from the (more complicated) application of the Adler-
Gilman relation.

B. Pion electroproduction and the electromagnetic-current
pseudoscalar-density Green function

According to Eq.(2.21), the pion electroproduction tran-
sition current matrix element is related to the QCD Green

function involving the electromagnetic current and the pseu-
doscalar density. Here, we calculateMJP,i

m of Eq. (2.15) in
the framework ofLeff and explicitly verify the result for the
pion electroproduction amplitude of Eqs.(5.3). The result is
obtained from the seven diagrams shown in Fig. 8:

MJP,i,1
m =

2BFp

q2 − mp
2

gpN

mN
uspfdS1 −

2mNq”

s− mN
2 Dg5

ti

2
Gmskduspid,

s5.6ad

MJP,i,2
m =

2BFp

q2 − mp
2

gpN

mN
uspfdGmskdS1 −

2mNq”

u − mN
2 Dg5

ti

2
uspid,

s5.6bd

MJP,i,3
m = − ie3i jt j

2BFp

q2 − mp
2

1

t − mp
2 s2q − kdmgpNuspfdg5uspid,

s5.6cd

MJP,i,4
m = − ie3i jt j

2BFp

q2 − mp
2 uspfdH gpN

2mN
gm+

1

6
kr2lA

gA

2Fp

fsk

− qdkgm − sk − qdmk”gJg5uspid, s5.6dd

MJP,i,5
m =

2BFp

mp
2 DpN

gpN

mN
uspfdS1 −

2mNq”

s− mN
2 Dg5

ti

2
Gmskduspid,

s5.6ed

13Of course, also other groups which are linearly realized on the
pion and nucleon degrees of freedom, such asSUs2dv, may be used
to obtain consistency checks between the building blocks of the
effective theory.

(3)

(1) (2)

(4)

(6)(5)

(7)

FIG. 8. Feynman diagrams contributing to the Green function
involving the electromagnetic current and the pseudoscalar density.
The wavy line denotes a(virtual) photon coupling to the electro-
magnetic current. The full circle corresponds to the pseudoscalar
density.
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MJP,i,6
m =

2BFp

mp
2 DpN

gpN

mN
uspfdGmskdS1 −

2mNq”

u − mN
2 Dg5

ti

2
uspid,

s5.6fd

MJP,i,7
m = − ie3i jt j

2BFp

mp
2 DpN

gpN

2mN
uspfdgmg5uspid.

s5.6gd

The expression of the Goldberger-Treiman discrepancy is
given in Eq.(4.8). When multiplying Eqs.(5.6) by −m̂i we
make use of 2m̂BFp=mp

2Fp. Second, after multiplying by
q2−mp

2 and taking the limitq2→mp
2, only those terms of Eqs.

(5.6) which have a 1/sq2−mp
2d singularity survive. Finally, in

order to obtain the invariant amplitude we have to contract
the result with −ieem. With these replacements one easily
sees the one-to-one correspondence between Eqs.
(5.3a)–(5.3d) and (5.6a)–(5.6d). On the other hand Eqs.
(5.6e)–(5.6g) do not contribute to pion electroproduction due
to the absence of the 1/sq2−mp

2d pole. Thus, we have a first
check of the consistency of our procedure.

As a final check of the results of Eqs.(5.6) we investigate
the chiral Ward identity

kmMJP,i
m = e3i jkNspfduPjs0duNspidl. s5.7d

Contracting the first four and the final three expressions
of Eqs. s5.6d with km, respectively, we obtain

kmo
k=1

4

MJP,i,k
m = − ie3i jt j

2BFp

t − mp
2 gpNuspfdg5uspid,

kmo
k=5

7

MJP,i,k
m = − ie3i jt j

2BFp

mp
2 DpNgpNuspfdg5uspid.

