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TheKN andKN low-energy elastic scattering is consistently studied in the framework of the QCD-inspired
quark potential model. The model is composed of thet-channel one-gluon exchange potential, thes-channel
one-gluon exchange potential, and the harmonic oscillator confinement potential. By means of the resonating
group method, nonlocal effective interaction potentials for theKN and KN systems are derived and used to
calculate theKN andKN elastic scattering phase shifts. By considering the effect of QCD renormalization, the
contribution of the color octet of the clusterssqqd andsqqqd, and the suppression of the spin-orbital coupling,
the numerical results are in fairly good agreement with the experimental data.
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I. INTRODUCTION

Inspired by the achievement in the study of hadron spec-
troscopy within the framework of quark potential model
[1–3], there have been continuous efforts to apply the quark
potential model and the resonating group method(RGM) [4]
to study nucleon-nucleon, nucleon-meson, and meson-meson
interactions and scattering[5–20]. Among these efforts, the
study of kaon-nucleonsKNd interaction arose a particular in-
terest in the past. Due to the high penetrating power ofK+

meson, it is expected that the study ofK+N interaction would
provide more information for nuclear structures and proper-
ties. Since in theK+N interaction, the one-pion exchange is
forbidden, the two-pion exchange is suppressed[10,11] and
there is no annihilation of valence quarks to appear, it is
expected that thet-channel one-gluon exchange potential
(OGEP) plus the harmonic oscillator confinement potential
would give a reasonable description of theK+N interaction.
With this idea, the authors in Ref.[10] calculated theS-wave
phase shifts ofK+N elastic scattering and found that the the-
oretical results are in quite good agreement with the experi-
mental data in the low-energy domain. It is noted that in the
calculation, the authors only took the Coulomb, spin-spin,
and Darwin terms in thet-channel OGEP without consider-
ing the spin-orbital coupling and tensor force terms which
contribute to the higher partial wave scattering. Subse-
quently, to investigateP-wave phase shifts, the authors in
Ref. [11] introduced into their model the spin-orbital cou-
pling terms originating from thet-channel one-gluon ex-
change and a scalar exchange term describing the confine-
ment interaction. As one knows, there are two kinds of spin-
orbit coupling terms in thet-channel OGEP: the spin-
symmetric term and the spin-antisymmetric one.
Correspondingly, there also exist two such terms in the con-
fining potential generated from the scalar exchange. The
spin-symmetric terms in the two potentials have opposite
signs. Therefore, the effect of the spin-orbital coupling is
suppressed just as required in the study of meson and baryon

spectra[2,21]. However, the spin-antisymmetric terms are of
the same sign and hence would produce large splitting,
which is in contradiction with the experiment[11]. Such
terms are therefore dropped out in Ref.[11]. The calculation
in Ref. [11] showed that if the spin-orbit coupling terms are
considered only, except for theI=0,J= 1

2 channel phase shift,
the sign and magnitude of the other channel phase shifts are
well reproduced; when the other terms in thet-channel
OGEP are taken into account together, there appears a seri-
ous problem that theI=1 channel phase shifts all become
negative, conflicting with the experimental data. Later, the
S-wave phase shifts ofKN scattering are restudied in Ref.
[15] by employing the Born order diagrammatic technique.
In the study, although only the spin-spin coupling term in the
t-channel OGEP is considered, the calculated result looks
fine. Subsequently, the Born approximation was applied to
investigate theKN scattering more extensively in Ref.[17].
In the investigation, apart from the hyperfine term in the
OGEP and the linear scalar confinement, the spin-orbital
coupling and spin-independent terms in the OGEP are taken
into account in the evaluation ofP-wave andD-wave phase
shifts. Nevertheless, the magnitudes of most of the calculated
phase shifts are smaller than the experimental ones. Particu-
larly, the sign of the theoreticalP13 wave phase shift is op-
posite to the experimental data. Recently, theKN phase shifts
are recalculated in Ref.[18] within the constituent quark
model by numerically solving the Hill-Wheeler equation,
trying to give a consistent description for theKN interaction
and the relevant meson and baryon spectra. In the calcula-
tion, besides the linear confining potential, the authors used
only the Coulomb term and the spin-spin interaction term
multiplied by a phenomenological coefficient function of
Gaussian type. The calculatedI=0 channelS-wave phase
shift is quite good in comparison with the experiment;
whereas for theI=1 channelS-wave phase shift, there ap-
pears a big discrepancy between the theoretical result and the
experimental one. The authors also calculated higher angular
momentum phase shifts without including the spin-orbit cou-
pling and tensor force terms in the OGEP. Even though the
results were considered to be quite reasonable, the calcula-*Corresponding author. Email address: junchens@public.cc.jl.cn
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tion is not complete theoretically because the spin-orbit cou-
pling and tensor force terms in the OGEP were not taken into
account.

From the previous works mentioned above, it is clearly
seen that a precise understanding of theKN interaction at
quark-gluon level still calls for a sophisticated quark poten-
tial model which can give a consistently good description for
not only the KN interaction, but also theKN interaction
which has never been investigated in the past. For this pur-
pose, it is necessary to incorporate new physical ingredients
into the model as suggested in Refs.[11,18]. In this paper,
we attempt to investigate theKN and KN interactions and
their low-energy elastic phase shifts in a consistent way
within the quark potential model. The new features of this
investigation include the following.

(1) The potential model is composed of thet-channel
OGEP[1] and thes-channel OGEP[22] as well as a phe-
nomenological confining potential. Thet-channel OGEP is
responsible for theKN interaction, while for theKN interac-
tion where the annihilation and creation of a quark-antiquark
sqqd pair appear, thes-channel OGEP is necessary to be con-
sidered as demonstrated in our previous investigations ofpp

and KK interactions[19,20]. In these investigations, it was
shown that thes-channel OGEP plays a dominant role for the
pp I=0 channelS-wave scattering and is necessary to be
considered for the formation ofKK molecular states. As one
knows, the two OGEPs are derived from QCD in the nonrel-
ativistic approximation of orderp2/m2 and contain spin-
independent terms(such as the Coulomb), velocity-
dependent terms, and spin-dependent terms(such as the spin-
spin interaction, spin-orbital coupling, and tensor force
terms). All these terms are taken into account in our calcu-
lation as should be done in a theoretically consistent treat-
ment.

(2) Inclusion of the QCD renormalization effect. It is well
known that the OGEPs are derived from the tree diagram
approximation of theS-matrix elements or the irreducible
interaction kernels in the Bethe-Salpeter(BS) equation. Ob-
viously, to refine the potential model, the QCD renormaliza-
tion effect is necessary to be incorporated into the model.
This can be done by replacing the QCD coupling constant
and quark masses in the OGEP with their effective ones
which were derived in our previous work in the one-loop
approximation and a mass-dependent momentum space sub-
traction [23]. Our calculation indicates that the inclusion of
the QCD renormalization effect gives an appreciable im-
provement on the theoretical phase shifts, particularly, for the
P-wave phase shifts.

(3) The contribution from the color octet of the three-
quark clustersqqqd and the quark-antiquark clustersqqd to
the KN and KN scattering is considered because when the
kaon(antikaon) and nucleon interact, the color singlet states
of the clusterssqqqd and sqqd are possibly polarized. This
consideration has been justified in the recent studies of me-
son production and decay phenomena[24,25]. In these stud-
ies, the color octet ofqq cluster plays an essential role in
explaining the experimental data. According to our calcula-
tion, the consideration of color octet can also improve the
theoretical results.

(4) Nonlocal KN and KN effective interaction potentials
are derived from the underlying interquark potentials by em-
ploying the RGM and used to evaluate the phase shifts. We
do not use the localized version of the potentials because an
inappropriate localization would damage the Hermiticity of
the potentials and induce other unexpected errors.

(5) The effect of spin-orbital coupling in thet-channel
OGEP is necessarily suppressed in the present investigation
in order to reproduce theP-wave phase shifts. This is con-
sistent with the requirement in the study of hadron spectros-
copy. The suppression may be achieved by a proper change
of the coefficient function of the spin-orbit term in the effec-
tive intercluster potentials which are derived from the corre-
sponding term in the OGEP. With the considerations men-
tioned above, we obtain in this paper a series of theoretical
KN S-wave,P-wave, andD-wave phase shifts which are in
fairly good agreement with the experimental data. In addi-
tion, a series of theoretical phase shifts for theKN elastic
scattering are predicted.

The rest of this paper is arranged as follows: Section II is
used to describe the quark potential model and show how to
derive theKN and KN effective interaction potentials. Sec-
tion III serves to describe the calculation of theKN andKN
scattering phase shifts. In the last section, the calculated re-
sults are presented and discussions are made. There are four
appendixes. In Appendix A, we show the construction of the
color-flavor-spin wave function for the systems under con-
sideration. In Appendix B, the effectiveKN andKN interac-
tion potentials derived in position space are listed. In Appen-
dix C, we briefly describe the derivation of the phase-shift
formula used in our calculation. Appendix D is used to make
some explanations on the QCD renormalization.

