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Two-fermion relativistic bound states in light-front dynamics
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In the light-front dynamics, the wave function equations and their numerical solutions, for two fermion
bound systems, are presented. Analytical expressions for the ladder one-boson exchange interaction kernels
corresponding to scalar, pseudoscalar, pseudovector, and vector exchanges are given. Different couplings are
analyzed separately and each of them is found to exhibit special features. The results are compared with the
nonrelativistic solutions.
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I. INTRODUCTION vides explicitly covariant expressions for the on shell ampli-

The two-fermion system covers a huge number of app”_tudes, a property which is often hidden in the standard for-

. . S | NN.NN 4 subnucl mulation, recovered by fixing the value=(1, 0, 0, -1. This
ca_tlons n atomlc(g €), nuc ear( NN, and subnuclear g is however associated to a particular reference frame
(qg) physics. The interest in using a relativistic description

: and it is not valid in any other one. The formalism and some
for such systems appeared in the early days of quantum meg jis first applications to few-body systems have been re-
chanicg[1,2] and has constantly been pursued since by manyiwed in Ref.[57)].

authors. This interest has recently found a ridan due to Approximate light-front solutions for theNN system
the measurements performed at Jefferson Labord®r$¥l 55 59 were found in a perturbative way over the Bonn
where simple nuclear systems have been—and are beingmoge| wave functiong60] and successfully applied to cal-
probed at momentum transfers much larger than their cons;jate the deuteron electromagnetic form fact@¥ mea-
stituent masses. Consequently, this experimental activity masyred at Jefferson Lab. Latter applications to heavier nuclei
tivated a number of works on relativistic dynamics. [62,63 have shown the pertinence of this approach in de-
Extensive reviews on the past and recent deuteron results ca@ribing high momentum components of tN&l correlation

be found in Refs[7,8]. functions.

Most of the approaches developed for describing relativ- These successes stimulated a series of works aiming at
istic two-body systems are based on the Bethe-Salpeter equaeveloping some formal problems of the theory and obtain-
tion [9-15 or its three-dimensional reductions of #6—21]. ing exact solutions in the ladder approximation for systems

An alternative approach is provided by the light-front dy- of increasing complexity. Results concerning bound states of
namics (LFD). In its standard version, following Dirac’s two scalar particles can be found in Reff§4—67.
classification of relativistic theorigl2], the state vector is We present in this paper the formalism and numerical
defined on ther=z+t surface. Wave functions—defined as solutions describing bound two-fermion systems interacting
the Fock components of the state vector—are the formal obvia the usual—scalar, pseudoscalar, vector, and
jects of this theory and are directly comparable to their nonpseudovector—one-boson excha@BE) kernels. Results
relativistic counterparts. LFD has been developed and useare limited toJ=0 andJ=1 states. Our main interest in this
by many authorg23-51 and represents a promising ap- work is to study the solutions of the LFD equations as they
proach to nonperturbative Hamiltonian quantum field theoryare provided by the OBE ladder sum with special interest in
especially when dealing with composite relativistic systemstheir stability, their comparison to the nonrelativistic limits,
The interested reader can refer to the past advances and mamed the construction of nonzero angular momentum states.
complete references set in the proceedings of the past cofor this purpose, we have studied each coupling separately
ferences devoted to the subj¢bR,53. and the only physical system considered is positronium. The

The explicitly covariant version of light-front dynamics first conclusions concerning the Yukawa model have been
(ECLFD) was initiated by one of the present authors in apublished in Refs[68—77 and a more detailed derivation of
series of paperb4-5§. The state vector is there defined on equations and kernels can be found in R&g]. This series
a space-time hyperplane whose equation is givemixzo,  of works is also being extended to the two-body scattering
wherew is a four-vector determining the orientation of the solutions and to three-particle systems. The case of three
light-front plane and satisfies?=0. This choice is not only a bosons interacting via zero range forces was considered in
mathematicabdelicatesseébut a way to carry everywhere in Ref. [73]. In Refs.[74,75 the ensemble of these results is
the theory thes dependence in an explicit way. It has severalbriefly reviewed.
advantages, all related to the fact thats a four-vector with It is worth mentioning previous works on two-fermion
well defined transformation properties. This approach prosystem using the LFD approach. In Ref6], the relativistic
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Since the Fock-space component is, by construction, the
coefficient of the state vector decomposition in the creation

operators basislzz(lzz)azl(lzl)|0>, the independent variables
are the three-dimensional vectdks, k,) and the particle en-
ergies are expressed through them. Consequently all four-

momenta are on corresponding mass shekﬁs:kgzrnz, p?
=M?, (w7)?>=0 and satisfy the conservation law

FIG. 1. Graphical representation of the light-front two-body ki+tke=p+or. (2)

wave function. Dashed line corresponds to the spugsa® text This equation generalizes tlie, +)-component conserva-
tion in the standard approach; the minus components are

bound-state problem in the light-front Yukawa model wasnot constrained. In the light-front coordinates with
considered. In Ref437,38, positronium and heavy quarko- =(1,0, 0, -1, the only nonzero component ab is w_
nia calculations in discretized light cone quantization were=w,—w,=2. The four-vectowr just incorporates the non-
carried out. The formalism was used in RE27] to build  vanishing difference 2=k,_+k,_—p_. In this sense the
one-boson exchange kernels and to calculate nucleorECLFD wave function is off energy shell. Since the four-
nucleon phase shifts as well as deuteron properties. Recemomentum w7 enters in the wave function on equal
application to meson spectra can be found in Ref6,41.  ground with the particle momenta, we associate it for con-
LFD was also applied in Ref§43,45 to describe theNN  venience with a fictitious particle—called spurion—
system and nuclear matter equation of state. showed in Fig. 1 by a dashed line. We would like to

The paper is organized as follows. In Sec. Il we establiskemphasize however that the Fock-space basis does not
the structure and main properties of the explicitly covarianicontain, for all these, any additional and unphysical de-
light-front wave functions, the two-body equation, and thegree of freedom. By spurion, we mean only the
OBE kernels. In Sec. Il the problem of angular momentumdifference—proportional tow—between nonconserved
Jis discussed and states wilk0, 1 are constructed. In Sec. particle four-momenta in the off-energy-shell states.
IV we derive the coupled equations for the wave function It is convenient to introduce other kinematical variables,
components of states with angular momentim@. The cor-  constructed from the initial four-momenta, as follows:
responding equations fal=1 states are derived in Sec. V. - I
The nonrelativistic limit and perturbative calculations are K=LYP)k, =K P ky-P
discussed in Sec. VI. In Secs. VII-IX we present the results 1R p2| 10 ’
of numerical calculations. In order to disentangle their dif-

/

B
VP + P

ferent behaviors, each coupling is separately analyzed. Sec- L YP)o
tion X contains a summary of the results and the concluding n= m 3)
remarks.
whereP=p+wrandL™(P) results from the Lorentz boost
Il. WAVE FUNCTION, EQUATION, AND KERNELS into the reference system whefe=0. In these variables
] ) wave function(l) is represented as
The wave functions we deal with are Fock components of .
the state vector defined on the light-front plane=0. For a Dy, = Py (K, ). (4)
two-fermion system—shown graphically in Fig. 1—it reads |,y oiations and Lorentz transformations of four-
(DUZ"l:q)Uza'l(kl' Kz, p, @7), @ momentaky, k,, p, wt, variables(k, n) are only rotated, so

where g; are the constituent angular momenta. The genthe three-dimensional parametrizatieh is also explicitly
eral form of the wave function is obtained by constructingcovariant. In practice, instead of the formal transforma-
all possible spin structures compatible with the quantuntions (3), it is enough to consider the wave function and
numbers of the state. The four-vectornters in the wave the equation in the center-of-mags.m) system where
function on the same ground as the particles four-P=k,+k,=0 and sek,=k, k,=—k, G=f|@|. Because of co-
momenta, giving rise to a number of structures larger thawariance, the result is the same as after transformd8pn

in nonrelativistic dynamics. Each of them is mastered by aSince & determines only the orientation of the light-front
scalar function, denoted bly throughout the paper, which plane, the moduluks| disappears from the wave functions
can be interpreted as a wave function component on thand amplitudes. Note that in the c.m. system, the momen-
spin space. The numbé of such independent amplitudes tum j is not zero:p=-aor.

simply follows from the dimension of the spin matrix form-  The light-front graph technique is a covariant generaliza-
ing the two-fermion wave function with total momentuin  tion of the old fashioned perturbation theory. The latter was
ie., N:%(ZJ+ 1)(204,+1)(20,+1) with a factor% to take into  developed by KadyshevsKy7] and adapted to the explicitly
account the parity conservation. In the casp:(rz:%, it  covariant version in Ref§54,57.

gives N=2 amplitudes forJ=0 states andN=6 for J=1. The equation for the wave function is shown graphically
These wave function components will be specified in thein Fig. 2. It is the projection on the two-body sector of the
subsequent sections. general mass equatid??$=M>2¢. Its analytical form is ob-
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KUZU (kl, k21 CUT kl’ k2, wT )

- W[Uoz(kz)ozugé(ké)]

X[A7(ky) Oui(ky)]
FIG. 2. Equation for the two-body wave function. X\ — ’ (@ '2(k1‘ ky) -
2= (ki —kp)2+ 27 - (K — k)
tained by applying the rules of the graph techniques to the A w - (ky—k7))
diagrams in Fig. 2. In variablg®) this equation reads 12— (kg — kD)2 + 270 - (kg — k) | (10
[4(2 + m?) - M2]D,, (K, )

m? ]
=- ﬁ’ E Kazgl(k k, )

0'20'
0102

WhereK"g"l(k k’ A

M?) is the interaction kernel. We de-

For scalar exchange

0,=0;,=gs,
(5

for pseudoscalar

tail in what follows the LFD one-boson exchange kernels

corresponding to the interaction Lagrangians.
(i) Scalar(S):

01=0,=1950ps,

rint = 93%/@(5) (6) and for pseudovector
(ii) PseudoscalaiPS):
_ - w7\ : :
L£int= igps'r/f')’sl//d’(ps)- (7) (1 - %)| ¥sfp if @ (kg —kp) >0
(iii ) PseudovectofPV): O = or
(l +%)iy5fpv if w-(k;—k;) <0,
. fo,—
—_m
L= = Sy s, 7. (8)
(iv) Vector (V): n
wT
(1 +%>i’)/5fpv if - (kl_ ki) >0
L=y g, 74 of”(& ¢ = da,8,) [ (9) O, = o
(1—%>iy5fpv if w-(ki—k;) <0,
with
! I ’ r i
o= (). with
The LFD ladder kernels have two contributions corre- ) 5
sponding to the two time-ordered diagra(irsthe light-front 485 - M2 4e, —M
time) shown in Fig. 3. For S, PS, and PV couplings they have T .. p’ T - p

the structure

For valuesr, 7 #0 the kernels are off-energy shell. In this
case the pseudoscalar and pseudovector kernels differ from

FIG. 3. One-boson exchange kernel.

K k e
5 ! > each other but coincide on energy shet 7 =0).
.__4”(72 We use the notatio=w,y*. Writing the propagators in
. wT ‘\ the c.m. variables, Eq10) gets the simpler form
W ,—0:—
> — > ohol . - :
K, 2 2 ooy - m(DZTILZ[uo'z(kZ)OZuo'é(kZ)][uo'l(kl)oluai(kl)];

11
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with tion of terms similar to Eq(11) with the tensor structures
Lo It reads

. - R (e — &) 1
@=(K-K)2= (k- MK )+ 62+ 8%, = SM? . e
EKEK! 2 o507 bl mml_aﬁ[u(kl)ol U(kl)][u(kz)OZU(kz)] y

(13

k-n k'-A

€k Eyr

(12)

The kernel for the vector coupling is given by a contrac-with

1
= Gapt (K~ K~ 07) (K~ ko~ 07) g if @ (ky—ky) >0
y72
Lap ™ 1 (14)
“Oupt K~k —07) (ky = ks~ 07)g if - (kg —kj) <0
o

and vertex operators

f ,
0,7+ 500" (= )k =K = w7 if - (k= kj) >0
o ! (15
0,7+ 50 D)~k = 7)1 0 (=KD <0,

fo o
6,7+ 50 A (K~ ko = 07)g if 0+ (k=KD >0
os- (16)

fo o
0.7+ 50 A=)k =Ky = wn)y i 0 (k=) <.