Combining the two results we find

kmMJP,i
m = − ie3i jt j

2BFp

t − mp
2 GpNstduspfdg5uspid, s5.8d

whereGpNstd is given in Eq.s4.9d. Here, we made use of
the definition of Eq.s4.5d and 2m̂B=mp

2. Thus, the result
for the Green functionMJP,i

m is consistent with the chiral
Ward identity of Eq.s5.7d.

C. Adler-Gilman relation

We now turn to the explicit test of the Adler-Gilman re-
lation, Eq. (2.16), in the framework ofLeff. In traditional
current-algebra or soft-pion approaches, it is the right-hand
side of Eq.(2.16) which serves as the starting point for the
prediction of threshold pion production.

1. Electromagnetic-current axial-vector current Green function

We first need to calculate the Green functionMJA,i
mn of Eq.

(2.14) involving the electromagnetic current and the axial-
vector current(see Fig. 9):

MJA,i,1
mn = i

Fpqn

q2 − mp
2

gpN

mN
uspfdS1 −

2mNq”

s− mN
2 Dg5

ti

2
Gmskduspid,

s5.9ad

MJA,i,2
mn = i

Fpqn

q2 − mp
2

gpN

mN
uspfdGmskdS1 −

2mNq”

u − mN
2 Dg5

ti

2
uspid,

s5.9bd

MJA,i,3
mn = e3i jt j

Fpqn

q2 − mp
2

s2q − kdm

t − mp
2 gpNuspfdg5uspid,

s5.9cd

MJA,i,4
mn = e3i jt j

Fpqn

q2 − mp
2 uspfdH gpN

2mN
gm+

1

6
kr2lA

gA

2Fp

fsk

− qdkgm − sk − qdmk”gJg5uspid, s5.9dd

MJA,i,5
mn = igA

1

s− mN
2 uspfdfgns1 + 1

6kr2lA q2d

− qnq” 1
6kr2lAgg5

ti

2
3 sp” i + k” + mNdGmskduspid,

s5.9ed

(8)

(1) (2)

(4)

(6)(5)

(7)

(3)

FIG. 9. Feynman diagrams contributing to the Green function
involving the electromagnetic current and the axial-vector current.
The wavy line denotes a(virtual) photon coupling to the electro-
magnetic current. The cross corresponds to the axial-vector current.
The diagrams have been arranged to yield a maximal similarity with
Fig. 8. Note that a diagram of type(8) is not generated in case of
MJP,i

m .
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MJA,i,6
mn = igA

1

u − mN
2 uspfdGmskdsp” i − q” + mNd

3fgns1 + 1
6kr2lA q2d − qnq” 1

6kr2lAgg5

ti

2
uspid,

s5.9fd

MJA,i,7
mn = − e3i jt jgA

1
6kr2lA

1
2uspfdfgns2q − kdm − gmsq − kdn

− q”gmngg5uspid, s5.9gd

MJA,i,8
mn = − e3i jt jgpNFp

gmn

t − mp
2 uspfdg5uspid. s5.9hd

Note that Eqs. (5.9a)–(5.9d) are obtained from Eqs.
(5.6a)–(5.6d) by the replacement 2B→ iqn which simply re-
flects the respective coupling of the external pseudoscalar
and the axial-vector fields to a single pion resulting from Eq.
(3.1). Moreover, the coupling to the axial-vector current pro-
vides the additional term of Eq.(5.9h) in comparison with
MJP,i

m of Eq. (5.6).

2. Gauge invariance

As a first test of the results of Eqs.(5.9) we will investi-
gate electromagnetic gauge invariance by contractingMJA,i

mn

with the four-momentumkm. The corresponding chiral Ward
identity reads

kmMJA,i
mn = e3i jkNspfduAj

ns0duNspidl. s5.10d

Contracting the sum of the first four and the final expres-
sions, and the sum of the remaining three, respectively,
with km we obtain

kmo
k=1

4

MJA,i,k
mn + kmMJA,i,8

mn

= − e3i jt j

pf
n − pi

n

t − mp
2 gpNFpuspfdg5uspid, s5.11ad

kmo
k=5

7

MJA,i,k
mn = e3i jgAuspfdFgnS1 +

1

6
kr2lAtD

− 2mNspf − pidn
1

6
kr2lAGg5

t j

2
uspid.

s5.11bd

Adding the two terms and comparing with the result for the
axial-vector current matrix element of Eqs.(4.11) and(4.12),
we see that the chiral Ward identity of Eq.(5.10) is indeed
satisfied.

