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KN and KN elastic scattering in the quark potential model
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The KN andKN low-energy elastic scattering is consistently studied in the framework of the QCD-inspired
quark potential model. The model is composed of tiehannel one-gluon exchange potential, shehannel
one-gluon exchange potential, and the harmonic oscillator confinement potential. By means of the resonating
group method, nonlocal effective interaction potentials for Kieand KN systems are derived and used to
calculate theKN andKN elastic scattering phase shifts. By considering the effect of QCD renormalization, the
contribution of the color octet of the clustgigg) and(gqgg), and the suppression of the spin-orbital coupling,
the numerical results are in fairly good agreement with the experimental data.
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I. INTRODUCTION spectrg2,21]. However, the spin-antisymmetric terms are of

Inspired by the achievement in the study of hadron spect—he same sign and hence would produce large splitting,

e . which is in contradiction with the experimeiitl]. Such
troscopy within the framework of quark potential model rms are therefore dr d out in R Th lculation
[1-3], there have been continuous efforts to apply the quarI.Ee s are theretore dropped out | H.l]' € calcuiatio
potential model and the resonating group mettREGM) [4] in Rgf. [11] showed that if the Spln-OlI’bIt coupling terms.are
to study nucleon-nucleon, nucleon-meson, and meson-mes&Qensidered only, except for the:0,J=3 channel phase shift,
interactions and scattering—20. Among these efforts, the the sign and magnitude of the other channel phase shifts are
study of kaon-nucleofKN) interaction arose a particular in- Well reproduced; when the other terms in thehannel
terest in the past. Due to the high penetrating poweKof OGEP are taken into account together, there appears a seri-
meson, it is expected that the studykoiN interaction would ~ ous problem that thé=1 channel phase shifts all become
provide more information for nuclear structures and propernegative, conflicting with the experimental data. Later, the
ties. Since in theK™N interaction, the one-pion exchange is Swave phase shifts okKN scattering are restudied in Ref.
forbidden, the two-pion exchange is suppresgit1] and [15] by employing the Born order diagrammatic technique.
there is no annihilation of valence quarks to appear, it idn the study, although only the spin-spin coupling term in the
expected that thé-channel one-gluon exchange potentialt-channel OGEP is considered, the calculated result looks
(OGEB plus the harmonic oscillator confinement potentialfine. Subsequently, the Born approximation was applied to
would give a reasonable description of t§éN interaction. investigate theKN scattering more extensively in RgfL7].

With this idea, the authors in RfL0] calculated th&Swave | the investigation, apart from the hyperfine term in the
phase shifts oK*N elastic scattering and found that the the- oGEP and the linear scalar confinement, the spin-orbital
oretical results are in quite good agreement with the experioypling and spin-independent terms in the OGEP are taken
mental data in the low-energy domain. It is noted that in thénto account in the evaluation &-wave andD-wave phase

calculation, the authors only took the Coulomb, spin-spinghifts. Nevertheless, the magnitudes of most of the calculated
and Darwin terms in the-channel OGEP without consider- phase shifts are smaller than the experimental ones. Particu-

ing the spin-orbital coupling and tensor force terms Which|ar|y’ the sign of the theoreticd;; wave phase shift is op-
contribute to the higher partial wave scattering. Subsepsite to the experimental data. Recently, Kiphase shifts
quently, to investigate>-wave phase shifts, the authors in gre recalculated in Ref18] within the constituent quark
Ref. [11] introduced into their model the spin-orbital cou- mogel by numerically solving the Hill-Wheeler equation,
pling terms originating from the-channel one-gluon ex- {ying to give a consistent description for tHéN interaction
change and a scalar exchange term describing the confingng the relevant meson and baryon spectra. In the calcula-
ment interaction. As one knows, there are two kinds of spinyjon pesides the linear confining potential, the authors used
orbit coupling terms in thet-channel OGEP: the spin- only the Coulomb term and the spin-spin interaction term
symmetric term and the spin-antisymmetric  one.myltiplied by a phenomenological coefficient function of
Correspondingly, there also exist two such terms in the conggyssian type. The calculatéd0 channelSwave phase
fining potential generated from the scalar exchange. Thgpift is quite good in comparison with the experiment;
spin-symmetric terms in the two poteptials_ have OPPOSi,tQNhereas for thd=1 channelSwave phase shift, there ap-
signs. Therefore, the effect of the spin-orbital coupling iSpears a big discrepancy between the theoretical result and the
suppressed just as required in the study of meson and bary@xperimental one. The authors also calculated higher angular
momentum phase shifts without including the spin-orbit cou-
pling and tensor force terms in the OGEP. Even though the
*Corresponding author. Email address: junchens@public.cc.jl.cnresults were considered to be quite reasonable, the calcula-
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tion is not complete theoretically because the spin-orbit cou- (4) Nonlocal KN and KN effective interaction potentials
pling and tensor force terms in the OGEP were not taken int@re derived from the underlying interquark potentials by em-
account. _ ] o ploying the RGM and used to evaluate the phase shifts. We
From the previous works mentioned above, it is clearlyqo not use the localized version of the potentials because an
seen that a precise understanding of Ki interaction at jnappropriate localization would damage the Hermiticity of
quark-gluon level still calls for a sophisticated quark poten-,o potentials and induce other unexpected errors.
tial model which can give a consistently good description for (5) The effect of spin-orbital coupling in thechannel
not only the KN interaction, but also th&N interaction  oGEP s necessarily suppressed in the present investigation
which has never been investigated in the past. For this puk, o.4ar to reproduce thB-wave phase shifts. This is con-
pose, it is necessary to incorporate new physical ingredieni§gient with the requirement in the study of hadron spectros-
into the model as suggested in Reft1,18. In this paper, 5y The suppression may be achieved by a proper change
we attempt to investigate théN and KN interactions and  of the coefficient function of the spin-orbit term in the effec-
their low-energy elastic phase shifts in a consistent wayjye intercluster potentials which are derived from the corre-
within the quark potential model. The new features of thissponding term in the OGEP. With the considerations men-
investigation include the following. tioned above, we obtain in this paper a series of theoretical
(1) The potential model is composed of titehannel KN Swave, P-wave, andD-wave phase shifts which are in
OGEP[1] and thes-channel OGER22] as well as a phe- fajrly good agreement with the experimental data. In addi-
nomenological confining potential. Thechannel OGEP is  tjon 4 series of theoretical phase shifts for i elastic
responsible for th&N interaction, while for theKN interac- scattering are predicted.
tion where the annihilation and creation of a quark-antiquark The rest of this paper is arranged as follows: Section Il is
(q9) pair appear, the-channel OGEP is necessary to be con-ysed to describe the quark potential model and show how to
sidered as demonstrated in our previous investigationsmof  yerjye thekN and KN effective interaction potentials. Sec-
and KK interactions[19,2. In these investigations, it Was yjon ||| serves to describe the calculation of tkal andKN
shown that thes-channel OGEP plays a dominant role for the gcattering phase shifts. In the last section, the calculated re-

mm 1=0 channelSwave scattering and is necessary 10 beg i gre presented and discussions are made. There are four
considered for the formation &K molecular states. As one appendixes. In Appendix A, we show the construction of the
knows, the two OGEPs are derlvezd from QCD in the nonrel¢o|or-flavor-spin wave function for the systems under con-
ativistic approximation of ordep?n? and contain spin-  gigeration. In Appendix B, the effectiéN andKN interac-
independent terms(such as the Coulomb velocity-  jon potentials derived in position space are listed. In Appen-
dependent terms, and spin-dependent tegueh as the spin- gy ¢ e briefly describe the derivation of the phase-shift

spin interaction, spin-orbital coupling, and tensor force,mia used in our calculation. Appendix D is used to make
termg. All these terms are taken into account in our calcu-gq e explanations on the QCD renormalization.

lation as should be done in a theoretically consistent treat-
ment.

