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Pion electroproduction, partially conserved axial-vector current, chiral Ward identities,
and the axial form factor revisited
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We reinvestigate Adler’s partially conserved axial-vector current relation in the presence of an external
electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduc-
tion within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity
referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how
inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm
that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the
nucleon.
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I. INTRODUCTION will automatically be satisfied if the underlying chiral sym-

. . .metry (and its breaking patteynis systematically mapped
. Pion photo- and eIe_ctrqproduct!on both have a long tradlonto the most general effective Lagrangian in terms of the
tion as a tool to obtain information on strong as well as

X ) relevant experimentally observed degrees of freedom
electroweak properties of the pion and the nucleon. For ex[16—lq. Turning this mapping into useful consequences re-
ample, as early as 1954 Kroll and Rudernid, in their

, o quires a method which allows for a rigorous analysis of a
famous low-energy theorem, discussed the possibility of eXparticular contribution to a Green function in terms of some
tracting the renormalized pion-nucleon coupling constggt expansion scheme. This is provided by Weinberg's power
from charged pion photoproduction at threshold. Besidegounting[16,20 which makes use of the special role played
Lorentz covariance, the essential ingredient entering the derpy the pion as the approximate Goldstone boson of sponta-
vation of the Kroll-Ruderman theorem was the application ofneous chiral symmetry breaking. Its weak coupling to other
the Ward identity[2] resulting from gauge invariance. hadrons in the low-energy limit, in combination with its
The algebra of currents and the hypothesis of a partiallismall mass, allow for an analysis of the low-energy structure
conserved axial-vector curre(RCAC) resulted in additional of QCD Green functions in the framework of chiral pertur-
constraints such as the theorem of Fubini, Furlan, and Rodation theoryChPT) [16—19. In the single-nucleon sector a
setti[3] establishing a sum rule for pion photoproduction in consistent power counting has been developed for both the
terms of the anomalous isovector and isoscalar magnetic mgo-called heavy-baryon formulatiof21,22 and, more re-
ments of the nucleon. The potential of investigating thecently, also for the relativistic approa¢d3—-235.
axial-vector form factor of the nucleon through the electro- The present work aims at shedding additional light on the
production of charged pions was first realized by Nambu andmportance of chiral Ward identities in the context of extract-
Shrauner in the framework of the chirality formaligih,5]. ing the axial form factor of the nucleon from pion electro-
Subsequently, their result has been recovered and extendpdbduction experiment$26—31. We will first show that,
within various approachd$—1Q (for an overview, see Ref. within the framework of QCD coupled to external fields, the
[11). PCAC relation for a particular choice of the pion interpolat-
The current-algebra and PCAC approaches of the 1960sg field is of the same form as the one originally obtained
(see, e.g., Ref§12-14) had in common that they made no by Adler [32] through minimal substitution. This is due to
explicit reference to the dynamical origin of the underlying the fact that, within QCD, the quark fields entering the sym-
symmetry. In our present understanding, the symmetry cumetry currents are fundamental, i.e., pointlike degrees of
rents originate in a global chiral §N;), X SU(N)g invari-  freedom.
ance of QCD forN; massless quark flavors. As already  Our subsequent discussion of the chiral Ward identities
pointed out by Gell-Maniil5], even if a continuous symme- will be performed in the framework of a tree-level approxi-
try is violated by large effects, it will still have some physical mation to chiral perturbation theory in order to keep the line
consequences, which can be studied if the symmetry brealof arguments as transparent as possible. In terms of a loop
ing pattern is explicitly known. In the present context, theexpansion such tree-level diagrams may be understood as the
symmetry breaking in question is associated with the finitdeading order in an expansion in terms7133,34. More-
quark masses. It is rather straightforward to derive the soever, chiral Ward identities are expected to be satisfied order
called chiral Ward identities among QCD Green functionsby order in the loop expansid24,25. Of course, ChPT also
implied by the symmetry currents and the symmetry-allows one to systematically evaluate corrections to the tree-
breaking pattern, while it is more difficult to actually satisfy level results. In the context of pion photo- and electroproduc-
these constraints in practical calculations. However, in thdion this was done in a series of papers by Bernetrdl.
framework of effective field theory, the chiral Ward identities [35—-38§.
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In the effective-field-theory approach we will point out two-flavor QCD Lagrangian coupled to extermahumber
the distinction between the chiral Ward identities and thefields v ,(x), v'®(x), a,(x), s(x), andp(x) [17]:
H . . . 2 L7} 1 P ’ 1
so-called electromagnetic  Ward-Takahashi  identities
[2,39,4Q applying to the effective degrees of freedom. The £ =Lcp+ Lex=LOcp* Tr (v, + 301 + ¥58,)0
origin of these additional identities resides in the fact that the —Gi(s—iysp) 2.1)
effective hadronic degrees of freedom, namely pions and q ¥sP)q, '

nucleons, are carriers of(ll) representations. As a conse- wherelL ., refers to the QCD Lagrangian for massless

quence, the building blocks of a calculation in the effectiveand d quarks® The external fields are color neutral, Her-

theory also have to satisfy these identities. ~ mitian 2X2 matrices, where we parametrize the matrix
Our approach will allow us to clarify a discussion trig- character, with respect to tieuppressedflavor indicesu

gered by a paper of Haberzefdll], where it was argued that andd of the quark fields, a$17]
in the case of pion electroproduction PCAC does not provide

any additional constraints beyond the Goldberger-Treiman 1 3 T
relation. We will explicitly point out which step in the dis- 0,0 = 5[0 +1,(0)] =2 EU',L(X)a (2.2a
cussion of Ref[41] is problematic(see also Ref§42-45 =1
for additional discussion

Our paper is organized as follows. In Sec. Il we first re-
derive Adler's PCAC relation in the framework of the QCD S(X) = 1oxoSo(X) + Z 7S(%), (2.2b
Lagrangian coupled to external fields. We then define the =t

3

relevant Green functions and establish a chiral Ward identity

3
(Adler-Gilman relation6]) entering pion photo- and electro- _} _ _N T

production. In Sec. Il we introduce the relevant parts of the a,(9 = 2[rM(x) lﬂ(x)] B ;1 zaM(X)’ (2.29
effective Lagrangians used. In Sec. IV we discuss various

matrix elements involving the axial-vector current and the 3

pseudoscalar density in order to illustrate the simplest chiral
Ward identity, namely the PCAC relation, at work. Those
readers familiar with the concepts of chiral perturbation
theory are invited to immediately move forward to Sec. VHere, we do not consider a coupling to an external axial-
containing the central piece of this work, namely, a discusvector singlet field, because the corresponding singlet axial-
sion of the Adler-Gilman relation and its relation to the pion Vector current has an anomaly such that the Green functions
production amplitude. We will study the traditional soft- involving the axial-vector singlet current are related to Green
momentum limit and comment on the method of Réfl].  functions containing the contraction of the gluon field-
Finally, we will explain how, in terms of the effective de- Strength tensor with its dual. The ordinary two-flavor QCD
grees of freedom, the constraints due to the chiral symmetriiagrangian is recovered by settin&=vf)=aﬂ=p=0 and
of QCD are translated into relations among the vertices of=diagm,, my) in Eq.(2.1). For simplicity, we will disregard
the effective theory. General conclusions are presented ithe mass differencem,—my and consider the isospin-
Sec. VI symmetric casen,=my=m.