II. QUARK POTENTIAL MODEL AND EFFECTIVE KN
AND KN POTENTIALS

According to the quark model, theKN sKNd system may
be treated as two-quark clusters: theK-cluster sqsd [the
K-clustersqsd] and theN clustersqqqd, whereq=u or d. The
effectiveKN interaction potential may be extracted from the
following Schrödinger equation for the interactingq4s sys-
tem by the RGM:

sT + VdC = EC, s1d

whereE, T, V, andC stand for the total energy, the kinetic
energy, the interaction potential, and the wave function of
the system, respectively. In the center of mass frame,

T = o
i

pY i
2

2mi
− Tc, s2d

whereTc represents the center of mass kinetic energy,

V = o
i, j=1

5

sVij
t + Vij

s + Vij
c d, s3d

here Vij
t , Vij

s , and Vij
c denote thet-channel OGEP, the

s-channel OGEP, and the confining potentials, respec-
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tively. They are separately written in the following. The
t-channel OGEP represented in the momentum spacef26g
is

Vij
t =

4pasCij
t

sqY − kYd2
H1 −

PY 2

mij
2 −

smi
2 + mj

2d
8mi

2mj
2 sqY − kYd2 +

smi − mjd
2mimjmij

PY

· sqY + kYd +
sqY + kYd2

4mimj
+

i

4mij
FPY · sqY − kYd ·S sY i

mi
−

sY j

mj
DG

−
sqY − kYd2

4mimj
siY · s jY +

i

4mij
sqY 3 kYd ·FS2 +

mj

mi
DsiY

+ S2 +
mi

mj
DsY jG +

sqY − kYd · siY sqY − kYd · sY j

4mimj
J s4d

wheremij =mi +mj, as is the QCD fine structure constant,
sY i are the spin Pauli matrices forith particle, andCij

t is the
t-channel color matrix defined as

Cij
t =5

li
a

2

l j
a

2
Sli

a*

2

l j
a*

2
D for qqsqqd

−
li

a

2

l j
a*

2
for qq,

s5d

with la being the Gell-Mann matrix,PY , kY, and qY are the
total momentum, the initial state relative momentum, and
the final state relative momentum of the two interacting
particles.

The s-channel OGEP[20,22] is

Vij
s =

pasFij
sCij

s

2mm8
Fs3 + sY i · sY jd −

5sm2 + m82d − 4m8

8m2m82 PY 2 −
2kY2

m2

−
2qY2

m82 − S sm2 + m82d
8m2m82 +

kY2

m2 +
qY2

m82DsY i · sY j

+
i

4m82sPY 3 qYd · ssY i − sY jd −
i

4m2sPY 3 kYd · ssY i − sY jd

−
sm− m8d2

4m2 PY · sY iPY · sY j +
1

4m2sPY · sY ikY · sY j − kY · sY iPY · sY j

+ 4 kY · sYkY · sY jd +
1

4m82sPY · sY iqY · sY j − qY · sY iPY · sY j

+ 4qY · sY iqY · sY jdG , s6d

wherem and m8 denote the quarksantiquarkd masses be-
fore and after annihilation, respectively,Cij

s andFij
s are the

s-channel color and flavor matrices, defined by

Cij
s =

1

24
sli

a − l j
apd2 s7d

and

Fij
s =

2

3
− S1

2
tY i · tY j + Vi

−Vj
+ + Vi

+Vj
− + Ui

−Uj
+ + Ui

+Uj
− +

3

2
YiYjD ,

s8d

heretY i are the isospin Pauli matrices for theith particle,
Yi the hypercharge operators,Vi

+ and Vi
−sUi

+ and Ui
−d rep-

resent the rising and lowering operators of theV spin sU
spind.

The confining potential, as was done in Refs.[10,11], is
taken to be the harmonic oscillator one. In the momentum
space it is represented as

Vij
c = Cij

t s2pd3mi jv
2¹k

2d3sqY − kYd, s9d

wheremi j is the reduced mass of the interaction particles
and v force-strength parameter.

Now let us construct the wave function of theKN system
from the wave functions of clusterssqsd and sqqqd. Since
there are identical particles between the two clusters, the
basis function of the system may be represented as

FTMsmspY1, pY2, pY3, pY4, pY5;rYd

=
1

Î4
s1 − P14 − P24 − P34dCTMs1/2dms1, 2, 3, 4, 5d

3RspY1, pY2, pY3, pY4, pY5;rYd s10d

where we number the three quarks in theN cluster as
1,2,3, and the quark and antiquark in theK clusters or the
antiquark and quark in theK clusterd as 4 and 5,Pj4s j
=1, 2, 3d symbolize the interchange operators,
CTMs1/2dms1, 2, 3, 4, 5d and RspY1, pY2, pY3, pY4, pY5;rYd represent
the color-isospin-spin wave function and the position
space wave function respectively which are constructed
from the color-isospin-spin wave functions and the coor-
dinate space wave functions of nucleon and kaon. For the
KN system, noticing that there is no identical particles
between the two clusterssqsd and sqqqd, the basis wave
function of the system may simply be written as

FTMsmspY1, pY2, pY3, pY4, pY5;rYd

= CTMs1/2dms1, 2, 3, 4, 5dRspY1, pY2, pY3, pY4, pY5;rYd,

s11d

where CTMs1/2dms1, 2, 3, 4, 5d and RspY1, pY2, pY3, pY4, pY5;rYd are
the color-isospin-spin wave function and the position
space wave function constructed from the corresponding
wave functions of nucleon and antikaon.

Since theKN system is treated as two clusters, when they
interact, each cluster may be in color singlet 1I or in color
octet 8I as indicated in Refs.[12,20]. Thus, the color-spin-
isospin wave functionCTMs1/2dms1, 2, 3, 4, 5d of the whole

system may be given by the color singlet partCTMs1/2dm
s1d

3s1, 2, 3, 4, 5d or the color octet partCTMs1/2dm
s2d s1, 2, 3, 4, 5d

formed by the color singlets or color octets of the two clus-
ters. In principle, we may test a general color structure of
system under consideration which is given by the following
linear combination:
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CTMs1/2dms1, 2, 3, 4, 5d = aCTMs1/2dm
s1d s1, 2, 3, 4, 5d

+ bCTMs1/2dm
s2d s1, 2, 3, 4, 5d,

s12d

where the coefficientsa and b are required to satisfy

uau2 + ubu2 = 1. s13d

The wave functionsCTMs1/2dm
s1d s1, 2, 3, 4, 5d and CTMs1/2dm

s2d

3s1, 2, 3, 4, 5d are listed in Appendix A. They are con-
structed by antisymmetry of the wave functions of identi-
cal particles in nucleon.

Because we limit our discussion to the interaction in the
low-energy regime, it is appropriate to write the position
space basis function of theKN or KN system in the form

RspY1, pY2, pY3, pY4, pY5;rYd = fos
s+dspY1, rYdfos

s+dspY2, rYdfos
s+dspY3, rYdfos

s−d

3spY4, rYdfos
s−dspY5, rYd, s14d

where fos
s+dspY i, rYd and fos

s−dspY j, rYd are the lowest-lying har-
monic oscillator states of theN-cluster and K-cluster
given in the momentum space,

fos
s±dspY i, rYd = s2Îpbid3/2expS−

1

2
bi

2pY i
2 7 il±pY i · rYD , s15d

in which rY is the vector representing the separation be-
tween the centers of mass of the two clusters and param-
etersl± are defined by

l− = b1 =
3m1

4m1 + m2
, l+ = b2 =

m1 + m2

4m1 + m2
, s16d

here m1 denotes the mass ofd and u quarks, andm2 the
mass of strange quark. The wave function in Eq.s14d can
be represented through the cluster coordinates in the form

RspY1, pY2, pY3, pY4, pY5;rYd = XKsqYdXNskY1, kY2dGsQY , rYdZCMsPY d,

s17d

where XKsqYd and XNskY1 kY2d are the internal motion wave
functions of theKsKd clustersqsd fsqsdg and theN cluster

sqqqd, with qY andkY1, kY2 being the relative momenta in the

clusterssqsd fsqsdg and sqqqd respectively,GsQY , rYd is the
wave function describing the relative motion between the

two clusters withQY being the relative momentum of the

two clusters andZCMsPY d the wave function for the center-

of-mass motion of the whole system in whichPY is the
total momentum of the system. According to the RGM,
the wave function of the two clusters may be represented
in the form

CTM sm=E d3rFTMs1/2dms
spY1, pY2, pY3, pY4, pY5;rYdfsrYd,

s18d

where FTMs1/2dms
spY1, pY2, pY3, pY4, pY5;rYd is the basis function

defined in Eqs.s10d and s11d and fsrYd is the unknown

function describing the relative motion of the two clusters.
On substituting the above wave function in Eq.s1d, ac-
cording to the well-known procedure, one may derive a
resonating group equation satisfied by the functionfsrYd.
Then, by the following transformation

fsrYd =E d3RGsrY, RY dCsRY d, s19d

where

GsrY, RY d =
1

Î2s2pd3S3b2

pb2D3/4E d3kes1/6b2db2kY2+ikY·srY−RY d,

s20d

in which b is the harmonic oscillator size parameter, the
resonating group equation will be transformed to the fol-
lowing Schrödinger equation satisfied by the relative mo-
tion of the two clusters:

−
1

2m
¹

RY
2
CsRY d +E d3R8VsRY , R8Y dCsR8Y d = «CsRY d, s21d

where«, m, andCsRY d are, respectively, the energy of rela-
tive motion, the reduced mass, and the Schrödinger-type
wave function for the two clusters and