3. Test of the Adler-Gilman relation

We are finally in the position to explicitly test the Adler-
Gilman relation. Since this has been the key ingredient in
many investigations of the connection between the PCAC
hypothesis and threshold pion production, we will discuss
the individual terms in detail.

Contracting the twos-channel diagrams ofMJA,i
mn with qn

[see(1) and (5) of Fig. 9] we obtain

qnsMJA,i,1
mn + MJA,i,5

mn d = iSFpgpN

mN

q2

q2 − mp
2 − gADuspfd

3S1 − q”
2mN

s− mN
2 Dg5

ti

2
Gmskduspid

=m̂isMJP,i,1
m + MJP,i,5

m d. s5.12d

Note that Eq.s5.12d doesnot imply a one-to-one correspon-
dence between diagramss1d and diagramss5d of Figs. 8 and
9, respectively. In a similar fashion we find for theu-channel
diagrams

qnsMJA,i,2
mn + MJA,i,6

mn d = iSFpgpN

mN

q2

q2 − mp
2 − gADuspfd

3GmskdS1 − q”
2mN

u − mN
2 Dg5

ti

2
uspid

=m̂isMJP,i,2
m + MJP,i,6

m d. s5.13d

Let us now discusss3d of Fig. 9:

qnMJA,i,3
mn = e3i jt j

Fpq2

q2 − mp
2

s2q − kdm

t − mp
2 gpNuspfdg5uspid

=m̂iMJP,i,3
m + e3i jt j

s2q − kdm

t − mp
2 FpgpNuspfdg5uspid,

;m̂iMJP,i,3
m + D Mi,3

m , s5.14d

where we introduced the “remainder”DMi,3
m for later pur-

poses. In order to obtain Eq.s5.14d we made use of
q2/sq2−mp

2d=1+mp
2/sq2−mp

2d. In a similar way we obtain
for s4d, s7d, and s8d of Fig. 9:

qnMJA,i,4
mn = m̂iMJP,i,4

m + DMi,4
m , s5.15d

DMi,4
m = e3i j

t j

2
FpuspfdHgpN

mN
gm +

1

6
kr2lA

gA

Fp

fsk − qdkgm

− sk − qdmk”gJg5uspid, s5.16d

qnMJA,i,7
mn = m̂iMJP,i,7

m + DMi,7
m , s5.17d

DMi,7
m = − e3i j

t j

2
gA

1

6
kr2lAuspfdfq”sq − kdm − gmsq

− kdqgg5uspid− e3i j

t j

2
FpDpN

gpN

mN
uspfdgmg5uspid,

s5.18d
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qnMJA,i,8
mn = DMi,8

m =− e3i jt jgpNFp

qm

t − mp
2 uspfdg5uspid.

s5.19d

As a first observation, notice that by construction the sum
of Eqs.s5.12d–s5.19d adds up tom̂iMJP,i

m plus the remain-
ders. The sum of the latter is given by

DMi
m = DMi,3

m + DMi,4
m + DMi,7

m + DMi,8
m

=e3i jt j

sq − kdm

t − mp
2 FpgpNuspfdg5uspid

+ e3i j

t j

2

FpgpN

mN
s1 − DpNduspfdgmg5uspid

+ e3i j

t j

2

1

6
kr2lAgAuspfdfgmt − sk − qdmsk” − q”dgg5uspid

=e3i jkNspfduAj
ms0duNspidl. s5.20d

We thus have explicitly verified the Adler-Gilman rela-
tion, Eq. s2.16d, in the framework of the phenomenologi-
cal approximation toLeff.