The Lagrangian of Eq(2.1) is invariant underlocal

SU(2), X SU(2)gX U(1)y transformations of the left-handed

EXTERNAL FIELDS

P(X) = LoyoPo(X) + X, Tipi(X). (2.20
i=1

For N¢ massless quarks, the QCD Hamiltonian is invariant q(x) = }(1 - v5)q(X) — exp(— i@>vl_(x)q|_(x),
under the operation of the chiral group &), X SU(N;)g on 2 3

the left- and right-handed quark fielfi&7]. Associated with (2.39
this invariance are(l!\lfz—l) symmetry currents. Here we will

restrict ourselves to a discussion of the approximaté2pU 1 6(x)

X SU(2)g symmetry in the sector of two light flavors. The gr(x) = 5(1 + v5)q(X) — ex;{— iT>VR(x)qR(x),
finite u- andd-quark masses result in explicit divergences of

the symmetry currents. However, as first pointed out by Gell- (2.3b
Mann, the equal-time commutation relations still play an im-

portant role even if the symmetry is explicitly brokgkb]. In where
general, the symmetry currents will lead to chiral Ward iden- 3
tities relating various QCD Green functions with each other. Vi r(X) = exp(— i> E'g'L/R(X)> , (2.4
i=1
A. The PCAC relation in the presence of external fields provided the external fields transform as

The starting point of our discussion is a derivation of the
SU(2) PCAC relation from the QCD Lagrangian in the pres- The remaining flavors, ...,t appear with their respective mass
ence of general external fields. To that end, we consider th&rms.
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r,— VRl Vh+iVed, VE, (2.5a
L~ VLM +ivia, M, (2.5b
vif) — vif') - 4,0, (2.50
s+ip— Vy(s+ip)V/, (2.50)
s—ip— V. (s- ip)V'FQ. (2.58

Applying the method of Gell-Mann and Léy6] to identify

currents and their divergences by investigating the variationy ax -
|

of the Lagrangian under local infinitesimal transformations,

Ju—ﬂ (2.69
S a(,e)’ '
5.30= 2% (2.6b)
BT e '

leads to the following expressions for the vector and axial
vector currents:

VE=ayga, (2.79

_ Ti
Al =Ty 1550, (2.7b)
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e ~
=- 57'3./4’“, a,=p=0, s=mlyy,.

(2.10

In this case the expressions for the divergence of the vec-
tor and axial-vector currents, respectively, read

_ T
N == E3ijeA,quuE]q = - €3;6A V), (2.113

T S A
i _eAufaijQ)’”YSEJQ"‘m'QVsﬁq:_eAnysijAf+mPi,

(2.11b

where we have introduced the isovector pseudoscalar density

P, =i0ys7d. (2.12

From Eq.(2.11b we see that the axial-vector current is

conserved, if there is no external electromagnetic field
andif the quark mass vanishédshiral limit). Strictly speak-
ing, the right-hand side of Eq2.11h should also involve
the anomaly term contributing te,As [47-49. However,
this term is of second order in the elementary charge and
thus not relevant for the following discussion of pion elec-
troproduction which will only be considered to first order in
e. We note the formal similarity of Eq2.11b to the (pre-
QCD) PCAC relation obtained by Adler through the inclu-

If the external fields are not simultaneously transformed angion of the electromagnetic interactions with minimal elec-

one considers global chiral transformation only, the diver-
gences of the currents read

p—im | i _ 7 | T
NV =igy* 20U q+iqy“ys 28 |q-i0) 5. s|d

_ Ti
—qu{g'.p}q, (2.89
P 7 _ | _
9N —'QJ’”Ys{E,vu}qﬂq}”{?au}qﬂqys{i,s}q
|
+q E,p qg. (2.8b)

tromagnetic couplingsee the appendix of ReR32)).2 Since

in QCD the quarks are taken as truly elementary, their inter-
action with an(externa) electromagnetic field is of such a
minimal type.

B. Green functions

Before investigating the consequences of ql1b with
respect to the pion-electroproduction amplitude, we first
have to define the nucleon matrix elements of the relevant
quark bilinears and their time-ordered produgseen func-
tions). The first one is the nucleon matrix element of the
axial-vector current,

MG = (N(p)|A(0)[N(p)), (2.13

In the present case we intend to consider the QCD Lagrangyhere the subscripta andi refer to axial-vector current

ian for a finite light quark masg in combination with a
coupling to an external electromagnetic field, given by?

- eAd = - eA,(§uy'u-sdy'd) = Sarula+ Bv'u,q,
(2.9

from which we conclude

2We use natural units=c=1,e>0, €%/(4m)~1/137.

and isospin componeitrespectively. The matrix element of
the time-ordered product of the electromagnetic cur@nt
and the isovector axial-vector curreft is defined a$

3In Adler’s version, the right-hand side of E€R.11b contains a
renormalized field operator creating and destroying pions.

4Strictly speaking one should work with the covariant time-
ordered productT") which, typically, differs from the ordinary
time-ordered product by a noncovarigeeagul) term [50].
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_ P _Pi(x) _ mPi(x)
" G, 2BF mPF,’

i = [ % S XNEITTF WA OTING) @00
(2.143

(2.19

where the second and third equality signs refer to the
lowest-order result of mesonic chiral perturbation theory
i Y 17,52.

:fd“X IN(py) [TLI“O)A ) JIN(p,)) - : In ]the one-photon-exchange  approximation,  the

(2.14B invariant ~ amplitude  for  pion electroproducti70n
' ¥ (K +N(p) — 7(q) +N(py) can be written as\t;=—iee, M,

Finally, the Green function involving the electromagnetic where e,=eliy,u/k? is the polarization vector of the virtual
currentJ* and the isovector pseudoscalar densityeads photon andM{ the transition-current matrix element,

MY =(N(py), 7 (@)[3*(0)[N(py)). (2.20

Mip; = J d *x & ™*X(N(p)[T[I*(X)P(0)]IN(py))
Using the reduction formalism of Lehmann, Symanzik,

(2.153  and Zimmermann(LSZ) [58] with the interpolating pion
field of Eq. (2.19 in combination with the chiral Ward

, identity of Eq. (2.16), one obtains a relation for the
=f d % dIXN(pp) [T[I“O)P(x) IIN(p)) - transition-current matrix element in terms of QCD Green
functions,
(2.15b
The Green functions of EQgs(2.13—2.15 are related M{‘:—imzm lim (qz—mf,)/\/t’j‘p,i
through the chiral Ward identitgfor a pedagogical introduc- ﬂFﬂqZﬂmi

tion to this topic see, e.g., Ref61,52)° 1
=—— lim (¢ - m2)(eg; M4 = q, M4,
q,MAR, = ifMb, + egMA . (2.1 MCF 2 AT .
We will refer to Eq.(2.16) as the Adler-Gilman relation (2.21)

(see Sec. |1 B of Refl6] for their pre-QCD versioh An This type of relation has been the starting point for study-

a_Iternative way_of obtaining the an_alog of H@.16 con- ing the consequences of the PCAC hypothesis on thresh-
sists of evaluating the PCAC relation of AdIE32], olg photo- anéI electroproduction. Notgghat the QC[; chi-
_ ral Ward identity of Eq.2.16) holds for any value ofy,

(3,8 * @A eq))Af' = M F Dy, (217 i.e., there is noﬁeed ?o( sta; in the vicinitg of the sguared
between a final nucleon state and an initial state consistpion massg?~mé. However, the connection to the physi-
ing of a nucleon and avirtual) photon (see, e.g., Refs. cal pion-production process requirq%=mf,.
[8-10,54-57).