(2) Inclusion of the QCD renormalization effect. It is well
known that the OGEPs are derived from the tree diagram

approximation of theSmatrix elements or the irreducible According to the quark model, theN (RN) system may
interaction kernels in the Bethe-Salpe(BS) equation. Ob- . teated as two-quark clusters: tHecluster (g5 [the

viously, to refine the potential model, the QCD renormaliza-;_ — _
tion effect is necessary to be incorporated into the modelK cluster(gs)] and theN cluster(qqq), whereg=u or d. The

This can be done by replacing the QCD coupling constan ffective KN interaction potential may be extracted from the
and quark masses in the OGEP with their effective one ollowing Schrédinger equation for the interactings sys-

which were derived in our previous work in the one—Ioop?em by the RGM:

approximation and a mass-dependent momentum space sub- (T+V)¥ =EV, (1)
traction [23]. Our calculation indicates that the inclusion of

the QCD renormalization effect gives an appreciable im-whereE, T,V, and¥ stand for the total energy, the kinetic
provement on the theoretical phase shifts, particularly, for thenergy, the interaction potential, and the wave function of

Il. QUARK POTENTIAL MODEL AND EFFECTIVE KN
AND KN POTENTIALS

P-wave phase shifts. the system, respectively. In the center of mass frame,
(3) The contribution from the color octet of the three- >

quark cluster(qgo) and the quark-antiquark clustéqg) to T=3 b o 2

the KN and KN scattering is considered because when the ~2m

kaon(antikaon and nucleon interact, the color singlet states o

of the clusters(qqg and (qg) are possibly polarized. This where T, represents the center of mass kinetic energy,
consideration has been justified in the recent studies of me- 5

son production and decay phenoméR4,25. In these stud- _ t

ies, the color octet ofjg cluster plays an essential role in V=X (Vi V)V, ©)
explaining the experimental data. According to our calcula-

tion, the consideration of color octet can also improve thehere V}j, Vi, and Vi denote thet-channel OGEP, the
theoretical results. s-channel OGEP, and the confining potentials, respec-

i<j=1
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tively. They are separately written in the following. The
t-channel OGEP represented in the momentum sp26k
is

471'aSCt
(G-K)?

t
ij—

1___—]“_ 2+—
{ e 0 2mmm,

SR L IFSP (‘ @)
S 4mm +4_mi]{P @ ) mim
—K)?2 ,
| |

(q—k) -GGk -,
4mymy

+ <2 + mi) 7 | + (4)
m, %
wherem; = m+m;, as is the QCD fine structure constant,

o, are the spin Pauli matrices fath particle, ancC is the
t-channel color matrix defined as

Aaxa(x xf‘*) f —
22\ 2 or qq(qq)
- 1L for qq,

> qaq

with \2 being the Gell-Mann matrle k andq are the
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Fﬁ:

1. . _ _ 3
; (Eﬂ T+ VIV + VIV + U + U +5Yin>,

(8)

here7, are the isospin Pauli matrices for thib particle,
Y; the hypercharge operatorg; andV; (U; and U;) rep-
resent the rising and lowering operators of Mepin (U
spin).

The confining potential, as was done in Rgfs0,17], is
taken to be the harmonic oscillator one. In the momentum
space it is represented as

2
3

= Citj (ZW)SMij wzvﬁée(q - IZ), (9

where w;; is the reduced mass of the interaction particles
and w force-strength parameter.

Now let us construct the wave function of tKé&\ system
from the wave functions of cluster®s) and (qqg. Since
there are identical particles between the two clusters, the
basis function of the system may be represented as

DrysnfP1s P2: Pa: Pas Ps; p)
1
= Tz(l —P14=P2s=P3)Vryamm(1, 2,3, 4,9
N
XR(P1, P2, P3: Pas Ps; p) (10

where we number the three quarks in tNecluster as

total momentum, the initial state relative momentum, andl,2,3, and the quark and antiquark in tecluster( or the
the final state relative momentum of the two interactingantiquark and quark in th& clustey as 4 and 5,Pj,(j

particles.
The s-channel OGER20,27 is

_ maFiCy o 5(mPEmd)-dm - 2K

" omnt |G T T e
2 [(mP+m?) K @\
"2\ emEm? T2 m2) %
4,APX@(m 3) =5 5(P XK (3, )
(m-m3?- - 1 - o -
—WP-QP-U+W(P-0'ik-0'j—k-o'ip-0'j

-~ -~ 1 ~ o~

+4k-a'k-(rj)+m( iq-0;—q- 0P g
+44-6,G- ) (6)

wherem and m’ denote the quarkantiquark masses be-
fore and after annihilation, respect|ve§2S andFS are the
s-channel color and flavor matrices, deflned by

1 a ax\) 2
= AT %)

and

=1,2,3 symbolize the interchange operators,
Yrmaom(l, 2,3,4,9 and R(Py, Po, Ps, Pa, Ps;p) represent
the color-isospin-spin wave function and the position
space wave function respectively which are constructed
from the color-isospin-spin wave functions and the coor-
dinate space wave functions of nucleon and kaon. For the
KN system, noticing that there is no identical particles
between the two clusters) and (qqg), the basis wave
function of the system may simply be written as

Drysnd P, P2s Py Pas Ps; p)
=Wrmam(l, 2, 3, 4, SR(P1, P2, Pa, Pa, Ps:p)
(11

where Wryazm(l, 2, 3, 4,5 and R(Py, P2, Ps, Pa, Ps;p) are

the color-isospin-spin wave function and the position
space wave function constructed from the corresponding
wave functions of nucleon and antikaon.

Since theKN system is treated as two clusters, when they
interact, each cluster may be in color singlebrlin color
octet 8as indicated in Refs[12,2Q. Thus, the color-spin-
isospin wave function¥ryq;m(1,2,3,4,9 of the Whole

system may be given by the color singlet pdr M(L/2m
X(1,2,3,4,5 or the color octet paerM(l,Z)m(1,2,3,4,5

formed by the color singlets or color octets of the two clus-
ters. In principle, we may test a general color structure of
system under consideration which is given by the following
linear combination:

055204-3



HAI-JUN WANG, HUI YANG, AND JUN-CHEN SU

Urvaam(1 2,3, 4,5= V1001, 2,3,4,5
+lg‘l,TM(1/2)m(1’ 2,3,4,3,
(12
where the coefficientsr and B are required to satisfy
lal*+|p?=1 (13)

The wave funcUonS\If(Tl,\A(l,2 (1,2,3,4,5 and Wi,

x(1,2,3,4,5 are listed in Appendix A. They are con-
structed by antisymmetry of the wave functions of identi-

cal particles in nucleon.

Because we limit our discussion to the interaction in the
low-energy regime, it is appropriate to write the position

space basis function of tieN or KN system in the form

D(Pr, §) Boe(Par P Boe (B3, P) ¢f)_s)
X (p4, ) s (Bs, p), (14

R(P1, P2: Pa, Pa, Ps; p) =

where #52(p,, p) and ¢4 (5}, p) are the lowest-lying har-

monic oscillator states of théN-cluster andK-cluster
given in the momentum space,

& (B p) = (zwa)”exp< b?ﬁ?lixiﬁi-ﬁ), (15)

in which p is the vector representing the separation be-
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function describing the relative motion of the two clusters.
On substituting the above wave function in Eq), ac-
cording to the well-known procedure, one may derive a
resonating group equation satisfied by the functigp).
Then, by the following transformation

()= [ #RUG RV, (19
where
s 1 %)Mlj 31, o 1/68,)b2Kk2+ik-(5-R)
(20

in which b is the harmonic oscillator size parameter, the
resonating group equation will be transformed to the fol-
lowing Schrodinger equation satisfied by the relative mo-
tion of the two clusters:

1 — - I _ .
—Z—VE‘P(RHJd?’R’V(R, R)YW(R) =V (R), (21
y73
whereg, u, and@(li) are, respectively, the energy of rela-
tive motion, the reduced mass, and the Schrddinger-type

wave function for the two clusters and

V(R,R) =R R)+V5R R)+V(RR) (22

tween the centers of mass of the two clusters and param-

eters\, are defined by

3m,

)\—=,31=m,?\+=/32=

M+ My (16)
4m; +my’

here m; denotes the mass af and u quarks, andn, the
mass of strange quark. The wave function in Eif) can

is the nonlocaIKN(RN) effective interaction potential in
which V{(R,R’), V¥R, R’), andV¢(R, R’) are generated by
thet-channel OGEP, the-channel OGEP, and the confin-
ing potential. The potentiaV/(R,R’) in the Schrédinger
equation is connected with the potentiép, p’) appearing
in the resonating group equation by the following formula:

be represented through the cluster coordinates in the form

R(By, Pa» Pa, Par Ps;5) = X (@ Xn(Ke, k)T(Q, 5)Zem(P),
(17)

VR R)= f e’ TR, V(5. 5)T(5 R), (23)

where V(p, p') is described in Appendix B. To compute
the elastic scattering phase shifts, we need to calculate the
transition matrix between initial and final plane wave
functions as follows

where X¢(g) and X_N(IZl 122) are the internal motion wave
functions of theK(K) cluster(gs) [(g9)] and theN cluster

