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I. INTRODUCTION

The two-fermion system covers a huge number of appli-
cations in atomicse+e−d, nuclearsNN, NNd, and subnuclear
sqqd physics. The interest in using a relativistic description
for such systems appeared in the early days of quantum me-
chanics[1,2] and has constantly been pursued since by many
authors. This interest has recently found a newélan due to
the measurements performed at Jefferson Laboratory[3–6]
where simple nuclear systems have been—and are being—
probed at momentum transfers much larger than their con-
stituent masses. Consequently, this experimental activity mo-
tivated a number of works on relativistic dynamics.
Extensive reviews on the past and recent deuteron results can
be found in Refs.[7,8].

Most of the approaches developed for describing relativ-
istic two-body systems are based on the Bethe-Salpeter equa-
tion [9–15] or its three-dimensional reductions of it[16–21].

An alternative approach is provided by the light-front dy-
namics (LFD). In its standard version, following Dirac’s
classification of relativistic theories[22], the state vector is
defined on thes=z+t surface. Wave functions—defined as
the Fock components of the state vector—are the formal ob-
jects of this theory and are directly comparable to their non-
relativistic counterparts. LFD has been developed and used
by many authors[23–51] and represents a promising ap-
proach to nonperturbative Hamiltonian quantum field theory,
especially when dealing with composite relativistic systems.
The interested reader can refer to the past advances and more
complete references set in the proceedings of the past con-
ferences devoted to the subject[52,53].

The explicitly covariant version of light-front dynamics
(ECLFD) was initiated by one of the present authors in a
series of papers[54–56]. The state vector is there defined on
a space-time hyperplane whose equation is given byv·x=s,
wherev is a four-vector determining the orientation of the
light-front plane and satisfiesv2=0. This choice is not only a
mathematicaldelicatessebut a way to carry everywhere in
the theory thev dependence in an explicit way. It has several
advantages, all related to the fact thatv is a four-vector with
well defined transformation properties. This approach pro-

vides explicitly covariant expressions for the on shell ampli-
tudes, a property which is often hidden in the standard for-
mulation, recovered by fixing the valuev=s1, 0, 0, −1d. This
value is however associated to a particular reference frame
and it is not valid in any other one. The formalism and some
of its first applications to few-body systems have been re-
viewed in Ref.[57].

Approximate light-front solutions for theNN system
[58,59] were found in a perturbative way over the Bonn
model wave functions[60] and successfully applied to cal-
culate the deuteron electromagnetic form factors[61] mea-
sured at Jefferson Lab. Latter applications to heavier nuclei
[62,63] have shown the pertinence of this approach in de-
scribing high momentum components of theNN correlation
functions.

These successes stimulated a series of works aiming at
developing some formal problems of the theory and obtain-
ing exact solutions in the ladder approximation for systems
of increasing complexity. Results concerning bound states of
two scalar particles can be found in Refs.[64–67].

We present in this paper the formalism and numerical
solutions describing bound two-fermion systems interacting
via the usual—scalar, pseudoscalar, vector, and
pseudovector—one-boson exchange(OBE) kernels. Results
are limited toJ=0 andJ=1 states. Our main interest in this
work is to study the solutions of the LFD equations as they
are provided by the OBE ladder sum with special interest in
their stability, their comparison to the nonrelativistic limits,
and the construction of nonzero angular momentum states.
For this purpose, we have studied each coupling separately
and the only physical system considered is positronium. The
first conclusions concerning the Yukawa model have been
published in Refs.[68–71] and a more detailed derivation of
equations and kernels can be found in Ref.[72]. This series
of works is also being extended to the two-body scattering
solutions and to three-particle systems. The case of three
bosons interacting via zero range forces was considered in
Ref. [73]. In Refs. [74,75] the ensemble of these results is
briefly reviewed.

It is worth mentioning previous works on two-fermion
system using the LFD approach. In Ref.[46], the relativistic
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bound-state problem in the light-front Yukawa model was
considered. In Refs.[37,38], positronium and heavy quarko-
nia calculations in discretized light cone quantization were
carried out. The formalism was used in Ref.[27] to build
one-boson exchange kernels and to calculate nucleon-
nucleon phase shifts as well as deuteron properties. Recent
application to meson spectra can be found in Refs.[40,41].
LFD was also applied in Refs.[43,45] to describe theNN
system and nuclear matter equation of state.

The paper is organized as follows. In Sec. II we establish
the structure and main properties of the explicitly covariant
light-front wave functions, the two-body equation, and the
OBE kernels. In Sec. III the problem of angular momentum
J is discussed and states withJ=0, 1 are constructed. In Sec.
IV we derive the coupled equations for the wave function
components of states with angular momentumJ=0. The cor-
responding equations forJ=1 states are derived in Sec. V.
The nonrelativistic limit and perturbative calculations are
discussed in Sec. VI. In Secs. VII–IX we present the results
of numerical calculations. In order to disentangle their dif-
ferent behaviors, each coupling is separately analyzed. Sec-
tion X contains a summary of the results and the concluding
remarks.

II. WAVE FUNCTION, EQUATION, AND KERNELS

The wave functions we deal with are Fock components of
the state vector defined on the light-front planev·x=0. For a
two-fermion system—shown graphically in Fig. 1—it reads

Fs2s1
= Fs2s1

sk1, k2, p, vtd, s1d

where si are the constituent angular momenta. The gen-
eral form of the wave function is obtained by constructing
all possible spin structures compatible with the quantum
numbers of the state. The four-vectorv enters in the wave
function on the same ground as the particles four-
momenta, giving rise to a number of structures larger than
in nonrelativistic dynamics. Each of them is mastered by a
scalar function, denoted byf i throughout the paper, which
can be interpreted as a wave function component on the
spin space. The numberN of such independent amplitudes
simply follows from the dimension of the spin matrix form-
ing the two-fermion wave function with total momentumJ,
i.e., N= 1

2s2J+1ds2s1+1ds2s2+1d with a factor 1
2 to take into

account the parity conservation. In the cases1=s2= 1
2, it

gives N=2 amplitudes forJ=0 states andN=6 for J=1.
These wave function components will be specified in the
subsequent sections.

Since the Fock-space component is, by construction, the
coefficient of the state vector decomposition in the creation

operators basisas2

† skW2das1

† skW1du0l, the independent variables

are the three-dimensional vectorsskW1, kW2d and the particle en-
ergies are expressed through them. Consequently all four-
momenta are on corresponding mass shells:k1

2=k2
2=m2, p2

=M2, svtd2=0 and satisfy the conservation law

k1 + k2 = p + vt. s2d
This equation generalizes thes', +d-component conserva-
tion in the standard approach; the minus components are
not constrained. In the light-front coordinates withv
=s1, 0, 0, −1d, the only nonzero component ofv is v−
=v0−vz=2. The four-vectorvt just incorporates the non-
vanishing difference 2t=k1−+k2−−p−. In this sense the
ECLFD wave function is off energy shell. Since the four-
momentum vt enters in the wave function on equal
ground with the particle momenta, we associate it for con-
venience with a fictitious particle—called spurion—
showed in Fig. 1 by a dashed line. We would like to
emphasize however that the Fock-space basis does not
contain, for all these, any additional and unphysical de-
gree of freedom. By spurion, we mean only the
difference—proportional tov—between nonconserved
particle four-momenta in the off-energy-shell states.

It is convenient to introduce other kinematical variables,
constructed from the initial four-momenta, as follows:

kW = L−1sPdkW1 = kW1 −
PW

ÎP2Fk10 −
kW1 ·PW

ÎP2 + P0
G ,

nW =
L−1sPdvW
uL−1sPdvW u

, s3d

whereP=p+vt andL−1sPd results from the Lorentz boost

into the reference system wherePW =0. In these variables
wave functions1d is represented as

Fs2s1
= Fs2s1

skW, nWd. s4d

Under rotations and Lorentz transformations of four-

momentak1, k2, p, vt, variablesskW, nWd are only rotated, so
the three-dimensional parametrizations4d is also explicitly
covariant. In practice, instead of the formal transforma-
tions s3d, it is enough to consider the wave function and
the equation in the center-of-masssc.m.d system where

PW =kW1+kW2=0 and setkW1=kW, kW2=−kW, vW =nW uvW u. Because of co-
variance, the result is the same as after transformations3d.
SincevW determines only the orientation of the light-front
plane, the modulusuvW u disappears from the wave functions
and amplitudes. Note that in the c.m. system, the momen-
tum pW is not zero:pW =−vW t.

The light-front graph technique is a covariant generaliza-
tion of the old fashioned perturbation theory. The latter was
developed by Kadyshevsky[77] and adapted to the explicitly
covariant version in Refs.[54,57].

The equation for the wave function is shown graphically
in Fig. 2. It is the projection on the two-body sector of the
general mass equationP2f=M2f. Its analytical form is ob-

FIG. 1. Graphical representation of the light-front two-body
wave function. Dashed line corresponds to the spurion(see text).
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tained by applying the rules of the graph techniques to the
diagrams in Fig. 2. In variables(3) this equation reads

f4sk2 + m2d − M2gFs2s1
skW, nWd

= −
m2

2p3 E o
s18s28

Ks2s1

s28s18skW, kW8, nW, M2dFs28s18
skW8, nWd

d3k8

«k8
,

s5d

whereKs2s1

s28s18skW, kW8, nW, M2d is the interaction kernel. We de-
tail in what follows the LFD one-boson exchange kernels
corresponding to the interaction Lagrangians.

(i) Scalar(S):

Lint = gsccfssd. s6d
(ii ) Pseudoscalar(PS):

Lint = igpscg5cfspsd. s7d
(iii ) Pseudovector(PV):

Lint = −
fpv

2m
cgmg5c]mfspsd. s8d

(iv) Vector (V):

Lint = cFgvgmfm
svd +

f t

4m
smns]mfn

svd − ]nfm
svddGc. s9d

with

sa8a =
i

2
sga8ga − gaga8d.

The LFD ladder kernels have two contributions corre-
sponding to the two time-ordered diagrams(in the light-front
time) shown in Fig. 3. For S, PS, and PV couplings they have
the structure

Ks2s1

s28s18sk1, k2, vt;k18, k28, vt8d

= −
1

4m2fus2sk2dO2u
s28sk28dg

3fus1sk1dO1u
s18sk18dg

3H usv · sk18 − k1dd
m2 − sk18 − k1d2 + 2t8v · sk18 − k1d

+
usv · sk1 − k18dd

m2 − sk1 − k18d
2 + 2tv · sk1 − k18d

J . s10d

For scalar exchange

O1 = O2 = gs,

for pseudoscalar

O1 = O2 = ig5gps,

and for pseudovector

O1 =5S1 −
v̂t

2m
Dig5fpv if v · sk1 − k18d . 0

S1 +
v̂t8

2m
Dig5fpv if v · sk1 − k18d , 0,

O2 =5S1 +
v̂t8

2m
Dig5fpv if v · sk1 − k18d . 0

S1 −
v̂t

2m
Dig5fpv if v · sk1 − k18d , 0,

with

t =
4«k

2 − M2

2v · p
, t8 =

4«k8
2 − M2

2v · p
.

For valuest, t8Þ0 the kernels are off-energy shell. In this
case the pseudoscalar and pseudovector kernels differ from
each other but coincide on energy shellst=t8=0d.

We use the notationv̂=vmgm. Writing the propagators in
the c.m. variables, Eq.(10) gets the simpler form

Ks2s1

s28s18 = −
1

4m2

1

Q2 + m2fus2
sk2dO2us28

sk28dgfus1
sk1dO1us18

sk18dg,

s11d

FIG. 2. Equation for the two-body wave function.
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FIG. 3. One-boson exchange kernel.
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with

Q2 = skW − kW8d2 − skW ·nWdskW8 ·nWd
s«k − «k8d

2

«k«k8
+ S«k

2 + «k8
2 −

1

2
M2D

3U kW ·nW

«k
−

kW8 ·nW

«k8
U . s12d

The kernel for the vector coupling is given by a contrac-

tion of terms similar to Eq.(11) with the tensor structures
Lab. It reads

Ks2s1

s28s18 = −
1

4m2

1

m2 + Q2Labfusk1dO1
ausk18dgfusk2dO2

busk28dg,

s13d

with

Lab =5− gab +
1

m2sk1 − k18 − vtdask28 − k2 − vt8db if v · sk1 − k18d . 0

− gab +
1

m2sk18 − k1 − vt8dask2 − k28 − vtdb if v · sk1 − k18d , 0

s14d

and vertex operators

O1
a =5gvga +

f t

2m
sa8as− idsk1 − k18 − vtda8 if v · sk1 − k18d . 0

gvga +
f t

2m
sa8asidsk18 − k1 − vt8da8 if v · sk1 − k18d , 0,

s15d

O2
b =5gvgb +

f t

2m
sb8bsidsk28 − k2 − vt8db8 if v · sk1 − k18d . 0

gvgb +
f t

2m
sb8bs− idsk2 − k28 − vtdb8 if v · sk1 − k18d , 0.

s16d

Hereafter we will not take into account the tensor cou-
pling, that is, we putft=0 andO1

a=O2
a=gvg

a. In this case,
vector kernel(13) simplifies into

Ks2s1

s28s18 =
gv

2

4m2

1

m2 + Q2Hfusk1dgausk18dgfusk2dgausk28dg

−
tt8

m2 fusk1dv̂usk18dgfusk2dv̂usk28dgJ . s17d

In the m=0 case, e.g., one-photon or one-gluon exchange
kernels, theLab expressions depend on the gauge. Using the
Feynman gauge, one hasLab=−gab, i.e., the m-dependent
terms in Eq.(14) and (17) are simply dropped out.