Ill. THE EFFECTIVE LAGRANGIAN

C. Interpolating field and pion electroproduction amplitude . . .
P g P P P As already emphasized in the 1960s by Weinberg, phe-

The connection to the pion electroproduction amplitude isnomenological Lagrangians provide a straightforward way of
established by noting that the pseudoscalar density serves gtaining the results of current algebra in the so-called phe-
an interpolating pion field. The matrix element of the pseu-nomenological approximation, i.e., at tree lef&9—63. Fur-
doscalar quark density evaluated between a single-pion stafRermore, modern techniques of effective field theory allow
and the vacuum is defined in terms of the coupling constangne to also systematically calculate higher-order corrections
G, [17], to tree-level results in the framework of chiral perturbation

_ theory[16—22,24,2h
(0[P;(0)|ri(q)) = 6;G. (2.18 In order to study the consequences of the chiral Ward

With the help of this constant we can define an imerpo_identities for threshold pion (_alectrqproduction, we will start
; ; ield from the most general effective chiral Lagrangian up to and
lating pion fiel . ) S .
including O(p°) in the baryonic sector. However, for peda-

_ o . . gogical purposes, we will make use of twarastio simpli-

®The standard derivation in terms of the ordinary time-orderedfications. First, we will restrict ourselves to tree-level results
product leads to equal-time commutators of current densities angn|y, because they already reveal the main features regarding
s_ymmetry currents. A naive application of_the canonical commutatne connection between chiral Ward identities and pion pro-
tion relations neglects the so-called Schwinger tef#. Accord- — qction, The chiral corrections due to meson loops have been

ing to Feynman'’s conjecture these Schwinger terms cancel with thgtudied in detail by Bernart al. [35-37 and are beyond
above seagull terms. For a discussion of the validity of this hypoth- '

esis, the interested reader is referred to Red). -
6Every field ®;(x), which satisfies the reIatiorQ0|(I>i(x)\7rj(q)> "For a discussion of the relevant kinematics and formalism see,
=§;€79%, can serve as an interpolating pion field. e.g., Refs[10,11].
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particular, a discrepancy between the determination of the W=
root-mean-square axial radius from anti-neutrino-proton
scattering and charged threshold pion electroproduction, rds the nucleon isospin doublet. The covariant derivative is
spectively, was explained in terms of such chiral pion-loopdefined as
corrections [36]. Second, even at the phenomenological
level, we only consider a subset of terms which give rise to DV¥=(9,+I,- ivff))‘l’ (3.7
nontrivial contributions to the Green functions. In the end, .

: with
we will always comment on the full result at the one-loop

(3.6

the scope of this worksee Ref.[38] for an overview. In (p)
n

level. I, =3u'(g,-ir )u+u(d,=il )u'l (3.9
A. Mesonic Lagrangian and

The most general lowest-order mesonic chiral Lagrangian u, =ifu’(g, —ir Ju-u(a, - il Hu'l, (3.9
can be written ag17] whereu=yU. At this order the effective Lagrangian con-
2 tains two (new) low-energy constants, namely, the

L,= ZTr[D#U(D“U)T +yUT+ Uy, nucleon massn and the axial-vector coupling constanj,
in the chiral limit, respectively. The Lagrangian of Eq.

T (X) (3.5) is invariant undeifocal transformations, provided
U(x)=exp i , (3.1
W exf — i 0() J(VRUV]) Y/gJUW, U VRUV, .

where the covariant derivative (3.10

D,U=9,U-ir, U+iUl, (3.2 We will neglect the next-to-leading-order pion-nucleon

. . Lagrangianﬁfﬁ, [19,63,64, except for the terms giving
involves the external fields of Eq¢2.5a and(2.5h), and  yjse 15 the isoscalar and isovector anomalous magnetic

Y=2B(s+ip) (3.3 moments of the nucleon, respectively,

contains the external scalar and pseudoscalar fields of £(2):&3§U;wf+ \1/+EEUW\I/((9 v — 5.0

Egs. (2.50 and (2.56. FurthermoreF is the pion-decay et 2 pre 2 peve e
constant in the chiral limitF_ =F[1+0(fM)]=92.4 MeV, (3.12)
and B is related to the scalar quark condensate in the
chiral limit, (0|Tu0)y=(0|dd|0)y=-F2B. Inserting s Where
=ml,y, in Eq. (3.1), one finds, at lowest order in the

+ _ L R

momentum and quark-mass expansion, the relat'ruin “”_Uf“”uTiqu“VU’ (3.123
=2BMm Combining Eqs(2.5) with the transformation R ]

fow= 00—y, =ilr 1], (3.12b

U VgUV/, (3.9

the effective Lagrangian of Eq3.1) has the saméocal f;v:‘?ﬂlv_ﬁvlﬂ_i[lw Ll (3.129
SU(2), X SU2)rx U(1)y symmetry as the QCD Lagrangian |nserting for the external fields the electromagnetic case of
of Eq. (2.1). Eq. (2.20), the constantsg andc, are given in terms of the

~ According to the power counting s<3:heme for processessovector and isoscalar anomalous magnetic moments of the
involving a single nucleoifil6,2Q, anO(p?) calculation con-  pycleon in the chiral limit, respectively,
tains mesonic contributions @(p*). Thus, strictly speaking,

we would also need th@®(p*) mesonic Lagrangian of Gasser ﬁ

and Leutwyler[17] for a full discussion. However, we re- Co= am’ (3.133
strict ourselves to thé(p?) contributions, because, in the
above sense, they already illustrate the relevant features re- P
garding the chiral Ward identities. c; = 2_5 (3.13b
m
B. Pion-nucleon Lagrangian To the order we are considering, all chiral limit values enter-
The most general lowest-order relativistic pion-nucleonind EQ.(3.13 can be replaced by their empirical values. The
chiral Lagrangian readi 9] respective numerical values arg=«,+x,=-0.120 andx,
=kKp~Kkn=3.706.
2 inci @
= ga In principle, the most general % also generates quark-
Lon= ‘P('D m+ 2 7””5”#)‘1" 3.9 mass corrections dd(m) to the nucleon mass and the axial-
vector coupling constant, respectively. The first one is not
where really important for our discussion, whereas the second one
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FIG. 1. Matrix element of the axial-vector current between a

one-pion state and the vacuum.

will, in a similar fashion, also be provided by @{p°) term,
which for illustrative purposes we will keep.

Finally, out of the 23 terms of the third-order pion-
nucleon Lagrangiar63], rewritten in relativistic notation,
we only keep the following three terrfis:

1 — .
8= 2(4—77':)2‘1’7“ ¥sibi7u, Tr(x.) +ibyd D, x-]
+b,4 D, f_,u,,]}‘l’ (3.19
with
x: =uyut+uy'u. (3.15

The constantd,;, byg, andb,; will be discussed below.
In order to summarize, in the following analysis we em-
ploy as the effective Lagrangian

Log=Lo+ LB+ L2+ 3 (3.16
where the explicit expressions are given in E¢3.1),

(3.5), (3.11), and(3.14). Within the tree-level approxima-

PHYSICAL REVIEW 68, 055501(2003

FIG. 2. Matrix element of the pseudoscalar density between a
one-pion state and the vacuum.

F?
Lext= |?T|—[((9,uuu‘r - ¢9’uUTU)a,u,] == Fa”,ia”m + -

(4.2

which results inF _=F at this order. For the divergence of
the axial vector current one then finds

(019, A (0| m(Q)) = IqHF 9,679,
=mZF ,e79%s;

= 2mBFe 9%y, 4.3

where, in order to obtain the last equality sign, use has
been made of th&(p?) predictions forF . andm?2, respec-
tively. On the other hand, the matrix element of the pseu-
doscalar densitysee Fig. 2, Eq. (2.18), results from

F’B :
EextleTr(pU -Up)=2BFpm+ -, (4.9
yielding G,=2BF. Thus we have—atO(p?)—explicitly
verified the reIatioanme:r‘nGw implied by the PCAC
relation. The corresponding one-loop expressions can be

tion, it is consistent to replace the nucleon mass in thgoyund in Eqs.(12.4 and(12.6) of Ref. [17].

chiral limit, m, by the physical nucleon mass.

IV. AXIAL-VECTOR-CURRENT MATRIX ELEMENTS

A. First example

As the most simple application of the PCAC relation

Thus, within the framework of working in the phenom-
enological approximation of the effective Lagrangian of Eq.
(3.16), it is consistent to replacé—F, and 2?18—>mf,.

B. Nucleon matrix element of the
pseudoscalar density

without an external electromagnetic field, we first consider

the matrix elements of the axial-vector current and the pseu-
doscalar density evaluated between a one-pion state and e
vacuum. To that end, we insert the relevant external fields in
the effective Lagrangian and identify the vertices by apply-
ing the usual Feynman rules. This example serves as the
most elementary illustration of how chiral Ward identities are

satisfied in ouisimplified) approach and, more generally, in
chiral perturbation theory.