(qqq), with g andkg, k, being the relative momenta in the

clusters(gs) [(@s)] and (qgo) respectively,F(@, p) is the
wave function describing the relative motion between the

two clusters with@ being the relative momentum of the

T,(k K') = J PREREFRVR, R)ENR | (24)

wherek’ andk are theKN(RN) relative momenta for the

two clusters amZCM(ﬁ) the wave function for the center-

of-mass motion of the whole system in whidh is the

total momentum of the system. According to the RGM,
the wave function of the two clusters may be represented

in the form

ETM sm— f dgpq)TM(llz)ms(ﬁlv P2, P3, Pa, Ps; p) (),
(18)

where (I)TM(l/Z)ms(ﬁl’ P, P3, Pa, Ps; p) is the basis function
defined in Eqgs.(10) and (11) and f(p) is the unknown

initial and final states, respectively. Upon substituting Eq.
(20) into Eq.(23), it is easy to find

N 3 - -
Tri(k k') = ( ﬁ g) b7/ (+k?)

fd3pd3pr —ik-p pV(* ‘I)elk' o’ (25)
This expression shows that to calculate the transition ma-

trix, we may dlrectly use the potentisl(p, p’) instead of
the potenUal\/(R R’)
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Ill. CALCULATION OF PHASE SHIFTS AL L

The phase shifts of thKN(KN) low-energy elastic scat-
tering are calculated in the Born approximation. As argued in
Appendix C and demonstrated in the previous literatar
and (15), the Born approximation can reasonably describe
hadron elastic low-energy scattering processes. In this ap-
proximation and in the center-of-mass frame, ttepartial
wave phase shift is expressed by the following formula I
whose derivation will be sketched in Appendix C: R R

, 5 0 200 400 600 800 1000
&’ == 2MKTg'(K), (26) Plab(MeV)

5(deq)

where

E*— (m2 - md)?

M(E) = T :

(27)

in which E is the total energy of th&N(KN) system,my
andmy are the masses of kaon and nuclekalk|=|K’| is

the magnitude of relative momenkaandk’ in the case of
elastic scattering, and@}'(k) with isospin|, total angular
momentumJ, and orbital angular momentuhis the tran- sl
sition amplitude. This amplitude can generally be ex- 0 200 400 600 800 1000

pressed as Plap(MeV)

5(deg)

™= > cM cM FIG. 1. The theoreticsN Swave phase shifts in tHe=0 and 1
' Im’ (1/2)mg ~Im(1/2)mg channels. The solid lines represent the phase shifts by considering
the effects of the color octet, the QCD renormalization, and the
r LNV (L (L L / spin-orbit suppression. The dotted lines denote the result without
X J dQAIALK) Yy (K) Vim(K) Tk, K, M), considering the color octet and the dashed line shows the result
(28) without considering the QCD renormalization. The experimental
phase shift§29,3Q are shown by black squares with error bars.

are the Clebsch-Gordan coefficients,

mm’

IM
where Clm(llz)ms

v, m(k) are the spherical harmonic functions, and potential[2]. In Ref. [21], one of the authors in this paper

and his co-workers proposedagg confining potential which

- - N ) - - 1. was obtained from a general Lorentz structure of the confine-
Th(kik', m, ms)‘<C’I'M’%’ms|Vf ik K, M,,%,mS,C> ment. In the confining potential, there are various terms

(29 among which the spin-orbit coupling term is of a sign oppo-
. site to the corresponding one in the OGEP. In this paper, to

are the matrix elements of the operaX¥gi(k, k') defined in  avoid the complexity of such a confining potential, we alter-
Eqg. (25 between the color-spin-isospin wave functionsnatively take an effective treatment to achieve the spin-
II,M;3,m,;C) and |I, M,;3;m;C) in which I, M, and 3,  orbital suppression. Looking at the expression of the poten-
ms are the isospin and spin quantum numbers of theial Vi(p, p’) shown in Appendix B, one can see that there is
KN(KN) system, respectively, ar@ denotes the color sin- a kind of factorial functions to appear in some terms of the
glet of the whole system. These matrix elements can b@otential\V!(p, p’), which are of the form

easily calculated. The explicit expressions of the quanti-

NN 3
ties T} (k, k' ;mg, m) andT¥;'(k), we think, are unnecessary g(x, p) :J ﬂe_xrhxr.,; (30)
) 4 r .

to be listed in this paper. We only show here numerical
results of the theoretical phase shifts in Figs. 1-6 usingi ) ) o ) )
the conventional partial wave notatidr,,. It is noted n partlcular, this functlop is [elgtted to the sp.m-orb|tacou—
here that the formula in Eq28) is general for evaluating Pling term in the potentiaV'(p, p'). The functiong(x, p)
the transition amplitude, particularly, in the case whereMay appropriately be replaced by an interpolating func-
the spin-orbit coupling and tensor force terms are preserf{on such that
in the nonlocal effective potentials.

We would like here to discuss the problem of suppression
of the effect of spin-orbital coupling. It is a common recog-
nition in the study of hadron spectroscopy that the effect of
the spin-orbital coupling term in thechannel OGEP ought To obtain the above expression, we have used the approxi-
to be suppressed by the corresponding term in the confininhate expression of the following integral:

(1= (xp%14)

g(x, p) = ok (32)
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600 800 1000

Plap(MeV)

20

(d) l .

_15-...I...I...I...I...- -|||||||||||||||||||
0 200 400 600 800 1000 0 200 400 600 800 1000

Plap(MeV) Plab(MeV)

FIG. 2. The theoreticakN P-wave phase shifts in the=0 and 1 channels. The solid lines represent the phase shifts by considering the
effects of the color octet, the QCD renormalization, and the spin-orbit suppression. The dotted and dashed lines denote the results without
considering the color octet and the QCD renormalization, respectively. The experimental phag@$3iffsare shown by black squares
with error bars.

propagators and the bare vertices in the tree diagrams with
the exact ones. In the calculation of this paper, we employ
the effective coupling constant and quark masses given in
Ref. [23] which were derived from QCD in the one-loop
the function on the right hand side of E32) nearly —approximation and the mass-dependent momentum space
approaches the real value of the integral whes not too ~ subtraction. These effective quantities are suitable to any en-
large. However, as shown in Fig. 6, the above valueyof ergy, particularly, to the low energy, unlike the results ob-
leads to worséP-wave phase shifts. In order to get better tained in the minimal subtractiof28], which actually are
P-wave phase shifts, we have to take some larger value gPplicable only in the large momentum limit. The effective
v which just plays the role of suppressing the effect offine structure constant used has the express8hlike this:
spin-orbital coupling.

Finally, let us discuss the inclusion of QCD renormaliza- ag
tion effect. As mentioned in the Introduction, the OGEP is ag(N) = 0 (33
derived from theS matrix or the BS irreducible interaction 1 +—RG()\)
kernel in the tree diagram approximation. Obviously, to im- 2m
prove our calculation, it is natural to consider the correction
arising from QCD renormalization. This can be done by re-whereag is a coupling constant an@(\) is a function of
placing the QCD coupling constant and quark masses in theariable A\ which has different expressions given by the
OGEP with the effective ones which are obtained by solvingimelike momentum subtractior(the subtraction per-
the renormalization group equations satisfied by the renorformed at timelike renormalization poinand the space-
malized coupling constant and quark masses. This procedurke momentum subtractiofthe subtraction carried out at
as proved in Ref[27] and demonstrated in Appendix D, is the spacelike renormalization pojnfor the timelike mo-
equivalent to replacing the free wave functions, the freementum subtraction,

X
f(x):f etdt ~ xe . (32
0

As shown in Fig. 5, when we take the parameter0.3,
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T L L B B B L B I L A B R
(a) ]
10} .
(o]
o L
RS
o
0} - L
A R T R S S R - ) A U R B S B
0O 200 400 600 800 1000 1200 0 200 400 600 800 1000
Plab(MeV) Plap(MeV)
O5F T T
(d) -7
> ]
) ]
KS) N
s} n ]
I 20F 3
o C . . v v 0y,
0 200 400 600 800 1000 0 200 400 600 800 1000
Plab(MeV) Plab(MeV)

FIG. 3. The theoreticadkN D-wave phase shifts in the=0 and 1 channels. The solid lines represent the phase shifts by considering the
effects of the color octet, the QCD renormalization, and the spin-orbit suppression. The dotted and dashed lines denote the results without
considering the color octet and the QCD renormalization, respectively. The experimental phag@$/3iffsare shown by black squares
with error bars.