VsRY , R8Y d = VtsRY , R8Y d + VssRY , R8Y d + VcsRY , R8Y d s22d

is the nonlocalKNsKNd effective interaction potential in

which VtsRY , R8Y d, VssRY , R8Y d, andVcsRY , R8Y d are generated by
the t-channel OGEP, thes-channel OGEP, and the confin-

ing potential. The potentialVsRY , R8Y d in the Schrödinger
equation is connected with the potentialVsrY, r8Y d appearing
in the resonating group equation by the following formula:

VsRY , R8Y d =E d3rd3r8 GsRY , rYdVsrY, r8Y dGsr8Y , R8Y d, s23d

where VsrY, r8Y d is described in Appendix B. To compute
the elastic scattering phase shifts, we need to calculate the
transition matrix between initial and final plane wave
functions as follows

TfiskY, k8Y d =E d3Rd3R8e−ikY·RYVsRY , R8Y deik8Y ·R8Y , s24d

wherek8Y and kY are theKNsKNd relative momenta for the
initial and final states, respectively. Upon substituting Eq.
s20d into Eq. s23d, it is easy to find

TfiskY, k8Y d =
1

2S3b2

pb2D3/2

esb2/6b2dskY2+k’Y 2d

3E d3rd3r8e−ikY·rYVsrY, r8Y deik8Y ·r8Y . s25d

This expression shows that to calculate the transition ma-
trix, we may directly use the potentialVsrY, r8Y d instead of

the potentialVsRY , R8Y d.
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III. CALCULATION OF PHASE SHIFTS

The phase shifts of theKNsKNd low-energy elastic scat-
tering are calculated in the Born approximation. As argued in
Appendix C and demonstrated in the previous literature(14)
and (15), the Born approximation can reasonably describe
hadron elastic low-energy scattering processes. In this ap-
proximation and in the center-of-mass frame, thelth partial
wave phase shift is expressed by the following formula
whose derivation will be sketched in Appendix C:

dl
IJ = − 2MkTfi

IJlskd, s26d

where

MsEd =
E4 − smK

2 − mN
2d2

4E3 , s27d

in which E is the total energy of theKNsKNd system,mK

and mN are the masses of kaon and nucleon,k= ukYu= uk8Y u is

the magnitude of relative momentakY andk8Y in the case of
elastic scattering, andT fi

IJlskd with isospin I, total angular
momentumJ, and orbital angular momentuml is the tran-
sition amplitude. This amplitude can generally be ex-
pressed as

T fi
IJlskd = o

m,m8,m,m8

Clm8s1/2dms

JM Clms1/2dms8
JM

3E dVsk̂ddVsk̂8dYlm8
* sk̂8dYlmsk̂dTfi

I skY, k8Y ;ms, ms8d,

s28d

where Clms1/2dms

JM are the Clebsch-Gordan coefficients,

Yl msk̂d are the spherical harmonic functions, and

T fi
I skY ;k8Y , ms, ms8d = kC;I, M ; 1

2, msuVf iskY, k8Y duI, MI ;
1
2, ms8;Cl

s29d

are the matrix elements of the operatorVfiskY, k8Y d defined in
Eq. s25d between the color-spin-isospin wave functions
uI, MI ;

1
2, ms8;Cl and uI, MI ;

1
2 ;ms;Cl in which I, MI and 1

2,
ms are the isospin and spin quantum numbers of the
KNsKNd system, respectively, andC denotes the color sin-
glet of the whole system. These matrix elements can be
easily calculated. The explicit expressions of the quanti-

tiesTfi
I skY, k8Y ;ms, ms8d andTf i

IJ lskd, we think, are unnecessary
to be listed in this paper. We only show here numerical
results of the theoretical phase shifts in Figs. 1–6 using
the conventional partial wave notationLI2J. It is noted
here that the formula in Eq.s28d is general for evaluating
the transition amplitude, particularly, in the case where
the spin-orbit coupling and tensor force terms are present
in the nonlocal effective potentials.

We would like here to discuss the problem of suppression
of the effect of spin-orbital coupling. It is a common recog-
nition in the study of hadron spectroscopy that the effect of
the spin-orbital coupling term in thet-channel OGEP ought
to be suppressed by the corresponding term in the confining

potential [2]. In Ref. [21], one of the authors in this paper
and his co-workers proposed aqq confining potential which
was obtained from a general Lorentz structure of the confine-
ment. In the confining potential, there are various terms
among which the spin-orbit coupling term is of a sign oppo-
site to the corresponding one in the OGEP. In this paper, to
avoid the complexity of such a confining potential, we alter-
natively take an effective treatment to achieve the spin-
orbital suppression. Looking at the expression of the poten-
tial VtsrY, r8Y d shown in Appendix B, one can see that there is
a kind of factorial functions to appear in some terms of the
potentialVtsrY, r8Y d, which are of the form

gsx, rYd =E d3r

4pr
e−xr2+xrY·rY . s30d

In particular, this function is related to the spin-orbit cou-
pling term in the potentialVtsrY, r8Y d. The functiongsx, rYd
may appropriately be replaced by an interpolating func-
tion such that

gsx, rYd .
es1−gdsxr2/4d

2 x
. s31d

To obtain the above expression, we have used the approxi-
mate expression of the following integral:

0 200 400 600 800 1000

-20

-10

0

δ(
d

e
g

)

Plab(MeV)

S01

(a)

0 200 400 600 800 1000
-45

-30

-15

0

δ(
d

e
g

)

Plab(MeV)

S11

(b)

FIG. 1. The theoreticalKN S-wave phase shifts in theI=0 and 1
channels. The solid lines represent the phase shifts by considering
the effects of the color octet, the QCD renormalization, and the
spin-orbit suppression. The dotted lines denote the result without
considering the color octet and the dashed line shows the result
without considering the QCD renormalization. The experimental
phase shifts[29,30] are shown by black squares with error bars.

KN AND KN ELASTIC SCATTERING IN THE QUARK… PHYSICAL REVIEW C 68, 055204(2003)

055204-5



fsxd =E
0

x

e−t2dt < xe−gx2
. s32d

As shown in Fig. 5, when we take the parameterg=0.3,
the function on the right hand side of Eq.s32d nearly
approaches the real value of the integral whenx is not too
large. However, as shown in Fig. 6, the above value ofg
leads to worseP-wave phase shifts. In order to get better
P-wave phase shifts, we have to take some larger value of
g which just plays the role of suppressing the effect of
spin-orbital coupling.

Finally, let us discuss the inclusion of QCD renormaliza-
tion effect. As mentioned in the Introduction, the OGEP is
derived from theS matrix or the BS irreducible interaction
kernel in the tree diagram approximation. Obviously, to im-
prove our calculation, it is natural to consider the correction
arising from QCD renormalization. This can be done by re-
placing the QCD coupling constant and quark masses in the
OGEP with the effective ones which are obtained by solving
the renormalization group equations satisfied by the renor-
malized coupling constant and quark masses. This procedure,
as proved in Ref.[27] and demonstrated in Appendix D, is
equivalent to replacing the free wave functions, the free

propagators and the bare vertices in the tree diagrams with
the exact ones. In the calculation of this paper, we employ
the effective coupling constant and quark masses given in
Ref. [23] which were derived from QCD in the one-loop
approximation and the mass-dependent momentum space
subtraction. These effective quantities are suitable to any en-
ergy, particularly, to the low energy, unlike the results ob-
tained in the minimal subtraction[28], which actually are
applicable only in the large momentum limit. The effective
fine structure constant used has the expression[23] like this:

aRsld =
aR

0

1 +
aR

0

2p
Gsld

, s33d

whereaR
0 is a coupling constant andGsld is a function of

variable l which has different expressions given by the
timelike momentum subtractionsthe subtraction per-
formed at timelike renormalization pointd and the space-
like momentum subtractionsthe subtraction carried out at
the spacelike renormalization pointd. For the timelike mo-
mentum subtraction,
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FIG. 2. The theoreticalKN P-wave phase shifts in theI=0 and 1 channels. The solid lines represent the phase shifts by considering the
effects of the color octet, the QCD renormalization, and the spin-orbit suppression. The dotted and dashed lines denote the results without
considering the color octet and the QCD renormalization, respectively. The experimental phase shifts[29,30] are shown by black squares
with error bars.
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Gsld = 11 ln l −
2

3
NfF2 +Î3p −

2

l2 + S 2

l2 + 1D
3

Îl2 − 4

l
ln

1

2
sl + Îl2 − 4dG , s34d

whereNf is the quark flavor number which will be taken
to be 3 in this paper. While, for the spacelike momentum
subtraction,

Gsld = 11 ln l −
2

3
NfF 2

l2 − 2 −S 2

l2 − 1DÎl2 + 4

l

3 ln
1

2
sl + Îl2 + 4d + Î5ln

1

2
s1 +Î5dG , s35d

in which l is defined asl=Îq2/m2 with q being a momen-
tum variable andm the fixed scale parameter. The expres-
sion in Eq.s33d with the functionGsld given either in Eq.
s34d and s35d will immediately go over to the result given
in the minimal subtraction in the large momentum limit.
The latter subtraction was performed at the spacelike
renormalization point. It would be noted that in writing
the above effective coupling constant, the mass difference
between different quarks is ignored for simplicity. The
behaviors of the effective coupling constants given in Eqs.

s33d–s35d are described in Fig. 7. From the figures, we see
that the effective coupling constants given by the timelike
and spacelike momentum subtractions have different be-
haviors in the low-energy regime. It is interesting to note
that the effective coupling constant given in the spacelike
momentum subtraction is almost the same as given in the
minimal subtraction in the regime. This situation happens
only in the case of ignoring the mass difference between
different quarks and takingNf =3. In other cases, the dif-
ference between the results given by the both subtractions
will be manifest.