Hereafter we will not take into account the tensor cou-each of the vertex operato@;. In the nonrelativistic limit,
pling, that is, we putf;=0 andO7=05=g,»". In this case, Q2~(k-k')2 and F is local in configuration space. This
vector kernek13) simplifies into locality is however broken from the very beginning in
2 LFD due to theri-dependent terms o@?2.
kepri= D2 k) vtk ) 7,u(k))]

=———= U “u u U
721" A 2+ Q2 vy LY IIl. ANGULAR MOMENTUM
_T_T' N A N N A L In LFD the construction of states with definite angular
u? [u(kl)wu(kl)][u(kz)wu(kz)]}. (17 momentum is a delicate problem. Working in the explicitly

B covariant version, we have developed a method to overcome
In the .=0 case, e.g., one-photon or one-gluon exchangg,js gitficulty. It will be explained in this section. In contrast
kernels, thel ,; expressions depend on the gauge. Using th(-t\0 the equal-time approach, the LFD generatdg;JO
! pY

'I(:eer)r/nnsmiinEgaijgeénodni hﬁgzs;r?]aﬂl’ Idera th: dﬂ;)i?pendent +J of four-dimensional rotations are not kinematical, but
q.14) an Py PP ’ contain interaction in]';‘;. The interaction also enters in the

It will often be necessary to regularize the LFD kgrnels pyangular momentum operator, i.e., the Pauli-Lubansky vector
means of vertex form factors. Unless the contrary is explic-

ity mentioned, we will take the form used in the Bonn Sﬂzéswpyp’ﬂ]/’y. (19
model[60], i.e., . I .
Just as the action of the Hamiltonian on the Schrédinger
5 A% = p2\" wave function is expressed through the time derivative
F(Q ) = 2 2 ’ (18) int .
A%+ Q H™¢ =10,

whereA andn are parameters whose values depend on théhe action ofJ™ on the LFD state vector is expressed
coupling. Form factors appear in the kernels multiplyingthrough derivatives with respect to the four-veciof78]:

055203-4



TWO-FERMION RELATIVISTIC BOUND STATES IN.. PHYSICAL REVIEW C 68, 055203(2003

\]':]t) d(w) =L, (0)p(w), (20) We would like to emphasize this result, which is, to our
opinion, an important issue of light-front dynamics. It tells us
where that the state vector is necessarily a superposition of different
A? eigenstates. This conclusion does not depend on the ap-
L (0) = i(w#i - wyi)_ (21)  proximation resulting from any eventual Fock-space trunca-
Jdw” J ot tion.

In an exact solution of the problem, i.e., with the genera-
tors satisfying the Poincaré algebra, the eigenstat@sare
degenerate in mass and superposiii@6) is furthermore a
S, ¢(w) =W, d(w) (22)  solution of the mass equati@h). Indeed, as already noticed,

S,¢@ is not an eigenstate o0& but a superposition of dif-
ferent A? eigenstates. On the other hand, the commutation
PYMPY (23) relation[S,, P,]=0 impliesS,4® to have the same mass as
¢@. This is possible only if the masses of different stapés
and are equal.
0 Due to the Fock-space truncation, or some other kind of
M=, L (@) approximation, the Poincaré algebra is violated. The eigen-
estates¢<a> are no longer degenerate and solut{@8), built
with eigenstates of different mass, cannot satisfy ).
However, while this equation is an approximate one, form

Equation(20) is calledangular conditionand can also be
written in the form

with

-1
WM = 2€uvpy

W, is a kinematical Pauli-Lubansky vector. As long as th
angular condition is satisfied, the dynamical Pauli-

Lubansky vectorS, can be replaced by the kinematical ; _ .
oneW,. The great benefit of doing so is that the problem (26 for the state vector remains valid. Each term in &)

of constructing angular momentum states with operatofS @n €xact SZOIUt'O,n of the truncated mass equaigrwith
(23) becomes purely kinematical. In practice, one ratheigenvalueM;. Their superposition does not satisfy any mass
prefers to start constructing states with definite angulafduation but has the proper form of the nontruncated Hamil-
momentum using/,,, and then take into account the re- tonian problem. The_ cor_respo_ndmg mass squared—at the
striction imposed by the angular conditi¢f0). same level of approximation—is given by

It is worth noting that without this condition there is an
ambiguity in defining the state vector with given angular

J

momentum. This can be seen by introducing the operator MZ=2 CgMezl' (27)
a=0
2
A2= <W' “’) _ (24) The ensemblé®, M) obtained in this way constitutes the
P-w solution of the problem compatible with the degree of ap-

. L proximation considered.
It commutes W'.thPM and W, and—takingA “’,‘Stead of This formalism is translated td=1 states in the two-body
A—with the parity operator. The state vector is then char-

acterized not only by its masd2, momentump, angular sector as follows. The interactiop Ifernlé[k’,k, n, M) de-
momentumJ—defined by means of Eq23)—and parity  pends on scalar products of vectéfsk, i and also on scalar

7 but also bya, the square root of tha? eigenvalue, products with Pauli matricek-a,K' -, 1i-. Therefore the

- total angular momentum operator constructed as
a = a
A2p@ = 2@ . (25)

For a total angular momentuththere arel+1 eigenstates J=- i[lz X o] =[N X 5]+ +5S, (298
¢ In principle one could imagine any of these eigen-

states to be an acceptable solution. It turns out howevegommutes with the kerndE; , are the fermion spin opera-
that, except fod=0, none of these eigenstates can satisfytors). In the c.m. system this operator is proportional to
the angular conditiori22). Indeed if $(w) is an eigenstate the kinematical Pauli-Lubansky vectal given in Eq.

of A2, the right hand side of Eq22)—W,,¢(w)—is still an ! .
eigenstate ofA?> whereas this is not Sossible on its left (23). The solutions of Eq(5) correspond to definitd and

hand side-S,4(w)—due to the nonzero commutator Jz €igenvalues of the operatods, J,.

[S,, A?]#0. What is then the state vector? SinceA? is applied to states with definif it has the form
A solution of the angular condition— the only remaining
equation to be fulfiled—is therefore provided by a linear A2=(ﬁ-5)2. (29)

combination of different eigenstates?®:

A2 commutes with the kerné{ sinceJ commutes withK

J
b= g) Ca . (26) andn is a parameter. It commutes also wittsinceA is a
scalar. Thus, as in the case of a full state ve¢gh), the
The coefficientsc, can in principle be determined by in- truncated solutions in the two-body sector are also labeled
serting Eq.(26) into Egs.(20) and (22). by a:
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A2gA(K, i) = a2 (K, i), (30) D, (Ki, ko, P, 07) = M, (ko) pUT,, (ky),  (33)

and the two-body wave function is a superposition®f where

eigenstates?/‘a) with differenta values: 1

U (k) = e tml G-k W, (34)

(ex+m)

K, 1) = coi O (K, 1) + ¢ V(K, ). (31)

The mass equations determining the eigenstgt@swith is the Dirac spinor normalized to,u, =2md,,, w, the
differenta are decoupled; in particular, the=0 state is de-

termined by one single equation. We would like to commen
here that the decoupling into subsystems takes place in an
formulation of LFD, both in the explicitly covariant and in

the standard one. However, in the latter approach it looks ag"ess’

auli spinor normalized te'w,, = 8,,/, ands, = Vk 2+n?.

=+2yPis the charge conjugation matrix. In its ture,is
ritten as a superposition of two independent spin struc-

a matter of art whereas in ECLFD this splitting has trans- S = ;),5’ (35)
parent reasons. For example, in Rgf6] the four-equation 24\ 2¢g
system for the wave function components with angular mo- 2
S : €k 2m
mentum projectiorm=0 was split, by a proper transforma- S,=—— _ ( o - _2)3,5,
tion, into two subsystems with two equations each. In 2\2mksin f\w-p &

ECLFD this corresponds to the=0 eigenstate 0§=0 and
J=1 states, each of them having two components.

Because of the truncation of the Fock space, the states
are not degenerate. Their splitting was effectively calculate _
in the case of scalar particles in Ref44,65,66 for J=1, 2 ¢=15+ 1S (36
as a function of the coupling constant. It has been shown in The existence of one additional component with respect to
Ref. [44] that this splitting indeed decreased when the interthe nonrelativistic theory is due to the=w,y* term. The
action kernel incorporates a larger number of particles in theumber of independent amplitudes determining the wave
intermediate states. However, the number of states taken infanction is however the same, whatever be the LFD version
account in any practical calculation will be always very lim- used. We have shown in a preceding wsig] that theJ™
ited. The splitting, though decreased, will remain, especially=0" state we are considering is strictly equivalent in the stan-
for strongly bound systems such @ mesons. The problem dard approach to thél+, 2-) one[46], which is described
of determining the state vector at a given level of approxi-also by two component®'*, &2,
mation is thus not solved by this way. These are some of the |, the reference system whekg+k,=0 wave function
reasons why, as explained before, our approach to dealings) takes the form
with this problem follows a different philosophy. Despite the

nondegeneracy oiZ@, we search the physical two-body (I)UZ(,l:VF]wf,zw(IZ, ﬁ)wf,l, (37)
wave function in form(31), the same as for the full state
vector (26). The corresponding mass squared is given by ~ with

whose coefficientd;, scalar functions depending on vari-

ables(k, cosazﬁ-IZ/k), are the wave function components
cijn the spin-space:

M? = ciMG + ciM;3, (32)
(38)

i6-[K X ] )
ksing %)%

- 1
- Pk, n) = ?(fl +
where M2 is the mass associated with®. The M? value v
thus obtained is always betweewy and M, where the The definition of the components themselves is to some

exz%\_ctdsolutm.n W.OUId b‘?- ffici hod extent arbitrary, as are the choices of structu@s. Our
0 determine In practice coefficients, we use a method  ¢\5ice (35) is justified by the clear separation of

proposed in Refs(65,66,73, without explicitly solving EQ. 5 ihqependent and -dependent terms it induces in wave
(20). It is based on the fact that, when the momentkm function (38).

—0, the interaction part in Eq20) is irrelevant and the

angular condition reads simply,,¢=0. Thus, in this Iimit,g/;
does not depend on the light-front directidmnymore. Such 1 S f@ |Zﬂ<
(2 71') 3 el o0 e

The normalization condition reads

a requirement unambiguously determines the coefficients of

the superposition. The method was applied to a model with .

scalar particle$66] and found to give very accurate results. _m —r T ﬂ<
The procedure will be detailed in Sec. V and illustrated by - (2m)? Tr{g(ky + m)dlky —m)} ex
numerical calculations in Sec. VII.

m I
=—— | Ti{y'(k, Mk M}—
IV. J=0 STATES (2m) &K
The J=0" two-fermion wave function can be written in __m 2., 2 ﬁ( _
= 3 | (fi+f)—=1, (39
the form[59,57 (2m) =
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where we denot@=1y,¢"y,. The spin structure§ intro- One would remark that we have kept, for convenience, a
duced in Eq(35) are orthonormalized relative to the trace three-dimensional volume element in E@3) despite the
. fact that kernelsS;; as well as amplitudef are independent
Tr{S(k, +m Q(kl m)} = (40) of variable¢’.

where§=7,5y, that is V. J=1 STATES

élz_ 1 Vs, In a similar way as in Eq(33), the J=1* two-fermion
2\,58,( wave function can be written in the forfs6,58
- &k <2mw m ) gzal(klv ko, P, @7) = \me,(p, NU2(ky) p#U T k),
=- 41
= 22mksing \w-p 2 “D (47)

Substituting in Eq(5) wave function(33), multiplying it~ wheree,(p, \) is the polarization vector* develops over
on the left byu(k,), on the right byu(k,), and using relation the six spin structures

5, U KTk =k+m, we find (ky — ko) 1
. . . Sw= "z 0 S = o
[4(K? + mP) = M?](ky + m) (kg = m) m m
me 1 N - ~
=53 J m(kz +m)O,(kj + m) ¢’ Sy = ot Sy, = (ky ~ k)@ (48)
w.p 2mw-p
- ~ A d3k’
X (ky = m)Oq(k, - m)s—w, (42) i Mo*®

) ST nf e ST
with O=U.O'U... Replacing¢ here by its decomposition

(36), multiplying Eq.(42) by é, and using the orthogonal- with componentsy;, invariant functions depending on the
ity relations(40), we end up with a two-dimensional inte- same scalar variables as fbr0,

gral equation system for componerfts
(#L = (Plsl,u + (PZSZ,M + @333,u + §D4S4,u + @5&)# + QDG%,UJ

(402 + m2> - M2]fi(k, 6) (49)
3L,/ S s
=-— 2 Kij(k, 0;k’, 6")f;(K’, 0’)—k, (43) In the reference systely +k,=0 this wave function takes

C2r =12 & the form

Its solution will directly provide the mass of th&=0* - > - -

Siate. yp B, (K, 1) = VW, (K, Doy, (50)

KernelsK; appearing in Eq(43) result from integrating .