2 _ 2 2 (33)—(35) are described in Fig. 7. From the figures, we see
G(\)=11Ink- §Nf 2+\3m— A (F + 1) that the effective coupling constants given by the timelike
and spacelike momentum subtractions have different be-

1 e— haviors in the low-energy regime. It is interesting to note
N |n§(?\+ VAT=4) |, (34)  that the effective coupling constant given in the spacelike
momentum subtraction is almost the same as given in the

whereN; is the quark flavor number which will be taken minimal subtraction in the regime. This situation happens
to be 3 in this paper. While, for the spacelike momentumonly in the case of ignoring the mass difference between

—
\’1)\2 —

X

subtraction, different quarks and takin§{;=3. In other cases, the dif-
. ference between the results given by the both subtractions
B 2 |2 2 VA“+4 will be manifest.
G(\)=111nA- §N{P —2- (F - 1) N The effective quark mass is represented as
1 — =1 - o
XIS\ + A+ 4) +\BIn3 (1 + \r'5)1 . (35 MR(\) = mge SV, (36)

i1 which \ is defined ask = a2 with d bei wheremg is the constant quark mass givenkat1 which
In which A is defined as\=yq”/u* with q being a momen- appropriately be chosen to be the constituent quark
tgm yarlable and_L the fixed s_cale parqmeter: The_ EXPreS-mass in the quark potential model, aB@\) is a function
sion in Eq.(33) with the functionG()) given either in EQ. \ypicp aiso has different expressions for the different sub-

.(34) and(35) will |mmed.|atel'y go over to the result 9IVEN tractions. For the timelike momentum subtraction,
in the minimal subtraction in the large momentum limit.

The latter subtraction was performed at the spacelike 0
renormalization point. It would be noted that in writing S\ =ﬂ<1_)‘ 2+(£_ 1+)\)In|1 ~\2 (37)
the above effective coupling constant, the mass difference T A AN '

between different quarks is ignored for simplicity. The
behaviors of the effective coupling constants given in Eqswhile, for the spacelike momentum subtraction,
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-0.04
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FIG. 4. The theoretical predictions for théN S, P-, and
D-wave phase shifts.

SN =S, (N) +iS,(N), (39)
where
al 3 —
S\ = _R{ <_2 + 1)In(1 +2\?) - 4\2} (39)
7| \\
and
n=2l L on-te oG 40
Sz()—7 Fn( )_X —Inyz . (40)

PHYSICAL REVIEW C68, 055204(2003

1.0 ———————

05F

Integral Result

0.0 0.5 1.0
X

FIG. 5. The approximate expressions of the intedal in Eq.
(32) given by different values of the parametgwhich are plotted
with the dotted lines. The real values of the integral is represented
by the solid line.

subtraction are depicted in Fig. 8. The figures show that at
low energy the effective masses given in the both subtrac-
tions are not so much different. For the interaction taking
place in thet-channel, as explained in Appendix D, the
transfer momentum is spacelike, while for the interaction
in the s channel, the transfer momentum is timelike.
Therefore, for tha-channel OGEP, we will use the effec-
tive coupling constant and quark masses given by the

-10 L R B B B
0 200 400 600
Plab(MeV)

1000

0 200 400 600 800
Plab (M eV)

FIG. 6. lllustration of the effect of the spin-orbit suppression on

The _behaViO"S of the effectiye quark mass given by thehe P-wave phase shifts. The solid lines represent the final results
timelike momentum subtraction and the real part of thegiven by taking the parameter=0.45. The dotted lines denote the
effective quark mass given in the spacelike momentumesults given byy=0.30.
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[ butions arising from the color octet, the QCD renormaliza-
2 F tion and the spin-orbit suppression. To exhibit the effects of
: the color octet and the QCD renormalization, in the figures,
1F . o
aw | we also show the results without considering these effects.
. ol Such results are calculated with the same parameters as for
R _ the solid lines and represented by the dotted and dashed
1 I_\\ lines, respectively, in Figs. 1-3. The figures show us that the
AN agreement between the final calculated results and the ex-
2 F ‘\ perimental data is good for the phase shifts ofSlvaves,
[ | \ P,3 wave andD,; wave in the low-energy domain, particu-
102 10* 10° 10 10° 10° 10° larly in the region of the laboratory momentum less than

600 MeV to which the nonrelativistic quark potential model

FIG. 7. The QCD effective coupling constants obtained from thelS considered to be applicable. For the ottiewave and
one-loop renormalization. The solid, dashed, and dotted lines reg?-Wave phase shifts, the agreement is qualitatively reason-
resent the results given by the timelike momentum subtraction, th@ble. In obtaining these results, we used the parameters as
spacelike momentum subtraction, and the minimal subtraction, refollows: the QCD coupling constanf=0.23, the constituent
spectively. quark masses,=my;=350 MeV andm=550 MeV, the size

parameter of harmonic oscillatqb=0.255 fm), the force
spacelike momentum subtraction and in this case, we onl§trength of confinemert,=0.2 GeV), the color combination
adopt the real part of the effective masses in our calculacoefficienta=0.915, the scale parameter of QCD renormal-
tion; while, for the s-channel OGEP, the effective cou- ization (#=0.195 GeV, and the parameter of spin-orbital
pling constant and the quark masses given in the timelik§Uppressiorty=0.45. These parameters are adjusted to give
momentum subtraction will be employed. The variahle @ b_etter fit to theKN elastic scatterlng experimental d_ata,
is usually defined as a ratio of the momentum related tgnainly to theSwave phase shifts because t&l elastic
the process of quark-gluon interactions. In this paper, a§cattering data are available and are rather suffi¢ehsqa.
an effective treatment, we directly define it assk/u ~ In comparison with the previous results given in Refs.
wherek is taken to be the magnitude of the relative mo-[10,11,17,18 our calculation achieves a considerable im-

mentum of the two interacting particlésandN (or K and provement on the theoretical phase shifts for all the partial
N). waves not only in the magnitude, but also in the sign. Espe-

cially, for the P;3-wave phase shift, it now gets a right sign in

our calculation, opposite to the previous result which was
IV. RESULTS AND DISCUSSIONS given a wrong sigri17].

This section is used to present calculated results for the Now let us analyze the effects of the color octet, the QCD

— lasti ! h hi , , renormalization and the suppression of the spin-orbital cou-
KN(KN) elastic scattering phase shifts, discuss adjustments;ing n adjusting the theoretical parameters, we found that
of the theoretical parameters, and analyze the effect of colqy . caiculated results are sensitive to the parametersdb
octet e_md Q.CD renormaliza_ltion as well as the suppression ny small change would cause noticeable influence on cal-
the spin-orbital coupling. First, we focus our attention on theC

X he th ical bh hifts of ulated values. For instance, when we tetincrease, the
.KN scattenng. T ?t goretlca phase si lfts o Itlldascat.ter-. absolute values oB-wave phase shifts decrease rather fast.
ing are depicted in Figs. 1-3. In the figures, the solid line

i . o In particular, when ther tends to unity, i.e., the color octet is
represent the final results obtained by considering the Cont”é\bsent, as denoted by the dotted lines in Fig. 1, we obtain the
Swave phase shifts similar to those given in Rgf7]. In
this case, certainly, we may give a better fit of the calculated
result to the experimental one by adjusting the parameter
and others, but, we failed to simultaneously get a good result
for anotherSwave phase shift, as was demonstrated previ-
ously in Ref.[18]. Only when the color octet is considered, it
is possible to get consistently good results for both the
Swave phase shifts as denoted by the solid lines in Fig. 1.
This suggests that the introduction of the color octet is nec-
essary in our calculation. From Figs. 2 and 3, we also see
that the inclusion of the color octet gives a appreciable effect
10* on theP- and D-wave phase shifts.