At this point it is appropriate to recollect that Eq.(2.16) is
an exact relation among QCD Green functions. Of course,
one would like to verify Eq.(2.16) in terms of anab initio
QCD calculation. On the other hand, a complete and system-
atic analysis of this chiral Ward identity in terms of effective
degrees of freedom requires effective-field-theory tech-
niques. At this stage one needs the most general effective
Lagrangian which is chirally invariant underlocal SUs2dL
3SUs2dR3Us1dV transformations provided the external
fields are transformed accordingly[17,72]. This then allows
one to deal with the chiral Ward identities in terms of an
invariance property of the generating functional(see appen-
dix A of Ref. [52] for a pedagogical illustration). Under these
circumstances the chiral Ward identities of QCD(as well as
their symmetry-breaking pattern) are encoded in the generat-
ing functional which is then given through theeffectivefield
theory. In the process of constructing the effective Lagrang-
ian one necessarily also generates nonminimal terms such as,
e.g., theb23 term in Eq. (3.14) which will be discussed in
more detail below. As has been illustrated in Ref.[73] for the
case of the pion electromagnetic vertex, such nonminimal
terms are mandatory for reasons of consistency.

D. Comparison with previous calculations

1. Extrapolation from qm50 to qm5„mp, 0…

The basic idea of traditional current-algebra or PCAC ap-
proaches consists of defining a function

M̃i
msqd = − i

m̂

mp
2Fp

sq2 − mp
2dMJP,i

m s5.21d

for arbitrary values ofq,14 with the property that the
physical pion production matrix elementfsee Eq.s2.21dg
is given by

Mi
m = uM̃i

msqduq2=m
p
2 . s5.22d

By applying the Adler-Gilman relation, Eq.s5.21d is re-
expressed as

M̃i
msqd =

q2 − mp
2

mp
2Fp

se3i jMA,j
m − qnMJA,i

mn d, s5.23d

and a constraint forM̃i
msqd is obtained by evaluating the

right-hand side of Eq.s5.23d at qm=0, which is tradition-
ally referred to as the soft-pion limit. In the present work
we prefer the terminology “soft-momentum limit” which
avoids the notion “off-mass-shell pions.” Rather, we con-
sider the Green functions for finite quark massessimply-
ing massive pionsd at qm=0, and the result is then trans-
lated into consistency conditions in terms of the invariant

amplitudes parametrizingM̃i
msqd.

From the first term of Eq.(5.23) one obtains the axial-
vector current matrix element for a four-momentum transfer
k=pf−pi. Out of the second term only the one-particle-
reducible pole terms are candidates contributing to the soft-
momentum limit[32].15 Such 1/q singularities inMJA,i

mn origi-
nate from pole diagrams where the vertex associated with the
axial-current operator is attached to a nonterminating exter-
nal nucleon line. In principle, these diagrams have to be
evaluated using the most general renormalized, one-particle-
irreducible half-off-shell electromagnetic and axial vertices
in combination with the most general renormalized dressed
propagator. However, expanding vertices and propagators
around their on-shell values, all such off-shell effects become
irrelevant in the soft-momentum limit. This statement re-
quires that none of the off-shell vertices contain poles asq
→0. In fact, such poles would have to be of a dynamical
origin and are expected to be absent as long as the underly-
ing dynamics does not contain massless particles.16 Let us
illustrate the above statement by use of a “generic” axial
form factor contributing in thes-channel diagram,

Gfq2, mN
2, spf + qd2g = Gsq2, mN

2, mN
2d

+ ss− mN
2dG8sq2, mN

2, mN
2d + ¯

s5.24d

with analogous considerations for the electromagnetic ver-
tex. Similarly, the renormalized dressed propagator can be
written as

Sspf + qd = SFspf + qd + regular terms, s5.25d

14Of course, four-momentum conservationk+pi=q+pf is as-
sumed.