J ) ) with

kernelsk;; over the azimuthal angle:

1 (2 ki  de _— 1 1 3kk-& 1
K. = ] - 44 k,M)=f,—=ac+f— - -a | +f3=[3A(A-F) - 7]
D mleen )y QP+p® 2w “9 " oo %2 k2 °2

. 2 . . . 1 N N N
\iwth Q ?efmed in Eq.(12). Fgr S, PS, and PV couplings +1,[3K(A - &) + 3A(K - &) - 2(K - 7)&]
0,=U,0;U.=0; and «;; are given by 2k
’ =L 1 r L 1y 3i oo
Kij = 28k TS (ka + M)O,(K; + M)S'j (kg = M)Oy (kg — M)]. +fs ——[k>< n]+f6 [n(k &) -k(i-3)]. (51)
(45)
Contrary to thelJ=0 case, componenfs appearing in Eq.
(51) are not the same ag from Eq.(49). Their relation is
given in Appendix B. Componentsf; 56 driving
1, = r s , T n-dependent spin structures, are of relativistic origin and
ki = = gekLag TS (ko + MO5(k; + m)S'j(ky ~ m)OF are absent in a nonrelativistic approach.
> (ﬁl—m)]. (46) .As explalr)ed in Sec. Il t_he system of equations deter-
mining the six component§ is split into two subsystems,
TensorL z is defined in Eq.(~14) and we have taken into corresponding to the eigenvaluas0, 1 of A2 (29). As for
account that for V couplingd,;=U.0{U.=-0,. The ana- the J=0 wave function, theJ=1,a=0 eigenstate is deter-
lytic expressions ofk;; for S, PS, PV, and V exchanges are mined by two components whereas the remaining four cor-
given in Appendix A. respond toJ=1,a=1. We would like to note that the total

We denote byS{ the quantities(35) as a function of
primed arguments. For vector exchange
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number of components as well as the dimension of decou- J3M
pled subsystemg2+4) coincide with what is found in the glO)__ S (55
standard approad6]. 2y 2
The components determining the eigenstaé® of A2
will be denoted byg®% and g®;Y ., They are indeed dif- 0 _
ferent from f; appearing in wave functios1) thoughg's o
fully determinef’s by linear combinations. In view of con-
structing superpositio31) it is convenient to represent the
eigenfunctions//? in the form of Eq.(51). Only some of the
six f@ involved components will be independent— two for s d3k
the a=0 state and four foa=1—but this way will facilitate 3(277 3(27)3 @5 0201 .
further analysis. »
In .the f0||0V\'/II’lg_)tWO sectlo.ns we YVI|| explicitly constr.uct _ ls f H””l’r{¢£?)(k2+ m)¢§,0)(k1 B m)}d—
the eigenfunctiong/® of the kinematical operato?, obtain (2m) €k
the corresponding mass equati@) in terms of gi(a), and m
relate them with component§’ defined in Eq(51). = 3200 f THHOT(K, 7) Ok, n)}—

J3M e cos 6
: (56)

— +
my2 sind \  2gK S %

with §,, defined in Eq.(48).
The normalization condition is

Noyoq

A. a=0

s [ 60+ @0 =1 57
One can check from Eq30) that ¢/? is parallel tor, i.e.,
it satisfiesy/Q=n(ri- /%), and has the following general de-

composition:

with
p“p”
M2

“Of )= \/7 & K G- (kcosf-kn) | _
Yok, n) = gl gz k sin n. The spin structureS@ are orthonormalized relative to the
trace operation in EC(EI:Y) [cf. EqQ. (40)],

= —E e (p, Me’(p, ) = ( - g"”). (58

(52
0) /1 0/, _ _
It can be written in form(51) by defining thef(® compo- TSPk + S0 (kg — m)} = 5. (59
nents Note that§®=1,5%"%,=5". Similar to Eq.(42) we get
1 1
70 = L cos g0 - = sin 62 [4(k 2+ m?) = M2](ky + M) 2 (ky — m)
\3 \3 2 e ) i o
= — | —5 5 (ky + mOy(k} +m)¢'°
{0 =g 27 J aA(Qz+ ) @ T MOl T
2 — Y
- ~ A d3k’
= X (kl - m)Ol(kl - m)_ . (60)
f(o) __ \’12 ©) Eyr
3 V@ sin 992 ' In order to obtain the system of equations for components
9%, we multiply Eq.(60) by I1#” and S?. Taking the trace
1 1 and using the orthogonality conditi@g9) we obtain the sys-
f = =g + —= cot 6y, tem of equations
NG NG e ) Lo B
[40¢+m?) = Mgk, M) = - o — | 2 KP(k K, g
f(50) -0, i 253 =] 1 J
R 3L’
1 1 X (K', i) —, (61)
9= g%+ = cot 6g, (53 Bk
V2 \r2

which provides the mass of thls=1,a=0 state. They have

that is, four nonzero components, with only two of themthe same form as E@43), with kerneIsK(O) given in terms
being independent. It can also be represented in a foumf K(O integrated over the azimuthal angd:é:
dimensional form similar to Eq(49),

o _ 1 2 |(JO) d(P/
- Kii’ = — 62
¢y = 10S) + 1Sy (54) i een )y @+plom (62
by introducing the spin structuréég), For S, PS, and PV couplings they read
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. . .
K0 = Zeetl TS e + MOk, + m)g

X (k= m)Oy(ky — M1, (63)

WhereSj’IEO) denotes Eq(55) with primed arguments. For
vector exchange

K = = Geeid Ly TS (ko + m)O5 (i +m)

xS (k; - m)Of(k, - m)], (64)

TensorsL,z and [1"* are defined in Eqs(14) and (58).
The analytic expressions odfjo) for S, PS, PV, and \f;
=0) exchanges are given in Appendix A.

B.a=1

It follows also from Eq.(30) that /¥, the A2 eigenfunc-
tion corresponding t@=1, is orthogonal taj, i.e., satisfies

ﬁ-LZ(D:O. To fulfill this condition, it is convenient to intro-
duce two vectorilﬁ, o) orthogonal tor:

S

E k-coson . (- &)
=——,0,=0-(0-0)n,
L7 sing +

with k=k/k and |k, |=1. Functiong® then obtains the de-
composition, analogous to E¢62),

=

-
S V3 . V3 > o~ .
¢’(l)(ky n) = g<11)70l + ggl)?[Zki(ki 0,)-0,]

3~ 3.~
+gy \/;kL(cr- i) + g \/;l[k Xn] (69

in terms of the four scalar amplitudes”. It can also be
represented in the form of Eq51) by defining compo-

nentsf\®,
2
f = \/;g(f),

f(l) — 2

M= —=g
\1’3 Slnz 0

9z

ig(l)

(1+cos 6) V2
P =0y -
\3

f(sl) =- = 2 T o
\3 sirf ¢ V3

cot 6gy”,

fﬂll) _ 243 .cosa
3 sirf 0

o+ ———a,
V

PHYSICAL REVIEW C 68, 055203(2003

1
1) — 1
= = g

= 66
V2 sin @ 3 (66)

and in the four-dimensional form!" similar to Eq.(50),
1) - (D)1 1) (1 1)1 11
o =S+ Sl S S

The four spin structureﬁlﬂ) are orthonormalized accord-
ing to Eq.(59) and read

(67)

Sy =2hS, i=1,...,4j=1,...,6, (69
i

with §, defined in Eq.(48) and h;; coefficients given in

Appendix B. The normalization condition in terms gf’

and ¢V exactly coincides with Eq(57). In terms of com-

ponentsg'” it becomes

m
(2m)*

3
[ g @7 @i @2 =1,
©9

The system of equations for the scalar functi@i‘ﬁ% is
obtained similar to Eq(61) and reads

[40-+ P) - M7Jg "k, 1)

2 4 31/
m - - dk
=-5 | ZKPKK, MK, H—.
™ =1 e

k!

(70)

It is the mass equation of thk=1,a=1 states. Kernelk"
are calculated in a way similar to E¢2). Corresponding
«! are obtained with the replacemesff! —S” in Egs.

(63) and (64). Their analytic expressions for S and PS
exchanges are given in Appendix A.

C. Physical solution

The solutionsy/® constructed in the preceding sections,
although being exact eigenstates of the truncated Hamil-
tonian, are only auxiliary. As explained in Sec. lll, the solu-
tion satisfying the angular conditiof20) is given by super-
position(31) of states with differené. The coefficients, of
the superposition can be obtained by solving the angular con-
dition in the truncated Fock space. We will show in what
follows that they can alternatively be determined by impos-
ing the independence of the wave function on the light-front
vectorn at k=0.

In order to do this, it is convenient to write dow}ﬁa) in
the form of Eq.(51) with the componentsﬁi(a) given by Egs.
(53) and (66). Written in terms off’s, superposition(31)
reads

fi = cof @ + ¢, f(Y. (71)

The condition that@(lzzo,ﬁ) does not depend on be-
comes

0,fi(k=0,0=0, i=1,2; (72)
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fi(k=0,6=0, j=3,4,5,6. (73)

Let us show that there exist two coefficientg normal-

PHYSICAL REVIEW C 68, 055203(2003

(0) (1) 2 1
f3(0, 0) :Cof3 (O, 0) +C1f3 (0, 0) =Cp §b0—01 §b1:0.
VV

. 2 2_ . . . .
ized tocg+ci=1, satisfying the six equations above. They 1his relation, together with the normalization condition

are determined by only the valueskatO of the first com-
ponentsg?.

To this aim, we consider the behavior §f'(k,2) in the
k— 0 limit. The components in front of structures involving

the unit vectork aref$)  , By construction, they must van-
ish atk=0, i.e., satisfy
f sdk=0,6=0, a=0,1. (74)

Concerninga=0 states, this condition is trivially satisfied
by fyr since from Eq.(53) they are identically zero,
whereasf\s will satisfy Eq. (74) if

g%(k=0,6) = +hb, cos 6,
(75)

0P(k=0,6) =-by sin 4,

b, beinga priori an arbitrary function of¢ which later on

will be shown to be constant. The only components which

are nonzero =0 aref’; Inserting valueg75) in Eq. (53)
we find

1 1 1
9.0, 6 = — cos 69.°(0, 0) - S sin 69X(0, 6) = b0,
A N N
2 2
f(0)0,0 =_\—(0)0,0=\/jb'
3 ( ) \E sin 0g2 ( ) 3 0

Concerninga=1 solutions, determined by four indepen-
dent componentgi(l), we see from Eq(66) that condition
(74) implies g3 {0,)=0. The only nonvanishing compo-
nent atk=0 is thusg{" and we will denote by, its value:

g0, 6) =by. (76)

By inserting this value in Eq(66) we get

2 2
190, 60) = \@g&“(o, 0) = \gbl,

(1 +cog 6) "

(0, 6) = - i_g(f)(o, 0) + 95/(0, 6)
\s”3 \6 sirt 6

=
\1’2 (1) 1
- —= cot 6g;3’(0, ) = - —=b;.
3 g5"(0, 6) 3 1

Components and " are the onlyA-dependent struc-
tures which give nonzero contributions ka0 in the corre-
sponding wave functiong/? and #/V. These contributions

must cancel in the physical wave functi&nwhich gives the
relation

c2+c2=1, allows us to determine the coefficiergsof the
superposition31). They read

\2bg

Cl = —-
\2b5 + by

by
Co= ——, (77
° 203+ 12
We see from the above expressions that conditicis
and (73) will be satisfied if and only if coefficientd, are
actually independent of.

It is worth noting that if the wave function‘;/ does not
depend om, these coefficients become especially simple:

NERN
Co=1\/=, C1=1/z.
°" V3 T N3
Indeed, from anmi-independent wave fUﬂCtiOlif we can

construct normalized-dependent states with definiteas
follows:

(78)

- -

POk, i) = 3L - (k)]

I 3 .. .
Pk, )= \/;{w(k) =l (K]}

The initial function(k) is reproduced by taking their su-
perposition with coefficient§78). In the case of scalar
constituents, we foundl65] that coefficientsc, are very
close(with the accuracy=1%) to values(78), despite the
fact that the wave function strongly dependedroand the
split betweenM, and M; masses was large.