The effective quark mass is represented as

mRsld = mRe−Ssld, s36d

wheremR is the constant quark mass given atl=1 which
will appropriately be chosen to be the constituent quark
mass in the quark potential model, andSsld is a function
which also has different expressions for the different sub-
tractions. For the timelike momentum subtraction,

Ssld =
aR

0

p

1 − l

l
H2 +S 2

l2 −
1 + l

l2 Dlnu1 − l2uJ , s37d

while, for the spacelike momentum subtraction,
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FIG. 3. The theoreticalKN D-wave phase shifts in theI=0 and 1 channels. The solid lines represent the phase shifts by considering the
effects of the color octet, the QCD renormalization, and the spin-orbit suppression. The dotted and dashed lines denote the results without
considering the color octet and the QCD renormalization, respectively. The experimental phase shifts[29,30] are shown by black squares
with error bars.
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Ssld = S1sld + iS2sld, s38d

where

S1sld =
aR

0

p
FS 3

l2 + 1Dlns1 + l2d − 4Î2G s39d

and

S2sld =
2aR

0

p
F 1

l3lns1 + l2d −
1

l
+ 1 − lnÎ2G . s40d

The behaviors of the effective quark mass given by the
timelike momentum subtraction and the real part of the
effective quark mass given in the spacelike momentum

subtraction are depicted in Fig. 8. The figures show that at
low energy the effective masses given in the both subtrac-
tions are not so much different. For the interaction taking
place in thet-channel, as explained in Appendix D, the
transfer momentum is spacelike, while for the interaction
in the s channel, the transfer momentum is timelike.
Therefore, for thet-channel OGEP, we will use the effec-
tive coupling constant and quark masses given by the
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FIG. 4. The theoretical predictions for theKN S-, P-, and
D-wave phase shifts.
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FIG. 6. Illustration of the effect of the spin-orbit suppression on
the P-wave phase shifts. The solid lines represent the final results
given by taking the parameterg=0.45. The dotted lines denote the
results given byg=0.30.
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spacelike momentum subtraction and in this case, we only
adopt the real part of the effective masses in our calcula-
tion; while, for the s-channel OGEP, the effective cou-
pling constant and the quark masses given in the timelike
momentum subtraction will be employed. The variablel
is usually defined as a ratio of the momentum related to
the process of quark-gluon interactions. In this paper, as
an effective treatment, we directly define it asl=k/m
wherek is taken to be the magnitude of the relative mo-
mentum of the two interacting particlesK andN sor K and
Nd.

IV. RESULTS AND DISCUSSIONS

This section is used to present calculated results for the
KNsKNd elastic scattering phase shifts, discuss adjustments
of the theoretical parameters, and analyze the effect of color
octet and QCD renormalization as well as the suppression of
the spin-orbital coupling. First, we focus our attention on the
KN scattering. The theoretical phase shifts of theKN scatter-
ing are depicted in Figs. 1–3. In the figures, the solid lines
represent the final results obtained by considering the contri-

butions arising from the color octet, the QCD renormaliza-
tion and the spin-orbit suppression. To exhibit the effects of
the color octet and the QCD renormalization, in the figures,
we also show the results without considering these effects.
Such results are calculated with the same parameters as for
the solid lines and represented by the dotted and dashed
lines, respectively, in Figs. 1–3. The figures show us that the
agreement between the final calculated results and the ex-
perimental data is good for the phase shifts of allS waves,
P13 wave andD13 wave in the low-energy domain, particu-
larly in the region of the laboratory momentum less than
600 MeV to which the nonrelativistic quark potential model
is considered to be applicable. For the otherP-wave and
D-wave phase shifts, the agreement is qualitatively reason-
able. In obtaining these results, we used the parameters as
follows: the QCD coupling constantas

0=0.23, the constituent
quark massesmu=md=350 MeV andms=550 MeV, the size
parameter of harmonic oscillatorsb=0.255 fmd, the force
strength of confinementsv=0.2 GeVd, the color combination
coefficienta=0.915, the scale parameter of QCD renormal-
ization sm=0.195 GeVd, and the parameter of spin-orbital
suppressionsg=0.45d. These parameters are adjusted to give
a better fit to theKN elastic scattering experimental data,
mainly to theS-wave phase shifts because theKN elastic
scattering data are available and are rather sufficient[29,30].
In comparison with the previous results given in Refs.
[10,11,17,18], our calculation achieves a considerable im-
provement on the theoretical phase shifts for all the partial
waves not only in the magnitude, but also in the sign. Espe-
cially, for theP13-wave phase shift, it now gets a right sign in
our calculation, opposite to the previous result which was
given a wrong sign[17].

Now let us analyze the effects of the color octet, the QCD
renormalization and the suppression of the spin-orbital cou-
pling. In adjusting the theoretical parameters, we found that
the calculated results are sensitive to the parametersa andb.
Any small change would cause noticeable influence on cal-
culated values. For instance, when we leta increase, the
absolute values ofS-wave phase shifts decrease rather fast.
In particular, when thea tends to unity, i.e., the color octet is
absent, as denoted by the dotted lines in Fig. 1, we obtain the
S-wave phase shifts similar to those given in Ref.[17]. In
this case, certainly, we may give a better fit of the calculated
result to the experimental one by adjusting the parameterb
and others, but, we failed to simultaneously get a good result
for anotherS-wave phase shift, as was demonstrated previ-
ously in Ref.[18]. Only when the color octet is considered, it
is possible to get consistently good results for both the
S-wave phase shifts as denoted by the solid lines in Fig. 1.
This suggests that the introduction of the color octet is nec-
essary in our calculation. From Figs. 2 and 3, we also see
that the inclusion of the color octet gives a appreciable effect
on theP- andD-wave phase shifts.

In this paper, the two kinds of spin-orbital terms in the
t-channel OGEP, the spin-symmetric term and the spin-
antisymmetric one, are all taken into account. In this case,
we still encountered the puzzling problem for theP-wave
phase shifts as was revealed originally in Ref.[11] and men-
tioned in the Introduction. If the QCD renormalization effect
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FIG. 7. The QCD effective coupling constants obtained from the
one-loop renormalization. The solid, dashed, and dotted lines rep-
resent the results given by the timelike momentum subtraction, the
spacelike momentum subtraction, and the minimal subtraction, re-
spectively.
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is not considered, except for theP11- and P13-wave phase
shifts, it seems to be able to reproduce the phase shifts for
the other phase shifts by readjusting the parameters involved.
However, as exhibited in Fig. 2, for theP11 andP13 waves, it
is impossible to get a satisfactory result of their phase shifts.
Particularly, for theP13 wave, its phase shift is always of a
wrong sign as the previous result given in Ref.[17]. This
problem can only be resolved by taking the QCD renormal-
ization effect into account in our calculation. In this way, the
P11- and P13-wave phase shifts are accessible to the experi-
mental values. As shown in Fig. 3, the QCD renormalization
effect gives an essential improvement on theD-wave phase
shifts as well. Particularly, it renders theD13- andD15-wave
phase shifts to have the right signs. But, this effect is not
noteworthy for theS-wave phase shifts. This explains why
the previous investigations could give some rather reason-
able results for theS-wave phase shift. However, as shown in
our calculation, in order to get the desirable phase shifts for
all partial waves, it is necessary to incorporate the QCD
renormalization effect into the model used. In addition, to
achieve such results, as mentioned in Sec. III, the spin-
orbital coupling effect is necessary to be suppressed. The
necessity of the suppression is separately illustrated in Fig. 6
for the P-wave phase shifts only. This is because the spin-
orbit term in the effective potential gives no contribution to
the S-wave scattering and it mainly affects theP-wave scat-
tering. Figure 6 indicates that when the parameterg is taken
to be the valueg=0.3, which makes the functiongsx, rYd
reach its real values, theP01-wave and theP11 wave phase
shifts are far from the experimental ones, but, when theg is
getting larger, the absolute values of theP01 wave and the
P11 wave phase shifts become comparable with the experi-
mental results. For the otherP-waves, the phase shifts evalu-
ated atg=0.45 are also better than those given atg=0.3.

Let us turn to theKN scattering. At present, the low-
energy elastic and inelastic experimental data for theKN
scattering are insufficient[31–33]. Therefore, the detailed
partial wave analysis for the scattering is almost absent. But
it is a common conclusion suggested in the previous inves-
tigations that theK−p interaction is strongly attractive[34].
For the KN scattering in theI=1 channel, i.e., for the
K−-neutron scattering, there are almost no available data and
different theoretical models give different predictions
[35,36]. In view of this situation, our calculated results for
the KN phase shifts can only be viewed as a theoretical pre-
diction. It would be noted that unlike theKN interaction for
which the exchanged part of the effective potential generated
from the t-channel OGEP is dominant, for theK-N interac-
tion, there is no such exchange potential. Instead, the direct
part of thes-channel OGEP plays an essential role and leads
to an attractive interaction as seen from the positiveness of
the phase shifts plotted in Fig. 4. In the figure, the prediction
for the P- andD-wave phase shifts are simultaneously given
as well. All the phase shifts in the figure are presented in the
momentum region less than 200 MeV where any resonance
could not appear. Here we take theK−p S-wave phase shift
given in this paper as an example to estimate the reasonabil-
ity of our calculation. From the relationÎpuaef f

l u.uf +
l u (Ref.