The nucleon matrix element of the pseudoscalar density
e Fig. 3 can be parametrized as

meF, .
me —t Gon(t) TU(pr) ysmiu(py),

AXN(py)|Pi(0)IN(py)) =
t=(p; - p)>. (4.9

Since mP;(x)/(m2F ) serves as an interpolating pion field

Using Lorentz covariance and isospin symmetry, the mafsee Eq(2.19, G, is also referred to as the pion-nucleon
trix element of the axial-vector current can be parametrizedorm factor(for this specific choice of interpolating field

as(see Fig. 1
(O|AK ()| () = iQF 718y (4.2)

From the Lagrangian of Eq3.1) one obtains aD(p?),
8n rewriting the heavy-baryon Lagrangian of RE33] we made

use of the replacememM,S,N,—Vy,yW/2. We do not consider
the b; andbg terms which generate g dependence of the electro-

magnetic form factors. For the discussion of the Adler-Gilman re-

lation these terms do not create any significant new features.

In the framework of the effective chiral Lagrangian of Eq.
(3.16 one obtains two contributions with vertices from

P; Ps

FIG. 3. Matrix element of the pseudoscalar density between
one-nucleon states.
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FIG. 4. Feynman diagrams contributing to the

A
mP;
4
)

)

)

1
|
B

1

AP, pseudoscalar density between one-nucleon states
|_._|1 at O(p) and O(p®), respectively.
3
pj Pf Pi Pg P; P¢
,C(lN and L‘,eff, respectively(see Fig. 4,° function of Eq.(4.5. Only at g?=n%, we expect the same

coupling strength, since both; of Eq. (2.19 and m; of Eq.
(3.1 serve as interpolating pion fields.

() = (ﬁ] b17m big )
Con F, At 472F2 8712F2

The pion-nucleon coupling constant is definedatnf,,

(4.6)

D. Nucleon axial-vector-current matrix element

5 We now turn to the results for the axial form factors of the
_ oo My, (2Dy7—bigm nucleon™ The matrix element of the axial-vector current
CGm)=—|0a+ ——==— (4.7)
I = (M) = F. 9a 8m2F2 ' evaluated between initial and final nucleon states—excluding

) . 5 second-class currenf§8]—can be written agsee Fig.
As will be seen belowga=ga+b,,m2/(47%F2), such that

the parameterb;q reflects the so-called Goldberger- (ps = p)*
Treiman discrepancy, i.e., the numerical violation of the (N(pp)|A“(0)|N(p;)) =T(py)| ¥*Ga(t) + TGP(U
Goldberger-Treiman relatlojr? N

7
m mym Xys=u(pi), 4.1
Agy=1- gaMy AL UL 4.9 Y55 (p) (4.11

wheret=(p;—p;)?, and G,(t) and Gp(t) are the axial and
induced pseudoscalar form factors, respectively. Within
the framework of Eq(3.16) we obtain to this ordefsee

The effective Lagrangian of E¢3.16) reproduces exactly
the same result foA ,y as the full one-loop calculation
[see Eq.(69) of Ref.[66]].

In terms ofA _ andg_y, the pion-nucleon form factor—at Fig. 6)
this order—can be rewritten as
Ga() = ga(1+5(r2at), (4.129
G0 = <1+A t_mi) 4.9
N =0aN N mfr . . WgWN 1 1 ,
Gp(t) = e gIra). (4.12H
The full O(p®) calculation including pion loop corrections nt
generates exactly the same functional form with all quan- h
tities replaced by thei®(p®) expressiongsee Sec. Ill 7 of where
Ref. [67]).
17 bt
0a=Ga(0) =g+ =g (4.139
C. The pion-nucleon vertex L
The pion-nucleon vertex resulting from E®.16) reads
1
. b2 bygm? Ti _ Oan - 89A<"2>A: @ |2:3 )2 (4.13b
At 2 2 ¢1?’5 S —4vs7;, T
4m’F2 8aPF2 2 2my
q=pi - pr, (4.10 In the present framework, the parametsr signifies a

deviation of the axial-vector coupling constagtfrom its
where we made use of Ed4.7). In particular, forg?  valued, in the chiral limit. The parametds,; is related to
#m? the pion-nucleon vertex doesot contain the form the axial radius. The full one-loop calculation @p®)
factor G, (c?) of Eq. (4.5). In general, the pion-nucleon ver- [66] has the same functional form as E¢4.12. In addi-
tex depends on the choice of the field variables in(gféec-  tion to the by; term, the pion loops generate a further
tive) Lagrangian. In the present case, the pion-nucleon vertegontribution toga=G(0) of order m and m In(im). Its in-

is only an auxiliary quantity, whereas the “fundamental” finite plece is compensated by an infinity in thare pa-
quantity (entering chiral Ward identitigds the QCD Green rameterbﬂ

It is now straightforward to verify that the form factors of

TV Egs.(4.9 and(4.1 i he relation
%At the order we are working it is consistent to repl&ce F, and gs.(4.9) and(4.12) satisfy the relatio

mHmN. J—
Ousing my-938.3 MeV, gA=1.267, F,=92.4 MeV, and g, Yeor simplicity, we often refer tothform factors parametrizing
=13.21[65], one obtain\ ;\=2.6%. the axial-vector-current matrix element as axial form factors.
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. .
e e
u , ,
A . /
| , ,
L L

< (9) (u)

P; Py :
FIG. 5. Matrix element of the axial-vector current between one- FLL‘W/ ,
nucleon states. : -LLLI e
1 d
m2F 1
2mGa(t) + o — Gp(t) 2— T m; ’; A0, (4.1 (1) (contact)

T
FIG. 7. Feynman diagrams contributing to pion electroproduc-

as implied by the PCAC relation, E@2.11b, in the ab- ™
tion in the framework ofC.¢ of Eg. (3.16).

sence of an electromagnetic field,. Evaluating Eq.

(4.14) att=0, one obtains _
M(y'n— pm) =2(MO - M), (5.2b

2myGa(0) = 2F .G (0), (4.195
where we made use of the fact th@p(0) is finite for M(y'p— pr®) =MD+ MO, (5.20
nonvanishingm?. By use of G,n(0)=g.n(1-An)~0mn
=G,n(m?), we see that the Goldberger-Treiman relation is M(y'n — na®) =M™ = M© (5.2
only approximately satisfied. Of course, in the chiral limit

we recover
A. Direct calculation

. t o
2m Gy(t) + %Gp(t) =0, (4.16) The natural way to find the pion electroproduction ampli-
tude associated with the effective Lagrangian of @BqL6) is
which also implies that the Goldberger-Treiman relation isto determine the relevant vertices involving pions, nucleons,
exactly satisfied in this case. and the electromagnetic field and to calculate the corre-
sponding Feynman diagrams. The calculation is straightfor-