It will often be necessary to regularize the LFD kernels by
means of vertex form factors. Unless the contrary is explic-
itly mentioned, we will take the form used in the Bonn
model [60], i.e.,

FsQ2d = SL2 − m2

L2 + Q2Dn

, s18d

whereL andn are parameters whose values depend on the
coupling. Form factors appear in the kernels multiplying

each of the vertex operatorsOi. In the nonrelativistic limit,

Q2<skW −kW8d2 and F is local in configuration space. This
locality is however broken from the very beginning in
LFD due to thenW-dependent terms onQ2.

III. ANGULAR MOMENTUM

In LFD the construction of states with definite angular
momentum is a delicate problem. Working in the explicitly
covariant version, we have developed a method to overcome
this difficulty. It will be explained in this section. In contrast
to the equal-time approach, the LFD generatorsJrg=Jrg

0

+Jrg
int of four-dimensional rotations are not kinematical, but

contain interaction inJrg
int. The interaction also enters in the

angular momentum operator, i.e., the Pauli-Lubansky vector

Sm = 1
2«mnrgPnJrg. s19d

Just as the action of the Hamiltonian on the Schrödinger
wave function is expressed through the time derivative

Hintf = i]tf,

the action ofJrg
int on the LFD state vector is expressed

through derivatives with respect to the four-vectorv f78g:
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Jmn
int fsvd = Lmnsvdfsvd, s20d

where

Lmnsvd = iSvm

]

] vn − vn

]

] vmD . s21d

Equation(20) is calledangular conditionand can also be
written in the form

Sm fsvd = Wm fsvd s22d

with

Wm = 1
2emnrgPnMrg s23d

and

Mmn = Jmn
0 + Lmnsvd.

Wm is a kinematical Pauli-Lubansky vector. As long as the
angular condition is satisfied, the dynamical Pauli-
Lubansky vectorSm can be replaced by the kinematical
oneWm. The great benefit of doing so is that the problem
of constructing angular momentum states with operator
s23d becomes purely kinematical. In practice, one rather
prefers to start constructing states with definite angular
momentum usingWm, and then take into account the re-
striction imposed by the angular conditions20d.

It is worth noting that without this condition there is an
ambiguity in defining the state vector with given angular
momentum. This can be seen by introducing the operator

Â2 = SW · v

P · v
D2

. s24d

It commutes withPm and Wm and—takingA2 instead of
A—with the parity operator. The state vector is then char-
acterized not only by its massM2, momentump, angular
momentumJ—defined by means of Eq.s23d—and parity
p but also bya, the square root of theA2 eigenvalue,

Â2fsad = a2fsad. s25d

For a total angular momentumJ there areJ+1 eigenstates
fsad. In principle one could imagine any of these eigen-
states to be an acceptable solution. It turns out however
that, except forJ=0, none of these eigenstates can satisfy
the angular conditions22d. Indeed iffsvd is an eigenstate
of A2, the right hand side of Eq.s22d—Wmfsvd—is still an
eigenstate ofA2 whereas this is not possible on its left
hand side—Smfsvd—due to the nonzero commutator
fSm, A2gÞ0. What is then the state vector?

A solution of the angular condition— the only remaining
equation to be fulfilled—is therefore provided by a linear
combination of different eigenstatesfsad:

f = o
a=0

J

ca fsad. s26d

The coefficientsca can in principle be determined by in-
serting Eq.s26d into Eqs.s20d and s22d.

We would like to emphasize this result, which is, to our
opinion, an important issue of light-front dynamics. It tells us
that the state vector is necessarily a superposition of different
A2 eigenstates. This conclusion does not depend on the ap-
proximation resulting from any eventual Fock-space trunca-
tion.

In an exact solution of the problem, i.e., with the genera-
tors satisfying the Poincaré algebra, the eigenstatesfsad are
degenerate in mass and superposition(26) is furthermore a
solution of the mass equation(5). Indeed, as already noticed,
Smfsad is not an eigenstate ofA2 but a superposition of dif-
ferent A2 eigenstates. On the other hand, the commutation
relation fSm, Png=0 impliesSmfsad to have the same mass as
fsad. This is possible only if the masses of different statesfsad

are equal.
Due to the Fock-space truncation, or some other kind of

approximation, the Poincaré algebra is violated. The eigen-
statesfsad are no longer degenerate and solution(26), built
with eigenstates of different mass, cannot satisfy Eq.(5).
However, while this equation is an approximate one, form
(26) for the state vector remains valid. Each term in Eq.(31)
is an exact solution of the truncated mass equation(5) with
eigenvalueMa

2. Their superposition does not satisfy any mass
equation but has the proper form of the nontruncated Hamil-
tonian problem. The corresponding mass squared—at the
same level of approximation—is given by

M2 = o
a=0

J

ca
2Ma

2. s27d

The ensemblesf, Md obtained in this way constitutes the
solution of the problem compatible with the degree of ap-
proximation considered.

This formalism is translated toJ=1 states in the two-body

sector as follows. The interaction kernelKskW8, kW, nW, Md de-

pends on scalar products of vectorskW8, kW, nW and also on scalar

products with Pauli matriceskW·sW , kW8·sW , nW ·sW . Therefore the
total angular momentum operator constructed as

JW = − ifkW 3 ]kWg − ifnW 3 ]nWg + sW1 + sW2 s28d

commutes with the kernelssW1,2 are the fermion spin opera-
torsd. In the c.m. system this operator is proportional to

the kinematical Pauli-Lubansky vectorWW given in Eq.
s23d. The solutions of Eq.s5d correspond to definiteJ and

Jz eigenvalues of the operatorsJW2, Jz.
SinceA2 is applied to states with definitep, it has the form

A2 = snW ·JWd2. s29d

A2 commutes with the kernelK sinceJW commutes withK

andnW is a parameter. It commutes also withJW sinceA is a
scalar. Thus, as in the case of a full state vectors25d, the
truncated solutions in the two-body sector are also labeled
by a:
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A2cW sadskW, nWd = a2cW sadskW, nWd, s30d

and the two-body wave function is a superposition ofA2

eigenstatescW sad with different a values:

cW skW, nWd = c0cW s0dskW, nWd + c1cW s1dskW, nWd. s31d

The mass equations determining the eigenstatescW sad with
different a are decoupled; in particular, theJ=0 state is de-
termined by one single equation. We would like to comment
here that the decoupling into subsystems takes place in any
formulation of LFD, both in the explicitly covariant and in
the standard one. However, in the latter approach it looks as
a matter of art, whereas in ECLFD this splitting has trans-
parent reasons. For example, in Ref.[46] the four-equation
system for the wave function components with angular mo-
mentum projectionm=0 was split, by a proper transforma-
tion, into two subsystems with two equations each. In
ECLFD this corresponds to thea=0 eigenstate ofJ=0 and
J=1 states, each of them having two components.

Because of the truncation of the Fock space, the statescW sad

are not degenerate. Their splitting was effectively calculated
in the case of scalar particles in Refs.[44,65,66] for J=1, 2
as a function of the coupling constant. It has been shown in
Ref. [44] that this splitting indeed decreased when the inter-
action kernel incorporates a larger number of particles in the
intermediate states. However, the number of states taken into
account in any practical calculation will be always very lim-
ited. The splitting, though decreased, will remain, especially
for strongly bound systems such asqq mesons. The problem
of determining the state vector at a given level of approxi-
mation is thus not solved by this way. These are some of the
reasons why, as explained before, our approach to dealing
with this problem follows a different philosophy. Despite the

nondegeneracy ofcW sad, we search the physical two-body
wave function in form(31), the same as for the full state
vector (26). The corresponding mass squared is given by

M2 = c0
2M0

2 + c1
2M1

2, s32d

whereMa
2 is the mass associated withcW sad. The M2 value

thus obtained is always betweenM0
2 and M1

2, where the
exact solution would be.

To determine in practice coefficientsca, we use a method
proposed in Refs.[65,66,72], without explicitly solving Eq.
(20). It is based on the fact that, when the momentumk
→0, the interaction part in Eq.(20) is irrelevant and the

angular condition reads simplyLmnf=0. Thus, in this limit,cW

does not depend on the light-front directionnW anymore. Such
a requirement unambiguously determines the coefficients of
the superposition. The method was applied to a model with
scalar particles[66] and found to give very accurate results.
The procedure will be detailed in Sec. V and illustrated by
numerical calculations in Sec. VII.

IV. J50 STATES

The J=0+ two-fermion wave function can be written in
the form [59,57]

Fs2s1
sk1, k2, p, vtd = Îmus2

sk2dfUcus1
sk1d, s33d

where

usskd = Î«k + m1
1

sW ·kW

s«k + md
2ws s34d

is the Dirac spinor normalized tousus8=2mdss8, ws the

Pauli spinor normalized tows
†ws8=dss8, and«k=ÎkW 2+m2.

Uc=g2g0 is the charge conjugation matrix. In its turn,f is
written as a superposition of two independent spin struc-
turesSi,

S1 =
1

2Î2«k

g5, s35d

S2 =
«k

2Î2mk sin u
S 2m

v · p
v̂ −

m2

«k
2 Dg5,

whose coefficientsf i, scalar functions depending on vari-

ablessk, cosu=nW ·kW/kd, are the wave function components
in the spin-space:

f = f1S1 + f2S2. s36d

The existence of one additional component with respect to
the nonrelativistic theory is due to thev̂=vmgm term. The
number of independent amplitudes determining the wave
function is however the same, whatever be the LFD version
used. We have shown in a preceding work[68] that theJp

=0+ state we are considering is strictly equivalent in the stan-
dard approach to thes1+, 2−d one [46], which is described
also by two componentsF1+, F2−.

In the reference system wherekW1+kW2=0 wave function
(33) takes the form

Fs2s1
= Îmws2

† cskW, nWdws1

† , s37d

with

cskW, nWd =
1

Î2
S f1 +

isW · fkW 3 nWg
k sin u

f2Dsy. s38d

The definition of the components themselves is to some
extent arbitrary, as are the choices of structuress35d. Our
choice s35d is justified by the clear separation of
nW-independent and -dependent terms it induces in wave
function s38d.

The normalization condition reads

1

s2pd3 o
s2s1

E uFs2s1
u2

d3k

«k

=
m

s2pd3 E Trhfsk̂2 + mdfsk̂1 − mdj
d3k

«k

=
m

s2pd3 E Trhc†skW, nWdcskW, nWdj
d3k

«k

=
m

s2pd3 E sf1
2 + f2

2d
d3k

«k
= 1, s39d
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where we denotef=g0f†g0. The spin structuresSi intro-
duced in Eq.s35d are orthonormalized relative to the trace

TrhSisk̂2 + mdSjsk̂1 − mdj = di j , s40d

whereSi =g0Si
†g0, that is

S1 = −
1

2Î2«k

g5,

S2 = −
«k

2Î2mk sin u
g5S2mv̂

v · p
−

m2

«k
2 D . s41d

Substituting in Eq.(5) wave function(33), multiplying it
on the left byusk2d, on the right byusk1d, and using relation

os usskdusskd=k̂+m, we find

f4skW2 + m2d − M2gsk̂2 + mdfsk̂1 − md

=−
m2

2p3 E 1

4m2sQ2 + m2d
sk̂2 + mdO2sk̂28 + mdf8

3 sk̂18 − mdÕ1sk̂1 − md
d3k8

«k8
, s42d

with Õ=UcO
tUc. Replacingf here by its decomposition

s36d, multiplying Eq.s42d by Si, and using the orthogonal-
ity relationss40d, we end up with a two-dimensional inte-
gral equation system for componentsf i:

f4sk2 + m2d − M2gf isk, ud

= −
m2

2p3 o
j=1,2

E Kijsk, u;k8, u8df jsk8, u8d
d3k8

«k8
. s43d

Its solution will directly provide the mass of theJp=0+

state.
KernelsKij appearing in Eq.(43) result from integrating

kernelskij over the azimuthal anglew:

Kij =
1

m2«k«k8
E

0

2p ki j

Q2 + m2

dw8

2p
, s44d

with Q2 defined in Eq.s12d. For S, PS, and PV couplings

Õ1=UcO1
t Uc=O1 and ki j are given by

ki j = 1
4«k«k8TrfSisk̂2 + mdO2sk̂28 + mdS8 jsk̂18 − mdO1sk̂1 − mdg.

s45d

We denote bySj8 the quantitiess35d as a function of
primed arguments. For vector exchange

ki j = − 1
4«k«k8LabTrfSisk̂2 + mdO2

ask̂28 + mdS8 jsk̂18 − mdO1
b

3 sk̂1 − mdg. s46d

TensorLab is defined in Eq.s14d and we have taken into

account that for V couplingÕ1=UcO1
t Uc=−O1. The ana-

lytic expressions ofki j for S, PS, PV, and V exchanges are
given in Appendix A.