Let us finally summarize the procedure followed to con-
struct the physical wave function. The solution of the mass
equations(61) and (70) provides the mass squarMﬁ and
the componentg’, andg}”, of the A? eigenstates. The non-
zero values of the first componerg‘fa) at k=0 determine—
by means of Eqs(75) and (76)—the coefficients,. These
are inserted in Eq(77) to provide c,, coefficients of the
linear combination determining the physical m&g$ from
Eqg. (32) and the componentér1) of wave function(51).
Componentsfi(a) of this superposition are related g#f‘) by
Egs.(53) and(66), respectively.

VI. NONRELATIVISTIC LIMIT

In the following sections the LFD results will be com-
pared to the corresponding nonrelativistic limits. By this we
mean the zero-order terms in themléxpansion of the LFD
equations and kernels. This section is devoted to precisely
describing how this limit is obtained in the different OBE
kernels, having in mind in each caggr what are the LFD
wave function components that should be retained @nd
what kind of equations will they satisfy.

In order to have some insight in the weak coupling limit,
but also as a test for numerical calculations, it is often useful
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to consider the LFD solutions as a perturbation of the nonWe will see that a similar situation takes place for the
relativistic wave functions. This approximation was used in=1 state. This fact makes an important difference between
Refs.[58,59 to calculate theNN Swave function and deu- the couplings. Pseudoscalar and pseudovector exchanges
teron electromagnetic form factojl]. We will also present appear always as being relativistic corrections.
in what follows how these first-order relativistic corrections  We would like to remark from the above results that in the
can be obtained in the different mass equati@® and(61) nonrelativistic limit then-dependent terms in the LFD wave
we consider. function (38) and kernels disappear.
For models involving the sum of all exchangesich as

A. J=0 states for the OBENN interactior) the nonrelativistic limit is de-

termined only by the S and V exchanges. First-order correc-

For the scalar exchange the leading contribution in thgjng can be obtained by inserting the nonrelativistic compo-

kernel matrix is, according to EqA4), nentf,=fyr into the right-hand side of E¢43).
dra > N
Kyy=—————=Vgk-K). (79 [4(K? + m?) — M2]fi(K, 6)
(K=K')2+ 2 o .
Corrections to this kernel are of then® order both in =‘ﬁf Kii(k, 6;K’, 9')fNR(k')8—w- (83)

diagonal and nondiagonal terms. It follows that tie0

wave function(38) contains in the nonrelativistic limit the They generate a perturbative solution for the two compo-
f1 component only, which is furthermore independent ofnents, which incorporates the first-order relativistic ef-
6. Introducing nonrelativistic kinematics, i.e.(k4+m?  fects. This approach was followed in R¢69] to obtain

- M2~ 4(k*+mB), whereB=2m-M <m is the binding en- the 'S, NN scattering wave function.

ergy, the equation fof,=fyg component becomes

3 B. J=1 states
k!

(K> + mB)fyr(k) = -mf Vgk - k')fNR(k')W (80) For J=1 states, componengi® obtained by solving the
mass equations differ from those appearing in the wave func-
with kernel(79). This is the Schrédinger equation with the tion f,. Our first step is to determine the form gf’ in the
Yukawa potentiaMg(r)=-a exp(—ur)/r. case of a nonrelativistic wave function. The nonrelativistic
For vector exchange we obtain the same equat®”)  wave function components do not dependrband, accord-
with a kernel differing from Eq(79) by a global sign. This ing to Eq.(78), are given by
corresponds to the repulsion between two fermi@ne”, for

instance. 1 © 2 @

We see that for the scalar and vector couplings, the non- fi= Téfi +4/zf7 (84)
relativistic limit of LFD equations coincides with the one- v
component Schrodinger equation. Substituting Eq(84) into Egs.(53) and (66) we obtain a

For pseudoscalar and pseudovector exchanges the leadipgstion betweerf; and gj(a) components. These equations

diagonal kemnels are of therd order, whereqs the nondi- are solved relative tg(a) and the result, expressed through
agonal ones are of P. Thus, for these couplings the non- ]

relativistic limit does not exist. In the leading order and sincef" reads
the K,, kernel is repulsive, only thé, component remains. _ _ 7 +cos 2
The corrections due t6, are expected to be larger than for 9(10) =f, cosf+f,\2 cosf+fz\y2 coso+f, =
scalar and vector cases. Compongnsatisfies at this order V2
the Schrodinger equatiof80) with a kernel proportional to 3
1/mé: +fg > Sir? 6,
V. S(IZ IZ,) T (|2—|2')2
pK=K)="—"7= 1 = 1
(k=Kk")Z+ u? m? g0 =—f,sing+ 1‘2,—E sin - f3\2 sin 6 f,—= sin 20
v /
i R (81) | \F 2
=S|\~ + — sin 26,
m2 (k— k')2+,u2 6 8

In coordinate space it corresponds to

P P 1+3c0s® 1 o
— —f3— - 1,12 cos9,
/-l’2 exp(— ur) 4\/5 3\1’5 “

4r

9(11) =f,-f;
} . (82

Ved) = %“[a@(r*) -

For these couplings the leading term is of the same order g = i Sir 6
as the relativistic correction in the scalar and vector cases. 2 22\,5 '
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—

o 3 3 PRV S N
g3’ = f2 sin 20+f4 sin 6- f6— sin 6, T Mg QO+ i

(1) —

o = (85) write them explicitly and analyze only the kernel contri-

butions resulting fromg;;.
Since the integrals on the right-hand sides of 83) are
the same, its solution has the form

These factors contain tvand 1m? terms but we do not
f5\/7 sin 6.

As previously discussed, in the nonrelativistic limit there
are non-dependent terms in the LFD wave functi@fl)
and onlyf; and f, components among the six survive.
We have shown in Ref[58] that one actually hadg;
~ug fo=-up, f3_¢=0, whereug and up are, respectively,
the usualS- and D-wave nonrelativistic components. In- (0) __ 0 -

serting these expressions in H§5) we obtain the form of 92k, 0) =-g (k) sin 6, (88)
the nonrelativistic functiong:

9%k, 6) = +g(k) coso,

with g©@ an unknown function to determine. Substituting
0 = (us- \2Up) cos b, Eq. (88) into Eq. (87) we find the equation fog©:
(0) (0) 3k,
1 Ckg9(k)=-4 f Ok — 89
g(2°)=—(us+7uD>sin6 (g®(k) = - dar | g} (89)
V2
For a=1 state, we found in a similar way that ongf)
1 i isfi 0 -
9(11): Us+ ——=(1+3 cos B)up, survives and satisfies to the sanftgm)® order the equa
4\!’2 tlon
(1) (1) o’
Ckg;"(k, 0) == dam [ g7(K', 0’){---}?- (90)

It coincides with Eq.(89) for a=0 and, hence, provides

the same mass. We see in this way that, in the leading

order, a=0 and a=1 states are degenerate. The coeffi-

cientsc, of superpositior(71) are calculated in terms df,

given by Eqs(75) and(76). Since in the leading ordey”’

and g equalg®, one hasby=b,=g®(0) and, from Eq.

We see here that the dependence of the auxiliary com- (77), values(78).

ponentsg® remains even in the nonrelativistic limit. It " (e next-to-leading order—itf—we get fora=0

will disappear only in the linear combination, giving the
hysical component$; ». , , p

P yLet us first r?:onsids%'z{he scalar exchange. The mass equa- (k)gl B J (29" kK = 30+ k%)

tion for a=0 eigenstat¢61) and the scalar kernel®\1) be- 3L,

come in the leading orddf/m)°, X COS 0(gr<0> cos@ — /(0) sin @)+ —,
Ey!

3
gy =- 2 SN 20 up,

g’ =o0. (86)

Ckg(k, 6) = - dam cosef[g (K, 0') cos @

. _ oK’ C(kgY = ar sin H—J 3(k2+k'?)(g'\? cos g’
- 9(2 )(k’! 01) Sin 6,]{ : '}_!
Eyr d3 ,
-9’V sin @) }— (92)
Ey!
C(kgL(k, ) = + 4arr sin Gf [Pk, ) cos 6’
and fora=1,
d3 ’
~gPK,0) sin 0T} (8) ) ) )
C(k)g(l):—mrm2 J [3(k2+Kk'?2)g' Y + KK cosd(-2g'\Y
For shortness we denote I6}(k) the kinematical part and &K
by {---} the kernel contributions which are common to all xcos 6 +42g'Y sin 0] - }—,
couplings and states. ey
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C(k)g(31) =—-am S|n 0? J kk’ \ Zg’(l) cos 0!

31,/

-g'P sin 6){:- }— (92)

These systems of equations—E@81) and (92)—are al-

PHYSICAL REVIEW C 68, 055203(2003

order dominates, resulting from these exchanges. The exis-
tence of the deuteron, for example, as a nonrelativistic sys-
tem(with a reasonable accurgadg due to the contribution of
the scalar and vector exchanges in i interaction.
Perturbative solutions are obtained by substituting the
zero-order functiong86) into the right-hand sides of LFD
equationg61) and (70). If the D wave is neglected, the six

ready different and the masses of the two eigenstates afgerturbative components are given in terms of the only non-

split.

relativistic wave functiorug simply by

For vector exchange, the situation is quite similar. The

equations in the leading ord¢t/m)° differ from Egs.(87)

and(90) only by a global sign on their right-hand sides. Thus
for these two couplings, as it was the caseJe0, the lead-

ing order is(1/m)°.

For pseudoscalar exchange, the leading contribution in the
kernel has order . Indeed, from the analytic expressions

given in Egs.(A2), we found for thea=0 state

1 K
g = am cos 6— J k'(gy” cos 6’ +g5” sin 0'){-+}—,
mz Exr

1 a3’

oY) = - am sin 0 f k'2(g cos @ +gy sin ¢')f--}—.
Ek!

(93

Like for the scalar coupling, the solution of Eq®83) has
the form (88) with g© satisfying the equation

1 %’
g9 = am f k'?(cog ¢ - sir? ')g"f-- }—

(94)

For a=1 the leading order equation reads
1 d3k’
(1) — _ k'2 co€ ¢ b . 1 —— 95
91 C”Tmzf cos 0'g;{ }‘9k’ ) (99

which is now different from Eq(94). The massed, and

n’12
J (K9 cos ¢’
77

3k/
- K9 sin 6" )ug(k')—

Er

(96)

[4(K2 + m?) = M2]g O (K, 1) =

[4(Kk2 +m?) - M2]g D (K, /) = - —— f K(l)us(k')_

(97)

We would like to mention here that one appreciable ad-
vantage of the LFD formalism with respect to other relativ-
istic approaches is the clear link it has with the nonrelativis-
tic dynamics. This is because on one hand LFD wave
functions have the same physical meaning of probability am-
plitudes, while on the other hand their componeftsplit
into two families: those which in the nonrelativistic limits
become negligible and those which tend to the usual nonrel-
ativistic wave functions.

The following sections are devoted to showing the nu-
merical solutions obtained with differents couplings. Their
very different behavior requires to be treated separately.

VIl. RESULTS FOR SCALAR COUPLING

Our first results concerning the Yukawa model have been

M, calculated with pseudoscalar exchange are thereforgported in Refs[68,69. The main interest in these papers
always different. Their difference remains even in systemgoncerned the stability of thi=0, 1 solutions with respect to
having small binding energies or when the large momenthe cutoff, i.e., the possibility of getting stable results without
tum contributions are removed using small cutoff param-any vertex form factor. We showed in particular thiat0*

eter A in form factors(18).

states were stable for coupling constant smaller than some

The pseudovector exchange kernel differs from the pselgritical value a< a;=3.72 and unstable above. On the con-

doscalar one by the replacemept— vs—»y5772m or by s

— ¥+ wys7 [2m [see EQ.(4.18 in Ref. [57]]. Thus there is

an extra term proportional toys7'/2mo (K’ 2+m(B|)/m?

trary, theJ=1" states were found to be unstable for any value
of the coupling constant and both projectioars0, 1. This
instability manifests in the logarithmic decreaseMvf(k,4,)

which does not contaifl/m)° terms. The situation is there- for a given value oftr—or equivalently ofa(k,,,) for a given

fore the same as for the pseudoscalar case.

value of M—and imposes the use of form factors.