V. PION ELECTROPRODUCTION ward and involves the diagrams shown in Fig. 7:

We will now address with the help of. of Eq. (3.16 _ Oan_ Nq T
how the PCAC relation enters the pion electroproduction Ms——em—Nu(pf) 1-—> = 7’526 F'ou(p),
amplitude. Neglecting isospin-symmetry-breaking effects
due to differentu- and d-quark masses as well as higher- (5.33
order electromagnetic corrections, the amplitude for produc-
ing a pion with Cartesian isospin indéxan be decomposed Nq
as[69] My= ‘e—U(pf)6 rkf1- Y5y U(Pl)
M(m) = x{(=iegigM T + MO + 55MW) (5.30
(5.1
1
where x; and y; denote the isospinors of the initial and M, =ieg e qU(pf)yg,u(pi)—mze-(Zq—k),
final nucleons, respectively, angl are the ordinary Pauli t-m;
matrices. With this decomposition the amplitudes for the (5.30
physical processes read
¥ + = [o( A0 =) .
M(y'p— na’) =y2IM™ + M), (5.29 M contac= 1€€35;) 7'12 u(pf)é'y_:,u(p,)
W n
A A +i 2
e k-q) -k
< X I 63”7'12': 6<r )at(ppl(k—q) -ké
b W I I = (k=) - eklysu(p), (5.30
| 1 1
P m & where s=(p;+k)?, t=(p,—py)?, and u=(p;—q)? are the usual
o o o . o > o n Mandelstam variables, satisfyisgt+u=2mg+k2+m2.'* The
' f ! f ' f ! f expressions fog,, ga and (r?), are given in Eqs(4.7),
FIG. 6. Feynman diagrams contributing to the axial-vector cur-
rent matrix element between one-nucleon state®(p} and O(p®). 2n the case of an off-shell pion one has to replaﬁeby .
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(4.139, and (4.13b, respectively. Furthermore, we intro- j j
duced the abbreviation 17.,\‘) R4 jz
73 o"‘ K, Ky (1) ‘ ‘ (2)
FM k — 4+ — k: - D
( ) 7’“ 2mN ( 2 2 73)1 Ps = Bis ’
(5.4 1LLL’// ®
for the electromagnetic vertex of the nucle@s obtained ; W'L)j .’
in the framework of the effective LagrangiarFirst of all, 1 ’
it is straightforward to check the constraints of gauge in- 3 (4)

variance for Eqs(5.3) [70],

k, ME =~ g, nes; Tii(pr) ysu(p) A™Ha) A (g - K).
(5.5 1‘1, lL\,,
@ @

Equation (5.5) is the electromagnetic Ward-Takahashi (5 (6)
identity for the production of an off-shell pion consistent
with the vertices and propagators obtained frdgy [see,

e.g., Eq.4) of Ref.[71]], where the external nucleon lines ’LLI‘

are on shell. This result is not surprising, because the
transformation law of Eq(3.4) for the chiral matrixU
implies for the pion fieldm;— m— 6(x) €5 7; under electro- (7)
magnetic W1) transformations. In particular, if the pion is
on its mass shellg?=mZ, one obtains the usual current
conservation conditionk, M{=0, becauseA™(g)=0 in

FIG. 8. Feynman diagrams contributing to the Green function
involving the electromagnetic current and the pseudoscalar density.

this cage. . . o The wavy line denotes @virtual) photon coupling to the electro-
At this point we can now point out the distinction between nagnetic current. The full circle corresponds to the pseudoscalar
chiral Ward identities relating QCD Green functions andgensity.

(electromagnetic Ward-Takahashi identities relating Green
functions of the effective theory containing off-shell legs of
the effective degrees of freedom, here pions and nucleon
The chiral Ward identities originate in the chiral symmetry of
the underlying QCD Lagrangian. By considering fmeost
genera) chiral effective Lagrangian exhibiting the same in-
variances as the QCD Lagrangian coupled to external fields,
the constraints of the chiral Ward identities are automatically u 2BF, [ 2myd

transported to the effective-Lagrangian level. On the other “Y'Jpi1= 9% - m2 my u(py) 1' mz Y5 F (Ku(py),
hand, the effective degrees of freedom are carriers of, e.g., i

function involving the electromagnetic current and the pseu-
doscalar density. Here, we calculatd’y; of Eqg. (2.19 in

the framework ofCq and explicitly verify the result for the
pion electroproduction amplitude of Eq&.3). The result is
obtained from the seven diagrams shown in Fig. 8:

U(1) representations resulting, in addition, in conventional (5.6a

Ward-Takahashi identities involving off-shell pion and

nucleon vertice$® An example of such a Ward-Takahashi w 2BF, %U( )F,L(k)< N‘q) T'u(p)

identity is given by Eq(5.5). Note that neither the left-hand Pi2= o2 2 “mg) 52

nor the right-hand side constitute QCD Green functions. (5.6b)
Finally, Eqg. (5.3d) which, according to Eqs5.2), only

enters charged pion production, involves the axial radius. In 2BE

fact, this is not a coincidence, but will be shown to also M#;; ;= ie3ijq-j2—72 2(2q K) g,.\u(p;s) ysu(p;),

follow from the (more complicategapplication of the Adler- mzt-

Gilman relation. (5.60

B. Pion electroproduction and the electromagnetic-current

2BF gaN
I 40 kil r2y, 28
pseudoscalar-density Green function Mipia= '63'JTJq2 ( f){ v < >A [(k

According to Eq.(2.21), the pion electroproduction tran-
sition current matrix element is related to the QCD Green — Qky* = (K= a)*K] [ ysu(pi), (5.60
130f course, also other groups which are linearly realized on the 2 |: QWN 2myd
pion and nucleon degrees of freedom, sucls&&),, may be used MJP| 5= m2 u( f)( mz ) Y55 F“(k)u(p,)
to obtain consistency checks between the building blocks of the ™
effective theory. (5.69
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2BF, OaN—_ 2mydg Ti /X Re

MJPlG mi A Nm_NU(pf)r’L(k) 1_—u—mﬁ ')’SEU(pi)y // /,

(560 D @
X
L 2BF, gw 1LLL ;.
MJP,i,7:_|53ijij_iA 2m, U(ps) Y ysu(py). | ‘ "LL)j //x

(5.69 l ’

The expression of the Goldberger-Treiman discrepancy is (3) (4)

given in Eq.(4.8). When multiplying Eqs(5.6) by —-mi we

make use of @BF,=n?F,. Second, after multiplying by

o?-m2 and taking the limig?—n?, only those terms of Egs. 1LL7 j‘LL7

(5.6) which have a Xt?-n%) singularity survive. Finally, in o 5

order to obtain the invariant amplitude we have to contract (5) (6)

the result with tee,. With these replacements one easily

sees the one-to-one correspondence between Egs.

(5.39—5.3d) and (5.69—5.6d. On the other hand Egs.

(5.68—5.69) do not contribute to pion electroproduction due ’LHQ |

to the absence of the(n?—mi) pole. Thus, we have a first !

check of the consistency of our procedure. ('%) (8)
As a final check of the results of Eq%.6) we investigate

the chiral Ward identit
y FIG. 9. Feynman diagrams contributing to the Green function

k, M™, . = e (N(pg)|P: (0)|N(p;)). (5.7) involving the electromagnetic current and the axial-vector current.
IR 3”< P | ' | P The wavy line denotes évirtual) photon coupling to the electro-

Contracting the first four and the final three expressiongnagnetic current. The cross corresponds to the axial-vector current.

of Egs.(5.6) with k,, respectively, we obtain The diagrams have been arranged to yield a maximal similarity with
Fig. 8. Note that a diagram of typ®) is not generated in case of
: 2BF, Mip,
k#kE Mpik= '€3|JTJ zngU(pf)?’su(p.)
=1 . Fﬂ'qV OaN_ 2mNd 7-I
i Sl 1-—— Kk
. Mipia qu—m‘:; My U(pf)( S—mﬁ 55 “(ku(p),
2BF,
k 2 Mipj= €=~ 7 A ZnGanU(Pp) ysu(p;) - (5.9a
- . i ’7Tq g’n’N_ 2mNﬁ T
Combining the two results we find M o= mm_u( f)l““(k)<1 - m,z\,>755u(pi)’
2BF; 5.90
KMy =~ 6y7— S0P 7U(P), (5.9 (595
. . . 7TqV (Zq_ )M
whereG_(t) is given in Eq.(4.9). Here, we made use of ML 3= €5 rj—zt—zngu(pf)%u(p,)
the definition of Eq.(4.5) and 2hB=mZ. Thus, the result of =y t-m
for the Green functionM’;; is consistent with the chiral (5.90
Ward identity of Eq.(5.7).
F — gﬂ'N 2 k
C. Adler-Gilman relation Mipia= '53'17'1q2 > U(py) 7"u+ < >A_[(