One would remark that we have kept, for convenience, a
three-dimensional volume element in Eq.(43) despite the
fact that kernelsKij as well as amplitudesf j are independent
of variablew8.

V. J51 STATES

In a similar way as in Eq.(33), the J=1+ two-fermion
wave function can be written in the form[56,58]

Fs2s1

l sk1, k2, p, vtd = Îmemsp, ldus2sk2dfmUcu
s1sk1d,

s47d

whereemsp, ld is the polarization vector.fm develops over
the six spin structures

S1m =
sk1 − k2dm

2m2 , S2m =
1

m
gm,

S3m =
vm

v . p
, S4m =

sk1 − k2dmv̂

2mv · p
, s48d

S5m = −
i

m2v · p
g5emnrgk1nk2rvg, S6m =

mvmv̂

sv · pd2 ,

with componentswi, invariant functions depending on the
same scalar variables as forJ=0,

fm = w1S1m + w2S2m + w3S3m + w4S4m + w5S5m + w6S6m.

s49d

In the reference systemkW1+kW2=0 this wave function takes
the form

CW s2s1
skW, nWd = Îmws2

† cW skW, nWdsyws1

† , s50d

with

cW skW, nWd = f1

1

Î2
sW + f2

1

2S3kWskW · sW d

kW2
− sWD + f3

1

2
f3nWsnW · sW d − sW g

+ f4

1

2k
f3kWsnW · sW d + 3nWskW · sW d − 2skW ·nWdsW g

+ f5Î3

2

i

k
fkW 3 nWg + f6

Î3

2k
fnWskW · sW d − kWsnW · sW dg. s51d

Contrary to theJ=0 case, componentsf i appearing in Eq.
s51d are not the same aswi from Eq. s49d. Their relation is
given in Appendix B. Componentsf3,4,5,6, driving
nW-dependent spin structures, are of relativistic origin and
are absent in a nonrelativistic approach.

As explained in Sec. III, the system of equations deter-
mining the six componentsfi is split into two subsystems,

corresponding to the eigenvaluesa=0, 1 of Â2 (29). As for
the J=0 wave function, theJ=1,a=0 eigenstate is deter-
mined by two components whereas the remaining four cor-
respond toJ=1,a=1. We would like to note that the total
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number of components as well as the dimension of decou-
pled subsystemss2+4d coincide with what is found in the
standard approach[46].

The components determining the eigenstatescW sad of A2

will be denoted bygi=1,2
sa=0d and gi=1,2,3,4

sa=1d . They are indeed dif-
ferent from fi appearing in wave function(51) though g’s
fully determine f’s by linear combinations. In view of con-
structing superposition(31) it is convenient to represent the

eigenfunctionscW sad in the form of Eq.(51). Only some of the
six fi

sad involved components will be independent— two for
the a=0 state and four fora=1—but this way will facilitate
further analysis.

In the following two sections we will explicitly construct

the eigenfunctionscW sad of the kinematical operatorA2, obtain
the corresponding mass equation(5) in terms of gi

sad, and
relate them with componentsfi

sad defined in Eq.(51).

A. a50

One can check from Eq.(30) thatcW s0d is parallel tonW, i.e.,

it satisfiescW s0d=nWsnW ·cW s0dd, and has the following general de-
composition:

cW s0dskW, nWd =Î3

2
Hg1

s0dsW ·kW

k
+ g2

s0dsW · skW cosu − knWd
k sin u

JnW .

s52d

It can be written in forms51d by defining thef i
s0d compo-

nents

f1
s0d =

1

Î3
cosug1

s0d −
1

Î3
sin ug2

s0d,

f2
s0d = 0,

f3
s0d = −

Î2

Î3 sin u
g2

s0d,

f4
s0d =

1

Î6
g1

s0d +
1

Î6
cot ug2

s0d,

f5
s0d = 0,

f6
s0d =

1

Î2
g1

s0d +
1

Î2
cot ug2

s0d, s53d

that is, four nonzero components, with only two of them
being independent. It can also be represented in a four-
dimensional form similar to Eq.s49d,

fm
s0d = f1

s0dS1m
s0d + f2

s0dS2m
s0d s54d

by introducing the spin structuresSim
s0d,

S1m
s0d =

Î3M

2Î2k
S3m, s55d

S2m
s0d =

Î3M

mÎ2 sin u
Sm2 cosu

2«kk
S3m + S6mD , s56d

with Sim defined in Eq.s48d.
The normalization condition is

1

3s2pd3 o
ls2s1

E uFs2s1

l u2
d3k

«k

=
m

s2pd3 E PmnTrhfm
s0dsk̂2 + mdfn

s0dsk̂1 − mdj
d3k

«k

=
m

3s2pd3 E TrhcW s0d†skW, nWdcW s0dskW, nWdj
d3k

«k

=
m

s2pd3 E fsg1
s0dd2 + sg2

s0dd2g
d3k

«k
= 1 s57d

with

Pmn =
1

3o
l

empsp, ldensp, ld =
1

3Spmpn

M2 − gmnD . s58d

The spin structuresSim
s0d are orthonormalized relative to the

trace operation in Eq.(57) [cf. Eq. (40)],

PmnTrhSim
s0dsk̂2 + mdSjn

s0dsk̂1 − mdj = di j . s59d

Note thatSim
s0d=g0Sim

s0d†g0=Sim
s0d. Similar to Eq.s42d we get

f4skW 2 + m2d − M2gsk̂2 + mdfm
s0dsk̂1 − md

= −
m2

2p3 E g2

4m2sQ2 + m2d
sk̂2 + mdO2sk̂28 + mdf8m

s0d

3sk̂18 − mdÕ1sk̂1 − md
d3k8

«k8
. s60d

In order to obtain the system of equations for components
gi

s0d, we multiply Eq.(60) by Pmn andSin
s0d. Taking the trace

and using the orthogonality condition(59) we obtain the sys-
tem of equations

f4skW2 + m2d − M2ggi
s0dskW, nWd = −

m2

2p3 E o
j=1

2

Kij
s0dskW, k8W , nWdgj

s0d

3sk8W , nWd
d3k8

«k8
, s61d

which provides the mass of theJ=1,a=0 state. They have
the same form as Eq.s43d, with kernelsKij

s0d given in terms
of ki j

s0d integrated over the azimuthal anglew8:

Kij
s0d =

1

m2«k«k8
E

0

2p ki j
s0d

Q2 + m2

dw8

2p
. s62d

For S, PS, and PV couplings they read
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ki j
s0d =

1

4
«k«k8P

mnTrfSim
s0dsk̂2 + mdO2sk̂28 + mdSjn8

s0d

3sk̂18 − mdÕ1sk̂1 − mdg, s63d

whereSjn8
s0d denotes Eq.s55d with primed arguments. For

vector exchange

ki j
s0d = − 1

4«k«k8P
nmLabTrfSin

s0dsk̂2 + mdO2
ask̂28 + md

3Sjm8
s0dsk̂18 − mdO1

bsk̂1 − mdg, s64d

TensorsLab and Pnm are defined in Eqs.s14d and s58d.
The analytic expressions ofki j

s0d for S, PS, PV, and Vsf t
=0d exchanges are given in Appendix A.

B. a51

It follows also from Eq.(30) that cW s1d, the A2 eigenfunc-
tion corresponding toa=1, is orthogonal tonW, i.e., satisfies

nW ·cW s1d=0. To fulfill this condition, it is convenient to intro-

duce two vectorsskŴ', sW 'd orthogonal tonW:

kŴ' =
kŴ − cosunW

sin u
, sW ' = sW − snW · sW dnW ,

with kŴ =kW/k and ukŴ'u=1. FunctioncW s1d then obtains the de-
composition, analogous to Eq.s52d,

cW s1dskW, nWd = g1
s1d

Î3

2
sW ' + g2

s1d
Î3

2
f2kŴ'skŴ' · sW 'd − sW 'g

+ g3
s1dÎ3

2
kŴ'ssW ·nWd + g4

s1dÎ3

2
ifkŴ 3 nWg s65d

in terms of the four scalar amplitudesgi
s1d. It can also be

represented in the form of Eq.s51d by defining compo-
nents f i

s1d,

f1
s1d =Î2

3
g1

s1d,

f2
s1d =

2

Î3 sin2 u
g2

s1d,

f3
s1d = −

1

Î3
g1

s1d +
s1 + cos2 ud
Î3 sin2 u

g2
s1d −

Î2

Î3
cot ug3

s1d,

f4
s1d = −

2Î3 cosu

3 sin2 u
g2

s1d +
1

Î6 sin u
g3

s1d,

f5
s1d =

1

sin u
g4

s1d,

f6
s1d = −

1

Î2 sin u
g3

s1d s66d

and in the four-dimensional formfm
s1d similar to Eq.s50d,

fm
s1d = g1

s1dS1m
s1d + g2

s1dS2m
s1d + g3

s1dS3m
s1d + g4

s1dS4m
s1d. s67d

The four spin structuresSjm
s1d are orthonormalized accord-

ing to Eq.(59) and read

Sim
s1d = o

j
hijSjm, i = 1, . . . , 4;j = 1, . . . , 6, s68d

with Sjm defined in Eq.s48d and hij coefficients given in
Appendix B. The normalization condition in terms offm

s1d

andcW s1d exactly coincides with Eq.s57d. In terms of com-
ponentsgi

s1d it becomes

m

s2pd3 E fsg1
s1dd2 + sg2

s1dd2 + sg3
s1dd2 + sg4

s1dd2g
d3k

«k
= 1.

s69d

The system of equations for the scalar functionsgi
s1d is

obtained similar to Eq.(61) and reads

f4skW2 + m2d − M2ggi
s1dskW, nWd

= −
m2

2p3 E o
j=1

4

Kij
s1dskW, kW8, nWdgj

s1dskW8, nWd
d3k8

«k8
. s70d

It is the mass equation of theJ=1,a=1 states. KernelsKij
s1d

are calculated in a way similar to Eq.s62d. Corresponding
ki j

s1d are obtained with the replacementSim
s0d→Sim

s1d in Eqs.
s63d and s64d. Their analytic expressions for S and PS
exchanges are given in Appendix A.

C. Physical solution

The solutionscW sad constructed in the preceding sections,
although being exact eigenstates of the truncated Hamil-
tonian, are only auxiliary. As explained in Sec. III, the solu-
tion satisfying the angular condition(20) is given by super-
position(31) of states with differenta. The coefficientsca of
the superposition can be obtained by solving the angular con-
dition in the truncated Fock space. We will show in what
follows that they can alternatively be determined by impos-
ing the independence of the wave function on the light-front
vectornW at k=0.

In order to do this, it is convenient to write downcW sad in
the form of Eq.(51) with the componentsfi

sad given by Eqs.
(53) and (66). Written in terms of f’s, superposition(31)
reads

f i = c0f i
s0d + c1f i

s1d. s71d

The condition thatcW skW =0,nWd does not depend onnW be-
comes

]uf isk = 0,ud ; 0, i = 1, 2; s72d
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f jsk = 0,ud ; 0, j = 3, 4, 5, 6. s73d

Let us show that there exist two coefficientsca, normal-
ized toc0

2+c1
2=1, satisfying the six equations above. They

are determined by only the values atk=0 of the first com-
ponentsg1

sad.
To this aim, we consider the behavior offi

sadsk, zd in the
k→0 limit. The components in front of structures involving

the unit vectorkŴ are f2,4,5,6
sad . By construction, they must van-

ish atk=0, i.e., satisfy

f2,4,5,6
sad sk = 0,ud ; 0, a = 0, 1. s74d

Concerninga=0 states, this condition is trivially satisfied
by f2,5

s0d since from Eq. s53d they are identically zero,
whereasf4,6

s0d will satisfy Eq. s74d if

g1
s0dsk = 0,ud = + b0 cosu,

s75d

g2
s0dsk = 0,ud = − b0 sin u,

b0 being a priori an arbitrary function ofu which later on
will be shown to be constant. The only components which
are nonzero atk=0 aref1,3

s0d. Inserting valuess75d in Eq. s53d
we find

f1
s0ds0, ud =

1

Î3
cosug1

s0ds0, ud −
1

Î3
sin ug2

s0ds0, ud =
1

Î3
b0,

f3
s0ds0, ud = −

Î2

Î3 sin u
g2

s0ds0, ud =Î2

3
b0.

Concerninga=1 solutions, determined by four indepen-
dent componentsgi

s1d, we see from Eq.(66) that condition
(74) implies g2,3,4

s1d s0,ud;0. The only nonvanishing compo-
nent atk=0 is thusg1

s1d and we will denote byb1 its value:

g1
s1ds0, ud = b1. s76d

By inserting this value in Eq.s66d we get

f1
s1ds0, ud =Î2

3
g1

s1ds0, ud =Î2

3
b1,

f3
s1ds0, ud = −

1

Î3
g1

s1ds0, ud +
s1 + cos2 ud
Î3 sin2 u

g2
s1ds0, ud

−
Î2

Î3
cot ug3

s1ds0, ud = −
1

Î3
b1.