15We take the soft-momentum limit by first settingqW=0 and then
performing the limitq0→0.

16The prototype of such a pole behavior is, of course, given by the
induced pseudoscalar form factor in case ofmassless pions.
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whereSFspd denotes the free propagator of a nucleon with
massmN. Finally, noting17

lim
q→0

qn

p” f + q” − mN
= lim

q→0

qnsp” f + q” + mNd
2pfq + q2 =

gn0sp” f + mNd
2Ef

,

s5.26ad

lim
q→0

qn

p” i − q” − mN
= −

gn0sp” i + mNd
2Ei

, s5.26bd

the soft-momentum limit ofqnMJA,i
mn reads

lim
q→0

qnMJA,i
mn = igAuspfdF g0

2Ef
g5

ti

2
sp” f + mNdGmspf, pid

− Gmspf, pidsp” i + mNd
g0

2Ei
g5

ti

2Guspidpf−pi=k,

s5.27d

whereGmspf, pid is given by

Gmspf, pid = gm
F1

ssk2d + t3F1
vsk2d

2

+ i
smnkn

2mN

F2
ssk2d + t3F2

vsk2d
2

, k = pf − pi .

s5.28d

Here F1/2
s/vsk2d refer to the isoscalarsisovectord Dirac and

Pauli form factors of the nucleon. As already pointed out
by Adler f32g, the positive frequency projection operators
p” f +mN and p” i +mN in the respectives- andu-channel con-
tributions to Eq.s5.27d give rise to the fact that only the
on-shell electromagnetic vertex enters into the soft-
momentum result. Indeed, we have explicitly checked that
inserting the on-shell equivalent parametrizations involv-
ing GE and GM or H1 and H2 sfor a discussion see, e.g.,
Ref. f74gd generates the same soft-momentum limit. More-
over, Eq. s5.27d only contains the axial-vector coupling
constantgA but not the axial form factor.

Let us test the consistency of the procedure by contracting
Eq. (5.27) with km. According to Eq.(5.10) we have

kmqnMJA,i
mn = e3i jqnkNspfduAj

ns0duNspidl

= e3i jfkn − spf − pidgnkNspfduAj
ns0duNspidl,

s5.29d

which clearly vanishes asq→0, i.e., fork→pf −pi. On the
other hand, from Eq.s5.27d we find that both thes- and
u-channel contributions vanish separately which, of
course, simply reflects the on-shell current conservation
condition.

The consistency relation can be summarized as

lim
q→0

M̃i
msqd = U−

e3i j

Fp

kNspfduAj
ms0duNspidlU

pf−pi=k

− i
gA

Fp

uspfd

3UFS1 −
mN

Ef
g0Dg5

ti

2
Gmspf, pid + Gmspf, pid

3uS1 +
mN

Ei
g0Dg5

ti

2GuspidU
pf–pix

=k

. s5.30d

Since the second part of Eq.s5.30d doesnot involve the
axial form factor, the soft-momentum limit of Eq.s5.30d
leaves no room for a cancellation of the axial form factor
between the axial-vector current piece and the second con-

tribution. In other words, the soft-momentum limit ofM̃i
msqd

unambiguously contains the axial form factor as well as the
induced pseudoscalar form factor.

Although the specific form of the consistency relation de-
pends on how the soft-momentum limit is taken, the above
conclusion is not affected. First of all, the first part of Eq.
(5.30) involving the axial-vector current matrix element is
path independent, whereas the directional dependence of the
second part is trivial. For example, if one wanted to take the
soft-momentum limit usingqm=uqWus0, q̂d, instead of Eqs.
(5.26) one would have to consider

lim
uqW u→0

=
aq

p” f + q” − mN
=

aWq̂

2pW fq̂
sp” f + mNd, s5.31ad

lim
uqW u→0

=
aq

p” i − q” − mN
= −

aW · q̂

2pW i · q̂
sp” i + mNd, s5.31bd

leading to analogous replacements in the second part of Eq.
(5.30). Nevertheless, it would still only containgA because
the soft-momentum limit of functions containing only invari-
ants has no directional dependence.