We now turn to the explicit test of the Adler-Gilman re-
lation, Eq.(2.16), in the framework ofLq. In traditional —q)k')/"—(k—q)”k]}'y5u(pi), (5.90
current-algebra or soft-pion approaches, it is the right-hand
side of Eqg.(2.16) which serves as the starting point for the
rediction of threshold pion production. 1
P Ponp MiRis=i9a = = mzﬁ(pf)[y”(l+%<r2>A q)
1. Electromagnetic-current axial-vector current Green function N

We first need to calculate the Green functibtiy; of Eq. - q”«i;%(r2>A]y5E X (py + k+ myT#(k)u(p;),
(2.14 involving the electromagnetic current and the axial- 2
vector currenisee Fig. % (5.9¢9
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L 1 Contracting the twa-channel diagrams aMjjy; with g,
Minie= 'gAu_—sz(pf)F“(k)(lbi —4+my) [see(1) and(5) of Fig. 9] we obtain
N
v 1,2 2\ — qvhlip2 E ) . F7Tg1T q2 —
X[')’ (1+5<r )ad ) q"gg(r >A:|752u(pl)1 qV(M.l]LAV,i,l-'-M,}]LAV,i,S) :|( - N 2_m2 —ga |T(py)
N ]
(5.9f)
o 1 (1 bz )75 Tku(p)
Mxi 7=~ €5T9a5(r I azU(Pp[ ¥ (29 - K* - ¥*(q - k)" m
— b9 ysu(py), (5.99 =Mt Mipig)- (512
Note that Eq(5.12) doesnotimply a one-to-one correspon-
) g dence between diagrani¥) and diagramg5) of Figs. 8 and
Miaig= "~ €si YL — o zUP)ysu(p). (5.90 g yashactively. In a similar fashion we find for thechannel
N diagrams

Note that Egs.(5.99<5.90 are obtained from Eqgs.

(5.68—(5.60) by the replacementB2—iqg” which simply re- F 5
flects the respective coupling of the external pseudoscalar QUMAR 2+ MEZ o) :i<Mq_ —gA>U(pf)
and the axial-vector fields to a single pion resulting from Eq. My o7 - m’

(3.1). Moreover, the coupling to the axial-vector current pro-
vides the additional term of Eq5.9h) in comparison with xT# k)(l q )'ys u(p;)
M, of Eq. (5.6). my
=mi(Mhpi o+ Mo o). A
2. Gauge invariance Mi(Mie,.2+ Mipie (513
As a first test of the results of Eq&.9) we will investi- | et us now discus$3) of Fig. 9:
gate electromagnetic gauge invariance by contractutiy;
with the four-momentunk,. The corresponding chiral Ward P (29K~
identity reads q,M5R 3= € 7 sz = ————IU(pp) ysu(py)
k, MR = €5i{N(py)|A(0)[N(p)). (5.10 (24 K"
Contracting the sum of the first four and the final expres- =MiMip; 3+ E3ij7'jt_—m2ngwNU(pf)7’5U(pi),
sions, and the sum of the remaining three, respectively, m
with k, we obtain =miMhip; 3+ A M5, (5.19
4
k EMJ/-U R M where we introduced the “remaindef’M/; for later pur-

poses. In order to obtain E5.14) we made use of
b o?(q?-m2)=1+m2/(¢?-m2). In a similar way we obtain
‘fsiiTJp ngWNF U(pp) ysu(p),  (5.11g  for (4), (7). and(8) of Fig. 9:

7 1 QMR 4= MiME 4+ AMPY, (5.15
k“kz—:f; MR k= €3 9aU(PY) { 7”(1 + 5<r2>At>

1, 7] AMil,L4:€3ingwU(pf){gWN)’”+ <2>A_[(k aky*
- 2my(ps — pi)yé<r )A 75§U(Pi)-

(5.11b = (k= a)*K] [ ysu(py), (5.16

Adding the two terms and comparing with the result for the

axial-vector current matrix element of Eq¢4.11) and(4.12),

we see that the chiral Ward identity of E¢.10 is indeed q, M 7= MM, + AMLY, (5.17
satisfied.

3. Test of the Adler-Gilman relation

Ml =€ r2) AU k)* —
We are finally in the position to explicitly test the Adler- e 3”2gA RERCCIRIESTC

Gilman relation. Since this has been the key ingredient in

many investigations of the connection between the PCAC —K)alysu(p)- €35 Tip A,,Ng” u(ps) Y*ysu(pi),
hypothesis and threshold pion production, we will discuss 2
the individual terms in detail. (5.18
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v g“ _
QM ini g = AM'g=— €3 TjngFwt_—sz(Pf))’su(Pi)-

(5.19

PHYSICAL REVIEW 68, 055501(2003
M= MUz (5.22

By applying the Adler-Gilman relation, Ed5.21) is re-

As a first observation, notice that by construction the sunexpressed as

of Egs.(5.12—(5.19 adds up tahiM/p; plus the remain-
ders. The sum of the latter is given by

AME =AM+ AME, + AME + AMYg

(q-k* _
=€ TjWngwNu(pf)')’Su(pi)
T Fﬂ'gﬂ' _
+ 53ijzl Y N1 = A)T(P) Y4 ysu(p)

7]

1
+ €3 Eg<r2>AgAU(pf)[Vut - (k= g)*(k— @) ]ysu(p)

=€5i(N(py)|A}*(0)[N(p). (5.20

We thus have explicitly verified the Adler-Gilman rela-
tion, Eq.(2.16), in the framework of the phenomenologi-
cal approximation ta .

At this point it is appropriate to recollect that EQ.16) is
an exactrelation among QCD Green functions. Of course,
one would like to verify Eq(2.16) in terms of anab initio
QCD calculation. On the other hand, a complete and syste
atic analysis of this chiral Ward identity in terms of effective
degrees of freedom requires effective-field-theory tech

nigues. At this stage one needs the most general effective

Lagrangian which is chirally invariant undéocal SU(2)_

X SU(2)gXU(1)y transformations provided the external
fields are transformed accordingl¥7,73. This then allows
one to deal with the chiral Ward identities in terms of an
invariance property of the generating functiosée appen-
dix A of Ref. [52] for a pedagogical illustratignUnder these
circumstances the chiral Ward identities of QC&3 well as
their symmetry-breaking patterare encoded in the generat-
ing functional which is then given through tleéfectivefield
theory. In the process of constructing the effective Lagrang
ian one necessarily also generates nonminimal terms such
e.g., theb,; term in Eq.(3.14 which will be discussed in
more detail below. As has been illustrated in R&8] for the

case of the pion electromagnetic vertex, such nonminimal

terms are mandatory for reasons of consistency.
D. Comparison with previous calculations

1. Extrapolation from g,=0 to g,=(m_,0)

The basic idea of traditional current-algebra or PCAC aPwith analogous considerations for the electromagnetic ver-

tex. Similarly, the renormalized dressed propagator can be
written as

proaches consists of defining a function
m
2

T

M@ =i 5@ -m)Mhp  (5.2D
for arbitrary values ofg,** with the property that the
physical pion production matrix elemefgee Eq.(2.21)]

is given by

10f course, four-momentum conservatida-p,=q+p; is as-
sumed.

m

2

A _q_mﬂ'
Mi(Q)—ﬁ

2

(eMha;—a,M5%),  (5.23

and a constraint forM(q) is obtained by evaluating the
right-hand side of Eq(5.23 at q,=0, which is tradition-
ally referred to as the soft-pion limit. In the present work
we prefer the terminology “soft-momentum limit” which
avoids the notion “off-mass-shell pions.” Rather, we con-
sider the Green functions for finite quark massesply-

ing massive pionsat g,=0, and the result is then trans-
lated into consistency conditions in terms of the invariant

amplitudes parametrizing1/(q).