In this paper, the two kinds of spin-orbital terms in the

FIG. 8. The QCD effective quark masses obtained from thel-channel OGEP, the spin-symmetric term and the spin-

one-loop renormalization. The solid line represents the result give@ntisymmetric one, are all taken into account. In this case,
by the timelike momentum subtraction. The dashed line shows th&ve still encountered the puzzling problem for tRewave
real part of the effective quark mass given in the spacelike momerphase shifts as was revealed originally in R&f] and men-
tum subtraction. tioned in the Introduction. If the QCD renormalization effect

2

1

10° 10
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is not considered, except for thHe,;- and P;s-wave phase [37]), wherea{eff is the effective scattering length ari§ is
shifts, it seems to be able to reproduce the phase shifts fdhe Ith wave scattering amplitude, and the formulas given in
the other phase shifts by readjusting the parameters involveéq. (C2) and(C15), we haveb‘}J:kRe(alaff). By this relation
However, as exhibited in Fig. 2, for th®; andP,3 waves, it  and the calculate8-wave phase shift, it is found that the real
is impossible to get a satisfactory result of their phase shiftspart of the scattering length is above 0.58, which just lies in
Particularly, for theP,3 wave, its phase shift is always of a the range shown in Ref$33,33. In addition, we note that
wrong sign as the previous result given in REf7]. This  our calculation predicts a weaker attraction for the
prob|em can On|y be resolved by tak|ng the QCD renorma|K_-neUtr0n interaction which is different from the preViOUS
ization effect into account in our calculation. In this way, the 'esult(see Ref[39]). _ _
P,;- and P;swave phase shifts are accessible to the experi- At last, it should be emphasized that the quark potential
mental values. As shown in Fig. 3, the QCD renormalization'tqiqcogel used in this paper wezlsnsstabhshed in the nonrelativis-
effect gives an essential improvement on Bevave phase pproximation of ordep*/nr, therefore, the calculated
shifts as well. Particularly, it renders thy s andD,;swave 'eSults are only valid for th&N andKN elastic scattering in
phase shifts to have the right signs. But, this effect is nofn€ low-energy domain. The model used cannot give a com-

noteworthy for theSwave phase shifts. This explains why plete description for thg inelastic scattering and the prpduc-
the previous investigations could give some rather reasontlo?ti oIfWre\?on?r:lf[:ﬁs hvthk:dr] VxOlrJId rélpriJr?]af _:c_or f(olmfel:r!i%her_
able results for th&wave phase shift. However, as shown in partialwaves € nigher-energy regime. 10 explo

our calculation, in order to get the desirable phase shifts foRMdKN inelastic scattering in the higher energy regime, it is
all partial waves, it is necessary to incorporate the QCDEcessary to apply a relativistic approach or a nonperturba-

renormalization effect into the model used. In addition, tolive theory. Anyway, the investigation based on the constitu-
achieve such results, as mentioned in Sec. Ill, the spin€Nt quark model is meaningful as it is not only helpful to
orbital coupling effect is necessary to be suppressed. ThanderstandKN andKN interactions from the underlying dy-
necessity of the suppression is separately illustrated in Fig. Bamics, but also provides a firm basis of studying five-quark
for the P-wave phase shifts only. This is because the spinbound states.

orbit term in the effective potential gives no contribution to

the Swave scattering and it mainly affects tRewave scat- ACKNOWLEDGMENTS
tering. Figure 6 indicates that when the parametées taken
to be the valuey=0.3, which makes the functiog(x, p) The authors would like to express their thanks to Profes-

reach its real values, thy-wave and theP;; wave phase Sor Dick Arndt for his kind help. He offered us the experi-
shifts are far from the experimental ones, but, whenyhe  mental data which are useful in our calculation. This project
getting larger, the absolute values of tRg wave and the Was supported in part by the National Natural Science Foun-
P,; wave phase shifts become comparable with the experidation of China.

mental results. For the oth&waves, the phase shifts evalu-

ated aty=0.45 are also better than those givenya®.3. APPENDIX A: THE COLOR-FLAVOR-SPIN
Let us turn to theKN scattering. At present, the low- WAVE FUNCTIONS
energy elastic and inelastic experimental data for Kite In general, the color singlet color state of the five-quark

scattering are insufficient31-33. Therefore, the detailed cluster(q®s) or (g°gs) may be built up by the color singlets of
pa}rtial wave analysis fo_r the scattering'is almost gbser)t. Buhe N cluster(qqg) andK cluster(gs) [or theK cluster(gs)]

it is a common conclusion suggested in the previous invesyy the color octets of the two subclusters. Correspondingly,
tigations that the<"p interaction is strongly attractivi84].  for the five-quark cluster, there are two classes of color-
For the KN scattering in thel=1 channel, i.e., for the _ani ; 1)

K -neutron scattering, there are almost no available data anf&avor S(gm wave functions d(_enoted TM(1’2>”‘(_1’ 2,3.4,9
different theoretical models give different predictions 214 Yimuam(1:2,3,4,5 which are color singlets as a
[35,36. In view of this situation, our calculated results for Whole, but associated, respectively, with the color singlets
the KN phase shifts can only be viewed as a theoretical preand the color octets of the two subclusters. In the function
diction. It would be noted that unlike théN interaction for ‘I’(Tl,\)ﬂ(l,z)m(l, 2,3,4,3, the color-flavor-spin (CFS wave

which the exchanged part of the effective potential generatefj;nction lI’EEZ)Ml(IIZ)mS(l’ 2,3y, for the N cluster which is to-

f_rom thet-qhannel OGEP is dominant, .for theN interac- ~tally antisymmetric(of the symmetry denoted by the Young
tion, there is no such exchange potential. Instead, the d're‘&tiagram[l?’] o is constructed from th€-G coupling of
part of thes-channel OGEP plays an essential role and Iead(%L;g]Cx[3]FS S/\'/:here[13]c and 3]s are the Young diagrams

to an attractive interaction as seen from the positiveness : . . : -
. o . ~>> denoting the antisymmetric color singlet and the symmetric
the phase shifts plotted in Fig. 4. In the figure, the predlct|onfI 9 y g z)y

for the P- andD-wave phase shifts are simultaneously given avor-spin states, respectwely. 'In the functi (M(1/2)n1

as well. All the phase shifts in the figure are presented in the<(1,2,3,4,5, the antisymmetric CFS wave function
momentum region less than 200 MeV where any resonanc@%}z),v,l(l/z)ms(l, 2,3y for the N-cluster is given by theC
could not appear. Here we take tKép Swave phase shift -G coupling of[21]c X[21]cs where[21]: and[21]gs repre-
given in this paper as an example to estimate the reasonabgent the color octet state and the flavor-spin state of mixed
ity of our calculation. From the relationr|al|=|f\| (Ref. ~ symmetry, respectively. The explicit expressions of the wave
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functions mentioned above can easily be written out by the
familiar method given in the group theory, as displayed in

the following.
The first class of the CFS wave function in Eq2) for
the whole system is

(1)
TM(lIZ)m(l 2,3,4,5= > C(lIZ)M 1/2)M2‘I'(1/2)M1(1/2)m

M1M;
X (L, 2, 3N Ty 004 D
(A1)

where q’ (1/2M(1/2m :
1

(
CFS wave function for thé\ cluster a”d‘l’u/zm 004, Dk

is the CFS wave function for thK cluster. They are rep-
resented separately as

1 _ 1
WEI;Z)M1(1/2)ms(1! 2: 3)N - 52(1, 2, 3'X21;2)M1(1/2)m5(11 2, 3,
(A2)

where

£(1,2,3= eabcqa(l)qb(z)q%s) (A3)

represents the color singlet wave function of theluster
and

1
1 —
Xfﬁz)Mlu,z)ms(l, 2,3= E[X?llz)""l(l’ 2, 3@?1/2)%(11 2,3

b b
X(l/z)Ml(ly 2, 3(’0(1/2)”‘5(1’ 2,3]
(A4)

is the isospin-spin wave function of tmecluster in which
the isospin  wave functions X1/2)M (1,2,3 and

1/2)|v| (1,2, 3 and the spin wave functmrxsf‘l,z)ms(l 2,3
and go(l,z)ms(l, 2,3 are expressed as follows

(112Mq
C1m(1/2 msc(llz)ml(llz)m2

>

m,mg my my
X Xw2m (DXw2m, (2 Xw2m,(3),

X?l/z)Ml(l, 2,3=

b _ (12M,
Xom,(1,2,3= X COO(l/Z)MlC (1/2m,(1/2)m,

my,Mp,M3

XXam (D Xa2m, (2 X12m(3),

(1,2,3=

(172 m
E C1m( 17;5) mSC(lIZ) my(1/2)m,
m,mg,my,My

X o2m, (D ew2m(2) e1zm(3),

90(1/2

(1, 2,3y, as mentioned before, is the

PHYSICAL REVIEW C 68, 055204(2003

>

My,Mp,M3
X @12m, (D (1/2m,(2) e1/2m,(3)-
(A5)

C(l/ 2)mg

b -
‘P(1/2>ms(1' 2,3= 00(1/2)mSC(1/2)m1(1/2)m2

The CFS wave function of thK cluster is

WEBz)Moo("'a 5k =Co(4, Dx2m(4, Dego(4,5 (A6)

where Cy(4,5), x12m(4,5), and ¢yy(4,5 are the color,
isospin, and spin wave functions, respectively. Since there
are no identical particles in the cluster, these wave func-
tions are of the forms

1
Co(4,5 = =G (A)T'(S) (A7)
\“‘

and

Xwuam(4, 5= Cé/zzmloo)((llz m, (4 Xo00(5),

m m

— 00
¢0o4, 9= 2 CliamazmPwam@ewzm,5)

m m
(A8)