To summarize, we have shown analytically that in the W first consider the=0* state. Its wave function is de-
nonrelativistic limit for scalar and vector exchanges, the entermined by two components. Although the use of vertex
ergiesB(a=0) andB(a=1) comude with each other and the form factors(FF) is not required68], we would like to note

coefficientsc, andc, tend toy2 3 and+2 £, respectively. On the

that the convergence as a functionkpf,, is very slow. Un-

contrary, for pseudoscalar and pseudovector couplings this Iess otherwise specified the results that follow correspond to

not the case.

In this sense, for the pseudoscalar and=0.15.

pseudovector exchanges, the nonrelativistic limit does not For a weakly bound systefB=0.009), the coupling con-
exist. If the kernel is the sum of all the exchanges, such astant found by solving LFD equations isy,=0.331,
the NN kernel, the situation is the same as for the scalar an@vhereas the nonrelativistitNR) value isayg=0.323. By the

vector exchanges, since in the nonrelativistic limit ¢hén)°

latter we understand the results obtained by inserting into the
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FIG. 4. LFD wave function components for scalar coupling FIG. 5. LFD wave function componenfs for scalar coupling
(B=0.001,4=0.13 in (a) linear and(b) logarithmic scale compared (B=0.5,=0.15 in (a) linear and(b) logarithmic scales compared
with the nonrelativistic solutions. with the nonrelativistic solutions.

Schrodinger equatiofB0) the static potentia{79) resulting

from the leading order approximation, as has been discusséija) and §b)—are already visible ak=0 momentum(Fig.

in Sec. VI. As in the Wick-CutkoskyWC) model—scalar 5). One can see however in Fig(p that—even for deeply
particles interacting by scalar exchange—relativistic effectdound systems-+; component still dominates ovés.

are repulsivg64]. They account for only a 3% difference in It is of some interest to compare the LFD results for
the coupling constants whereas in WC they are sizably bigYukawa(two-fermion and WC(two-scalay models with the
ger (aywc=0.369. NR results. We have displayed in Fig. 6 the corresponding

Corresponding wave functions are displayed in Figa) 4 coupling constants for different values of the binding energy.
and 4b). One can see that compondptlominates ovef,in ~ One can see that the Yukawa resuls,) are systematically
all the interesting momentum range and thabhas a zero at closer to the nonrelativistic values thar,c are, as if the
k=0.25. One also notices in Fig() thatf; is very close to  fermionic character of the constituents generates closer bind-
the NR wave function in the small momentum but it sensiblying energies to the NR ones but larger differences in the high
departs with increasing; for k~1.5 the differences repre- momentum components of the wave function, due to the dif-
sent more than one order of magnitude in the probabilityferent asymptotic of interaction kernels.
densities. The coupling between the two relativistic ampli- Though not necessary to get stable solutions, form factors
tudes has a very smdlD.1% attractive effect on the binding have been widely used in most of the previous OBEP calcu-
energy. lations performed in momentum spaf&9]. It is thus inter-

In the strong binding limi{B=0.5), the situation is quite esting to estimate their influence in the predictions. To this
similar with enhanced relativistic effects on binding energiesaim we have considered the vertex form factors used in the
and wave functions. One has,,=2.44 for ¢g=1.71 and Bonn model(18) with, for the scalar couplingn=1 andA
the differences in the wave functions—displayed in Figs.=2.0. Their effects are found to be repulsive. Bx0.001
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FIG. 6. Comparison oB(«) between the Yukawédashed ling
and Wick-Cutkosky(dot dashed lingsmodels in LFD and nonrel-
ativistic (solid line) results inJ=0" state.

they remain relatively small(ay,=0.376 instead of
ay,0.331) but for B=0.5 the differences reach already a fac-
tor 2 (ay=5.32 instead ofxy,=2.44). It is worth empha-

sizing that, whatever will be the degree of refinement in the ®

dynamics, the results of a relativistic calculation will be

. . . U)
strongly influenced by this phenomenological and not well J

controlled trick.

The system of equations for determining thel*,a=0
(02% and a=1 (g3 ;) solutions are both unstable and
require cutoff regularizatiof46,68. This can be seen in Fig.
7 where thex(k;,,5, variation fora=0 anda=1 cases displays

a logarithmic dependence. One can also see in this figure th
nondegeneracy of both states due to the Fock-space truncs
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FIG. 8. gf‘jfz solutions for scalar coupling wittw=1.18, u
=0.25 and sharp cutoff ak,,=10. The binding energy i8
=0.0506.

states with different projectiona are not equal, they are
almost degenerated in a wide rangekgfy values. For in-
stance, aky,,,=10 one hasy,.g=1.17 andw,-1=1.18, while

at k=90 one hasw,y=1.14 anda,-;=1.16. These weak
splittings of less than 1% for a noticeably bound syst@&n
=0.09 are rather surprising in view of the results obtained in
the purely scalar WC cag6é5,64, in which the difference in
coupling constants for the same binding energy is 20%,
which corresponds taB~B.

The gi(a) solutions fora=0 anda=1 states are, respec-
tively, represented in Figs. 8 and 9 for several value®.of
They were obtained with a coupling constat1.18 and a
sharp cutoff ak,,,=10. We remark that with the conventions

usedg)’(k, 0)=0 and one hag\”(0,0)=-g\’(0,90°), as ex-

pected from Eqs(75). In addition, g”(0, 0)=—-g(0, 90°)

FIG. 7. Logarithmic dependence of the coupling constant as 90, 6), as expected from Eq76) and from the fact that

function of cutoff for theJ=1" a=0 anda=1 states. Calculations
correspond tdB=0.05 andu=0.25.

coefficientc;, defined in(77), are very close to valugg8).
Corresponding binding energies arB,,=0.0506 and
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FIG. 9. gi""::llm4 solutions for scalar coupling withk=1.18, £=0.25, and sharp cutoff &,,,=10. The corresponding binding energy is
B=0.0498.

B,-1=0.0498, values which are 1% close to each other. The 4 w w w w
splitting of the binding energies is an increasing function of . e =120
the coupling constant. Figure 10 shows the calcul&gd) o —J=1a=1
dependence for botb=1 eigenstates. Far,=0.55 the values
are, respectively, B,.o=9.7x10° and B,.;=9.6x1073 3r 1
whereas fortws=2.87,B,.0=0.523 andB,.;=0.467. The non-
degeneracy remains reasonably small even for strongly
bound systems.

The six componentf; of the J=1" physical wave function
are determined by a linear combinatitt) of functionsf?,
which in their turn are expressed in termsg{:ﬁ’ by Egs.(53)
and (66). Remember that coefficientg of this linear com- 1
bination are computed from componegi%zo'l) only. For the
solutions presented in Figs. 8 and 9 they are found taybe
=0.582 andc;=0.813 and the corresponding energyHs
=0.0501. Note that these values are very close to those ob- 0, o1 o2 03 04 05
tained in the case ofi-independent interactioné7/8): c; B
=1/3=0.577 and;= \2/3=0.816. They become even closer
to these values for smaller binding energies and they FIG. 10. Splitting of thel=1 solutions for the scalar coupling.
smoothly depart for strongly bound systems. For a state witlResults correspond t@=0.25 and sharp cutoff &;,,,=10.
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FIG. 12. Wave function componen{s logarithmic scalg for
T RN J=0" state withB=0.001,=0.15 obtained with pseudoscalar cou-
T pling and form factorA=1.3.

character which does not generate instability. The results

lead to a quasidegeneracy of the coupling constants for bind-

~ ing energies which vary over all the physical rai§e2m].

or N . One gets, for instanceg=55.4 for B=0.001 whereasw

1 s =58.5 for a binding energy 500 times largBi 0.5, showing

2 ~ an extreme sensibility of this model to small variations of the

___f ~~ coupling constant. The origin of this behavior was found to

-1 4 T lie in the second-channel equatitwy,) and has been under-

5 (b) stood analytically71] with a simple model. The use of form

factors—though not required for the convergence of

, solutions—is necessary if one wishes to eliminate this un-
90 120 150 usual a(B) dependence. Calculations have thus been per-

6 (deg) formed using form factorél8) with n=1 andA=1.3 as in the

Bonn model.

1,8)
/

f(k
/
/

FIG. 11. Wave function componentsof the physical solutions - P _
(a) as a function ok at #=30° and(b) their 6 dependence at fixed In the weak binding limit(B=0.00) one hasa zp=190

k=1 value. Calculations are for the scalar coupling with1.18, andayz=166, a repulsive effect muc_:h strond@b%) than in
1=0.25, and sharp cuto,,,=10. Binding energy i8=0.0501. the scglar_ coupling. Corresponding wave functions are
shown in Fig. 12. One can see that the component of relativ-
B~0.5 and the same sharp cutdff,=10 one has, for in- istic origin f,=f, at k~0.3 and dominates above=1. A
stanceg,=0.610 anct,=0.793. Component§ thus obtained ~Similar result was found in thap 15, scattering wave func-
are displayed in Fig. 11 fof=30° in linear(a) and logarith-  tion calculated perturbatively with all the OBEP kernel in
mic (b) scales. One can see that compongntiominates _Ref. [59]. Contrary to thg Yukawa model, the role of relativ-
over the remaining five in the entire momentum rangelstic components is crucial already for such a loosely bound
Among the components of relativistic origin there is not aSystem. The coupling between components is also very im-
clear dominance. Notice the very small value of fhgom- ~ Portant: by switching off the nondiagonal kernédg,=Kp;
ponent, corresponding to the tengwave, which would be =0 the coupling constant moves from =190 t0 & fp

absent in a nonrelativistic approach. These components haye?51. It has thus an attractive effect which tends to minimize
a definite parity in variable co8, f, , ;3 sbeing even and, ¢ the difference between LFD and NR results. The comparison

odd, as shown in Fig. 1) for a fixed valuek=1. betweenf,; and the nonrelativistic solutiofyg shows a very
good agreement in smal Whenk increases, large differ-
VIIl. RESULTS FOR PSEUDOSCALAR COUPLING ences appear arfgg even has an additional zerolat1.1.

It is worth noting the dramatic influence of the form factor
For pseudoscalar coupling, the stability analysis was perin all these calculations. One has, for instange;=103 for
formed using the same methods as for the scalaf62gl  A=5 anda p=1725 forA=0.3. We remind the reader that
and it presents some peculiarities. the value used in the Bonn model for this coupling\ig,n,
Equations forJ=0" states are found to be stable without =1.3.
any regularization. The asymptotic behavior of the pseudo- Quite surprisingly, in the strong binding limiB=0.5) we
scalar kernel is the same as the scalar one; it has a repulsifiave founda, ;p=1462 anday\g=3065. Relativistic effects
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FIG. 14. Physical solutions fod=1* state with PS coupling.
FIG. 13. B(«) for pseudoscalar coupling aii=0" state with ~ Parameters are=60, ©=0.25, andA=1.3. Corresponding binding
©=0.5 and two different form factors compared to nonrelativistic energy isB=0.079 and components are plotted #¥30°.

results.
at small moment#k<1), but starting fromk~ 1 the compo-

now become strongly_attractivexLFD<aNR). An essential o niq of relativistic origin become larger thén

part of this attraction Is due to the couphng of the t\Mo. The splitting in binding energies is much larger than for
—f, components in the LFD wave functlon. By perfor'mlng the scalar coupling. It can be seen in Fig(e)5vhere the
one-channel calculations, one has indegg,=3001, which ~

represents a strong reduction in the effect though it remainteSults ofBy(a) for both A” eigenstates are plotted. The en-
slightly attractive. We have checked if this attractive effect®rdy differences remain important even in #e-0 limit,
happens for different values of the exchange massor the _F|g. 15b), in accordance with the analytical considerations
same binding energyB=0.5 and x=0.5 we have found N Sec. V. _

@ rp=1728 andayg=1400, repulsive once again. It is worth N summary, as was noted in Sec. VI, pseudoscalar cou-
noting that for this couplingsg is a decreasing function of pling displays the largest deviations with respect to the non-

w Whereasy qp increases, at least in this energy region. Thisre]ativistic dyngmics. Small and Iarge spinor components are
indicates to us the difficulty in discussing the “sign of rela- Mixed to the first order. The coupling betwegnand f; is

tivistic effects” in general. They turn to depend not only on €SSential even for very weakly bound systems, the compo-
the kind of coupling but also on the binding energy of thenents of relativistic origin dominate already at moderate val-

system and, furthermore, on the mass of the exchanged pat€S 0fk, and the splitings of the binding energies for the
ticle. different projections of thd+# 0 states are of the same order
It is interesting to study the zero binding limit of the LFD S the energies themselves.
results and to compare them with the nonrelativistic ones.
The NR potential(82) has been modified by including the
Bonn form factor(18). The results are given in Fig. 13 for an
exchange masg=0.5 and with two different cutoff param- 250
etersA in the form factors. They show the same behavior
that was found in the scalar ca&#, i.e., the relativistic and 200
nonrelativistic approaches do not coincide even when de-
scribing systems with zero binding energies as long as they
interact with massive exchanges. o
The J=1 state displays the same kind of departures from
the scalar case ak=0. Functionsg® for a=0, 1 have been 100
calculated using the valuesps=60, ©=0.25, andA=1.3.
Contrary to the scalar case, binding energies are sizably dif- 50
ferent:B,-;=0.103 whereaB,-;=0.0494. The physical wave
function is obtained using the same procedure as for the sca-
lar case, i.e., computéi_:fé and extract from them the coef- 0 01 0.2 03 0.4 05
ficientsc;. Their valuesgy=0.749 and:;=0.662, are different B
from co~1/\3 andc, =~ \2/3, with ¢, larger thanc,. The av-
eraged binding energy iB=0.0793. The corresponding so-  FIG. 15. Splitting of theJ=1 solutions for pseudoscalar cou-
lutions are plotted in Fig. 14. One can see thatlominates pling. Results correspond {@=0.25 andA=1.3,n=1.