Finally, as an explicit test we evaluate the soft-momentum
limit of Eq. (5.21) in the framework of Eqs.(5.6),

lim
q→0

M̃i
msqd =

1

Fp

lim
q→0

m̂iMJP,i
m , s5.32d

and compare the result with the consistency relation of Eq.
s5.30d. Using

1

q2 − mp
2 → −

1

mp
2 , s5.33ad

1 −
2mNq”

s− mN
2 → 1 −

mN

Ef
g0, s5.33bd

1 −
2mNq”

u − mN
2 → 1 +

mN

Ei
g0, s5.33cd

together with 2m̂B=mp
2 and s1−DpNdgpN/mN=gA/Fp, we see

that Eq.(5.6a) together with Eq.(5.6e) [Eq. (5.6b) together
with Eq. (5.6f)] exactly generate thes-channel(u-channel)
expression of Eq.(5.30), whereas the sum of Eqs.(5.6c),
(5.6d), and(5.6g) yields

17A possiblet-channel contribution remains finite, because

lim
q→0

qn

t − mp
2 + i e

= lim
q→0

qn

k2 − mp
2 + i e

= 0.

Note that in the physical regionspf −pid2ø0 such that the de-
nominator never vanishes.
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−
1

Fp

e3i juspfdFgmgAS1 +
1

6
kr2lAk2D

+ kmS2gpNFp

mp
2 − k2 −

mNgA

3
kr2lADGg5

t j

2
uspid, s5.34d

which corresponds to the nucleon axial-vector current ma-
trix element in Eq.s5.30d. Thus, the calculation within the
framework ofLeff reproduces the constraint of Eq.s5.30d.

On the other hand, we would like to emphasize that Eq.
(5.30) does not imply a consistency condition foreverypion
production amplitude evaluated for off-shell pion momenta.
This can easily be visualized by investigating Eqs.(5.3) in
the limit q→0. We remind the reader that forq2Þmp

2 the
result does not correspond to an observable[75–77] but
would, for example, be a building block of the reactiongN
→Ngp evaluated in the framework ofLeff. In fact, the(off-

shell) soft-pion limit of Mi
m looks similar toM̃i

ms0d with the
difference thatgA/Fp in the pole terms of Eq.(5.30) is re-
placed bygpN/mN. The same is true for thek2=0 limit of Eq.
(5.3d) as compared with Eq.(5.34). This is an illustration for
the fact that Eq.(5.30) does not yield a consistency relation
for the soft-pion production amplitude for anarbitrary inter-
polating pion field.

At present, corrections to the soft-momentum result of Eq.
(5.30) either have to be studied within specific models—thus
obviously yielding model-dependent results—or can be ad-
dressed in the framework of ChPT. In the second context
such corrections have systematically been analyzed atOsp3d
in Refs. [35–37], where, essentially, a direct calculation of
the pion production matrix element as in Sec. V A was per-
formed. In particular, pion-loop corrections contributing at
q2=mp

2 modify the soft-momentum result of Eq.(5.30) such
that the threshold production amplitudeE0+

s−dsk2d obtains an
additional term proportional tomp

2/Fp
2 multiplied by a func-

tion fsk2/mp
2d which vanishes atk2=0. The subtle point about

such corrections is that they invalidate the naive expectation
that corrections to the soft-momentum result should be of
ordermp or higher. The reason is that pion loops give rise to
nonanalytic pieces[78], where the scale in the loop integrals
is set by the pion mass originating from the propagators of
internal lines. Since in ChPT the Green functions are evalu-
ated at a fixed ratiom̂/p2, the functionf counts asOsp0d in
the momentum and quark mass expansion. Themp

2 in front of
the functionf reflects the evolution from the soft-momentum
limit q2=0 to q2=mp

2.
An explicit test of the chiral Ward identity of Eq.(2.16) at

Osp3d including the loop corrections is not yet available in
the literature.