For the second class of the CFS wave function in @§),
it can be represented as

v wam1:2,3,4,5

E EC(1/2 1(1/2)M2\P(1/2 1(1/2)m(112’3N

MM, ¢

X q’(l/Z)MOO(4! 9k, (A9)

where ‘I’E%M (wam1: 2,3y and ‘Ifﬁﬁmoom, 5) are the
second class of CFS wave functions for thecluster and
the K cluster, respectively. Their expressions are shown in
the following.

v (1.2, 3= 2[A(L, 2, 3x28 (1,2,3
(1/2)M (1/2mg\+» < N_\’E e\ £ IX(1/2M,(1/2)mg

= 81,2, 3x( M wam (L 2, 3],
(A10)

where £€(1, 2,3 and £2(1, 2,3 are the color octet wave
functions given, respectively, by the Young-Tabl¢aa1]

and [121], and X(m 1(1/2)ms(1 2,3 and
ngs (W2m, (1,2,3 are the corresponding isospin-spin
wave ]funct|ons Their expressions are

£(1,2,3 =(12ep[q?(Dd (2)d(3) + *(2)d (DI (3)],

(1/2y3)€,[0%(1)d (24 (3) - B?(2)q (V) (3)
- 29734 (VG (2)],

£(1,2,3=
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Xiomywzm (12,3 = (112) VP, ') = Vig(p, p) + Vas(p, p) + Va5(p, p) + Vii(p, ')
X Xm0 2, 3¢(ym (1,2, 3 +Voup, p') +Vadp, p'), (B3)
b b N N o~ N
= Xaom, (L 2, 3eam (1, 2, 3], VEX (B, )%= ViXp, )20+ V5up, p)2°+ Vai(p, p)

+V§§(A A/)ab_l_vtzéé(-‘ Ar)ab_,_vti; = *r ab

(2)B — [
X (1,2,3=-(112) L _ .
(L2M,(1/2m] +V5a(p, 520+ V5a5, )%+ VeX5, )™

X[X(ajLIZ)Ml(lv 2: 3(P:)1/2)ms(11 21 3 +V(133(p, p )ab, (B4)
b
+ X(wam, (L 2, 3¢(1mm (1, 2, 3]. the subscript in each term on the right hand si@REIS)

(A11)  of Egs.(B3) and (B4) marks the two interacting quarks:
_ one in theN cluster and another in th& cluster. The
The second class of the CFS wave function for kfer K) termsVD p,p’) and ]-X(ﬁ, p' )2 are derived by the RGM in

cluster is as follows: such a way,
pl2e (4,5 _=C%4,5 4,5 @04, 5), . dp.  dp
]_/2)M00( ) a( )X(l/Z)M( )(POO( ) V[])( / f — 3<R(p1, p2, p3, p4, p5 p)
(A12) (2 m)* (2m)
and

Ci(4. 5= *(0(5) - 385 (A19 "
B ] ﬂ')ab_f L2 )3(2 )3<R(P1: P2, Pz, Pa, Ps; P)
is the color octet for theK(K) cluster and the other two
functions x(12m(4, 5, @oo(4,5 are the same as in Eq. ><|V,JPab|R(pi, P, D3, Py P 07))s (B6)

A8).
(A8) where the quark potentla\rt was denoted in Eq4) and

the position space wave funct|on was given in Ety).
First we describe the ten terms on the RHS of &f).
By introducing the following functions:

APPENDIX B: THE EFFECTIVE KN AND KN
INTERACTION POTENTIALS
In this appendix, we show the nonlocal effective interac- 5

tion potentials of theKN andKN systems which are derived g(x, p) = ﬂe—xrz+xf.§’

from the interquark potentials and the RGM. Ay
The KN nonlocal effective potentiaV,(p, p’) which is de-
rived from thet-channel OGEP written in Eq4) is divided L5, p)ex=€ 7 p7120%)~(5%180%)~(3B,/4b7) (j - p)
into two parts: the direct paN{?(ﬁ, p') and the exchanged 24P P Jex
part Vi, o"): Pl 7)oy = € P 120l 5+ P340 5 = )2
Vilp, 5) = V(B ) = Ve p, 7). (B1) t i i
fLa(p, pex=€ PP ~(ap/4b%)p*=(3B PP
where 15 ex
VEXp, p7) =V p, p)M+VEX(p, p1)%4+ VEp, p7), £, 7)oy = € 120085 = 51238405~ )2
(BZ) 2 2 2
t (5 57 = @ (0 1269)-(3Bo146%) (5 - ')
here the superscripib=14, 24, or 34 designates which F25(p: P )ex ’ (®7)
pair of quarks interchange. Each part of the potential conthe exchanged terms of the potent(p, p’)** can be
tains several terms as shown in the following: written as
|
s Amalh, 1 5 1 o 1|5 2B, 1 2 .
AP, P M= 2 b2)3/2ft4(P,P Jex) 9 op2' P ‘4_m§(1+0'2'04)_ 4rrEb? a2 b2 2 ~Bap' | ~ (U2, 0,
B2 . 1
+I—(1+7)(p><p) (02— a4+ 6b2(1+72)p G2+ G4 |0 5030 [ (B8)
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4 SCt 1 1 H? 2 )2 .
Vgﬁ(A _")1 _(2%2);‘; t24(P P )ex{ ( b2yP> am 2(1 03 04) — 4m2b2|:4l-)b2 b2<BzT ,329’> —(1/2)55- 04
I 1 I 1 .
+I—(1+7)(p>< p') (03— a4+ W(1+72)p-03p-04]9<ﬁ,p>}, (B9)

AmraC) . T 1 .. (B2~ BY* L, (p+p)?
(27 bSZ)B:»L/A;fEA(Pv p )ex{g<ﬁn p=p ) - m(l +G,0y) — 4m2b2|:_ T (p- )2 =

1 1 1 _
—501 a4ti 2(1+7)( Xp') - (01+04)+ 2(1+72)(p p')-ap=p’)- 04} <2bz,p—p’)}, (B10)

Va5, 5= -9

-~ 477(1’5012 1 =~ 1 =~ = 1 5’2 1 232_1*! = 2 1-‘ =
Viip, p )14_(2 702)3 foulp’ p)ex{ (Zbg, ) 4—m§(l+01'02)—mlb2{@—ﬁ T P B — 50102

B2 P 1 Y - - 1
+ |—(1 +y)(p" X p) - (ap=0p) + W(l +)p’ - 1p’ -oz}g(z—bz, p’)}, (B11)
47aCh R 1 1 2 N1
Ve§(ﬁ, A’)l = (277(;2)31/32ft24( ' P)ex{ (sz.P/> 4m2(1+<71 a3) ~ b2 ( '822 ‘ﬁzP) ‘501'03
il
+'ﬂ2 1+9)(p" X p)- (01— aq) + ! 1+92)p - G1p -G (1 ") B12
I@( (P’ X p) - (01— 73) rcbg( )p' 1" - 03 |0 bg, ) ( )

- 47aC . 1 &
Vap, 0= e p >ex{ o mf 2b2(1 P)p=p } (B13)
VX5, p)Y4= 4maCis (5, ") (0‘2 ﬁ) _ (mi*‘ m Gy 55) _ 1 6 (arp=Bip+ Brp')°
1P (0% )32 150 P x| B\ 22 smems - Amym,)  A(my +my)%h?| asb?
a2,31 A, My mg ay 1 - )y
1b2|(1 NEx e [(1+ml>01 <1+m2)05Hg( pr) 4m1mzb2{6a2 albz pep
ax(ay = B)?~ B _ . . 4 I a
- a0 2_020'1'(75_4_b2(1‘72)ﬁ'0'1/3'0'5 9 x2P) [ (B14)
47aCl a Mm+me &, 6 1 6 (Br— ayp)?
X~ ~1\14 _ 325tAA/ _2a =) _ 1 2 2 5_ o 2 2 - AV
V§5( ) ( b2/a1)3/2f25( {g( b21 P + P ) ( 8m1m2 + 4m1m2> 4(m1 T m2)2b2|: a aibz (P Y )

ay(ag = By), - ( m2> R ( ml) - <a2 - a,> (012 - A,) 1
= - X p') - _< - = < _< -
+ 2a1b2 i(1-y)(p ) |: 1+ my o= |1+ m, 05| (9 b21P+p 9 b21P+p 4m1mzb2
a; ﬁ - = - - a,2' - = m2 m
X{6a2+ b—§<a1— a—i - ZaZBZ)(p—p )2 = a0y - 05 + 2_l)22|(1 +y)(pXp')- {(2 +E) (2 +Fz>a'5}