Componentsf3
s0d and f3

s1d are the onlynW-dependent struc-
tures which give nonzero contributions atk=0 in the corre-

sponding wave functionscW s0d and cW s1d. These contributions

must cancel in the physical wave functioncW , which gives the
relation

f3s0, ud = c0f3
s0ds0, ud + c1f3

s1ds0, ud = c0Î2

3
b0 − c1

1

Î3
b1 = 0.

This relation, together with the normalization condition
c0

2+c1
2=1, allows us to determine the coefficientsca of the

superpositions31d. They read

c0 =
b1

Î2b0
2 + b1

2
, c1 =

Î2b0

Î2b0
2 + b1

2
. s77d

We see from the above expressions that conditionss72d
and s73d will be satisfied if and only if coefficientsba are
actually independent ofu.

It is worth noting that if the wave functioncW does not
depend onnW, these coefficients become especially simple:

c0 =Î1

3
, c1 =Î2

3
. s78d

Indeed, from annW-independent wave functioncW we can
construct normalizednW-dependent states with definitea as
follows:

cW s0dskW, nWd = Î3nWfnW · cW skWdg,

cW s1dskW, nWd =Î3

2
hcW skWd − nWfnW · cW skWdgj.

The initial functioncW skWd is reproduced by taking their su-
perposition with coefficientss78d. In the case of scalar
constituents, we foundf65g that coefficientsca are very
closeswith the accuracy<1%d to valuess78d, despite the
fact that the wave function strongly depended onnW and the
split betweenM0 and M1 masses was large.

Let us finally summarize the procedure followed to con-
struct the physical wave function. The solution of the mass
equations(61) and (70) provides the mass squaredMa

2 and
the componentsg1,2

s0d andg1−4
s1d of the A2 eigenstates. The non-

zero values of the first componentsg1
sad at k=0 determine—

by means of Eqs.(75) and (76)—the coefficientsba. These
are inserted in Eq.(77) to provide ca, coefficients of the
linear combination determining the physical massM2 from
Eq. (32) and the components(71) of wave function(51).
Componentsfi

sad of this superposition are related togj
sad by

Eqs.(53) and (66), respectively.

VI. NONRELATIVISTIC LIMIT

In the following sections the LFD results will be com-
pared to the corresponding nonrelativistic limits. By this we
mean the zero-order terms in the 1/m expansion of the LFD
equations and kernels. This section is devoted to precisely
describing how this limit is obtained in the different OBE
kernels, having in mind in each case:(i) what are the LFD
wave function components that should be retained and(ii )
what kind of equations will they satisfy.

In order to have some insight in the weak coupling limit,
but also as a test for numerical calculations, it is often useful
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to consider the LFD solutions as a perturbation of the non-
relativistic wave functions. This approximation was used in
Refs. [58,59] to calculate theNN S-wave function and deu-
teron electromagnetic form factors[61]. We will also present
in what follows how these first-order relativistic corrections
can be obtained in the different mass equations(38) and(61)
we consider.

A. J50 states

For the scalar exchange the leading contribution in the
kernel matrix is, according to Eq.(A4),

K11 = −
4pa

skW − k8W d2 + m2
; VSskW − k8W d. s79d

Corrections to this kernel are of the 1/m2 order both in
diagonal and nondiagonal terms. It follows that theJ=0
wave functions38d contains in the nonrelativistic limit the
f1 component only, which is furthermore independent of

u. Introducing nonrelativistic kinematics, i.e., 4skW2+m2d
−M2<4sk2+mBd, whereB=2m−M !m is the binding en-
ergy, the equation forf1; fNR component becomes

sk2 + mBdfNRskd = − mE VSskW − k8W dfNRsk8d
d3k8

s2pd3 s80d

with kernels79d. This is the Schrödinger equation with the
Yukawa potentialVSsrd=−a exps−mrd/r.

For vector exchange we obtain the same equation(80)
with a kernel differing from Eq.(79) by a global sign. This
corresponds to the repulsion between two fermions(e−e−, for
instance).

We see that for the scalar and vector couplings, the non-
relativistic limit of LFD equations coincides with the one-
component Schrodinger equation.

For pseudoscalar and pseudovector exchanges the leading
diagonal kernels are of the 1/m2 order, whereas the nondi-
agonal ones are of 1/m3. Thus, for these couplings the non-
relativistic limit does not exist. In the leading order and since
the K22 kernel is repulsive, only thef1 component remains.
The corrections due tof2 are expected to be larger than for
scalar and vector cases. Componentf1 satisfies at this order
the Schrodinger equation(80) with a kernel proportional to
1/m2:

VPSskW − k8W d =
pa

skW − k8W d2 + m2

skW − k8W d2

m2

=
pa

m2F1 −
m2

skW − k8W d2 + m2G . s81d

In coordinate space it corresponds to

VPSsrWd =
pa

m2 Fds3dsrWd −
m2

4p

exps− mrd
r G . s82d

For these couplings the leading term is of the same order
as the relativistic correction in the scalar and vector cases.

We will see that a similar situation takes place for theJ
=1 state. This fact makes an important difference between
the couplings. Pseudoscalar and pseudovector exchanges
appear always as being relativistic corrections.

We would like to remark from the above results that in the
nonrelativistic limit thenW-dependent terms in the LFD wave
function (38) and kernels disappear.

For models involving the sum of all exchanges(such as
for the OBENN interaction) the nonrelativistic limit is de-
termined only by the S and V exchanges. First-order correc-
tions can be obtained by inserting the nonrelativistic compo-
nent f1= fNR into the right-hand side of Eq.(43).

f4skW2 + m2d − M2gf isk, ud

= −
m2

2p3 E Ki1sk, u;k8, u8dfNRsk8d
d3k8

«k8
. s83d

They generate a perturbative solution for the two compo-
nents, which incorporates the first-order relativistic ef-
fects. This approach was followed in Ref.f59g to obtain
the 1S0 NN scattering wave function.

B. J51 states

For J=1 states, componentsgi
sad obtained by solving the

mass equations differ from those appearing in the wave func-
tion fi. Our first step is to determine the form ofgi

sad in the
case of a nonrelativistic wave function. The nonrelativistic
wave function components do not depend onnW and, accord-
ing to Eq.(78), are given by

f i =
1

Î3
f i

s0d +Î2

3
f i

s1d. s84d

Substituting Eq.s84d into Eqs.s53d and s66d we obtain a
relation betweenf i and gj

sad components. These equations
are solved relative togj

sad and the result, expressed through
f i, reads

g1
s0d = f1 cosu + f2Î2 cosu + f3Î2 cosu + f4

7 + cos 2u

2Î2

+ f6Î3

2
sin2 u,

g2
s0d = − f1 sin u + f2

1

Î2
sin u − f3Î2 sin u − f4

1

2Î2
sin 2u

+ f6Î3

8
sin 2u,

g1
s1d = f1 − f2

1 + 3 cos 2u

4Î2
− f3

1

Î2
− f4Î2 cosu,

g2
s1d = f2

3

2Î2
sin2 u,
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g3
s1d = f2

3

4
sin 2u + f4

3

2
sin u − f6

Î3

2
sin u,

g4
s1d = f5Î3

2
sin u. s85d

As previously discussed, in the nonrelativistic limit there
are nonW-dependent terms in the LFD wave functions51d
and only f1 and f2 components among the sixf i survive.
We have shown in Ref.f58g that one actually hasf1
<uS, f2<−uD, f3–6<0, whereuS and uD are, respectively,
the usualS- and D-wave nonrelativistic components. In-
serting these expressions in Eq.s85d we obtain the form of
the nonrelativistic functionsg:

g1
s0d = suS− Î2uDd cosu,

g2
s0d = − SuS+

1

Î2
uDD sin u,

g1
s1d = uS+

1

4Î2
s1 + 3 cos 2uduD,

g2
s1d = −

3

2Î2
sin2 uuD,

g3
s1d = −

3

4
sin 2u uD,

g4
s1d = 0. s86d

We see here that theu dependence of the auxiliary com-
ponentsgi

sad remains even in the nonrelativistic limit. It
will disappear only in the linear combination, giving the
physical componentsf1,2.

Let us first consider the scalar exchange. The mass equa-
tion for a=0 eigenstate(61) and the scalar kernels(A1) be-
come in the leading orders1/md0,

Cskdg1
s0dsk, ud = − 4ap cosuE fg1

s0dsk8, u8d cosu8

− g2
s0dsk8, u8d sin u8gh¯j

d3k8

«k8
,

Cskdg2
s0dsk, ud = + 4ap sin uE fg1

s0dsk8, u8d cosu8

− g2
s0dsk8, u8d sin u8gh¯j

d3k8

«k8
. s87d

For shortness we denote byCskd the kinematical part and
by h¯j the kernel contributions which are common to all
couplings and states.

h¯j =
1

m2«k«k8

1

Q2 + m2 .

These factors contain 1/m and 1/m2 terms but we do not
write them explicitly and analyze only the kernel contri-
butions resulting fromki j .

Since the integrals on the right-hand sides of Eq.(87) are
the same, its solution has the form

g1
s0dsk, ud = + gs0dskd cosu,

g2
s0dsk, ud = − gs0dskd sin u, s88d

with gs0d an unknown function to determine. Substituting
Eq. s88d into Eq. s87d we find the equation forgs0d:

Cskdgs0dskd = − 4apE gs0dsk8dh¯j
d3k8

«k8
. s89d

For a=1 state, we found in a similar way that onlyg1
s1d

survives and satisfies to the sames1/md0 order the equa-
tion

Cskdg1
s1dsk, ud = − 4apE g1

s1dsk8, u8dh¯j
d3k8

«k8
. s90d

It coincides with Eq.s89d for a=0 and, hence, provides
the same mass. We see in this way that, in the leading
order, a=0 and a=1 states are degenerate. The coeffi-
cientsca of superpositions71d are calculated in terms ofba

given by Eqs.s75d ands76d. Since in the leading orderg1
s0d

and g1
s1d equal gs0d, one hasb0=b1=gs0ds0d and, from Eq.

s77d, valuess78d.
In the next-to-leading order—1/m2—we get fora=0

Cskdg1
s0d = ap

1

m2 E f2g81
s0dkk8 − 3sk2 + k82d

3cosusg81
s0d cosu8 − g81

s0d sin u8dgh¯j
d3k8

«k8
,

Cskdg2
s0d = ap sin u

1

m2 E 3sk2 + k82dsg81
s0d cosu8

− g81
s0d sin u8dh¯j

d3k8

«k8
s91d

and for a=1,

Cskdg1
s1d = − ap

1

m2 E f3sk2 + k82dg81
s1d + kk8 cosus− 2g81

s1d

3cosu8 + Î2g83
s1d sin u8dgh¯j

d3k8

«k8
,
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Cskdg3
s1d = − ap sin u

1

m2 E kk8sÎ2g81
s1d cosu8

− g83
s1d sin u8dh¯j

d3k8

«k8
. s92d

These systems of equations—Eqs.s91d and s92d—are al-
ready different and the masses of the two eigenstates are
split.

For vector exchange, the situation is quite similar. The
equations in the leading orders1/md0 differ from Eqs.(87)
and(90) only by a global sign on their right-hand sides. Thus
for these two couplings, as it was the case forJ=0, the lead-
ing order iss1/md0.

For pseudoscalar exchange, the leading contribution in the
kernel has order 1/m2. Indeed, from the analytic expressions
given in Eqs.(A2), we found for thea=0 state

g1
s0d = ap cosu

1

m2 E k82sg1
s0d cosu8 + g2

s0d sin u8dh¯j
d3k8

«k8
,

g2
s0d = − ap sin u

1

m2 E k82sg1
s0d cosu8 + g2

s0d sin u8dh¯j
d3k8

«k8
.

s93d

Like for the scalar coupling, the solution of Eqs.s93d has
the form s88d with gs0d satisfying the equation

gs0d = ap
1

m2 E k82scos2 u8 − sin2 u8dgs0dh¯j
d3k8

«k8
.

s94d

For a=1 the leading order equation reads

g1
s1d = − ap

1

m2 E k82 cos2 u8g1
s1dh¯j

d3k8

«k8
, s95d

which is now different from Eq.s94d. The massesM0 and
M1 calculated with pseudoscalar exchange are therefore
always different. Their difference remains even in systems
having small binding energies or when the large momen-
tum contributions are removed using small cutoff param-
eter L in form factorss18d.

The pseudovector exchange kernel differs from the pseu-
doscalar one by the replacementg5→g5−v̂g5t/2m or by g5
→g5+v̂g5t8/2m [see Eq.(4.18) in Ref. [57]]. Thus there is
an extra term proportional tov̂g5t8/2m~sk82+muBud/m2

which does not contains1/md0 terms. The situation is there-
fore the same as for the pseudoscalar case.