[37]), whereaef f
l is the effective scattering length andf +

l is
the lth wave scattering amplitude, and the formulas given in
Eq. (C2) and(C15), we haved l

IJ.kResaef f
l d. By this relation

and the calculatedS-wave phase shift, it is found that the real
part of the scattering length is above 0.58, which just lies in
the range shown in Refs.[33,35]. In addition, we note that
our calculation predicts a weaker attraction for the
K−-neutron interaction which is different from the previous
result (see Ref.[39]).

At last, it should be emphasized that the quark potential
model used in this paper was established in the nonrelativis-
tic approximation of orderp2/m2, therefore, the calculated
results are only valid for theKN andKN elastic scattering in
the low-energy domain. The model used cannot give a com-
plete description for the inelastic scattering and the produc-
tion of resonances which would appear for some higher-
partial waves in the higher-energy regime. To explore theKN
andKN inelastic scattering in the higher energy regime, it is
necessary to apply a relativistic approach or a nonperturba-
tive theory. Anyway, the investigation based on the constitu-
ent quark model is meaningful as it is not only helpful to
understandKN andKN interactions from the underlying dy-
namics, but also provides a firm basis of studying five-quark
bound states.
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APPENDIX A: THE COLOR-FLAVOR-SPIN
WAVE FUNCTIONS

In general, the color singlet color state of the five-quark
clustersq4sd or sq3qsd may be built up by the color singlets of
the N clustersqqqd andK clustersqsd [or theK clustersqsd]
or the color octets of the two subclusters. Correspondingly,
for the five-quark cluster, there are two classes of color-
flavor-spin wave functions denoted byCTMs1/2dm

s1d s1, 2, 3, 4, 5d
and CTMs1/2dm

s2d s1, 2, 3, 4, 5d which are color singlets as a
whole, but associated, respectively, with the color singlets
and the color octets of the two subclusters. In the function
CTMs1/2dm

s1d s1, 2, 3, 4, 5d, the color-flavor-spin (CFS) wave

function Cs1/2dM1s1/2dms

s1d s1, 2, 3dN for the N cluster which is to-
tally antisymmetric(of the symmetry denoted by the Young
diagramf13gCFS) is constructed from theC−G coupling of
f13gC3f3gFS where f13gC and f3gFS are the Young diagrams
denoting the antisymmetric color singlet and the symmetric
flavor-spin states, respectively. In the functionCTMs1/2dm

s2d

3s1, 2, 3, 4, 5d, the antisymmetric CFS wave function
Cs1/2dM1s1/2dms

s1d s1, 2, 3dN for the N-cluster is given by theC
−G coupling off21gC3f21gFS wheref21gC andf21gFS repre-
sent the color octet state and the flavor-spin state of mixed
symmetry, respectively. The explicit expressions of the wave
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functions mentioned above can easily be written out by the
familiar method given in the group theory, as displayed in
the following.

The first class of the CFS wave function in Eq.(12) for
the whole system is

CTMs1/2dm
s1d s1, 2, 3, 4, 5d = o

M1M2

Cs1/2dM1s1/2dM2

TM Cs1/2dM1s1/2dm
s1d

3 s1, 2, 3dNCs1/2dM200
s1d s4, 5dK

sA1d

where Cs1/2dM1s1/2dm
s1d s1, 2, 3dN, as mentioned before, is the

CFS wave function for theN cluster andCs1/2dM200
s1d s4, 5dK

is the CFS wave function for theK cluster. They are rep-
resented separately as

Cs1/2dM1s1/2dms

s1d s1, 2, 3dN = jc
0s1, 2, 3dxs1/2dM1s1/2dms

s1d s1, 2, 3d,

sA2d

where

jc
0s1, 2, 3d =

1

Î6
eabcq

as1dqbs2dqcs3d sA3d

represents the color singlet wave function of theN cluster
and

xs1/2dM1s1/2dms

s1d s1, 2, 3d =
1

Î2
fxs1/2dM1

a s1, 2, 3dws1/2dms

a s1, 2, 3d

+ xs1/2dM1

b s1, 2, 3dws1/2dms

b s1, 2, 3dg

sA4d

is the isospin-spin wave function of theN cluster in which
the isospin wave functions xs1/2dM1

a s1, 2, 3d and
xs1/2dM1

b s1, 2, 3d and the spin wave functionsws1/2dms

a s1, 2, 3d
and ws1/2dms

a s1, 2, 3d are expressed as follows

xs1/2dM1

a s1, 2, 3d = o
m,m3,m1,m2

C1ms1/2dm3

s1/2dM1 Cs1/2dm1s1/2dm2

1m

3 xs1/2dm1
s1dxs1/2dm2

s2dxs1/2dm3
s3d,

xs1/2dM1

b s1, 2, 3d = o
m1,m2,m3

C00s1/2dM1

s1/2dM1 Cs1/2dm1s1/2dm2

00

3xs1/2dm1
s1dxs1/2dm2

s2dxs1/2dm3
s3d,

ws1/2dms

a s1, 2, 3d = o
m,m3,m1,m2

C1ms1/2dm3

s1/2dms Cs1/2dm1s1/2dm2

1m

3 ws1/2dm2
s1dws1/2dm2

s2dws1/2dm3
s3d,

ws1/2dms

b s1, 2, 3d = o
m1,m2,m3

C00s1/2dms

s1/2dms Cs1/2dm1s1/2dm2

00

3ws1/2dm2
s1dws1/2dm2

s2dws1/2dm3
s3d.

sA5d

The CFS wave function of theK cluster is

Cs1/2dM00
s1d s4, 5dK = C0s4, 5dxs1/2dMs4, 5dw00s4, 5d sA6d

where C0s4, 5d, xs1/2dMs4, 5d, and w00s4, 5d are the color,
isospin, and spin wave functions, respectively. Since there
are no identical particles in the cluster, these wave func-
tions are of the forms

C0s4, 5d =
1

Î3
qas4dqas5d sA7d

and

xs1/2dMs4, 5d = o
m1 m2

Cs1/2dm100
s1/d2M xs1/2dm1

s4dx00s5d,

w00s4, 5d = o
m1 m2

Cs1/2dm1s1/2dm2

00 ws1/2dm1
s4dws1/2dm2

s5d

sA8d

For the second class of the CFS wave function in Eq.s12d,
it can be represented as

CTMs1/2dm
s2d s1, 2, 3, 4, 5d

= o
M1M2

o
c

Cs1/2dM1s1/2dM2

TMT Cs1/2dM1s1/2dm
s2dc s1, 2, 3dN

3Cs1/2dM00
s2dc s4, 5dK, sA9d

where Cs1/2dM1s1/2dm
s2dc s1, 2, 3dN and Cs1/2dM00

s2dc s4, 5dK are the
second class of CFS wave functions for theN cluster and
theK cluster, respectively. Their expressions are shown in
the following.

Cs1/2dM1s1/2dms

s2dC s1, 2, 3dN =
1

Î2
fjc

As1, 2, 3dxs1/2dM1s1/2dms

s2dB s1, 2, 3d

− jc
Bs1, 2, 3dxs1/2dM1s1/2dms

s2dA s1, 2, 3dg,

sA10d

where jc
As1, 2, 3d and jc

Bs1, 2, 3d are the color octet wave
functions given, respectively, by the Young-Tableauf211g
and f121g, and xs1/2dM1s1/2dms

s2dA s1, 2, 3d and

xs1/2dM1s1/2dms

s2dB s1, 2, 3d are the corresponding isospin-spin
wave functions. Their expressions are

jc
As1, 2, 3d = s1/2dei jbfqas1dqis2dqjs3d + qas2dqis1dqjs3dg,

jc
Bs1, 2, 3d = s1/2Î3dei jbfqas1dqis2dqjs3d − qas2dqis1dqjs3d

− 2qas3dqis1dqjs2dg,
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xs1/2dM1s1/2dms

s2dA s1, 2, 3d = s1/Î2d

3fxs1/2dM1

a s1, 2, 3dws1/2dms

a s1, 2, 3d

− xs1/2dM1

b s1, 2, 3dws1/2dms

b s1, 2, 3dg,

xs1/2dM1s1/2dms

s2dB s1, 2, 3d = − s1/Î2d

3fxs1/2dM1

a s1, 2, 3dws1/2dms

b s1, 2, 3d

+ xs1/2dM1

b s1, 2, 3dws1/2dms

a s1, 2, 3dg.

sA11d

The second class of the CFS wave function for theKsor Kd
cluster is as follows:

Cs1/2dM00
s2dc s4, 5dp = Ca

bs4, 5dxs1/2dMs4, 5dw00s4, 5d,

sA12d

where

Ca
bs4, 5d = qbs4dqas5d −

1

3
da

bqcs4dqcs5d sA13d

is the color octet for theKsKd cluster and the other two
functions xs1/2dMs4, 5d, w00s4, 5d are the same as in Eq.
sA8d.

APPENDIX B: THE EFFECTIVE KN AND KN
INTERACTION POTENTIALS

In this appendix, we show the nonlocal effective interac-
tion potentials of theKN andKN systems which are derived
from the interquark potentials and the RGM.