2
4b2(1 V)p+p')-aAp+p)- 0'5} <b21P+P>} (B1Y5)
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47aCl Mm+me G5 6 1 6 (Br—ay?
X = =\14 _ S35 = 2 - o) 1 2 3'05) R A T Y
VP ) g e 2P )EX{ (bz’p o ) <8m§m§ +4m1m2) a(m, + mg)zbz[al d PP

ay(ay = By) ( mz) - ( ml) - (az - ) 1 az( B
— (1 - >< 7)) . 1+— - 2+— — L [ — - =
+ 2a1b2 I( '}’) (p ) |: + m, 03 + — |05 g b2 ' P + p 4m1m2b2 6&2 b2 ag @

o—p s a2, >0 my mg\ .
‘2a2,32>(P—P')2—a203'05+Z—bzzl(l+7)(p><P')- (2+E)03+(2+E:>05

o2
4b2(1 )p+p) - asp+p)- 05] <b22.ﬁ+ﬁ’)}, (B16)
VEX(5, 51) M= 4maCis f45 5) ( 2 A,>_ mi"'mg_l_ 7405\ 1 6 (ap' =B’ + Bup)?
45\P ( 02 a )3/2 15(P", Pex b2’ 8m§m§ 4mym, a(m, +mz)2b2 o asz
P m\ _ mp) a 1 ax(a;—ax))By .
X _“ _ - I P _ 271 TP
T Aa bz'(l (' Xp)- {<1+m1)04 1+mz)05”9(b2,p> 4m1m2b2[6a2 wp? PP
_aglar= BB, o5 @
ol ale 265152 §'2= ayG, - G b2(1 Y)p' - 64p" s |g b—g,p , (B17)
1

in which a;=m,/(m;+m,) and a,=m,/(m;+m,). The other exchanged potent\l(p, p)>* andV{X(p, p')** can directly be
written out by changing the superscripts 14 to 24 and 34.
The terms of the direct part of the potential in EB3) are shown below,

. Amalh, . 1 _ 1 - . 1 1. . (B-BY°.
V24( ) (2’7Tb2)3/2ft 4( )D{ (2b2! p + p ) + 4_rni(1 - 0-2 . 04) - 4m2b2 6 - 50-2 ' 0-4 - 4b2 p2

(L4 )GX ) - (Gt G~ (5= PP LY (5% 57) - (Gr= 6+ —(1 49
82 YIp X p 2 4 4b2P Y(pXp 2 4 6b2

8b2

- = - -~ = - 1 -~ =
><(p+p)-Uz(p+p)-04]g<ﬁ,p+p)}, (B1y)
where

(5, p)p =€ (384 1)/40%)(5 - 57)2~(3/160%) (5 + ') (B19)

The termsV2,(p, p') andV5,(p, o) in Eq. (B3) have the same form as shown above except for the subscripts 24 being
changed to 14 and 34.
The termV5(p, p') in Eq. (B3) is of the form

o 47aCl o a, m+m &, o 1 6 (Br—ap?® _
V25( /)_—325ft25(p’p/)D{9<b_§’p+p/>_( 12m2+ 2 5)_ {__#(p_p/)z

( b2/al)3/2 8m1m§ 4m1m2 4(m1 + m2)2b2 aq aibz
a;— By m, my ay 1 a B
+ 1+ Xp)[{1+— 1+— —,p+p | —-— +— -—
2ab2 |( 7)(,0 ) |:< ml>0'2 ( mz>05”g< bz-P Y ) 4m1m2b2[6a2 bz(a’l @
2

‘2012,32)(5‘5')2‘012&2'0'5 2b2'(1+7’)(PX p'): {(2‘*%)&2*’(2‘*%)&5}

1

2

-%(1—72)(ﬁ+/3’)-52(/3+/5’)-55] (bz./)’fp )} (B20)
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where where the u;; denotes the reduced mass of interacting
quarksi and j and the color factors are the same as the
ones appearing in thechannel potentials.

(B21) Apart from the potentials listed above, there are additional

o ) terms in theKN andKN potentials occurring in the resonat-

The remaining two terms in E4B3) are of the same form ¢ 416up equation, which arise from the kinetic term and the

as given above, except for the subscripts 25 being repormalization term in the equation due to the effect of quark

placed by 15 and 35. _ . _ rearrangement. They are written as follows
Let us turn to theKN interaction potential. For th&N

foe(p, p')p = € LBz BDIA%N5 = 5')~(Bagl8?) (5 + )2,

interaction, there is only a direct part of the potential coming o a0l Ll (vp—wmp' + p')?
from thet-channel OGEP as represented in E&8), (B18), Tp, p') = (- 3)a Z o0 a°
and (B20) because there are no identical particles between s o
the N cluster (qgg) and theK cluster (Gs). In addition, the +i 3. +i 1 »p
nonlocal effective potential derived from thechannel 2ui| 4b%  160* | 2u,| 4b% 1440*
OGEP plays an essential role in th&N interaction. This 1[3 22
. . a azP ex;~ -
potential can be written as +—| =5 - —= | (TP, p) (B26)
) . . 2us| 2b 4b
VS A, =~ :\/S_ A, =~ +\/S_ A, =~ + 5 A, = ,
(. p") = V12 (p, ") + V35 (p. p') +Vazz (p, p") where
(B22)
. ) SN — (55 126D (11402 (5 - 57)2
here Vi(5, ') denotes the direct term of the potential (6, p) = e PP 2 lAE = 57 (B27)
generated from the interaction of the quark 1 and the an-
tiquark 4, _3my(my +my) _my _2my 828
47TaFaca - 4ml+m2 ’ M1= 21 M2 = 3 ’ ( )
Vid(p,5) = e Fdp, )] 3+ 61 6)
14 (27Tb2)3/2 14
B 1 3_(/32_,31)2(_ )2 M3—ml+m2, v1=3/(1/3 +ay),
4meh? a2z PP
o and
1 _ _ p2+p!2
— —mibz(z + gy 0'4) 3- 4b2 Nex(ﬁ, ﬁ/) —_ 3Ere_(ﬁ'ljr/sz)"[(ﬁiJ’Bg)/sz](13‘ ﬁ!)Z, (829)
_iﬁz—ﬁl(AX ) - (61— G0 + a1 0y hereE, is the relative energy of two clusters.
gmepz ¥ P LTI e The color-spin-isospin matrix elements of the above po-
tentials are easily evaluated by using the CFS wave functions
_ 1 [5-Gif-Ga+ g -Gip - Galf given in Appendix A.
Ami?
(B23) APPENDIX C: DERIVATION OF
h PHASE SHIFT FORMULA
where

In this appendix, we briefly describe the derivation of the
.05 7' = (381121253055 -3+ L1214E2 P47 ) formula used to compute the phase shifts with a comment on
1405 P Jo : the Born approximation. One of the authors of this paper, in

(B24)  his previous work on the relativistic Pauli-Schrodinger equa-

tion for two-body scattering states, which was proved to be

quivalent to the corresponding Bethe-Salpeter equation

38|, proved that in the relativistic case, the outgoing state

wave function of the system under consideration may be
written, in the position space, as

The other two term¥5,%(p, p') andV5(5, p') can be writ-
ten out from the above expression by the substitution o
the subscripts 24 and 34 for 14.

The effectiveKN (KN) potential derived from the inter-
quark harmonic oscillator confining potential and quark in-

terchanges are of simple expressions. They are represented o gkr
as A7) = ) + f( ), (cy

VX5, p') = - 12b§w2{(;§4#24+ C3 g+ Cl2upp+ CBus where ¢%(r) is the wave function for free particles and
f(y) the probability amplitude of the outgoing spherical
1 wave. For a boson system, the wave function in &2f)
+ Clugs+ =—[CPups+ CPugs + Couys is scalar, while, for a fermion system, the wave function is
2a, represented in the Pauli spinor space. In the unequal mass

45 5 1250~ AP 5 — 52 case, the amplitudé(Q),) is related to the transition am-
+ Copas] (€7°F P890 =p0  (B25)  plitude Ty; in such a fashion,

055204-15



HAI-JUN WANG, HUI YANG, AND JUN-CHEN SU

M(E)
f(Q)=-——Tg, (C2
27
where
4 _ (2 _ 2)\2
M(E) = E"~ (m — my) (C3)

with E, mx, andmy being the total energy of the system,
the kaon mass, and nucleon mass, dnpdis the exact
transition amplitude. The amplitude is defined by

Tri =(efIVI), (C4)

where cp? is the plane wave function of final stat&
stands for the interaction Hamiltonian operator, afds
the exact initial wave function which is determined by the
following equation:

=g + GOV, (C5)

in which goio is the plane wave function of initial state and

G° — 0%, (C6)

T E-Ho+ic'©
is the Green’s function wittHy being the free Hamil-
tonian. The solution of Eq(C5) can formally be repre-
sented as

=D [GV]g.
n=0

- )
1-Gv7
In the lowest order Born approximatiom:go? and, cor-
respondingly, the transition amplitude in E@C4) takes
the form as given in Eq(24).