To summarize, we have shown analytically that in the
nonrelativistic limit for scalar and vector exchanges, the en-
ergiesBsa=0d andBsa=1d coincide with each other and the
coefficientsc0 andc1 tend toÎ1

3 andÎ2
3, respectively. On the

contrary, for pseudoscalar and pseudovector couplings this is
not the case. In this sense, for the pseudoscalar and
pseudovector exchanges, the nonrelativistic limit does not
exist. If the kernel is the sum of all the exchanges, such as
the NN kernel, the situation is the same as for the scalar and
vector exchanges, since in the nonrelativistic limit thes1/md0

order dominates, resulting from these exchanges. The exis-
tence of the deuteron, for example, as a nonrelativistic sys-
tem(with a reasonable accuracy) is due to the contribution of
the scalar and vector exchanges in theNN interaction.

Perturbative solutions are obtained by substituting the
zero-order functions(86) into the right-hand sides of LFD
equations(61) and (70). If the D wave is neglected, the six
perturbative components are given in terms of the only non-
relativistic wave functionuS simply by

f4skW2 + m2d − M2ggi
s0dskW, nWd = −

m2

2p3 E sKi1
s0d cosu8

− Ki2
s0d sin u8duSsk8d

d3k8

«k8
,

s96d

f4skW2 + m2d − M2ggi
s1dskW, nWd = −

m2

2p3 E Ki1
s1duSsk8d

d3k8

«k8
.

s97d

We would like to mention here that one appreciable ad-
vantage of the LFD formalism with respect to other relativ-
istic approaches is the clear link it has with the nonrelativis-
tic dynamics. This is because on one hand LFD wave
functions have the same physical meaning of probability am-
plitudes, while on the other hand their componentsfi split
into two families: those which in the nonrelativistic limits
become negligible and those which tend to the usual nonrel-
ativistic wave functions.

The following sections are devoted to showing the nu-
merical solutions obtained with differents couplings. Their
very different behavior requires to be treated separately.

VII. RESULTS FOR SCALAR COUPLING

Our first results concerning the Yukawa model have been
reported in Refs.[68,69]. The main interest in these papers
concerned the stability of theJ=0, 1 solutions with respect to
the cutoff, i.e., the possibility of getting stable results without
any vertex form factor. We showed in particular thatJ=0+

states were stable for coupling constant smaller than some
critical valueaøac.3.72 and unstable above. On the con-
trary, theJ=1+ states were found to be unstable for any value
of the coupling constant and both projectionsa=0, 1. This
instability manifests in the logarithmic decrease ofM2skmaxd
for a given value ofa—or equivalently ofaskmaxd for a given
value ofM—and imposes the use of form factors.

We first consider theJ=0+ state. Its wave function is de-
termined by two componentsfi. Although the use of vertex
form factors(FF) is not required[68], we would like to note
that the convergence as a function ofkmax is very slow. Un-
less otherwise specified the results that follow correspond to
m=0.15.

For a weakly bound systemsB=0.001d, the coupling con-
stant found by solving LFD equations isaYuk=0.331,
whereas the nonrelativistic(NR) value isaNR=0.323. By the
latter we understand the results obtained by inserting into the
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Schrodinger equation(80) the static potential(79) resulting
from the leading order approximation, as has been discussed
in Sec. VI. As in the Wick-Cutkosky(WC) model—scalar
particles interacting by scalar exchange—relativistic effects
are repulsive[64]. They account for only a 3% difference in
the coupling constants whereas in WC they are sizably big-
ger saWC=0.364d.

Corresponding wave functions are displayed in Figs. 4(a)
and 4(b). One can see that componentf1 dominates overf2 in
all the interesting momentum range and thatf2 has a zero at
k<0.25. One also notices in Fig. 4(b) that f1 is very close to
the NR wave function in the small momentum but it sensibly
departs with increasingk; for k,1.5 the differences repre-
sent more than one order of magnitude in the probability
densities. The coupling between the two relativistic ampli-
tudes has a very smalls0.1%d attractive effect on the binding
energy.

In the strong binding limitsB=0.5d, the situation is quite
similar with enhanced relativistic effects on binding energies
and wave functions. One hasaYuk=2.44 for aNR=1.71 and
the differences in the wave functions—displayed in Figs.

5(a) and 5(b)—are already visible atk=0 momentum(Fig.
5). One can see however in Fig. 5(b) that—even for deeply
bound systems—f1 component still dominates overf2.

It is of some interest to compare the LFD results for
Yukawa(two-fermion) and WC(two-scalar) models with the
NR results. We have displayed in Fig. 6 the corresponding
coupling constants for different values of the binding energy.
One can see that the Yukawa resultssaYukd are systematically
closer to the nonrelativistic values thanaWC are, as if the
fermionic character of the constituents generates closer bind-
ing energies to the NR ones but larger differences in the high
momentum components of the wave function, due to the dif-
ferent asymptotic of interaction kernels.

Though not necessary to get stable solutions, form factors
have been widely used in most of the previous OBEP calcu-
lations performed in momentum space[60]. It is thus inter-
esting to estimate their influence in the predictions. To this
aim we have considered the vertex form factors used in the
Bonn model(18) with, for the scalar coupling,n=1 andL
=2.0. Their effects are found to be repulsive. ForB=0.001
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FIG. 4. LFD wave function componentsfi for scalar coupling
sB=0.001,m=0.15d in (a) linear and(b) logarithmic scale compared
with the nonrelativistic solutions.

FIG. 5. LFD wave function componentsfi for scalar coupling
sB=0.5,m=0.15d in (a) linear and(b) logarithmic scales compared
with the nonrelativistic solutions.
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they remain relatively small (aYuk=0.376 instead of
aYuk0.331) but for B=0.5 the differences reach already a fac-
tor 2 (aYuk=5.32 instead ofaYuk=2.44). It is worth empha-
sizing that, whatever will be the degree of refinement in the
dynamics, the results of a relativistic calculation will be
strongly influenced by this phenomenological and not well
controlled trick.

The system of equations for determining theJ=1+, a=0
sgi=1,2

sa=0dd and a=1 sgi=1,2,3,4
sa=1d d solutions are both unstable and

require cutoff regularization[46,68]. This can be seen in Fig.
7 where theaskmaxd variation fora=0 anda=1 cases displays
a logarithmic dependence. One can also see in this figure the
nondegeneracy of both states due to the Fock-space trunca-
tion discussed in Sec. III. We remark however that if the
binding energies—or equivalently coupling constants—of

states with different projectionsa are not equal, they are
almost degenerated in a wide range ofkmax values. For in-
stance, atkmax=10 one hasaa=0=1.17 andaa=1=1.18, while
at kmax=90 one hasaa=0=1.14 andaa=1=1.16. These weak
splittings of less than 1% for a noticeably bound systemsB
=0.05d are rather surprising in view of the results obtained in
the purely scalar WC case[65,66], in which the difference in
coupling constants for the same binding energy is 20%,
which corresponds toDB<B.

The gi
sad solutions for a=0 and a=1 states are, respec-

tively, represented in Figs. 8 and 9 for several values ofu.
They were obtained with a coupling constantas=1.18 and a
sharp cutoff atkmax=10. We remark that with the conventions
usedg2

s0dsk, 0d=0 and one hasg1
s0ds0, 0d=−g2

s0ds0, 90°d, as ex-
pected from Eqs.(75). In addition, g1

s0ds0, 0d=−g2
s0ds0, 90°d

<g1
s1ds0,ud, as expected from Eq.(76) and from the fact that

coefficientci, defined in(77), are very close to values(78).
Corresponding binding energies areBa=0=0.0506 and

FIG. 6. Comparison ofBsad between the Yukawa(dashed line)
and Wick-Cutkosky(dot dashed lines) models in LFD and nonrel-
ativistic (solid line) results inJ=0+ state.
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FIG. 7. Logarithmic dependence of the coupling constant as a
function of cutoff for theJ=1+ a=0 anda=1 states. Calculations
correspond toB=0.05 andm=0.25.

FIG. 8. gi=1,2
a=0 solutions for scalar coupling witha=1.18, m

=0.25 and sharp cutoff atkmax=10. The binding energy isB
=0.0506.
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Ba=1=0.0498, values which are 1% close to each other. The
splitting of the binding energies is an increasing function of
the coupling constant. Figure 10 shows the calculatedBasad
dependence for bothJ=1 eigenstates. Foras=0.55 the values
are, respectively, Ba=0=9.7310−3 and Ba=1=9.6310−3

whereas foras=2.87,Ba=0=0.523 andBa=1=0.467. The non-
degeneracy remains reasonably small even for strongly
bound systems.

The six componentsfi of theJ=1+ physical wave function
are determined by a linear combination(71) of functionsfi

sad,
which in their turn are expressed in terms ofgi

sad by Eqs.(53)
and (66). Remember that coefficientsca of this linear com-
bination are computed from componentsg1

sa=0,1d only. For the
solutions presented in Figs. 8 and 9 they are found to bec0
=0.582 andc1=0.813 and the corresponding energy isB
=0.0501. Note that these values are very close to those ob-
tained in the case ofnW-independent interactions(78): c0

=1/Î3=0.577 andc1=Î2/3=0.816. They become even closer
to these values for smaller binding energies and they
smoothly depart for strongly bound systems. For a state with

FIG. 9. gi=1,. . .,4
a=1 solutions for scalar coupling witha=1.18,m=0.25, and sharp cutoff atkmax=10. The corresponding binding energy is

B=0.0498.
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FIG. 10. Splitting of theJ=1 solutions for the scalar coupling.
Results correspond tom=0.25 and sharp cutoff atkmax=10.
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B<0.5 and the same sharp cutoffkmax=10 one has, for in-
stance,c0=0.610 andc0=0.793. Componentsfi thus obtained
are displayed in Fig. 11 foru=30° in linear(a) and logarith-
mic (b) scales. One can see that componentf1 dominates
over the remaining five in the entire momentum range.
Among the components of relativistic origin there is not a
clear dominance. Notice the very small value of thef2 com-
ponent, corresponding to the tensorD wave, which would be
absent in a nonrelativistic approach. These components have
a definite parity in variable cosu, f1,2,3,5being even andf4,6
odd, as shown in Fig. 11(b) for a fixed valuek=1.

VIII. RESULTS FOR PSEUDOSCALAR COUPLING

For pseudoscalar coupling, the stability analysis was per-
formed using the same methods as for the scalar one[72,71]
and it presents some peculiarities.

Equations forJ=0+ states are found to be stable without
any regularization. The asymptotic behavior of the pseudo-
scalar kernel is the same as the scalar one; it has a repulsive

character which does not generate instability. The results
lead to a quasidegeneracy of the coupling constants for bind-
ing energies which vary over all the physical rangef0, 2mg.
One gets, for instance,a=55.4 for B=0.001 whereasa
=58.5 for a binding energy 500 times larger,B=0.5, showing
an extreme sensibility of this model to small variations of the
coupling constant. The origin of this behavior was found to
lie in the second-channel equationsk22d and has been under-
stood analytically[71] with a simple model. The use of form
factors—though not required for the convergence of
solutions—is necessary if one wishes to eliminate this un-
usual asBd dependence. Calculations have thus been per-
formed using form factors(18) with n=1 andL=1.3 as in the
Bonn model.

In the weak binding limitsB=0.001d one hasaLFD=190
andaNR=166, a repulsive effect much strongers15%d than in
the scalar coupling. Corresponding wave functions are
shown in Fig. 12. One can see that the component of relativ-
istic origin f2< f1 at k,0.3 and dominates abovek=1. A
similar result was found in thenp 1S0 scattering wave func-
tion calculated perturbatively with all the OBEP kernel in
Ref. [59]. Contrary to the Yukawa model, the role of relativ-
istic components is crucial already for such a loosely bound
system. The coupling between components is also very im-
portant: by switching off the nondiagonal kernelsK12=K21
=0 the coupling constant moves fromaLFD=190 to aLFD
=251. It has thus an attractive effect which tends to minimize
the difference between LFD and NR results. The comparison
betweenf1 and the nonrelativistic solutionfNR shows a very
good agreement in smallk. When k increases, large differ-
ences appear andfNR even has an additional zero atk=1.1.

It is worth noting the dramatic influence of the form factor
in all these calculations. One has, for instance,aLFD=103 for
L=5 andaLFD=1725 forL=0.3. We remind the reader that
the value used in the Bonn model for this coupling isLBonn
=1.3.

Quite surprisingly, in the strong binding limitsB=0.5d we
have foundaLFD=1462 andaNR=3065. Relativistic effects

FIG. 11. Wave function componentsfi of the physical solutions
(a) as a function ofk at u=30° and(b) their u dependence at fixed
k=1 value. Calculations are for the scalar coupling witha=1.18,
m=0.25, and sharp cutoffkmax=10. Binding energy isB=0.0501.

FIG. 12. Wave function components(in logarithmic scale) for
J=0+ state withB=0.001,m=0.15 obtained with pseudoscalar cou-
pling and form factorL=1.3.
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now become strongly attractivesaLFD,aNRd. An essential
part of this attraction is due to the coupling of the twof1
− f2 components in the LFD wave function. By performing
one-channel calculations, one has indeedaLFD=3001, which
represents a strong reduction in the effect though it remains
slightly attractive. We have checked if this attractive effect
happens for different values of the exchange massm. For the
same binding energysB=0.5d and m=0.5 we have found
aLFD=1728 andaNR=1400, repulsive once again. It is worth
noting that for this couplingaNR is a decreasing function of
m whereasaLFD increases, at least in this energy region. This
indicates to us the difficulty in discussing the “sign of rela-
tivistic effects” in general. They turn to depend not only on
the kind of coupling but also on the binding energy of the
system and, furthermore, on the mass of the exchanged par-
ticle.