300 T T T T

ps 150
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TABLE I. Coupling constante as a function of the sharp cutoi,,, for the J=0" positronium state with binding energy
=0.0225 a.u.

Kinax 10 20 30 40 50 70 100 200 300
a 0.3945 0.3928 0.3918 0.3911 0.3905 0.3896 0.3887 0.3867 0.3854
IX. RESULTS FOR VECTOR COUPLING taking kya,=10 and a=0.3—which corresponds tdByg

The stability analysis applied to vector kernels shows thagf?é%fsz S%X?e?dﬂggéprg:? Sé?li’)zccl)rere crt? g[rl;gl\ﬁ: arglatlwstlc

vertex form factors are required for both=0* and J=1"
states to obtain stable solutions. P
This is true in particular in the simplest application of BQED:Z|:
vector coupling: the positroniundi=0" state. The negative
parity of the state comes from the intrinsic positron parity soand are attractive. Equatiqd0) from Ref.[38] gives for
that the corresponding kernels are those of ifie0" two-  kp,=10 the value Bp =0.0308, in qualitative
fermion system already given in Appendix A. In Table | the agreement—thought still sizably different—witBggp.
values of the coupling constaatare presented as a function We should notice that a recent wofB9] analyzes the
of the sharp cutoftk,, and for a fixed binding energp  results of Ref[38] in terms of flow equations and obtains
=0.0225. The dependence is very slow—0.3% variation foia closer valueBp, c=0.02341. Weconclude from this that
knaxe [10, 300—Dbut it actually corresponds to a logarithmic the ladder LFD predictions for such a genuine system are
divergence ofx(k,) as it can be seen in Fig. 16. The origin unable to reproduce even the sign of first order relativistic
of this instability is the coupling to the second component,corrections. Because the lowest-order corrections of the
whose kernel matrix element, has an attractive, constant singlet state are not affected by the annihilation channels,
asymptotic limit. If one removes this component—which hasthe differences could be due to cross ladder graphs.
a very small contribution in norm—calculations become For u#0, the two-fermion system is bound due to the
stable and give foryg=0.30 the valuey p=0.3975. p-dependent term5~(tt’/,u2)v|j] in the vector kernelA8),
The comparison of LFD ladder results with those obtainedsince theu-independent one§y;;) are repulsive. This bind-
in perturbative QED or to the physical energies is meaninging disappears in the nonrelativistic limit.
less due to the instability of the solutions themselves. The When solving the equations fd=0" state, the standard
use of vertex form factors in a system of pointlike particlesform factors(18)—depending orQ? and local in the nonrel-
would be hazardous and the introduction of renormalizableativistic limit—were found to be insufficient for any power
counterterms seems to be a more appropriate cure. to ensure a stable solution. @ dependent Gaussian form
First positronium results in light-front dynamics were ob- factor failed as well. This unstability comes from the
tained in Refs.[37,38. These authors introduced a large p-dependent terms. These are off-shell corrections depend-
number of states in the Fock expansion but observed thiag on variabled,t’ defined by
same instability of the solutions. For a fixed value of the ) 5 - ) 5
cutoff, the results become finite and can be compared. By 4t = dei - M?, 4nTt’ = 4g, - M?, (98)

and are not regularized by a form factor depending on

21 2 4
1+Zca?+0(a®) | = 0.02516,

0.396 . I
0.395 | variable@?. Such a function cuts off the higk-k’| com-
0304 | i ponents, but not th¢k+k’| ones. A similar situation is
’ encountered in the framework of chiral perturbation
0.393 | 1 theory [80] and was solved by the replacemext(k, k')
0.302 | —Fl«(k kK)F(K). _
0391 | 1 Our way of doing it is as follows. Variabl€?=—(Kmeson
o -wn)? enteringF(Q?) is associated with the off-energy shell
0.390 | ] effects in the intermediate state containing one massive me-
0.389 | son u. In a similar way, we introduce the variablg=n?
-(k;—w7)>— see vertex 2 in the first graph of Fig. 3—and
0.388 | S - 1 inglyy’ =m?—(k’ ,— w7’)? from vertex 1. Variables
oss; | POSitronium 0™ state correspondinglyy 2 ex
- n and #’ control the off-energy-shell contribution to the fer-
0386 I B=0.0225 a.u. mion states and have been regularized by means of a cutoff
0.385 . function
10 K 100 A2 \n
max = —————
H(77)—<A2+77> .

FIG. 16. Coupling constant as a function of the sharp cutoff
kmax fOr the J=0" positronium state with binding energp  This corresponds to a nonlocal form factor even in the
=0.0225 a.u. nonrelativistic limit. On energy shell one hags 5’ =0.
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Thus, for instance, the total form factor associated with 100 :
vertex 2 of Fig. 3 reads .

Fnloc(Qza 7) = F(QZ)H("])- (99
In center of mass variablg8) the expressions for, 7'

50

are =
=
‘N 5 - k'-n k-n 0
1-—)2mitif -—>0 |
Ek Eyr Ek
n= - - . (100
k-A 5 o K ‘n k-n
1+— |2mtif -—<0
& t &
k k k 50 ’
0 1 2
k
and
20 T
L /"—\\ 4
Lr=a> — 6=0° 1
- - - r // MNG 0=22.5" 1
[ [ = 15 'y =cc. 4
k'-n w2t kK-n k-n ! y SN 045° |
1 + 2 t |f _— = 0 // S \\ o
, &k S €k r i, AR ——— 0=675 |
7 = + - + (109) 10 |- 1 NN —— 9=90" 1
k'-n K -nA ‘N i A RSN 1
(l - 2met’ if -— <0, = i // Jr— . \{\\
Eyr Eyr & - [ 1o RS S ]
k k K < 5 ] \\\\
N 1 - N

with t, t’ given defined in Eq(98).

Each coupling constant is replaced by
g—gF(QY)H(n)—or g—gF(Q?)H(5')—and the kernel is
multiplied by FA(Q?)H(7)H(#'). The values forA andnin H
are taken the same as f8¥Q?), but could in principle be I
different. 10 ’ 1 ' ' 5

By means of Eq(99), the solutions become stable but we k
notice that the use of only one kind of form factor is not
enough to ensure the stability. Wave functions corresponding FIG. 17. Wave functiond; for a J”=0" state in the vector cou-
to ©=0.15 obtained witm=1 and A=1.3 in Eq.(99) are pling with ©=0.15 and us_ing the nonlo_cal form fact@®9) Wi_th n
displayed in Fig. 17. Binding energy B=0.0225 anda, =1 andA=1.3. The coupling constant i8=1.485 and the binding
=1.485. They have normal behavior and one notices sizabl%nergyB:o'Ozzs'
relativistic component, starting fromk=0.5 with a strongy
dependence despite the small binding energy of the state. denominator. Increasing the binding energy—i.e., decreasing

Let us now consider thd™=1" state. Solving theJ” M?—increases, t’ factors and results in smaller valuescaf
=1*,a=0 equations with th&(Q?) form factor only leads to When theM? dependence i, t’ !<e_rnel_ is frozen—setting,
the same anomalies as fdF=0". With the nonlocal form €-8-M?=4m? —the usuaky(B) variation is recovereotted
factor the situation is regularized. With parameteds Curve in Fig. 18. When including the full dynamics, both
=0.050, u=0.25, A=1.3, andn=1, for instance, one has a aa(B) curves get close to each qther in all the variation do-
coupling constan=6.18 and a well behaved wave function. mainB=[0, 0.5, as was the case in the_scalar coupling. How-
The same happens for thE=1*,a=1 state. When using, ever due to their peculiar behavior—flat and almost

: parallel—the splitting in binding energies corresponding to a
‘évgth tbg (S)"l]lme parameters, the nonlocal form fa¢esy, we fixed value of the coupling constant can be very large. One
a=0. .

i L . can also notice in Fig. 18 the different valuesayfat B=0,
The mass splitting between the tas0, 1 projections i yeqpite the fact that the systems of equationsafe and
shown in Fig. 18. One first notices the striking behavior of 51 nave—as in the scalar coupling—the same nonrelativis-

a,(B) curves, i.e., larger binding energies correspond tqic jimit. This difference is due to the Af terms in the ker-
smaller values of the coupling constantThis fact—which el They are not relevant at tii&/m)° order but are crucial
takes place also fal=0" states—is a consequence of 1€  for binding a relativistic two-fermion system by vector ex-
dependence of th'/u? terms driving the vector kernedi(j") change. For a fermion-antifermion system with massless ex-
in Eq. (A8). Its contribution is large because @f in the change, e.g., positronium, the splittingB#0 disappears.
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12 . . . . coupling constant changes from=55.5 toa=58.5. This de-
— < 2a=0 pendence is due to the coupling to the wave function com-
Mr e—=a= ponent of relativistic origin. Vertex form factors are required

............ a=0 with B=0 in t,t’
PP — a=1 with B=0 in t,t’

for J7=1" states. LFD solutions, obtained with regularized
kernels, present large deviations with respect to nonrelativis-
tic case, even for weakly bound states, and display a big
sensitivity to the cutoff parameters. The LFD wave function
is dominated by a relativistic component at relatively small
momenta(k<<m). The coupling between different compo-
nents is strongly attractive and can compensate the repulsive
effects observed in the Yukawa model. Thus, relativistic cor-
rections can be attractive or repulsive depending on the
quantum number of state, the value of the binding energy,

9

oy s

> and even the masg of the exchanged meson. The energy
4 . . i ; splitting between different projections k1 states is large
0 0.1 0.2 B 0.3 0.4 0.5 and remains aB=0.