TheKN nonlocal effective potentialVtsrY, r8Y d which is de-
rived from thet-channel OGEP written in Eq.(4) is divided
into two parts: the direct partVt

DsrY, r8Y d and the exchanged
part Vt

exsrY, r8Y d:

VtsrY, r8Y d = Vt
DsrY, r8Y d − Vex

t srY, r8Y d, sB1d

where

Vt
exsrY, r8Y d = Vt

exsrY, r8Y d14 + Vt
exsrY, r8Y d24 + Vt

exsrY, r8Y d34,

sB2d

here the superscriptab=14, 24, or 34 designates which
pair of quarks interchange. Each part of the potential con-
tains several terms as shown in the following:

Vt
DsrY, r8Y d = V15

D srY, r8Y d + V25
D srY, r8Y d + V35

D srY, r8Y d + V14
D srY, r8Y d

+ V24
D srY, r8Y d + V34

D srY, r8Y d, sB3d

Vt
exsrY, r8Y dab = V14

exsrY, r8Y dab + V24
exsrY, r8Y dab + V34

exsrY, r8Y dab

+ V12
exsrY, r8Y dab + V23

exsrY, r8Y dab + V15
exsrY, r8Y dab

+ V25
exsrY, r8Y dab + V35

exsrY, r8Y dab + V45
exsrY, r8Y dab

+ V13
exsrY, r8Y dab, sB4d

the subscript in each term on the right hand sidessRHSd
of Eqs. sB3d and sB4d marks the two interacting quarks:
one in theN cluster and another in theK cluster. The
termsVij

DsrY, r8Y d andVij
exsrY, r8Y dab are derived by the RGM in

such a way,

Vij
DsrY, r8Y d =E p

k=1

5
dpYk

s2pd3

dpk8Y

s2pd3kRspY1, pY2, pY3, pY4, pY5;rYd

3uVij
t uRsp18Y , p28Y , p38Y , p48Y , p58Y ;r8Y dl sB5d

and

Vij
exsrY, r8Y dab =E p

i=1

5
dpYk

s2pd3

dpk8Y

s2pd3kRspY1, pY2, pY3, pY4, pY5;rYd

3uVij
t PabuRsp18Y , p28Y , p38Y , p48Y , p58Y ;r8Y dl, sB6d

where the quark potentialVij
t was denoted in Eq.s4d and

the position space wave function was given in Eq.s14d.
First we describe the ten terms on the RHS of Eq.(B4).

By introducing the following functions:

gsx, rYd =E d3r

4pr
e−xr2+xrY·rY ,

f24
t srY, r8Y dex= e−srY·r8Y /2b2d−srY2/8b2d−s3b2/4b2dsrY − r8Y d2,

f25
t srY, r8Y dex= e−srY·r8Y /2b2d−sa2/4b2dsrY + r8Y d2−s3b2/4b2dsrY − r8Y d2,

f15
t srY, r8Y dex= e−srY·r8Y /2b2d−sa2/4b2drY2−s3b2/4b2dsrY − r8Y d2,

f14
t srY, r8Y dex= e−srY·r8Y /2b2d−s1/8b2dsrY − r8Y d2−s3b2/4b2dsrY − r8Y d2,

f23
t srY, r8Y dex= e−srY·r8Y /2b2d−s3b2/4b2dsrY − r8Y d2, sB7d

the exchanged terms of the potentialVt
exsrY, r8Y d14 can be

written as

V24
exsrY, r8Y d14 =

4pasC24
t

s2pb2d3/2 f24
t srY, r8Y dexHgS 1

2b2, r8Y D −
1

4m1
2s1 + sY 2 · sY 4d −

1

4m1
2b2F rY2

4b2 −
1

b2S2b2 − 1

2
rY − b2r8Y D2

− s1/2dsY 2 · sY 4

+ i
b2

8b2s1 + gdsrY 3 r8Y d · ssY 2 − sY 4d+
1

16b2s1 + g2drY · sY 2rY · sY 4GgS 1

2b2, rYDJ , sB8d
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V34
exsrY, rY8d14 =

4pasC34
t

s2pb2d3/2 f24
t srY, r8Y dexHgS 1

2b2, rYD −
1

4m1
2s1 + sY 3 · sY 4d −

1

4m1
2b2F rY2

4b2 −
1

b2S2b2 − 1

2
rY − b2r8Y D2

− s1/2dsY 3 · sY 4

+ i
b2

8b2s1 + gdsrY 3 r8Y d · ssY 3 − sY 4d+
1

16b2s1 + g2drY · sY 3rY · sY 4GgS 1

2b2, rYDJ , sB9d

V14
exsrY, r8Y d14 =

4pasC14
t

s2pb2d3/2 f14
t srY, r8Y dexHgS 1

2b2, rY − r8Y D −
1

4m1
2s1 + sY 1 · sY 4d −

1

4m1
2b2F−

sb2 − b1d2

4b2 srY − r8Y d2 +
srY + r8Y d2

b2 − 9

−
1

2
sY 1 · sY 4 + i

1

b2s1 + gdsrY 3 r8Y d · ssY 1 + sY 4d+
1

16b2s1 + g2dsrY − r8Y d · sY 1srY − r8Y d · sY 4GgS 1

2b2, rY − r8Y DJ , sB10d

V12
exsrY, r8Y d14 =

4pasC12
t

s2pb2d3/2 f24
t sr8Y , rYdexHgS 1

2b2, r8Y D −
1

4m1
2s1 + sY 1 · sY 2d −

1

4m1
2b2F r8Y 2

4b2 −
1

b2S2b2 − 1

2
r8Y − b2r8Y D2

−
1

2
sY 1 · sY 2

+ i
b2

8b2s1 + gdsr8Y 3 rYd · ssY 1 − sY 2d +
1

16b2s1 + g2dr8Y · sY 1r8Y · sY 2GgS 1

2b2, r8Y DJ , sB11d

V13
exsrY, r8Y d14 =

4pasC13
t

s2pb2d3/2 f24
t sr8Y , rYdexHgS 1

2b2, r8Y D −
1

4m1
2s1 + sY 1 · sY 3d −

1

b2S2b2 − 1

2
r8Y − b2rYD2

−
1

2
sY 1 · sY 3

+ i
b2

8b2s1 + gdsr8Y 3 rYd · ssY 1 − sY 3d +
1

16b2s1 + g2dr8Y · sY 1r8Y · sY 3GgS 1

2b2, r8Y D , sB12d

V23
exsrY, r8Y d14 =

4pasC23
t

s2pb2d3/2 f23
t srY, r8Y dexFb2 −

1

4m1
2 −

sY 2 · sY 3

6m1
2 +

b2
2

4m1
2b2s1 + g2dsrY − r8Y d2G , sB13d

V15
exsrY, r8Y d14 =

4pasC15
t

spb2/a1d3/2 f15
t srY, r8Y dexHgSa2

b2 , rYD − Sm1
2 + m2

2

8m1
2m2

2 +
sY 1 · sY 5

4m1m2
D −

1

4sm1 + m2d2b2F 6

a1
−

sa1rY − b1rY + b1r8Y d2

a1
2b2

−
a2b1

4a1b
2is1 − gdsrY 3 r8Y d ·FS1 +

m2

m1
DsY 1 − S1 +

m1

m2
DsY 5GGgSa2

b2 , rYD −
1

4m1m2b
2F6a2 −

a2sa1 − a2db1

a1b
2 rY · r8Y

−
a2sa1 − b1d2 − a2b1b2

a1b
2 rY2 − a2sY 1 · sY 5 −

a2
2

4b2s1 − g2drY · sY 1rY · sY 5GgSa2

b2 , rYDJ , sB14d

V25
exsrY, r8Y d14 =

4pasC25
t

spb2/a1d3/2 f25
t srY, r8Y dexHgSa2

b2 , rY + r8Y D − Sm1
2 + m2

2

8m1
2m2

2 +
sY 2 · sY 5

4m1m2
D −

1

4sm1 + m2d2b2F 6

a1
−

sb2 − a2d2

a1
2b2 srY − r8Y d2

+
a2sa1 − b1d

2a1b
2 is1 − gdsrY 3 r8Y d ·FS1 +

m2

m1
DsY 2 − S1 +

m1

m2
DsY 5GGgSa2

b2 , rY + r8Y DgSa2

b2 , rY + r8Y D −
1

4m1m2b
2

3F6a2 +
a2

b2Sa1 −
b1

a1
− 2a2b2DsrY − r8Y d2 − a2sY 2 · sY 5 +

a2
2

2b2is1 + gdsrY 3 r8Y d ·FS2 +
m2

m1
DsY 2+ S2 +

m1

m2
DsY 5G

−
a2

2

4b2s1 − g2dsrY + r8Y d · sY 2srY + r8Y d · sY 5GgSa2

b2 , rY + r8Y DJ , sB15d
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V35
exsrY, r8Y d14 =