It is interesting to study the zero binding limit of the LFD
results and to compare them with the nonrelativistic ones.
The NR potential(82) has been modified by including the
Bonn form factor(18). The results are given in Fig. 13 for an
exchange massm=0.5 and with two different cutoff param-
etersL in the form factors. They show the same behavior
that was found in the scalar case[64], i.e., the relativistic and
nonrelativistic approaches do not coincide even when de-
scribing systems with zero binding energies as long as they
interact with massive exchanges.

The J=1 state displays the same kind of departures from
the scalar case asJ=0. Functionsgi

sad for a=0, 1 have been
calculated using the valuesaPS=60, m=0.25, andL=1.3.
Contrary to the scalar case, binding energies are sizably dif-
ferent:Ba=0=0.103 whereasBa=1=0.0494. The physical wave
function is obtained using the same procedure as for the sca-
lar case, i.e., computefi=1,6

a=0,1 and extract from them the coef-
ficientsci. Their values,c0=0.749 andc1=0.662, are different
from c0<1/Î3 andc1<Î2/3, with c0 larger thanc1. The av-
eraged binding energy isB=0.0793. The corresponding so-
lutions are plotted in Fig. 14. One can see thatf1 dominates

at small momentask!1d, but starting fromk,1 the compo-
nents of relativistic origin become larger thanf1.

The splitting in binding energies is much larger than for
the scalar coupling. It can be seen in Fig. 15(a) where the

results ofBasad for both Â2 eigenstates are plotted. The en-
ergy differences remain important even in theB→0 limit,
Fig. 15(b), in accordance with the analytical considerations
in Sec. VI.

In summary, as was noted in Sec. VI, pseudoscalar cou-
pling displays the largest deviations with respect to the non-
relativistic dynamics. Small and large spinor components are
mixed to the first order. The coupling betweenf1 and f2 is
essential even for very weakly bound systems, the compo-
nents of relativistic origin dominate already at moderate val-
ues ofk, and the splittings of the binding energies for the
different projections of theJÞ0 states are of the same order
as the energies themselves.
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FIG. 13. Bsad for pseudoscalar coupling andJp=0+ state with
m=0.5 and two different form factors compared to nonrelativistic
results.

FIG. 14. Physical solutions forJ=1+ state with PS coupling.
Parameters area=60, m=0.25, andL=1.3. Corresponding binding
energy isB=0.079 and components are plotted foru=30°.
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IX. RESULTS FOR VECTOR COUPLING

The stability analysis applied to vector kernels shows that
vertex form factors are required for bothJ=0+ and J=1+

states to obtain stable solutions.
This is true in particular in the simplest application of

vector coupling: the positroniumJ=0− state. The negative
parity of the state comes from the intrinsic positron parity so
that the corresponding kernels are those of theJp=0+ two-
fermion system already given in Appendix A. In Table I the
values of the coupling constanta are presented as a function
of the sharp cutoffkmax and for a fixed binding energyB
=0.0225. The dependence is very slow—0.3% variation for
kmaxPf10, 300g—but it actually corresponds to a logarithmic
divergence ofaskmaxd as it can be seen in Fig. 16. The origin
of this instability is the coupling to the second component,
whose kernel matrix elementk22 has an attractive, constant
asymptotic limit. If one removes this component—which has
a very small contribution in norm—calculations become
stable and give foraNR=0.30 the valueaLFD=0.3975.

The comparison of LFD ladder results with those obtained
in perturbative QED or to the physical energies is meaning-
less due to the instability of the solutions themselves. The
use of vertex form factors in a system of pointlike particles
would be hazardous and the introduction of renormalizable
counterterms seems to be a more appropriate cure.

First positronium results in light-front dynamics were ob-
tained in Refs.[37,38]. These authors introduced a large
number of states in the Fock expansion but observed the
same instability of the solutions. For a fixed value of the
cutoff, the results become finite and can be compared. By

taking kmax=10 and a=0.3—which corresponds toBNR
=0.0225—we foundBLFD=0.0132, i.e., repulsive relativistic
effects. The leading order QED corrections[79] read

BQED =
a2

4 F1 +
21

16
a2 + osa4dG < 0.02516,

and are attractive. Equations10d from Ref. f38g gives for
kmax=10 the value BDLC=0.0308, in qualitative
agreement—thought still sizably different—withBQED.
We should notice that a recent workf39g analyzes the
results of Ref.f38g in terms of flow equations and obtains
a closer valueBDLC=0.02341. Weconclude from this that
the ladder LFD predictions for such a genuine system are
unable to reproduce even the sign of first order relativistic
corrections. Because the lowest-order corrections of the
singlet state are not affected by the annihilation channels,
the differences could be due to cross ladder graphs.

For mÞ0, the two-fermion system is bound due to the
m-dependent termsf,stt8/m2dyijg in the vector kernel(A8),
since them-independent onessxijd are repulsive. This bind-
ing disappears in the nonrelativistic limit.

When solving the equations forJ=0+ state, the standard
form factors(18)—depending onQ2 and local in the nonrel-
ativistic limit—were found to be insufficient for any powern
to ensure a stable solution. AQ2 dependent Gaussian form
factor failed as well. This unstability comes from the
m-dependent terms. These are off-shell corrections depend-
ing on variablest, t8 defined by

4m2t = 4«k
2 − M2, 4m2t8 = 4«k8

2 − M2, s98d

and are not regularized by a form factor depending on

variableQ2. Such a function cuts off the highukW −k8W u com-

ponents, but not theukW +k8W u ones. A similar situation is
encountered in the framework of chiral perturbation
theory f80g and was solved by the replacementksk, k8d
→Fskdksk, k8dFsk8d.

Our way of doing it is as follows. VariableQ2=−skmeson
−vt1d2 enteringFsQ2d is associated with the off-energy shell
effects in the intermediate state containing one massive me-
son m. In a similar way, we introduce the variableh=m2

−sk1−vtd2— see vertex 2 in the first graph of Fig. 3—and
correspondinglyh8=m2−sk82−vt8d2 from vertex 1. Variables
h andh8 control the off-energy-shell contribution to the fer-
mion states and have been regularized by means of a cutoff
function

Hshd = S L2

L2 + h
Dn

.

This corresponds to a nonlocal form factor even in the
nonrelativistic limit. On energy shell one hash=h8=0.

TABLE I. Coupling constanta as a function of the sharp cutoffkmax for the J=0− positronium state with binding energyB
=0.0225 a.u.

kmax 10 20 30 40 50 70 100 200 300

a 0.3945 0.3928 0.3918 0.3911 0.3905 0.3896 0.3887 0.3867 0.3854

FIG. 16. Coupling constanta as a function of the sharp cutoff
kmax for the J=0− positronium state with binding energyB
=0.0225 a.u.
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Thus, for instance, the total form factor associated with
vertex 2 of Fig. 3 reads

FnlocsQ2, hd = FsQ2dHshd. s99d

In center of mass variables(3) the expressions forh, h8
are

h =5S1 −
kW ·nW

«k
D2m2t if

kW8 ·nW

«k8
−

kW ·nW

«k
. 0

S1 +
kW ·nW

«k
D2m2t if

kW8 ·nW

«k8
−

kW ·nW

«k
, 0

s100d

and

h8 =5S1 +
kW8 ·nW

«k8
D2m2t8 if

kW8 ·nW

«k8
−

kW ·nW

«k
. 0

S1 −
kW8 ·nW

«k8
D2m2t8 if

kW8 ·nW

«k8
−

kW ·nW

«k
, 0,

s101d

with t, t8 given defined in Eq.s98d.
Each coupling constant is replaced by

g→gFsQ2dHshd—or g→gFsQ2dHsh8d—and the kernel is
multiplied byF2sQ2dHshdHsh8d. The values forL andn in H
are taken the same as forFsQ2d, but could in principle be
different.

By means of Eq.(99), the solutions become stable but we
notice that the use of only one kind of form factor is not
enough to ensure the stability. Wave functions corresponding
to m=0.15 obtained withn=1 and L=1.3 in Eq. (99) are
displayed in Fig. 17. Binding energy isB=0.0225 andav
=1.485. They have normal behavior and one notices sizable
relativistic componentf2 starting fromk<0.5 with a strongu
dependence despite the small binding energy of the state.

Let us now consider theJp=1+ state. Solving theJp

=1+, a=0 equations with theFsQ2d form factor only leads to
the same anomalies as forJp=0+. With the nonlocal form
factor the situation is regularized. With parametersB
=0.050,m=0.25, L=1.3, andn=1, for instance, one has a
coupling constanta=6.18 and a well behaved wave function.
The same happens for theJp=1+, a=1 state. When using,
with the same parameters, the nonlocal form factor(99), we
get a=6.01.

The mass splitting between the twoa=0, 1 projections is
shown in Fig. 18. One first notices the striking behavior of
aasBd curves, i.e., larger binding energies correspond to
smaller values of the coupling constanta. This fact—which
takes place also forJ=0+ states—is a consequence of theM2

dependence of thett8/m2 terms driving the vector kernelkij
smd

in Eq. (A8). Its contribution is large because ofm2 in the

denominator. Increasing the binding energy—i.e., decreasing
M2—increasest, t8 factors and results in smaller values ofa.
When theM2 dependence int, t8 kernel is frozen—setting,
e.g.,M2=4m2 —the usualasBd variation is recovered(dotted
curve in Fig. 18). When including the full dynamics, both
aasBd curves get close to each other in all the variation do-
mainB=f0, 0.5g, as was the case in the scalar coupling. How-
ever due to their peculiar behavior—flat and almost
parallel—the splitting in binding energies corresponding to a
fixed value of the coupling constant can be very large. One
can also notice in Fig. 18 the different values ofaa at B=0,
despite the fact that the systems of equations fora=0 and
a=1 have—as in the scalar coupling—the same nonrelativis-
tic limit. This difference is due to the 1/m2 terms in the ker-
nel. They are not relevant at thes1/md0 order but are crucial
for binding a relativistic two-fermion system by vector ex-
change. For a fermion-antifermion system with massless ex-
change, e.g., positronium, the splitting atB=0 disappears.

FIG. 17. Wave functionsfi for a Jp=0+ state in the vector cou-
pling with m=0.15 and using the nonlocal form factor(99) with n
=1 andL=1.3. The coupling constant isa=1.485 and the binding
energyB=0.0225.
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X. CONCLUSION

We have presented the explicitly covariant LFD solutions
for the bound state of two-fermion systems in the ladder
approximation. A method for constructing nonzero angular
momentum states has been proposed and illustrated by nu-
merical examples. It is based on satisfying the angular con-
dition by a linear superposition of eigenstates of an operator
commuting with the LFD ladder Hamiltonian.

We have separately examined the different types of OBE
couplings and found very different behaviors concerning the
stability of the solutions themselves and their relation with
the corresponding nonrelativistic reductions.

Scalar coupling(Yukawa model) is found to be stable
without any kernel regularization for theJp=0+ state and
coupling constants below some critical valuea,ac=3.72.
For values aboveac the system collapses. For theJp=1+

state the solutions of botha=0 anda=1 projections are un-
stable. Their energy splitting is very small even for binding
energies B of the same order as the constituent mass and
vanishes atB=0. The physical solution, satisfying the angu-
lar condition, has been constructed by a suitable linear com-
bination ofa=0, 1 states. LFD binding energies are found to
be close to those given by their nonrelativistic limit, even
closer than the case of purely scalar particles(Wick Cutko-
sky model extended tomÞ0). The comparison with the non-
relativistic solutions always shows repulsive effects. The
LFD wave function is dominated by the component which
has a nonrelativistic counterpart. Extra components of rela-
tivistic origin remain negligible even at large values of the
relative momentumsk.md.

Pseudoscalar coupling is also found stable forJp=0+

state. It displays a very strong dependence of binding ener-
gies as a function of the coupling constant: they vary from
B=0.001 toB=0.500 (in constituent mass units) while the

coupling constant changes froma=55.5 toa=58.5. This de-
pendence is due to the coupling to the wave function com-
ponent of relativistic origin. Vertex form factors are required
for Jp=1+ states. LFD solutions, obtained with regularized
kernels, present large deviations with respect to nonrelativis-
tic case, even for weakly bound states, and display a big
sensitivity to the cutoff parameters. The LFD wave function
is dominated by a relativistic component at relatively small
momentask,md. The coupling between different compo-
nents is strongly attractive and can compensate the repulsive
effects observed in the Yukawa model. Thus, relativistic cor-
rections can be attractive or repulsive depending on the
quantum number of state, the value of the binding energy,
and even the massm of the exchanged meson. The energy
splitting between different projections ofJ=1 states is large
and remains atB=0.