From the first term of Eq(5.23 one obtains the axial-
vector current matrix element for a four-momentum transfer
k=p;—p;. Out of the second term only the one-particle-
reducible pole terms are candidates contributing to the soft-
momentum limit32].*° Such 1¢ singularities inM4y; origi-
nate from pole diagrams where the vertex associated with the
axial-current operator is attached to a nonterminating exter-
In principle, these diagrams have to be
evaluated using the most general renormalized, one-patrticle-
irreducible half-off-shell electromagnetic and axial vertices
in combination with the most general renormalized dressed
propagator. However, expanding vertices and propagators
around their on-shell values, all such off-shell effects become
irrelevant in the soft-momentum limit. This statement re-
quires that none of the off-shell vertices contain polegjas
—0. In fact, such poles would have to be of a dynamical
origin and are expected to be absent as long as the underly-
ing dynamics does not contain massless parttfidst us

nal nucleon line.

illustrate the above statement by use of a “generic” axial
S . . . .
ofm factor contributing in thes-channel diagram,

Gl% Mg, (ps + 9)?] = G(¢?, m3, md)
+(s—mR)G' (g7, Mg, Mg) + - -

(5.29

S(p; + ) = S=(ps + q) + regular terms,  (5.25

e take the soft-momentum limit by first settidg:0 and then
performing the limitgy— 0.

18The prototype of such a pole behavior is, of course, given by the

induced pseudoscalar form factor in caserafssless pions
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whereS:(p) denotes the free propagator of a nucleon with  The consistency relation can be summarized as

massmy. Finally, notin

i i QB A+ M) Gy M)
a-obs+d—my g0 2P+ 2E; ’
(5.263
.+
lim q4y _ guo(Bi + my) (5.26b

g-ob—g-my 2E;

the soft-momentum limit o}, M,; reads

Y o7

m A Mbpi = igAU(pf)L—ast(rﬂf +my)“(py, pr)

= T4(py, P (B + M) ysg} (P pyopmk

(5.27
wherel'*(p;, p;) is given by
F3(k?) + 5F5 (k%)
'(py, p) = 7’“%
Lok, FR(K) + 5 (K0
+|2mN 5 , kK=pr—pi.
(5.28

Here Fi’,”z(kz) refer to the isoscalatisovecto) Dirac and

Pauli form factors of the nucleon. As already pointed out
by Adler [32], the positive frequency projection operators

p;+my and p;+my in the respectives- and u-channel con-

tributions to Eq.(5.27) give rise to the fact that only the
on-shell electromagnetic vertex enters into the soft-

€si Oa_
Fi: i =2T(py)

(N(pp)|Af(0)IN(p))) =

limMHq) = -
g—0

w

ps—p;=k

my i
X |1 —E Y 'YSEFM(pfi pi) + T#(ps, i)
f
My Ti
X 1+E7’0 ey u(p;)

Since the second part of E¢5.30 doesnot involve the
axial form factor, the soft-momentum limit of Ed5.30
leaves no room for a cancellation of the axial form factor
between the axial-vector current piece and the second con-

tribution. In other words, the soft-momentum limit bf“(q)
unambiguously contains the axial form factor as well as the
induced pseudoscalar form factor.

Although the specific form of the consistency relation de-
pends on how the soft-momentum limit is taken, the above
conclusion is not affected. First of all, the first part of Eq.
(5.30 involving the axial-vector current matrix element is
path independent, whereas the directional dependence of the
second part is trivial. For example, if one wanted to take the
soft-momentum limit usingg“=|g|(0,q), instead of Egs.
(5.26 one would have to consider

(5.30

pf-p =k

SA

aq

. aq

lim = = ——(pr+ my), 5.31
g—o Br+dg-—my 2pfq(IZSf v (5313
: aq A-§
lim = =———7F(p+my), (5.31
g—o Bi—d-my 2B 'q(p v, (5318

momentum result. Indeed, we have explicitly checked thafe4ding to analogous replacements in the second part of Eq.
inserting the on-shell equivalent parametrizations mvolv—(5_3@_ Nevertheless, it would still only contaig, because

ing Gg and G, or Hy and H; (for a discussion see, e.9., the soft-momentum limit of functions containing only invari-
Ref.[74]) generates the same soft-momentum limit. More-gnts has no directional dependence.

over, Eq.(5.27 only contains the axial-vector coupling

constantg, but not the axial form factor.

Finally, as an explicit test we evaluate the soft-momentum
limit of Eq. (5.22 in the framework of Eqs(5.6),

Let us test the consistency of the procedure by contracting

Eq. (5.27) with k,. According to Eq(5.10) we have

k.0, Mx; = €5i;9,(N(Py)|A(0)[N(p))

= e5ij[K, = (pr = P 1AN(P) AT (0)N(p)),
(5.29

which clearly vanishes a3— 0, i.e., fork— p;—p;. On the
other hand, from Eq(5.27) we find that both thes- and
u-channel

condition.

a possiblet-channel contribution remains finite, because

. g, o 9, _
lim —=Ilim—>————=0.
got—mi+ie gok®-mi+ie

Note that in the physical regiofp;—p;)><0 such that the de-
nominator never vanishes.

contributions vanish separately which, of
course, simply reflects the on-shell current conservation

~ 1
lim MA(q) = —lim MM, (5.32
gq—0 F ’

md—0
and compare the result with the consistency relation of Eq.
(5.30. Using
1 1

qz_m727—>—m—727, (5.333
2myg My

1- 1-—1,, 5.33
s— mﬁ - E, Yo ( b
2myg My

1- 1+—,, 5.33
U mﬁl - E Yo ( 0

together with mB:me and (1-A_n)g.n/My=0s/F . we see
that Eq.(5.69 together with Eq(5.66 [Eq. (5.6b) together
with Eg. (5.6f)] exactly generate the-channel(u-channe)

expression of Eq(5.30, whereas the sum of Eq$5.60),

(5.60), and(5.69 yields
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1 1, ., In order to solve this seeming puzzle we need to have a
- F—fsiju(pf) YOal 1+ é(f )k closer look at the method used in Rgf1]. Starting from the
" nucleon matrix element of the axial-vector currésee Eq.

29.nFr ™Oa, , 7] (4.11)] in combination with the constraint of E¢4.14), the
+ K m -k 3 (r)a VSEU(pi)' (5.34 axial-vector current was split into “weak” and “hadronic”
T parts, expressed in terms G, andG,, respectively. Such a
which corresponds to the nucleon axial-vector current masplitting may be interpreted as resulting from tfiermal)
trix element in Eq(5.30. Thus, the calculation within the separation of the axial-vector current operator into a trans-
framework of L4 reproduces the constraint of EG.30). versal part and a longitudinal ori@9],
On the other hand, we would like to emphasize that Eq.
(5.30 does not imply a consistency condition feverypion _ Iy w9y
production amplitude evaluated for off-shell pion momenta. A = {A"/L(X) - ﬁAi (X)} * ﬁAi x). (539
This can easily be visualized by investigating E¢s3) in ) ) ] )
the limit g—0. We remind the reader that faf+nm? the After this separation a formal expression fithe equiva-
result does not correspond to an observale—77 but  lent of) the Green function\4y; of Eq. (2.143 was con-
would, for example, be a building block of the reactiph  structed. This was done by inserting an external photon in
— Ny evaluated in the framework oy In fact, the(off-  all possible places in the diagram corresponding to the

shell) soft-pion limit of M looks similar toM{‘(O) with the separation of the axial-vector curresee Figs. 1 and 3 of

. . : Ref. [41]). For the insertioninto vertices the so-called
difference thatg,/F, in the pole terms of Eq(5.30) is re- - .
placed bngN/rE:\_ The samepis true for tHe’—:g(limi?of Eq. gauge-derivative method of Rdf80] was applied. For ex-