4pasC35
t

spb2/a1d3/2 f25
t srY, r8Y dexHgSa2

b2 , rY + r8Y D − Sm1
2 + m2

2

8m1
2m2

2 +
sY 3 · sY 5

4m1m2
D −

1

4sm1 + m2d2b2F 6

a1
−

sb2 − a2d2

a1
2b2 srY − r8Y d2

+
a2sa1 − b1d

2a1b
2 is1 − gdsrY 3 r8Y d ·FS1 +

m2

m1
DsY 3 − S2 +

m1

m2
DsY 5GGgSa2

b2 , rY + r8Y D −
1

4m1m2b
2F6a2 +

a2

b2Sa1 −
b1

a1

− 2a2b2DsrY − r8Y d2 − a2sY 3 · sY 5 +
a2

2

2b2is1 + gdsrY 3 r8Y d ·FS2 +
m2

m1
DsY 3 + S2 +

m1

m2
DsY 5G

−
a2

2

4b2s1 − g2dsrY + r8Y d · sY 3srY + r8Y d · sY 5GgSa2

b2 , rY + r8Y DJ , sB16d

V45
exsrY, r8Y d14 =

4pasC45
t

spb2/a1d3/2 f15
t sr8Y , rYdexHgSa2

b2 , r8Y D − Sm1
2 + m2

2

8m1
2m2

2 +
sY 4 · sY 5

4m1m2
D −

1

4sm1 + m2d2b2F 6

a1
−

sa1r8Y − b1r8Y + b1rYd2

a1
2b2

−
a2b1

4a1b
2is1 − gdsr8Y 3 rYd ·FS1 +

m2

m1
DsY 4 − S1 +

m1

m2
DsY 5GGgSa2

b2 , r8Y D−
1

4m1m2b
2F6a2 −

a2sa1 − a2db1

a1b
2 rY · r8Y

−
a2sa1 − b1d2 − a2b1b2

a1b
2 r8Y 2 − a2sY 4 · sY 5 −

a2
2

4b2s1 − g2dr8Y · sY 4r8Y · sY 5GgSa2

b2 , r8Y DJ , sB17d

in which a1=m1/sm1+m2d anda2=m2/sm1+m2d. The other exchanged potentialVt
exsrY, r8Y d24 andVt

exsrY, r8Y d34 can directly be
written out by changing the superscripts 14 to 24 and 34.

The terms of the direct part of the potential in Eq.(B3) are shown below,

V24
D srY, r8Y d =

4pasC24
t

s2pb2d3/2 f24
t srY, r8Y dDHgS 1

2b2, rY + r8Y D +
1

4m1
2s1 − sY 2 · sY 4d −

1

4m1
2b2F6 −

1

2
sY 2 · sY 4 −

sb2 − b1d2

4b2 rY2

+ i
3

8b2s1 + gdsrY 3 r8Y d · ssY 2 + sY 4d −
1

4b2srY − r8Y d2 + i
b2 − b1

8b2 s1 − gdsrY 3 r8Y d · ssY 2 − sY 4d +
1

16b2s1 + g2d

3srY + r8Y d · sY 2srY + r8Y d · sY 4GgS 1

2b2, rY + r8Y DJ , sB18d

where

f24
t srY, r8Y dD = e−fs3b2+1d/4b2gsrY − r8Y d2−s3/16b2dsrY + r8Y d2. sB19d

The termsV14
D srY, r8Y d and V34

D srY, r8Y d in Eq. sB3d have the same form as shown above except for the subscripts 24 being
changed to 14 and 34.

The termV25
D srY, r8Y d in Eq. (B3) is of the form

V25
D srY, r8Y d =

4pasC25
t

spb2/a1d3/2 f25
t srY, r8Y dDHgSa2

b2 , rY + r8Y D − Sm1
2 + m2

2

8m1
2m2

2 +
sY 2 · sY 5

4m1m2
D −

1

4sm1 + m2d2b2F 6

a1
−

sb2 − a2d2

a1
2b2 srY − r8Y d2

+
a1 − b1

2ab2 is1 + gdsrY 3 r8Y d ·FS1 +
m2

m1
DsY 2 − S1 +

m1

m2
DsY 5GGgSa2

b2 , rY + r8Y D −
1

4m1m2b
2F6a2 +

a2

b2Sa1 −
b1

a1

− 2a2b2DsrY − r8Y d2− a2sY 2 · sY 5 +
a2

2

2b2is1 + gdsrY 3 r8Y d ·FS2 +
m2

m1
DsY 2 + S2 +

m1

m2
DsY 5G

−
a2

2

4b2s1 − g2dsrY + r8Y d · sY 2srY + r8Y d · sY 5GgSa2

b2 , rY + r8Y DJ , sB20d
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where

f25
t srY, r8Y dD = e−fs3b2−b1

2d/4b2gsrY − r8Y d2−s3a2/8b2dsrY + r8Y d2.

sB21d

The remaining two terms in Eq.sB3d are of the same form
as given above, except for the subscripts 25 being re-
placed by 15 and 35.

Let us turn to theKN interaction potential. For theKN
interaction, there is only a direct part of the potential coming
from thet-channel OGEP as represented in Eqs.(B3), (B18),
and (B20) because there are no identical particles between
the N cluster sqqqd and theK cluster sqsd. In addition, the
nonlocal effective potential derived from thes-channel
OGEP plays an essential role in theKN interaction. This
potential can be written as

VssrY, r8Y d = V14
s_dsrY, r8Y d + V24

s_dsrY, r8Y d + V34
s_dsrY, r8Y d,

sB22d

here V14
s_dsrY, r8Y d denotes the direct term of the potential

generated from the interaction of the quark 1 and the an-
tiquark 4,

V14
s_dsrY, r8Y d =

4pasF14
a C14

a

s2pb2d3/2 f14
s srY, r8Y dHs3 + sY 1 · sY 4d

−
1

4m1
2b2F3 −

sb2 − b1d2

4b2 srY − r8Y d2G
−

1

m1
2b2s2 + sY 1 · sY 4dS3 −

rY2 + r8Y 2

4b2 D
− i

b2 − b1

8m1
2b2 srY 3 r8Y d · ssY 1 − sY 4d +

sY 1 · sY 4

m1
2b2

−
1

4m1
2b2frY · sY 1rY · sY 4 + r8Y · sY 1r8Y · sY 4gJ ,

sB23d

where

f14
s srY, r8Y dD = efs3b2−1/2d/2b1

2grY·r8Y −fs3b2+1/2d/4b1
2gsrY2+r8Y 2d.

sB24d

The other two termsV24
s_dsrY, r8Y d andV34

s_dsrY, r8Y d can be writ-
ten out from the above expression by the substitution of
the subscripts 24 and 34 for 14.

The effectiveKN sKNd potential derived from the inter-
quark harmonic oscillator confining potential and quark in-
terchanges are of simple expressions. They are represented
as

Vc
exsrY, r8Y d = − 12b1

2v2HCs
24m24 + Cs

34m34 + Cs
12m12 + Cs

13m13

+ Cs
14m14 +

1

2a2
fCs

25m25 + Cs
35m35 + Cs

15m15

+ Cs
45m45gJe−srY·r8Y /2b2d−s3b2/4b2dsrY − r8Y d2, sB25d

where themi j denotes the reduced mass of interacting
quarks i and j and the color factors are the same as the
ones appearing in thet-channel potentials.

Apart from the potentials listed above, there are additional
terms in theKN andKN potentials occurring in the resonat-
ing group equation, which arise from the kinetic term and the
normalization term in the equation due to the effect of quark
rearrangement. They are written as follows

TexsrY, r8Y d = s− 3da3/2H 1

2m
F g1

2b2 −
sg1rY − g1r8Y + r8Y d2

4b4 G
+

1

2m1
F 3

4b2 −
r8Y 2

16b4G +
1

2m2
F 1

4b2 −
r8Y 2

144b4G
+

1

2m3
F3a2

2b2 −
a2

2r8Y 2

4b4 GJ fT
exsrY, r8Y d, sB26d

where

fT
exsrY, r8Y d = e−srY·r8Y /2b2d−sg1/4b2dsrY − r8Y d2, sB27d

m =
3m1sm1 + m2d

4m1 + m2
, m1 =

m1

2
, m2 =

2m1

3
, sB28d

m3 =
m1m2

m1 + m2
, g1 = 3/s1/3 +a1d,

and

NexsrY, r8Y d = − 3Ere
−srY·r8Y /2b2d−fsb1

2+b2
2d/2b2gsrY − r8Y d2, sB29d

hereEr is the relative energy of two clusters.
The color-spin-isospin matrix elements of the above po-

tentials are easily evaluated by using the CFS wave functions
given in Appendix A.

APPENDIX C: DERIVATION OF
PHASE SHIFT FORMULA

In this appendix, we briefly describe the derivation of the
formula used to compute the phase shifts with a comment on
the Born approximation. One of the authors of this paper, in
his previous work on the relativistic Pauli-Schrödinger equa-
tion for two-body scattering states, which was proved to be
equivalent to the corresponding Bethe-Salpeter equation
[38], proved that in the relativistic case, the outgoing state
wave function of the system under consideration may be
written, in the position space, as

csrYd = w0srYd + fsVkd
eikr

r
, sC1d

where w0srYd is the wave function for free particles and
fsVkd the probability amplitude of the outgoing spherical
wave. For a boson system, the wave function in Eq.sC1d
is scalar, while, for a fermion system, the wave function is
represented in the Pauli spinor space. In the unequal mass
case, the amplitudefsVkd is related to the transition am-
plitude Tfi in such a fashion,
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fsVkd = −
MsEd
2p

Tfi , sC2d

where

MsEd =
E4 − smK

2 − mN
2d2

4E3 , sC3d

with E, mK, andmN being the total energy of the system,
the kaon mass, and nucleon mass, andTfi is the exact
transition amplitude. The amplitude is defined by

Tfi = kw f
0uVucil, sC4d

where w f
0 is the plane wave function of final state,V

stands for the interaction Hamiltonian operator, andci is
the exact initial wave function which is determined by the
following equation:

ci = wi
0 + G0Vci , sC5d

in which wi
0 is the plane wave function of initial state and

G0 =
1

E − H0 + i«
, « → 0+, sC6d

is the Green’s function withH0 being the free Hamil-
tonian. The solution of Eq.sC5d can formally be repre-
sented as

ci =
1

1 − G0V
wi

0 = o
n=0

`

fG0Vgnwi
0. sC7d

In the lowest order Born approximation,ci =wi
0 and, cor-

respondingly, the transition amplitude in Eq.sC4d takes
the form as given in Eq.s24d.