Vector coupling presents stronger anomalies. ko0 it
has been applied to the positroniumdate. It is found to be
©=0.25 and form factor§99) with A=1.3n=1. Dotted lines corre- unstable and, once regularized by means of sharp cutoff-of,

spond to a fixed binding enerd=0) in t,t’ off-shell variables of the .Iadd.er approximation gives relathISt.IC corrections (.)f Op-
kernel (A8) posite sign compared to QED perturbative results. This fail-

ure shows the poorness of the ladder approximation in one of
the rare cases in which it can be confronted with experimen-
tal results. Forw#0 the LFD solutions collapse even using
local cutoff form factors. The reason lies in the strong non-
We have presented the explicitly covariant LFD solutionsocalities of theu-dependent terms in the LFD kernel. These
for the bound state of two-fermion systems in the laddeterms have their origin in the massive vector propagator and
approximation. A method for constructing nonzero angulamanifest as off-shell corrections of the=0 kernels. They
momentum states has been proposed and illustrated by nbave been regularized using appropriate vertex form factors.
merical examples. It is based on satisfying the angular confhe J=1" state has thus been calculated. This state is not
dition by a linear superposition of eigenstates of an operatdpound in the nonrelativistic limit and its existence in a rela-
commuting with the LFD ladder Hamiltonian. tivistic approach is entirely due to the-dependent terms in
We have Separate|y examined the different types of OBEhe ker.nel. The 'importanc'e of this off-shell terms is thus
couplings and found very different behaviors concerning thélramatic. In particular, their energy dependence generates a
stability of the solutions themselves and their relation withdecréase of the binding energy as a function of the coupling
the corresponding nonrelativistic reductions. constant, which questions the very meaning of th_e |n.teract|on
Scalar coupling(Yukawa model is found to be stable strength. Theaa(B) dependence for different projections of
without any kernel regularization for th&=0" state and J=1 states remain very close to each other evefisfem but

coupling constants below some critical value< o.=3.72. the!r . partlcular_ fo_rm—smooth and a_'”?OSt paf?‘”e'
For values abover, the system collapses. For thE=1* variation—can give rise to large energy splitting for a fixed

: a ~ o value of the coupling constant.
state the sqlutlons of bo.w.'_o _anda—l projections are un- Some general additional remarks concerning the relativis-
stable. Their energy splitting is very small even for binding

. : tig calculations are given as follows.
energies B of the same order as the constituent mass and (j) contrary to the nonrelativistic case, vertex form factors

vanishes aB=0. The physical solution, satisfying the angu- 4re ynavoidable in any realistic calculation. The full spinor
lar condition, has been constructed by a suitable linear comgyyycture generates highly singular kernels which are not
bination ofa=0, 1 states. LFD binding energies are found toregularized by local vertex form factors. It is clear that, es-
be close to those given by their nonrelativistic limit, evenpecially at largek values, the obtained wave function and
closer than the case of purely scalar partigéck Cutko-  consequently the electromagnetic form factors will crucially
sky model extended ta#0). The comparison with the non- depend on the way the regularization is performed. The large
relativistic solutions always shows repulsive effects. Themomentum components will thus be determined not by the
LFD wave function is dominated by the component whichdynamics but by uncontrolled parameters. We believe that
has a nonrelativistic counterpart. Extra components of relakere lies the main drawback of relativistic approaches.
tivistic origin remain negligible even at large values of the (ii) The consequences of implementing the Lorentz invari-
relative momentuntk>m). ance in a quantum mechanical description of a system are
Pseudoscalar coupling is also found stable 36=0" not only kinematical but mainly dynamical. Large differ-
state. It displays a very strong dependence of binding eneences with respect to the nonrelativistic solutions appear
gies as a function of the coupling constant: they vary fromeven in the zero binding limit for systems wiim<1 as
B=0.001 toB=0.500(in constituent mass unitsvhile the long as the exchanged mass is nonzero. We have explicitly

FIG. 18. Splitting of thel=1* solutions for vector coupling with

X. CONCLUSION
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shown for scalar and pseudoscalar couplings that the behav- w-K=xXw-p,
ior of a(B) at B=0 differs from their nonrelativistic counter-
parts, a result already found in the Wick-Cutkosky model

[64]. o-ky=(1-x)w-p,
(iii) The question about the sign of relativistic effects has
no simple answer. They can be different, following the nature ky - ko = 22— P,

of the constituents, the kind of interaction, the quantum num-

bers of the state, its binding energy, and even the mass of the C ) )
exchanged patrticle. This shows that there are no simple reci- ky -ky =28, =,
pes to performa priori evaluations.

(iv) The splitting of different projections af=1 states is
very different following the kind of coupling. In nuclear
physics—where the weight of scalar mesons in the binding
energy is dominating—it is expected to be very small. The ko -p=28ix+iM2(1-x),
same is true for the massless vector coupling such as one-
photon or one-gluon exchange. It can be however very large
in relativistic models where pseudoscalar exchange plays an
important role.

Finally, we yvould Iikp to em.phasize one qf_the interestirjg K, p= 28§,x+ IM2(1-x),
features of using LFD in describing the relativistic composite
systems. It lies in the fact that wave function components
appearing in this approach are closely related to their nonrel-; . ki =—Kkk' sin #sin ¢’ cos¢ + zgi,x + zgﬁx' - zgﬁxx/
ativistic counterparts. Some of these components are the for-
mal equivalent of the usual nonrelativistic solutions while —Zsﬁ,xx’,
the others are of pure relativistic origin. Relativity manifests
both in modifying the former and in giving a sizable weight
to the latter ones. We have found that the coupling betweenkz - ks ==Kk’ sin 6 sin 6 cos ¢+ 2epx + 2e;, X' = 2efxx’
these components plays an essential role, even in determin-
ing the stability of the solutions. In addition—except for the
scalar exchange—the total wave function is dominated by
the relativistic components at moderate values of its argu- ky -k = kK’ sin 6 sin @' cos ¢+ 285(1 -x)(1-x)
ments(k<m), even for loosely bound systems.

ky - p=2e2(1—x) + M,

K;-p=2s0(1-x')+3M,

[LeN

—_ !
Zsk,xx )

+ Zsi,xx’ ,
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Using the above result, we have obtained the analytical
APPENDIX A: KERNELS expressions ofs; kernels forJ7=0", 1" states. They are

Kernels ; are obtained from Eqg45), (46), (63), and written below, coupling by coupling, in the form
(64) as traces of 44 matrices. To calculate these traces, it is C o . . ,
useful to express the scalar products between all the conij(k 0, K', 0", ¢") = cj(k, 0,K’, 0') + dj (k, 6, k', 6')cos ¢
cerrgjed four-vectors in terms of variablésk’, 6, 8'). They +e;(k 6,K, 6')cos ¢, (A3)
rea
with coefficientsc, dj;, g; invariant under the transforma-
tion (i,k, )« (i’,k’, 8'). We introduce for shortness the
notations

®?=0,

k2: k2: k k12_
sf=sin g, cH=cosh, SH=ksinb, CH=k cosé,
w-k1=Xw-p, CQD/:COSQD,,
w-k=(1-Xw-p, plus corresponding primed and the following quantities:
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2 2
bZ = mP(ef + &) £ 28e,,,

=

I+

sﬁzsk m,

2
At=gite,,.

I+

Coupling constants appear throughk g%/4r.

1. Scalar

Kernels for the scalar coupling were already given in Ref.

[68] and are included here for completeness.
For J=0",

B - _[RA* + 28,60 (8080 — COCH')] + A*SHSH Co'
QT

K12 - ’ ’
— =-mA(S¢' +Séce’),
aTT

(A4)

K21 _ oy
— = +mA7(S#+SH'ce’),
aTr

K_22 =A"SHSH’ - [mZA+ + 28k8kr(8k8k/ - CHCH,)]CQD’ .

am
For J=1%,a=0,
K11 _ ’ 2 ’ + ’ ’
— =[2kkK g &, —bicOcO' ] — gy e s ATsOsO' co’, (AD)
am

K

2o My (282 + A*)cosh’ — msk(Zsi, +A%)sfch'co’,
aTT

K

—2 = mg, (267, + A*)sOcO’ — ey (282 + A*)chst'cg’,
aTr

K
2= exeATSOs6’ +[2KK &g — b2chcd e’ .
am

ForJ=1* a=1,

2
c:lrl =~ {Mg, SHA" + 257) + Mey 20’ (A* + 282) + (c20

+¢26')b? - 4e,e,,CHCOH'} — {A* (e e, cOCH
- kK')s6s0'}ce' - {A*ere,, S20520' 1

2K 2
a—; = [mey (A + 2¢7,) - b2]$%6 — [meyo (A + 25) — 21526
—{KK (e = &)? + (e + 1) %ere, . COCOH }sOSO' Cp’

+{ep (e + £10)°C%0" — &, (e — £10)* e P OC%

PHYSICAL REVIEW C 68, 055203(2003

[2k
L o 26 COSY — e, (MA* - 2676,,)CO' SO/
aT
+ {28k8k/kC0’ + SECQ:SKI(A-'— - 2m8k) - 8;1(8k
+£0)2C20' IS0’ — (8 + £10)2exe 00’ O CPg
\’EKM - -
—= = A{(m+ & $OSH +mMSHce’ — £,57050' '},
am
2k
T2 = [mey (A" + 260) - b2]26' — [mey(A* + 2¢7,) — b2]s6
am
—{KK (g — 4)? + (g + skf)zsi,eicﬂcﬂ'}sﬂsﬁ'w'
+{gp (e + £0%C?0 - &, (g0 — sk)z}s;,szﬁ'czgo' ,
2K _ 3 -+ 27 20 o (pet
— =mM(gx+ &) — g (MA” - 2g,,,)C°0 — &,,(MA

aT

- 28260)C?0' — 4ee COCH — (g, + ) (exen
—CHCH')sHsH cp’ — {2b2(c?0+ c?0') + 2m[ e, (A*
+ 28i,)$20+ e (AT + 28@820’] + (g

+ £0)2ere, S20520" — Beyew COCH 1y,

\’5K23 - 2
= {2k,8k8k/C0+ Sk;(mA+ - 28k8k/)C0’}S(9,
aTT

- {8;C(9[8;,(8k + Skr)zcze/ - Skr(A+ - 2rn<9k)]
- 2k8k8er0’}59CQDl - {g;,Cg’((Sk - 8k’)z‘g; - (sk
+8,0)%6,C20) + 4K’ 8, COISH 2o’

r/EK

At S A{(e - £,C°0)SH - mSHce’ — (&5

aTT

- £,C%0)S0'c?e'},

\r5K31 - 2
== 28k8k/Sl9C0' - 8k(mA+ - 28k£k;)30C0
aTT

+50'{e,CO' [(MA* = 2626,,)C20+ & (A”
- 2m8kr)520] + 28k8k/kC0,}C(p,
- A+8;s;,St9C49820'C2<p' ,
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P o (2kK sy +b2COCH) + e (AT — 2mP)s0s0' co

V/EKsz

={2ke e, CO + g (MA™ - ZSkSE,)CG}Se

aTT

—{ep,cO'[e (e, + £4)2C%0 — (AT — 2mey) ]
k k

- 2K &£ COsH co’ — {erch (e, — 1), — (& K
ewCoist'ce’ = iechllen— o) ey ~ (o 22 = A (g CO50 — £y sOCO CP'),
QT

+ £41)%,,C20'] + Akeye CO' Yo%y
(A7)

K _
e {Sksk’(A+ - 2m8kr)C20/ + 8k’8E(A+ - stk)cze
aT
Ko1 _ - ’ !
- e (AT + 2m2) —[(ex+ 8kr)28E8;rC0C0, ET = HMA (eisted’ — eectstice’),

- 2KkK eyl tep’ = [(e+ &) exe cOCH’

- 2KK gy&, 15086’ %',
K22 + 2 2
= —grep (AT = 2m)sosh’ + (2kK eyeyr +bZchch’)co'.

K
=+ Aeps0c6S0 (1 - '),
T
ForJ=1% a=1,

J'EK _ _
Ve A {(m+ sk,szb")St9+ mSY' co’ - sk,szﬁ’Sﬁczgo'},
aTr 2K11 _ 2 2
——= = 4CHCH g,err + MA™ (8,820 — £,05°0') + b?(c?0
aTT

+C20') + (g — 1) (KK - £€,,C0CH")SHSO Co’ + (8

2k _

il P A{(ep = £,C%0")SO- MY co’ - (8:,
am

—£,,C20')SOc%¢'}, — &)y e, L0520/ Py’

[2x -
o A {(e - £, CP0)SO- M cg’ ~ (e, o
am “22=(c20- c20)b2 - MA (5, 820+ £0520') — {KK (g
- 8;,C2(9')89C2(p’}, am
+e)2 +coc (e - sk,)zsisg,}sﬁsa’mp' -{(b?
K. _ — - ’ ’
ﬁ =~ A, s6'cH'SH(1 - '), ~ Mg A7) (1+C%0) + e e (AT + 2mey)S°0' 1S 0c%¢,
K
2= [2e4e,/(COCEH - g4er) — MPAT]Ce’ + ATSHSH 2’ . \’EKlS ~
am ={[ew (AT + 2mey) — &, (e — 1) *C?0' JecO
am
2. Pseudoscalar - 2k8k8er0,}SQCQDI - {(bg + msk,A‘)Cﬁ’
For J=0%, +2kK e e COISO’ + eye,, (e — £0)?S2050' O %o’ |

K _ [MPA* = 2,84 (s — COCH' )]+ ATSHSH' o',

am

—
\”2K14 - +.2 1 ’ - r~2 1

K A= (o —

Kz _ MA™(SO' - Sce), o A™{- (ex— £,C%°0)SH' + MSce’ + £,5°6S0' o'},

am (A6)

K21 _

— = +mA~(S#-SH'ce’), 2

arm K2 (20— 20" )02 + MA (8,820 + £,20) — {KK (&

am

K22 , ' -
— = A*SHSE + [MPA* - 28,8 (e — COHCH') e’ . + £10)% + COCO' (81— £10) ey 1500/ Cg’ — {(?

aT
+ mSk/A_)(l + C20) + SKS;,(A-'— + 2m8k/)520}520’C2(P’