Vector coupling presents stronger anomalies. Form=0 it
has been applied to the positronium 0+ state. It is found to be
unstable and, once regularized by means of sharp cutoff-off,
the ladder approximation gives relativistic corrections of op-
posite sign compared to QED perturbative results. This fail-
ure shows the poorness of the ladder approximation in one of
the rare cases in which it can be confronted with experimen-
tal results. FormÞ0 the LFD solutions collapse even using
local cutoff form factors. The reason lies in the strong non-
localities of them-dependent terms in the LFD kernel. These
terms have their origin in the massive vector propagator and
manifest as off-shell corrections of them=0 kernels. They
have been regularized using appropriate vertex form factors.
The J=1+ state has thus been calculated. This state is not
bound in the nonrelativistic limit and its existence in a rela-
tivistic approach is entirely due to them-dependent terms in
the kernel. The importance of this off-shell terms is thus
dramatic. In particular, their energy dependence generates a
decrease of the binding energy as a function of the coupling
constant, which questions the very meaning of the interaction
strength. TheaasBd dependence for different projections of
J=1 states remain very close to each other even forB,m but
their particular form—smooth and almost parallel
variation—can give rise to large energy splitting for a fixed
value of the coupling constant.

Some general additional remarks concerning the relativis-
tic calculations are given as follows.

(i) Contrary to the nonrelativistic case, vertex form factors
are unavoidable in any realistic calculation. The full spinor
structure generates highly singular kernels which are not
regularized by local vertex form factors. It is clear that, es-
pecially at largek values, the obtained wave function and
consequently the electromagnetic form factors will crucially
depend on the way the regularization is performed. The large
momentum components will thus be determined not by the
dynamics but by uncontrolled parameters. We believe that
here lies the main drawback of relativistic approaches.

(ii ) The consequences of implementing the Lorentz invari-
ance in a quantum mechanical description of a system are
not only kinematical but mainly dynamical. Large differ-
ences with respect to the nonrelativistic solutions appear
even in the zero binding limit for systems withk/m!1 as
long as the exchanged mass is nonzero. We have explicitly

FIG. 18. Splitting of theJ=1+ solutions for vector coupling with
m=0.25 and form factors(99) with L=1.3 n=1. Dotted lines corre-
spond to a fixed binding energysB=0d in t, t8 off-shell variables of
kernel (A8).
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shown for scalar and pseudoscalar couplings that the behav-
ior of asBd at B<0 differs from their nonrelativistic counter-
parts, a result already found in the Wick-Cutkosky model
[64].

(iii ) The question about the sign of relativistic effects has
no simple answer. They can be different, following the nature
of the constituents, the kind of interaction, the quantum num-
bers of the state, its binding energy, and even the mass of the
exchanged particle. This shows that there are no simple reci-
pes to performa priori evaluations.

(iv) The splitting of different projections ofJ=1 states is
very different following the kind of coupling. In nuclear
physics—where the weight of scalar mesons in the binding
energy is dominating—it is expected to be very small. The
same is true for the massless vector coupling such as one-
photon or one-gluon exchange. It can be however very large
in relativistic models where pseudoscalar exchange plays an
important role.

Finally, we would like to emphasize one of the interesting
features of using LFD in describing the relativistic composite
systems. It lies in the fact that wave function components
appearing in this approach are closely related to their nonrel-
ativistic counterparts. Some of these components are the for-
mal equivalent of the usual nonrelativistic solutions while
the others are of pure relativistic origin. Relativity manifests
both in modifying the former and in giving a sizable weight
to the latter ones. We have found that the coupling between
these components plays an essential role, even in determin-
ing the stability of the solutions. In addition—except for the
scalar exchange—the total wave function is dominated by
the relativistic components at moderate values of its argu-
mentssk,md, even for loosely bound systems.
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APPENDIX A: KERNELS
Kernels kij are obtained from Eqs.(45), (46), (63), and

(64) as traces of 434 matrices. To calculate these traces, it is
useful to express the scalar products between all the con-
cerned four-vectors in terms of variablessk, k8, u, u8d. They
read

v2 = 0,

k1
2 = k2

2 = k18
2 = k28

2 = m2,

v ·k1 = xv · p,

v ·k2 = s1 − xdv · p,

v ·k18 = x8v · p,

v ·k28 = s1 − x8dv · p,

k1 ·k2 = 2«k
2 − m2,

k18 ·k28 = 2«k8
2 − m2,

k1 · p = 2«k
2s1 − xd + 1

2M2x,

k2 · p = 2«k
2x + 1

2M2s1 − xd,

k18 · p = 2«k8
2 s1 − x8d + 1

2M2x8,

k28 · p = 2«k8
2 x + 1

2M2s1 − x8d,

k1 ·k18 = − kk8 sin u sin u8 cosf + 2«k8
2 x + 2«k

2x8 − 2«k
2xx8

− 2«k8
2 xx8,

k2 ·k28 = − kk8 sin u sin u8 cosf + 2«k
2x + 2«k8

2 x8 − 2«k
2xx8

− 2«k8
2 xx8,

k1 ·k28 = kk8 sin u sin u8 cosf + 2«k
2s1 − xds1 − x8d

+ 2«k8
2 xx8,

k2 ·k18 = kk8 sin u sin u8 cosf + 2«k8
2 s1 − xds1 − x8d

+ 2«k
2xx8, sA1d

where

x =
1

2S1 −
k

«k
cosuD, x8 =

1

2S1 −
k8

«k8
cosu8D . sA2d

Using the above result, we have obtained the analytical
expressions ofki j kernels forJp=0+, 1+ states. They are
written below, coupling by coupling, in the form

ki jsk, u, k8, u8, w8d = cijsk, u, k8, u8d + dijsk, u, k8, u8dcosw8

+ eijsk, u, k8, u8dcos2 w8, sA3d

with coefficientscij , dij , eij invariant under the transforma-
tion si, k, ud↔ si8, k8, u8d. We introduce for shortness the
notations

su = sin u, cu = cosu, Su = k sin u, Cu = k cosu,

cw8 = cosw8,

plus corresponding primed and the following quantities:
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b±
2 = m2s«k

2 + «k8
2 d ± 2«k

2«k8
2 ,

«k
± = «k ± m,

D± = «k
2 ± «k8

2 .

Coupling constants appear througha=g2/4p.

1. Scalar

Kernels for the scalar coupling were already given in Ref.
[68] and are included here for completeness.

For J=0+,

k11

ap
= − fm2D+ + 2«k«k8s«k«k8 − CuCu8dg + D+SuSu8cw8,

k12

ap
= − mD−sSu8 + Sucw8d,

sA4d

k21

ap
= + mD−sSu + Su8cw8d,

k22

ap
= D+SuSu8 − fm2D+ + 2«k«k8s«k«k8 − CuCu8dgcw8.

For J=1+, a=0,

k11

ap
= f2kk8«k«k8 − b+

2cucu8g − «k«k8D
+susu8cw8, sA5d

k12

ap
= m«k8s2«k

2 + D+dcusu8 − m«ks2«k8
2 + D+dsucu8cw8,

k21

ap
= m«ks2«k8

2 + D+dsucu8 − m«k8s2«k
2 + D+dcusu8cw8,

k22

ap
= − «k«k8D

+susu8 + f2kk8«k«k8 − b+
2cucu8gcw8.

For J=1+, a=1,

2k11

ap
= − hm«ks

2usD+ + 2«k8
2 d + m«k8s

2u8sD+ + 2«k
2d + sc2u

+ c2u8db+
2 − 4«k«k8CuCu8j − hD+s«k

−«k8
− cucu8

− kk8dsusu8jcw8 − hD+«k
−«k8

− s2us2u8jc2w8,

2k12

ap
= fm«ksD+ + 2«k8

2 d − b+
2gs2u − fm«k8sD

+ + 2«k
2d − b+

2gs2u8

− hkk8s«k − «k8d
2 + s«k + «k8d

2«k
−«k8

− cucu8jsusu8cw8

+ h«k8
− s«k + «k8d

2c2u8 − «k8
+ s«k − «k8d

2j«k
−s2uc2w8,

Î2k13

ap
= − 2«k«k8CuSu8 − «k8

− smD+ − 2«k
2«k8dcu8su8

+ h2«k«k8kCu8 + «k
−cuf«k8sD

+ − 2m«kd − «k8
− s«k

+ «k8d
2c2u8gjsucw8 − s«k + «k8d

2«k
−«k8

− s2usu8cu8c2w8,

Î2k14

ap
= D−hsm+ «k

−s2udSu8 + mSucw8 − «k
−s2uSu8c2w8j,

2k21

ap
= fm«k8sD

+ + 2«k
2d − b+

2gs2u8 − fm«ksD+ + 2«k8
2 d − b+

2gs2u

− hkk8s«k − «k8d
2 + s«k + «k8d

2«k8
−

«k
−cucu8jsusu8cw8

+ h«k
−s«k8 + «kd2c2u − «k

+s«k8 − «kd2j«k8
− s2u8c2w8,

2k22

ap
= ms«k + «k8d

3 − «k
−smD+ − 2«k«k8

2 dc2u − «k8
− smD+

− 2«k
2«k8dc

2u8 − 4«k«k8CuCu8 − s«k + «k8d
2s«k

−«k8
−

− CuCu8dsusu8cw8 − h2b+
2sc2u + c2u8d + 2mf«ksD+

+ 2«k8
2 ds2u + «k8sD

+ + 2«k
2ds2u8g + s«k

+ «k8d
2«k

−«k8
− s2us2u8 − 8«k«k8CuCu8jc2w8,

Î2k23

ap
= h2k8«k«k8Cu + «k8

− smD+ − 2«k
2«k8dcu8jsu8

− h«k
−cuf«k8

− s«k + «k8d
2c2u8 − «k8sD

+ − 2m«kdg

− 2k«k«k8Cu8jsucw8 − h«k8
− cu8ss«k − «k8d

2«k
+ − s«k

+ «k8d
2«k

−c2ud + 4k8«k«k8Cujsu8c2w8,

Î2k24

ap
= + D−hs«k − «k

−c2udSu8 − mSucw8 − s«k
+

− «k
−c2udSu8c2w8j,

Î2k31

ap
= − 2«k«k8SuCu8 − «k

−smD+ − 2«k«k8
2 dsucu

+ su8h«k
−cu8fsmD+ − 2«k

2«k8dc
2u + «ksD+

− 2m«k8ds
2ug + 2«k«k8kCu8jcw8

− D+«k
−«k8

− sucus2u8c2w8,
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Î2k32

ap
= h2k«k«k8Cu8 + «k

−smD+ − 2«k«k8
2 dcujsu

− h«k8
− cu8f«k

−s«k + «k8d
2c2u − «ksD+ − 2m«k8dg

− 2k8«k«k8Cujsu8cw8 − h«k
−cufs«k − «k8d

2«k8
+ − s«k

+ «k8d
2«k8

− c2u8g + 4k«k«k8Cu8jsuc2w8,

k33

ap
= h«k«k8

− sD+ − 2m«k8dc
2u8 + «k8«k

−sD+ − 2m«kdc2u

− «k«k8sD
+ + 2m2d − fs«k + «k8d

2«k
−«k8

− cucu8

− 2kk8«k«k8gcucu8jcw8 − fs«k + «k8d
2«k

−«k8
− cucu8

− 2kk8«k«k8gsusu8c2w8,

k34

ap
= + D−«k

−sucuSu8s1 − c2w8d,

Î2k41

ap
= − D−hsm+ «k8

− s2u8dSu + mSu8cw8 − «k8
− s2u8Suc2w8j,

Î2k42

ap
= − D−hs«k8 − «k8

− c2u8dSu − mSu8cw8 − s«k8
+

− «k8
− c2u8dSuc2w8j,

Î2k42

ap
= − D−hs«k8 − «k8

− c2u8dSu − mSu8cw8 − s«k8
+

− «k8
− c2u8dSuc2w8j,

k43

ap
= − D−«k8

− su8cu8Sus1 − c2w8d,

k44

ap
= f2«k«k8sCuCu8 − «k«k8d − m2D+gcw8 + D+SuSu8c2w8.

2. Pseudoscalar

For J=0+,

k11

ap
= − fm2D+ − 2«k«k8s«k«k8 − CuCu8dg + D+SuSu8cw8,

k12

ap
= − mD−sSu8 − Sucw8d,

sA6d
k21

ap
= + mD−sSu − Su8cw8d,

k22

ap
= D+SuSu8 + fm2D+ − 2«k«k8s«k«k8 − CuCu8dgcw8.

For J=1,a=0,

k11

ap
= − s2kk8«k«k8 + b−

2cucu8d + «k«k8sD
+ − 2m2dsusu8cw8,

k12

ap
= − mD−s«k8cusu8 − «ksucu8cw8d,

sA7d

k21

ap
= + mD−s«ksucu8 − «k8cusu8cw8d,

k22

ap
= − «k«k8sD

+ − 2m2dsusu8 + s2kk8«k«k8 + b−
2cucu8dcw8.