Now we proceed to derive the formula written in Eq.(26).
Let us expand the wave functions in Eq.(C1) in partial
waves,

ci = o
l

clPlscosud, sC8d

fsud = o
l

f lPlscosud, sC9d

and

wi
0 = eikY·rY = o

l
s2l + 1di l j lskrdPlscosud, sC10d

where Plscosud is the Legendre function of rankl. With
these expansions, noticing the asymptotic behaviors of the
spherical Bessel functionj lskrd and the functionclsrd,

j lskdr→`
→ 1

kr
sinSkr −

lp

2 D , sC11d

clsrdr→`
→ Cl

r
sinSkr −

lp

2
+ dlD . sC12d

One may find a result from Eq.sC1d such that

f l =
s2l + 1d

2ik
se2idl − 1d. sC13d

On the other hand, the transition amplitude may also be
expanded in partial waves,

Tfi = 4po
l

s2l + 1dTlPlscosud, sC14d

where

Tl =
1

8p
E

−1

1

dxPlsxdTfi . sC15d

Combining Eqs.sC2d, sC9d, sC13d, andsC14d, it is easy to
derive the following relation:

e2idl = 1 − 4iM sEdkTl . sC16d

When Eq.sC7d is substituted into Eq.sC4d, we can write

Tfi = o
n=0

`

T fi
n , sC17d

where

T fi
n = kw f

0usVG0dnVufi
0l. sC18d

On inserting Eq.sC17d into Eq. sC15d, we have

Tl = o
n=0

`

Tl
n, sC19d

where

Tl
n =

1

8p
E

−1

1

dxPlsxdTfi
n . sC20d

Upon substituting Eq.sC19d and the Taylor expansion of
e2idl into Eq. sC16d, one may find

o
n=1

`
1

n!
s2iddn = − i4MsEdko

n=0

`

Tl
n. sC21d

From the above equality, it is clearly seen that there exists
a one-to-one correspondence between the terms of the
same order in the both series. When only the first term in
each series is considered, we obtain

dl = − 2MkTlskd, sC22d

which is proportional to the interaction HamiltonianV.
This is just the formula for the phase shift which is given
in the so-called Born approximation. If the phase shift is
really proportional to the interaction HamiltonianV as in
the Born approximation, from the corresponding higher-
order terms of the both series in Eq.sC21d, we can write

sdldn+1 < −
sn + 1d ! Mk

22−1in
Tl

n, sC23d

which is proportional toVn+1 and means that thenth terms
in the both series in Eq.sC21d are approximately equal to
each other as if Eq.sC23d is approximately given by tak-
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ing the equality in Eq.sC22d to the sn+1dth power. If the
relation in Eq.sC23d holds, we see that the formula in Eq.
sC22d appears to be a good approximation.

APPENDIX D: NOTES ON QCD RENORMALIZATION
To help understanding of the renormalization formulas

written in Sec. III, in this appendix, we give some explana-
tions of the QCD renormalization. It is well-known that the
t-channel OGEP in Eq.(4) and thes-channel OGEP in Eq.
(6) are usually derived from the lowest-orderS-matrix ele-
ments given by the tree Feynman diagrams representing, re-
spectively, the quark-quark(or quark-antiquark) scattering
and quark-antiquark annihilation processes in the nonrelativ-
istic approximation of the orderp2/m2. As an example, we
write the lowest orderS-matrix element for two-quark scat-
tering as follows:

Sfi
s0d = us0dsp1diggmTaus0dsq1diDmn

s0dabskdus0dsp2diggnTbus0dsq2d,

sD1d

whereus0dspd is the free quark wave function,us0dsp1d is its
Dirac conjugateshere the spin indices of the spinor func-
tions are suppressed for simplicityd, iDmn

s0dabskd is the gluon
free propagator withk=p1−q1=q2−p2, and iggmTa is the
bare vertex withg being the coupling constant andTa the
color matrix. Correspondingly, the exactS-matrix element
given by the one-gluon exchange interaction is repre-
sented as

Sfi = usp1dGamsp1, q1dusq1diDmn
abskdusp2dGansp2, q2dusq2d,

sD2d

whereuspd, iDmn
abskd, andGamsp, qd denote the fullsor say,

dressedd quark wave function, gluon propagator, and
quark-gluon vertex, respectively, in which all higher order
perturbative corrections are included. According to the
well-known renormalization relations,

uspd = ÎZ2uRspd, uspd = ÎZ2uRspd,

Dmn
abskd = Z3DRmn

ab skd, Gamsp, qd = ZGGR
amsp, qd, sD3d

where the subscriptR marks the renormalized quantities,

and ÎZ2, Z3, andZG=Z2
−1Z3

−1
2 are the renormalization con-

stants for the quark wave function, the gluon propagator,
and the quark-gluon vertex, respectively, one can get from
Eq. sD2d that

Sfi = uRsp1dGR
amsp1, q1duRsq1diDRmn

ab skd

3uRsp2dGR
ansp2, q2duRsq2d. sD4d

As shown in Ref.f27g, the renormalized quantities in the
above can be determined by their renormalization group
equations and their renormalization boundary conditions.
The results given by solving the renormalization group
equations are

uRspd = expF1

2
E

1

l dl

l
g2slduR

s0dspdG ,

uRspd = expF1

2
E

1

l dl

l
g2slduR

s0dspdG ,

DRmn
ab skd = expFE dl

l
g3sldiDRmn

s0dabskdG ,

GR
amsp, qd = expFE dl

l
gGsldigRsldgmTaG , sD5d

whereuR
s0dspd and uR

s0dspd are of the same forms as the free
wave functions except that the quark mass in them becomes
the effective(running) one,iDRmn

s0dabskd formally is the same as
the free propagator but the gauge parameter in it is replaced
by the effective one,gRsld in the bare vertexigRsldgmTa is
the effective coupling constant, and1

2g2sld, g3sld, andgGsld
are the anomalous dimensions defined by

1

2
g2sld = l

d

dl
ln ÎZ2sld, g3sld = l

d

dl
ln Z3sld,

gGsld = l
d

dl
ln ZGsld = − g2sld −

1

2
g3sld. sD6d

On inserting Eq.sD5d into Eq. sD4d, we see that the
anomalous dimensions are all canceled out with each
other. As a result, we have

Sfi = uR
s0dsp1digRsldgmTauR

s0dsq1diDRmn
s0dabskduR

s0d

3sp2digRsldgnTbuR
s0dsq2d. sD7d

This S-matrix element is completely the same as the one
shown in Eq.sD1d except that the quark mass, the gauge
parameter, and the coupling constant are replaced by the
running ones. In the nonrelativistic approximation of or-
der p2/m2, one may derive a OGEP from Eq.sD7d, which
in the Feynman gauge is just as that written in Eq.s4d with
the coupling constant and quark mass being the effective
ones. These effective quantities precisely represent the
renornalization effect and at one-loop level, they are of
the forms as given in Sec. III. For thes-channel OGEP,
the discussion is completely the same.

Next, we would like to address the renormalization point.
In the ordinary QCD renormalization performed in the mini-
mal subtraction scheme, which is suitable in the large mo-
mentum limit because only in this limit the quark mass can
be set to be zero, the renormalization point is chosen to be
spacelike. This choice is suitable to the scattering process
because in this case the transfer momentum, i.e., the variable
of the gluon propagator in Eq.(D2) is spacelike. This can be
seen from the following derivation:

k2 = sp1 − q1d2 = 2m2 − 2Îp1W
2 + m2Îq1W

2 + m2 + 2up1W uuq1W ucosu,

sD8d

in the high energy limit, we can setm<0, therefore

k2 < − 2up1W uuq1W us1 − cosud ø 0. sD9d

In the low-energy domain, since
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ÎpW2 + m2 < m+
pW2

2m2 , sD10d

Eq. sD8d can be approximated as

k2 < − sp1W − q1W d2 ø 0. sD11d

So, for thet-channel OGEP, it is suitable to use the effec-
tive coupling constant and quark mass given by the sub-
traction performed at spacelike renormalization point;
while, for the annihilation process, the momentum in the
gluon propagator is timelike because in this casek=p1
+p2=q1+q2,

k2 = sp1 + p2d2 = 2m2 + 2Îp1W
2 + m2Îp2W

2 + m2 − 2up1W uup2W ucosu.

sD12d

In the large momentum limit, we can write

k2 < 2up1W uup2W us1 − cosud ù 0, sD13d

in the low-energy regime, we have

k2 < sp1W − p2W d2 ù 0. sD14d

Therefore, for thes-channel OGEP, it is appropriate to use
the effective quantities given by the subtraction carried
out at timelike renormalization point.
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