Now we proceed to derive the formula written in E26).
Let us expand the wave functions in E@1) in partial
waves,

lr//i:

wzgwammw, (C8)
f(0) = >, f,P,(cos ), (C9)
|
and
Q== (21 + 1)i'j,(kr)P/(cos§),  (C10)
|

where Pj(cos 6) is the Legendre function of rank With

PHYSICAL REVIEW C68, 055204(2003

_(2a+1)
7 2k

(€9 -1). (C13

On the other hand, the transition amplitude may also be
expanded in partial waves,

Tqi =47, (21 + )T,P(cos b), (C14)
|

where

1 1
T| = _f dXP|(X)Tﬁ. (C15)
8m)_4

Combining Eqs(C2), (C9), (C13), and(C14), it is easy to
derive the following relation:

e?% =1 - 4M(E)KT,. (C16)
When Eq.(C7) is substituted into Eq(C4), we can write

Ti=2> TH, (C17)
n=0
where
n_ 0 0\ N 0
1 = (el (VG)"VI¢y). (C19
On inserting Eq(C17) into Eq. (C15), we have
T=XT, (C19
n=0
where
1 1
T'= —f dxR(x) T (C20
8m)_4

Upon substituting Eq(C19) and the Taylor expansion of
e?9 into Eq. (C16), one may find

©

>

n=1""

n—ll(zia "= —i4M(E)kD, T). (C2))

n=0

From the above equality, it is clearly seen that there exists
a one-to-one correspondence between the terms of the
same order in the both series. When only the first term in

each series is considered, we obtain

& =—2MKT(K), (C22)

which is proportional to the interaction Hamiltonian
This is just the formula for the phase shift which is given

these expansions, noticing the asymptotic behaviors of thi¥ the so-called Born approximation. If the phase shift is

spherical Bessel functiofj(kr) and the functiony(r),

- 1 .(k_|77> c11

i )Hoﬂsm ==/ (C11
C| . |7

l,m(r)rinsm(kr ot 5.). (C12

One may find a result from EqC1) such that

really proportional to the interaction Hamiltonidhas in
the Born approximation, from the corresponding higher-
order terms of the both series in E@21), we can write

(n+1!'Mk_
Y= I
which is proportional to/"*! and means that theth terms

in the both series in EqC21) are approximately equal to
each other as if Eq(C23) is approximately given by tak-

(o)™t~ (C23
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ing the equality in Eq(C22) to the (n+1)th power. If the 1 (M dh 0
relation in Eq.(C23) holds, we see that the formula in Eq. Ur(p) :eX{EJ T?’zO\)qu)(p)],
(C22) appears to be a good approximation. 1
APPENDIX D: NOTES ON QCD RENORMALIZATION D‘;b V(k) - exp{f d—)\yg(k)iDg)ib(k)} ’
To help understanding of the renormalization formulas " A "
written in Sec. Ill, in this appendix, we give some explana-
tions of the QCD renormalization. It is well-known that the au d\ . a
t-channel OGEP in Eq4) and thes-channel OGEP in Eq. I'¥(p, g) = ex f T'}’I‘O\)lgR()\)')’#T , (DY)

(6) are usually derived from the lowest-ord&matrix ele-

ments given by the tree Feynman diagrams representing, rethere u(F?)(p) and U(F?)(p) are of the same forms as the free
spectively, the quark-quarkor quark-antiquark scattering  wave functions except that the quark mass in them becomes
and quark-antiquark annihilation processes in the nonrelativthe effective(running one,iDg)ib(k) formally is the same as

istic approximation of the ordep?/n?. As an example, we the free propagator but the gauge parameter in it is replaced
write the lowest ordeS-matrix element for two-quark scat- by the effective onegg(\) in the bare vertesgg(\)y“T? is

tering as follows: the effective coupling constant, agg,(\), ys(\), and y-(\)
<O :U(O)(pl)ig'y'“Tau(O)(ql)iDE?,),ab(k)U(o)(pz)ig7”Tbu(0)(q2), are the anomalous dimensions defined by
©D L0 =30 VZ200, 500 = A Zgn
572N = d)\nV 2(N), v3(N) = n Zz(\),

d\
whereu©(p) is the free quark wave functio@?(p,) is its

Dirac conjugateghere the spin indices of the spinor func- d

tions are suppressed for simplicjtnyzab(k) is the gluon () =A—In Zr(\) = = (\) - }73(7\). (D6)
free propagator wittk=p;—0g;=0,—p,, andigy*T? is the d\ 2

bare vertex withg being the coupling constant afd the  op jnserting Eq.(D5) into Eq. (D4), we see that the

color matrix. Correspondingly, the exagtmatrix element  gnomalous dimensions are all canceled out with each
given by the one-gluon exchange interaction is repreéginer. As a result. we have

sented as

=10 i a; (0) i (0ab/1\(0)
i =PI (py, AU@IDZKT(PT'(Pz, UG, S = U PuIgRN TR () IDry (10T
(D2) X(p2)igr(N) Y TPUR(a)). (D7)

This Smatrix element is completely the same as the one
shown in Eq.(D1) except that the quark mass, the gauge

quark-gluon vertex, respectively, in which all higher orderparameter, and the coupling constant are replaced by the

perturbative corrections are included. According to therunnizng ones. In the npnrelativistic approximation .Of or-
well-known renormalization relations der p?/n', one may derive a OGEP from E(P7), which

in the Feynman gauge is just as that written in Ef.with
the coupling constant and quark mass being the effective
ones. These effective quantities precisely represent the
renornalization effect and at one-loop level, they are of
the forms as given in Sec. lll. For thechannel OGEP,
where the subscripR marks the renormalized quantities, the discussion is completely the same.

= -1 . Next, we would like to address the renormalization point.
and \Z,, Z3, andZp=2,"Z;2 are the renormalization con- |, the ordinary QCD renormalization performed in the mini-
stants for the quark wave function, the gluon propagator,| gyptraction scheme, which is suitable in the large mo-

and the quark-gluon vertex, respectively, one can get fromyantym fimit because only in this limit the quark mass can

whereu(p), iDaE(k), andI'@*(p, q) denote the full(or say,
dressed quarfé wave function, gluon propagator, and

u(p) = VZaUr(p), T(P) = Z,Ur(p),

D2(K) = ZsDE.,,(K), T*(p, o) = Z T (p,q),  (D3)

Eq. (D2) that be set to be zero, the renormalization point is chosen to be

—= au i~ab spacelike. This choice is suitable to the scattering process

Sii = UR(PUTR (P, ) UR(QDIDR,., () because in this case the transfer momentum, i.e., the variable
XUR(PITE (P2, Gp)UR(Tp) - (D4)  of the gluon propagator in EGD2) is spacelike. This can be

. . o seen from the following derivation:
As shown in Ref[27], the renormalized quantities in the

above can be determined by their renormalization group = (p, - q;)2= 2m? - 2\p;2 + M2\, 2 + m? + 2|py/|qy|cos 6,
equations and their renormalization boundary conditions.

The results given by solving the renormalization group (D8)
equations are in the high energy limit, we can set=0, therefore
1 (™ dn k? =~ - 2|p1|/dy|(1 - cosé) < 0. (D9)
wip=exsl 5 [ 0o | e
2J1 N In the low-energy domain, since
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52 k2= (py + py)? = 2% + 2B, + P\ 5,2 + P = 2|5, ]| B|cos 6.

VB2 + M =m+ > (D10) (D12
Eq. (D8) can be approximated as In the large momentum limit, we can write
k=~-(p,-q)?<0. (D1D) k? =~ 2|p,||p.l(1 - cos6) =0, (D13)
So, for thet-channel OGEP, it is suitable to use the effec-in the low-energy regime, we have
tive coupling constant and quark mass given by the sub- K2 ~ (5, - 5,)2= 0. (D14)

traction performed at spacelike renormalization point;
while, for the annihilation process, the momentum in theTherefore, for thes-=channel OGEP, it is appropriate to use

gluon propagator is timelike because in this c&se;
TP2=01* 0y,

the effective quantities given by the subtraction carried
out at timelike renormalization point.
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