ForJ=1,a=0,
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% = - mMA (5,820 — £,,520') — bA(c?6 + ¢20') \E,:Z =A{(e — £,C%0')SO+ M co’ — (8:,
- 4g,e,COCH +{KK (g — &1)? + cOCH' [MA™ (g — £,,620')S6c%¢'},
— &) = b? = gper (AT — 2mP) |}sbse’ co’
+{8eye COCH' + 20%(C20+ C20') + 2mA™ (£, 520 Z—‘: = A&y, s0'S0CO' L)

- gpSP0) + 526520 (g - sk,)zsgsg,}czgo' ,
K,
= = (= b2 - 26,6, CHCH )Cp' — A*SHSH 2.
T

V’EKZS — ’ 2 - ’ ’ +
= {2k 8k8er0+ (b_ + msk/A )06 }50 + {[Skr(A
aTT
- P
+ zmek)829/ + (mA+ + 28k8i,)C20,]8kC0 3. Pseudovector
Pseudovector kernels will be given as a sum of the pseu-
= 2Keye CO'YsbCe’ +{[e(A* + 2mey)s”6 + (MA” doscalar ones plus a terfiy which depends on variableg’
. Zsﬁsk,)(l +<:20)]s;,c0’ Ko COISH defined in Eq(98) and vanishes on energy shélt’ =0):
Kij = KiFJ?5+ 5IJ .
\/EK24_ _ 5 e , . The following expressions fow; are valid only forx
o — A™{(ex— C°0y)SO" + M’ ~ (g —-x'>0—with x, x’ defined by Eqs(A2)—and because of
B this coefficients(A3) are not symmetric in the exchange
- £,C%0)SH' o'}, (i,k, ) ('K, 0"). For x—x'<0, the corresponding ex-
pressions are obtained by replacihg>-t’, t'—-t and
P their symmetry properties are restored.
s {[en(A* + 2mey) = g (e = £)’C?Ole,,CO' For J=0",
aTr
S
- 2k eeCOYsH ¢’ — {(b? — me, AT)ch = Mt + (t-t)A™ - (t+1) (8. CO - £,CO)}
aTT
+ 2kK'gyeCO' SO+ gy, (e — e)?s0cHs°0' c?¢’ — mPtt’ S6S6' ¢,
JE 1)
N2 (ke CO + (B~ meAT)ch}sO + {[e (AT ﬁ =m{nPtt’ + s2(t—t') + gt +t)CHSO’ + m{nitt’
aTT
+2Mey)S20+ (MA™ + 2efey) C2]e,, CO’ — &b (t—1") — £, CO (t+1')}Shce’,
- 2k’skser0}50'C<p' + {[Skr(A+ + 2m8k)320’ s
21 ’ ’ ’ ’ ’
+ (MA* + 26,62)(1+620) el = m{métt’ — sﬁ,(t —t") = g (t +1')CH'}SO + m{ntt
— 4kK g, CO' }sOC%Q' +ed(t—t') + gt +1)COSH co’
522

58 (- epel(AT - 2mR)2020" + 2C6OCH ] - bC20C20 —— = MAUSHSH — At + (=)A= (t+ ) (e CO'
aTT

+MA e S20' C?0— £,526c%0' e’ +[2KK &yer —&Lo)]ce’.

+epe,, (e — £)2CHCH |s0s6' 2o’
KR T 4. Vector

Vector kernels are written in the form

534 o AepsS0' oS¢, 2
am Kij = 2m2tt,_21)” + X”
o
\r'§K4l _ _ . in which y;; correspond to the.=0 case. Thas; contribu-
am =~ A™{- Sh(ew _8k’026,) +m'ce tion, due {o,u-dependent term in the vectojr propagator,
_ appears to be of shell corrections. Positronium kernels are
+565°' e, C%¢'}, simply given byxfjpsz—)(ij.
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FOI‘ J:O+, X13 —
Bor = - 2e,e0 (kK cO+ gye,,c0')s0’ — {g A™(M
\eaT

2
K11 — 2 /m ' ' 2 2 _
T g 2 F(mz +5080'ce’) + (b2 - 2€,,€), + £,520')cO— 4KK &8, C0' }sbCo'
+ 288088, 52050/ CO' CP’

me
- 2 ot —(S6' - Shce’) + mATSY,
M

2am
514 =mA~Sbce’,
(A8) V2ar
n‘lz le ! - !/ / !
_ e 2mPtt’ — (S - SO'ce’) —~ MA™SH, o [KK (4eyer — A") + g8, ATcOcl SO0’ co
a 7’
- 28y8108,, (28— £, 0)S20' C2¢" — 28180 eei (C20
2
m 2 ’
- K22 _ ot — (3656’ + mPce’) — (A*S6S6 - ¢20) + M(e, &0 — £,050)],
2a w
+ 2€i €0 (€€ + COCH )cop'). _ _
For Jo1 ac0 KK 2—2; == 2e 5 {M(e + eyr) + &8, C20' + €108, C20+ 2CHCH'}
orJd=1",a=0,
o +{kK (4eyer + A7) + g.e,,Achcl’ }sbs’ co’
K11 , , L -
oy = - 2métt ?[mzcb’ca + €€ SOSH' Co’ | + 28k8k/{(8:, + Sk,CZH')(SE + 8EC219) + 4C6’C0’}Cz(p’,
+[MPA*cOcH’ + 2660 (KK + 2mPshsd’ co')],
;(23 =2ge (KK cO+ &, 8,C0")S0" — 2ee{2KK cO
2 V2ar
K12 ’ ’ PN - -
_Zaﬂ- =2m’tt ?[EerHSG —gs6ch' co ] + (8; + skc20)8k/001}50102¢/ + {4kk'8k8kr00'
- mee[A*cHsO’ - 2€.€,50cH co'], - g AT (Mm+ g, S20")cOlsbcy’
2 X24 -
K21_ 3 rm r_ ’ ’ ——— =-mA~Slc ,,
S 2mett #z[eksece €:COs6'co’ | Pan ¢
- mek[A+SHC¢9' - ZEkEk/CHSG’C(P’], (Ag)
,)—(31 = 2£k8k/(kk’09' + 8;«8;00)50_ {8;,A+(m
\2ar
2:—2mztt’n—]2[,s €500 + mPcoch’ co' ] +e.5260)co’ — 4kk' o'so' co’
2am MZ k€K’ ¢ Ex )C gxer C }S Cop
- rA2, 1
+ [6k6k7A+3030, + ZEkEkr(kk’ + Ek€k/C6C6/)C(P’]. + 28k8k/8k8k,C950520 Co,
ForJ=1%, a=1, theu-independent kernelg; are given by
;ZZT = 2ee0 (KK CO' + & 8,,CO)SO— 28, {2kK O’ + (8;,
- N
xu 2e,80[2CHCH" + (MA* + 08,C?0 + £y, C20') ] _ _ _
am +2,,C%0 ) e, COISOC’p’ +{4KK gye,CO— g, AT(M
KK e+ ATKK + o) Js0s0/ o’ 72008 580,
+ 288088, S 0520 CPp’
z—jj = deyer (KK + egey,)s050' C2p" + 2{Aeye, COCH
X12 , - - ' 't _ - _ -
P [KK (4eyer — A7) + e, ATcOcl’ |ss0' co + A (e + 818 CPOC%0 = £0e CP0— g8, C20')}Co’
- 28808 (28 — £, 520" )SLOCP Q" + 2e e[ eer (C20
X34 _
- c20) + M(e, S0’ — £,,526)], ar O
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’L(i =-mA~S6'cy’,

V2amr

Xaz _ mA~S#'co’,

aTT

X4a3 _
aT

0,

Xaa _ 2(28§8i, -b?)ce’
T
and they; contribution reads

v -
= M, €20+ &,,C%0" — (e + &) ] = [KK'
am

+ g8, COCO ]SO0 Co' — 48, SO0 CPy’ |
1% —
2 = m{(ey ~ ey) = £xC20+ £,620'] + [KK
aTr

- £4€,,C0CH" |s6s0’ co’ - 8;(8;, - s;,CZG’)520C2<p’ ,

V13

Ban =—me,s0'co + e (M+ e, 570 )sococe’
- 8;8;,32050,00,C2(p',
V14 _ - ’ ’ - 1 A2, 1
—" = (m+ £, 520)SO' - mHce’ - £,52650' ¢’
\2arm

2 = - m[(gk - Sk’) + 8;,C20/ - 8;C20] + [kk/
aTr

— £xe, COCO ISOS0 Co’ — &, (e — £,C?0)S0' CP¢’
222 ey + £10) - 1620 £,,620'] (KK’
QT
+£y€,,C0C0')SOs0' Cp’ — (2m+ g, °0)(2m

+ 8;,829/)C2(,D’,

23

oo Me,,SO'CO’ + e, SOCO(M+ &, 520" )Co’ — &, (e
\LaT

- £,C%0)sH'ch' 2y’
;24 = (M+£,5260)SP' + MSHce’ — (2m+ £,5260)S0' 3¢’

V2aTr
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:31 = —Me SOCO + g, (M+ £,520)s0' ¢ co’
V2ar
- 8;8;,520'59C0C2(p’ ,
U32

5 = Me;SOCO + &,,50'cO (M + &, S20)ce’ — (e,
VLT

- £,C%0')sfcoc’e’

s 2(m+ e;,820')(m+ g S0)co’
am

- 2e8,,C0CH'SOSO ¢’
B4 = persacoS0' P,

aTT

Us1

=(m+ s;,szﬁ’)SH— mY'co’ - s;,Sﬁszﬁ'ngo’,

\12(1”77

, _ —
ﬁ =(M+¢e,5°0')SO+ M co’ — (2m+ &, 5°0') SOy,

v, _
—2 = 267,56/ SO,

aTT

P4 (P + S6SH'co)C

aTT

APPENDIX B: RELATIONS BETWEEN THE
COMPONENTS OF J=1 STATE

The wave function of thd=1 state is represented in two
forms: in form(49) with the componentg; and in form(51)
with the component§;. The formulas expressing the compo-
nents ¢; in terms of thef;, in approximationM=2m, are
given in Appendix C from Ref[57]. Here we give these
relations for arbitraryM (note thate; and ¢g only differ
relative to Ref[57]; we denote below=cos 6):

_ m2(28k + m)

= +
P 48kk2 2 48k(8k + m)

(V2fy - fa+ 2, — \3zfp),

m -
¢2=—(2f = f— f3— 221y,
48k
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V228, - M)&K (28, + M)(2e, — M)?
T 16 ke rm) L 1662k
(482 + 8Mg + M)k
1682(g+ M)
. 3_M(1 225 M)2k2)
4k 12M8§(8k+ m) 4
J3M ( . (28, - M)Zkz)f
4k 4M8i(8k +m) e

P3=

zf,

Z13

¢5:§ §k8k >

(24— M)?
@6 = Tsk(ﬁfl ~fp+2f,~ \3zf)
(42 + 8Mg, + M?)
8m8k

The state withJ=1,a=1 is determined by Eq67) as a
decomposition in four orthogonal spin structu&ﬁ. These
four structures are expressed by E§8) in terms of six
structuresS,,, defined in Eq.(48), with the coefficientsh;

fg (B1)

given below. These coefficients are found as follows. We

substitute formulag66) into Egs.(B1) and then Eqs(B1)

into Eq.(49). In this way the wave functiog!,’ is expressed

in terms of the four functiong'”, i.e., obtains the forni67).
The coefficients at the front o™ are the structures)”.

Collecting these coefficients, we fin§ in terms of six
structuresS,, in the form of Eq.(68) with the following
coefficientshy;:
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_ \@mz _ \Em
1 48k(8k + m)’ 12~ 4g '
V3(e— M)(4e2 + M?)z
162k
sz hag =0, hygm L3S MY
14— 1115— Y, 16— 88km
_ e -A+ma+A)] _ 3m
2 4e kA1 -2 » 22T g
V3(4e2 + M?)[e(1 -2 + m(1 + )]z
16e2k(1 -2

hy

hiz=

hy3=

\B4eg+ MA(1+2)
8sm(1-22) '

3z

) 2e (et M2(1-2)

V3(e— m)(4el + M) Z

hs; hs=0,

N A7)
N3s=- ﬁ—L h3s=0,
ky2(1-29)
V3(4e2 + M?)z
© 4em\21-2)
\3m?

hsy=hg=hy3=hy=0, hjg= ————,
41 = Ng2=Ny3=Nyy 45 28kk\"m

hss=0. (B2)
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