2. Comparison with Haberzettl

Recently, the question whether the axial radius of the
nucleon can be obtained from threshold pion electroproduc-
tion data [26–31] has given rise to much controversy
[41–45]. The discussion was triggered by a paper of Hab-
erzettl[41], where it was argued that PCAC does not provide
any additional constraints beyond the Goldberger-Treiman
relation. Similar claims were made by Ohta in Ref.[57]
some time ago.

In order to solve this seeming puzzle we need to have a
closer look at the method used in Ref.[41]. Starting from the
nucleon matrix element of the axial-vector current[see Eq.
(4.11)] in combination with the constraint of Eq.(4.14), the
axial-vector current was split into “weak” and “hadronic”
parts, expressed in terms ofGA andGpN, respectively. Such a
splitting may be interpreted as resulting from the(formal)
separation of the axial-vector current operator into a trans-
versal part and a longitudinal one[79],

Ai
msxd = FAi

msxd −
]m]n

n
Ai

nsxdG +
]m]n

n
Ai

nsxd. s5.35d

After this separation a formal expression forsthe equiva-
lent ofd the Green functionMJA,i

mn of Eq. s2.14ad was con-
structed. This was done by inserting an external photon in
all possible places in the diagram corresponding to the
separation of the axial-vector currentssee Figs. 1 and 3 of
Ref. f41gd. For the insertioninto vertices the so-called
gauge-derivative method of Ref.f80g was applied. For ex-
ample, for the last diagram of Fig. 3 of Ref.f41g correspond-
ing to diagrams4d of our Fig. 9 one needs the contact inter-
action of pion electroproduction as obtained from the
insertion into the pion-nucleon vertex. For our case, this ver-
tex is given by Eq.s4.10d, and the application of the gauge-
derivative method would simply produce the contact vertex

iee3i jt j

gpN

2mN
gmg5. s5.36d

Of course, in the present case, Eq.s5.36d is nothing else
than what is generated by minimal substitution into the
pseudovector pion nucleon interaction. However, this is
not what chiral symmetry tells us. In order to see this we
have to compare with the result for thegpNN vertex of Eq.
s5.3dd, namely,

iee3i jt jH gpN

2mN
gm +

gA

12Fp

kr2lAfsk − qdkgm − sk − qdmk”gJg5.

s5.37d

We conclude that the gauge derivative-method produces
only part of the full interaction and is in conflict with the
constraints of chiral symmetry. In the above case it does
not generate thekr2lA term entering the charged-pion elec-
troproduction amplitude.

E. The role of chiral symmetry

From the effective-field-theory point of view it is rather
straightforward to understand how a quantity such askr2lA
enters different physical amplitudes. Due to spontaneous
symmetry breaking, the chiral symmetry of QCD is realized
nonlinearly on the effective degrees of freedom
[16–19,60,81] [see Eqs.(3.4) and(3.10)]. In order to collect
the chiral Ward identities in a generating functional one
needs the most general locally invariant effective Lagrangian
where the emphasis is on bothgeneralityand local invari-
ance. In the present case we will have a closer look at theb23

term of Eq.(3.14) involving the quantityfmn
− of Eq. (3.12a):
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fmn
− = uh]msvn − and − ]nsvm − amd − ifvm − am, vn − angju†

− u†h]msvn + and − ]nsvm + amd − ifvm + am, vn + angju

=− 2s]man − ]namd + 2isfvm, ang − fvn, amgd

+
i

F
ftW · pW , ]mvn − ]nvmg+

1

F
ftW · pW , fvm, vngg

+
1

F
ftW · pW , fam, angg + Osp2d, s5.38d

where we expandedu in terms of the pion field. We first
note thatfmn

− involves field-strength tensors as opposed to
pure covariant-derivative terms. Moreover, due to the
nonlinear realization it contains a string of terms with an
increasing number of pion fields. The lowest-order term
involving one external axial-vector field,