(5.30) as compared with Eq5.34). This is an illustration for 2MPIe. for the last diagram of Fig. 3 of R¢41] correspond-

the fact that Eq(5.30 does not yield a consistency relation ing to diagram(4) of our Fig. 9 one needs the contact inter-

for the soft-pion production amplitude for @mbitrary inter- %C;ttlaor?ior?fint%?ﬂe eli?)?lt-rr?féi)e%uncsgrrle stgrbéi'ngSgr?ms \t/ZE;-
polating pion field. p . ,

At present, corrections to the soft-momentum result of eqex is given by Eq/(4.10, and the application of the gauge-

(5.30 either have to be studied within specific models—thusder'vat've method would simply produce the contact vertex

obviously yielding model-dependent results—or can be ad- 9o
dressed in the framework of ChPT. In the second context ieegj 70—
such corrections have systematically been analyze|jab 2my
in Re_fs. [35—31_Where, gssentially, a Qirect calculation of ¢ course, in the present case, H§.36) is nothing else
the pion production matrix element as in Sec. V A was perihan what is generated by minimal substitution into the
formed. In _partlcular, pion-loop corrections contributing atpseudovector pion nucleon interaction. However, this is
¢?=mt. modify the soft-momentum result of E(6.30 such ot what chiral symmetry tells us. In order to see this we
that the threshold production amplitud)(k?) obtains an  have to compare with the result for therNN vertex of Eq.
additional term proportional ta2/F2 multiplied by a func-  (5.3d), namely,

tion f(k%m?) which vanishes a?=0. The subtle point about {

Y“Ys. (5.36)

9mn
2my

such corrections is that they invalidate the naive expectation . 9a 5
that corrections to the soft)fmomentum result shoutl)d be of '€€3i 7] v ﬁ“ 2l (k= q)ky* = (k_q)#k]}%"
orderm,. or higher. The reason is that pion loops give rise to (5.37)
nonanalytic piecef78], where the scale in the loop integrals '
is set by the pion mass originating from the propagators ofye conclude that the gauge derivative-method produces
internal lines. Since in ChPT the Green functions are evaluonly part of the full interaction and is in conflict with the
ated at a fixed ratisp?, the functionf counts asO(p°) in  constraints of chiral symmetry. In the above case it does
the momentum and quark mass expansion. i@ frontof  not generate thé@?2), term entering the charged-pion elec-
the functionf reflects the evolution from the soft-momentum troproduction amplitude.
limit ¢?=0 to g?=m?.

An explicittest of the chiral Ward identity of E¢2.16) at

O(p® including the loop corrections is not yet available in o ) o
the literature. From the effective-field-theory point of view it is rather

straightforward to understand how a quantity such(rds,
enters different physical amplitudes. Due to spontaneous
Recently, the question whether the axial radius of thesymmetry breaking, the chiral symmetry of QCD is realized
nucleon can be obtained from threshold pion electroproducronlinearly on the effective degrees of freedom
tion data [26-31 has given rise to much controversy [16—19,60,81[see Eqs(3.4) and(3.10)]. In order to collect
[41-43. The discussion was triggered by a paper of Habthe chiral Ward identities in a generating functional one
erzettl[41], where it was argued that PCAC does not provideneeds the most general locally invariant effective Lagrangian
any additional constraints beyond the Goldberger-Treimamvhere the emphasis is on bogieneralityand local invari-
relation. Similar claims were made by Ohta in Rgs7]  ance In the present case we will have a closer look atithie
some time ago. term of Eq.(3.14) involving the quantityf , of Eq. (3.123:

E. The role of chiral symmetry

2. Comparison with Haberzettl
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- =uwd,(v,~a,)-dv,-a,)—i[v,-a,v,—a,u’ calculation of the pion-production transition current/, in
nv JANa4 v Y 12 m wr Vv v. . ..
+ . terms of the effective degrees of freedom. We saw explicitly
~Ud,(v, +a,) ~dy (v, tay) ~ilv, tay, v, tafiu how the axial radius enters charged-pion electroproduction at
=-2(d,8,-d,a,) +2i([v,, a,]-[v, a,]) O(p®. As an alternative we calculated the Green function

MY, involving the electromagnetic current and the pseudo-
scalar density and, using the LSZ reduction formalism, ex-
plicitly verified the connection with the pion electroproduc-
tion transition current determined previously. Again we saw
+—[7 7, [a, a,l]+ o(7), (5.38 that the axial radius enters this particular Green function. As
F a test of our result we verified a chiral Ward identity relating
where we expanded in terms of the pion field. We first the divergence oM, to the matrix element of the pseljdo-
note thatf,, involves field-strength tensors as opposed toScalar density. We then calculated the Green funcfidy;
pure covariant-derivative terms. Moreover, due to thellvolving the electromagnetic and axial-vector currents,
nonlinear realization it contains a string of terms with ant€Stéd the constraints due to gauge invariance, and, finally,
increasing number of pion fields. The lowest-order termexplicitly verified the Adler-Gilman relation foarbitrary

i 1
+ [T, v, — 90,1+ E[? 7, [0 v,]]

=

involving one external axial-vector field values ofg?. Thus, all three possibilities of calculating pion
electroproduction—direct calculation, determination in terms
-2(d,a,-d,a,), of the QCD Green functionM/;, or application of the

Adler-Gilman relation—generate the same result.

gives rise to a C.O”t”b““‘”? to the aX|a.I—veclt<_)r CUIrent Ma- —\ye then made contact with the traditional current-algebra
trix element. It is responsible for the identification of the

b, term with the axial radius. On the other hand, there is°" PCAC techniques by defining a generalizatioff' of the

no term with only one pion, i.e., no contribution to the physical pion electrop_roductlon trangmon current in terms of
7NN vertex of Eq.(4.10. In addition, there is also no the QCD Green functiogMJp; for arbitrary values ofj. We
contribution to the strong form factds, of Eq. (4.6). considered the soft-momentum limit o$1#, g*—0, and
The term showed that the usual “soft-pion” results are recovered if the
pseudoscalar density is used as the pion interpolating field.
We pointed out how the nonlinear realization of chiral sym-
metry leads to an interplay between various vertices in the
most general theory and how approximations such as mini-
mal substitution may fail to be compatible with the strictures
of chiral symmetry and can lead to erroneous conclusions.
Clearly, chiral perturbation theory has become the stan-
rd method to systematically deal witlorrectionsto the
current-algebra results beyond the phenomenological ap-
proximation. The contribution of loop diagrams is expected
VI. SUMMARY AND CONCLUSIONS to separately satisfy the constraints due to the Ward identi-

We have reinvestigated Adler’'s PCAC relation in the pres—ties' In'the case of pion' phot.o- and electroprqduction such
ence of an external electromagnetic fig&2] within the corrections were determined in Ref85-3§ leading to ad-
framework of QCD coupled to external fielf7,18. With a ditional terms beyond the current-algebra results. Obviously,

suitable choice for the interpolating pion field the QCD resultit WO.U|d be nice to h?"e a fully relativistic calculation within
is of the same form as Adler’s pre-QCD version. We thenthe infrared regularizatioj24] or the extended-on-mass-
shell schemd25] including an explicit test in terms of the

discussed the Adler-Gilman relatidi®] as a chiral Ward . :
identity in terms of QCD Green functions and established th dler-Gilman relation.
connection with the pion electroproduction amplitude. In or-
der to explain the consequences of the Adler-Gilman rela-
tion, we made use of a tree-level approximation to the Green The authors would like to thank J. Gegelia and J. H. Koch
functions atO(p®) within relativistic baryon chiral perturba- for useful discussions. This work was supported by the Deut-
tion theory. As a reference point we first performed a directsche Forschungsgemeinsch@fB 443.

|
E[T' T, )

Uy~ avvp,]

contributes to theywNN vertex. Thus, we clearly see how
chiral symmetry relates for this particular teii@ part of
the axial-vector current vertex witta part oj the ymNN
vertex. On the other hand, this relation is not generated b}ﬂla
the gauge-derivative method.
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