− 2s]man − ]namd,

gives rise to a contribution to the axial-vector current ma-
trix element. It is responsible for the identification of the
b23 term with the axial radius. On the other hand, there is
no term with only one pion, i.e., no contribution to the
pNN vertex of Eq. s4.10d. In addition, there is also no
contribution to the strong form factorGpN of Eq. s4.6d.
The term

i

F
ftW · pW , ]mvn − ]nvmg

contributes to thegpNN vertex. Thus, we clearly see how
chiral symmetry relates for this particular termsa part ofd
the axial-vector current vertex withsa part ofd the gpNN
vertex. On the other hand, this relation is not generated by
the gauge-derivative method.

VI. SUMMARY AND CONCLUSIONS

We have reinvestigated Adler’s PCAC relation in the pres-
ence of an external electromagnetic field[32] within the
framework of QCD coupled to external fields[17,18]. With a
suitable choice for the interpolating pion field the QCD result
is of the same form as Adler’s pre-QCD version. We then
discussed the Adler-Gilman relation[6] as a chiral Ward
identity in terms of QCD Green functions and established the
connection with the pion electroproduction amplitude. In or-
der to explain the consequences of the Adler-Gilman rela-
tion, we made use of a tree-level approximation to the Green
functions atOsp3d within relativistic baryon chiral perturba-
tion theory. As a reference point we first performed a direct

calculation of the pion-production transition current,Mi
m, in

terms of the effective degrees of freedom. We saw explicitly
how the axial radius enters charged-pion electroproduction at
Osp3d. As an alternative we calculated the Green function
MJP,i

m involving the electromagnetic current and the pseudo-
scalar density and, using the LSZ reduction formalism, ex-
plicitly verified the connection with the pion electroproduc-
tion transition current determined previously. Again we saw
that the axial radius enters this particular Green function. As
a test of our result we verified a chiral Ward identity relating
the divergence ofMJP,i

m to the matrix element of the pseudo-
scalar density. We then calculated the Green functionMJA,i

mn

involving the electromagnetic and axial-vector currents,
tested the constraints due to gauge invariance, and, finally,
explicitly verified the Adler-Gilman relation forarbitrary
values ofq2. Thus, all three possibilities of calculating pion
electroproduction—direct calculation, determination in terms
of the QCD Green functionMJP,i

m , or application of the
Adler-Gilman relation—generate the same result.

We then made contact with the traditional current-algebra

or PCAC techniques by defining a generalizationM̃i
m of the

physical pion electroproduction transition current in terms of
the QCD Green functionMJP,i

m for arbitrary values ofq. We

considered the soft-momentum limit ofM̃i
m, qm→0, and

showed that the usual “soft-pion” results are recovered if the
pseudoscalar density is used as the pion interpolating field.
We pointed out how the nonlinear realization of chiral sym-
metry leads to an interplay between various vertices in the
most general theory and how approximations such as mini-
mal substitution may fail to be compatible with the strictures
of chiral symmetry and can lead to erroneous conclusions.

Clearly, chiral perturbation theory has become the stan-
dard method to systematically deal withcorrections to the
current-algebra results beyond the phenomenological ap-
proximation. The contribution of loop diagrams is expected
to separately satisfy the constraints due to the Ward identi-
ties. In the case of pion photo- and electroproduction such
corrections were determined in Refs.[35–38] leading to ad-
ditional terms beyond the current-algebra results. Obviously,
it would be nice to have a fully relativistic calculation within
the infrared regularization[24] or the extended-on-mass-
shell scheme[25] including an explicit test in terms of the
Adler-Gilman relation.
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