For J=1+, a=1,

2k11

ap
= 4CuCu8«k«k8 + mD−s«ks

2u − «k8s
2u8d + b−

2sc2u

+ c2u8d + s«k − «k8d
2skk8 − «k

−«k8
− cucu8dsusu8cw8 + s«k

− «k8d
2«k

−«k8
− s2us2u8c2w8,

2k12

ap
= sc2u − c2u8db−

2 − mD−s«ks
2u + «k8s

2u8d − hkk8s«k

+ «k8d
2 + cucu8s«k − «k8d

2«k
−«k8

− jsusu8cw8 − hsb−
2

− m«kD
−ds1 + c2u8d + «k8«k

−sD+ + 2m«kds2u8js2uc2w8,

Î2k13

ap
= hf«k8sD

− + 2m«kd − «k8
− s«k − «k8d

2c2u8g«k
−cu

− 2k«k«k8Cu8jsucw8 − hsb−
2 + m«k8D

−dcu8

+ 2kk8«k«k8cujsu8 + «k
−«k8

− s«k − «k8d
2s2usu8cu8c2w8,

Î2k14

ap
= D−h− s«k − «k

+c2udSu8 + mSucw8 + «k
−s2uSu8c2w8j,

2k21

ap
= sc2u − c2u8db−

2 + mD−s«ks
2u + «k8s

2u8d − hkk8s«k

+ «k8d
2 + cucu8s«k − «k8d

2«k
−«k8

− jsusu8cw8 − hsb−
2

+ m«k8D
−ds1 + c2ud + «k«k8

− sD+ + 2m«k8ds
2ujs2u8c2w8,
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2k22

ap
= − mD−s«ks

2u − «k8s
2u8d − b−

2sc2u + c2u8d

− 4«k«k8CuCu8 + hkk8s«k − «k8d
2 + cucu8fmD−s«k

− «k8d − b−
2 − «k«k8sD

+ − 2m2dgjsusu8cw8

+ h8«k«k8CuCu8 + 2b−
2sc2u + c2u8d + 2mD−s«ks

2u

− «k8s
2u8d + s2us2u8s«k − «k8d

2«k
−«k8

− jc2w8,

Î2k23

ap
= h2k8«k«k8Cu + sb−

2 + m«k8D
−dcu8jsu8 + hf«k8sD

+

+ 2m«kds2u8 + smD+ + 2«k«k8
2 dc2u8g«k

−cu

− 2k«k«k8Cu8jsucw8 + hf«ksD+ + 2m«k8ds
2u + smD+

+ 2«k
2«k8ds1 + c2udg«k8

− cu8 − 4k8«k«k8Cujsu8c2w8,

Î2k24

ap
= − D−hs«k − c2u«k

−dSu8 + mSucw8 − s«k
+

− «k
−c2udSu8c2w8j,

Î2k31

ap
= hf«ksD+ + 2m«k8d − «k

−s«k − «k8d
2c2ug«k8

− cu8

− 2k8«k«k8Cujsu8cw8 − hsb−
2 − m«kD

−dcu

+ 2kk8«k«k8cu8jsu + «k
−«k8

− s«k − «k8d
2sucus2u8c2w8,

Î2k32

ap
= h2k«k«k8Cu8 + sb−

2 − m«kD
−dcujsu + hf«ksD+

+ 2m«k8ds
2u + smD+ + 2«k

2«k8dc
2ug«k8

− cu8

− 2k8«k«k8Cujsu8cw8 + hf«k8sD
+ + 2m«kds2u8

+ smD+ + 2«k«k8
2 ds1 + c2u8dg«k

−cu

− 4kk8«k«k8cu8jsuc2w8,

k33

ap
= h− «k8«k8fsD

+ − 2m2ds2us2u8 + 2CuCu8g − b−
2c2uc2u8

+ mD−f«k8s
2u8c2u − «ks

2uc2u8gjcw8 + f2kk8«k«k8

+ «k
−«k8

− s«k − «k8d
2cucu8gsusu8c2w8,

k34

ap
= − D−«k

−suSu8cus2w8,

Î2k41

ap
= − D−h− Sus«k8 − «k8

− c2u8d + mSu8cw8

+ Sus2u8«k8
− c2w8j,

Î2k42

ap
= D−hs«k8 − «k8

− c2u8dSu + mSu8cw8 − s«k8
+

− «k8
− c2u8dSuc2w8j,

k43

ap
= D−«k8

− su8Sucu8s2w8,

k44

ap
= s− b−

2 − 2«k«k8CuCu8dcw8 − D+SuSu8c2w8.

3. Pseudovector

Pseudovector kernels will be given as a sum of the pseu-
doscalar ones plus a termdij which depends on variablest, t8
defined in Eq.(98) and vanishes on energy shellst=t8=0d:

ki j = ki j
ps+ di j .

The following expressions fordi j are valid only for x
−x8.0—with x, x8 defined by Eqs.sA2d—and because of
this coefficientssA3d are not symmetric in the exchange
si, k, ud↔ si8, k8, u8d. For x−x8,0, the corresponding ex-
pressions are obtained by replacingt→−t8, t8→−t and
their symmetry properties are restored.

For J=0+,

d11

ap
= m2hm2tt8 + st − t8dD− − st + t8ds«k8Cu8 − «kCudj

− m2tt8SuSu8cw8,

d12

ap
= mhm2tt8 + «k

2st − t8d + «kst + t8dCujSu8 + mhm2tt8

− «k8
2 st − t8d − «k8Cu8st + t8djSucw8,

d21

ap
= mhm2tt8 − «k8

2 st − t8d − «k8st + t8dCu8jSu + mhm2tt8

+ «k
2st − t8d + «kst + t8dCujSu8cw8,

d22

ap
= m2tt8SuSu8 − m2fm2tt8 + st − t8dD− − st + t8ds«k8Cu8

− «kCudgcw8.

4. Vector

Vector kernels are written in the form

ki j = 2m2tt8
m2

m2yi j + xi j

in which xi j correspond to them=0 case. Theyi j contribu-
tion, due tom-dependent term in the vector propagator,
appears to be of shell corrections. Positronium kernels are
simply given byki j

sPSd=−xi j .
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For J=0+,

−
k11

2ap
= 2m2tt8

m2

m2sm2 + SuSu8cw8d + sb−
2 − 2ek8

2
ek

2d,

−
k12

2ap
= 2m3tt8

m2

m2sSu8 − Sucw8d + mD−Su8,

sA8d

−
k21

2ap
= 2m3tt8

m2

m2sSu − Su8cw8d − mD−Su,

−
k22

2ap
= 2m2tt8

m2

m2sSuSu8 + m2cw8d − sD+SuSu8

+ 2ekek8sekek8 + CuCu8dcw8d.

For J=1+, a=0,

k11

2ap
= − 2m2tt8

m2

m2fm2cucu8 + ekek8susu8cw8g

+ fm2D+cucu8 + 2ekek8skk8 + 2m2susu8cw8dg,

k12

2ap
= 2m3tt8

m2

m2fek8cusu8 − eksucu8cw8g

− mek8fD
+cusu8 − 2ekek8sucu8cw8g,

k21

2ap
= 2m3tt8

m2

m2feksucu8 − ek8cusu8cw8g

− mekfD+sucu8 − 2ekek8cusu8cw8g, sA9d

k22

2ap
= − 2m2tt8

m2

m2fekek8susu8 + m2cucu8cw8g

+ fekek8D
+susu8 + 2ekek8skk8 + ekek8cucu8dcw8g.

For J=1+, a=1, them-independent kernelsxij are given by

x11

ap
= 2«k«k8f2CuCu8 + smD+ + «k8«k

−c2u + «k«k8
− c2u8dg

+ f4kk8«k«k8 + D+skk8 + «k
−«k8

− dgsusu8cw8

+ 2«k«k8«k
−«k8

− s2us2u8c2w8,

x12

ap
= fkk8s4«k«k8 − D+d + «k

−«k8
−

D+cucu8gsusu8cw8

− 2«k«k8«k
−s2«k8 − «k8

− s2u8ds2uc2w8 + 2«k«k8f«k«k8sc
2u8

− c2ud + ms«ks
2u8 − «k8s

2udg,

x13

Î2ap
= − 2«k«k8skk8cu + «k«k8

− cu8dsu8 − h«k
−D+sm

+ «k8
− s2u8dcu − 4kk8«k«k8cu8jsucw8

+ 2«k«k8«k
−«k8

− s2usu8cu8c2w8,

x14

Î2ap
= mD−Sucw8,

x21

ap
= fkk8s4«k«k8 − D+d + «k

−«k8
−

D+cucu8gsusu8cw8

− 2«k«k8«k8
− s2«k − «k

−s2uds2u8c2w8 − 2«k«k8f«k«k8sc
2u8

− c2ud + ms«ks
2u8 − «k8s

2udg,

x22

ap
= − 2«k«k8hms«k + «k8d + «k«k8

− c2u8 + «k8«k
−c2u + 2CuCu8j

+ hkk8s4«k«k8 + D+d + «k
−«k8

−
D+cucu8jsusu8cw8

+ 2«k«k8hs«k8
+ + «k8

− c2u8ds«k
+ + «k

−c2ud + 4CuCu8jc2w8,

x23

Î2ap
= 2«k«k8skk8cu + «k8

−
«kcu8dsu8 − 2«k«k8h2kk8cu

+ s«k
+ + «k

−c2ud«k8
− cu8jsu8c2w8 + h4kk8«k«k8cu8

− «k
−D+sm+ «k8

− s2u8dcujsucw8,

x24

Î2ap
= − mD−Sucw8,

x31

Î2ap
= − 2«k«k8skk8cu8 + «k8«k

−cudsu − h«k8
−

D+sm

+ «k
−s2udcu8 − 4kk8«k«k8cujsu8cw8

+ 2«k«k8«k
−«k8

− cusus2u8c2w8,

x32

Î2ap
= 2«k«k8skk8cu8 + «k

−«k8cudsu − 2«k«k8h2kk8cu8 + s«k8
+

+ «k8
− c2u8d«k

−cujsuc2w8 + h4kk8«k«k8cu − «k8
−

D+sm

+ «k
−s2udcu8jsu8cw8,

x33

ap
= 4«k«k8skk8 + «k

−«k8
− dsusu8c2w8 + 2h4«k«k8CuCu8

+ D+s«k«k8 + «k
−«k8

− c2uc2u8 − «k8«k
−c2u − «k«k8

− c2u8djcw8,

x34

ap
= 0,
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x41

Î2ap
= − mD−Su8cw8,

x42

ap
= mD−Su8cw8,

x43

ap
= 0,

x44

ap
= 2s2«k

2«k8
2 − b−

2dcw8

and theyi j contribution reads

y11

ap
= mf«k

−c2u + «k8
− c2u8 − s«k + «k8dg − fkk8

+ «k
−«k8

− cucu8gsusu8cw8 − «k
−«k8

− s2us2u8c2w8,

y12

ap
= mfs«k − «k8d − «k

−c2u + «k8
− c2u8g + fkk8

− «k
−«k8

− cucu8gsusu8cw8 − «k
−s«k8

+ − «k8
− c2u8ds2uc2w8,

y13

Î2ap
= − m«k8

− su8cu8 + «k
−sm+ «k8

− s2u8dsucucw8

− «k
−«k8

− s2usu8cu8c2w8,

y14

Î2ap
= sm+ «k

−s2udSu8 − mSucw8 − «k
−s2uSu8c2w8,

y21

ap
= − mfs«k − «k8d + «k8

− c2u8 − «k
−c2ug + fkk8

− «k
−«k8

− cucu8gsusu8cw8 − «k8
− s«k

+ − «k8
− c2uds2u8c2w8,

y22

ap
= mfs«k + «k8d − «k

−c2u − «k8
− c2u8g − skk8

+ «k
−«k8

− cucu8dsusu8cw8 − s2m+ «k
−s2uds2m

+ «k8
− s2u8dc2w8,

y23

Î2ap
= m«k8

− su8cu8 + «k
−sucusm+ «k8

− s2u8dcw8 − «k8
− s«k

+

− «k
−c2udsu8cu8c2w8,

y24

Î2ap
= sm+ «k

−s2udSu8 + mSucw8 − s2m+ «k
−s2udSu8c2w8,

y31

Î2ap
= − m«k

−sucu + «k8
− sm+ «k

−s2udsu8cu8cw8

− «k
−«k8

− s2u8sucuc2w8,

y32

Î2ap
= m«k

−sucu + «k8
− su8cu8sm+ «k

−s2udcw8 − «k
−s«k8

+

− «k8
− c2u8dsucuc2w8,

y33

ap
= − 2sm+ «k8

− s2u8dsm+ «k
−s2udcw8

− 2«k
−«k8

− cucu8susu8c2w8,

y34

ap
= 2«k

−sucuSu8s2w8,

y41

Î2ap
= sm+ «k8

− s2u8dSu − mSu8cw8 − «k8
− Sus2u8c2w8,

y42

ap
= sm+ «k8

− s2u8dSu + mSu8cw8 − s2m+ «k8
− s2u8dSuc2w8,

y43

ap
= 2«k8

− su8cu8Sus2w8,

y44

ap
= − 2sm2 + SuSu8cw8dcw8.

APPENDIX B: RELATIONS BETWEEN THE
COMPONENTS OF J51 STATE

The wave function of theJ=1 state is represented in two
forms: in form(49) with the componentswi and in form(51)
with the componentsfi. The formulas expressing the compo-
nentswi in terms of thefi, in approximationM<2m, are
given in Appendix C from Ref.[57]. Here we give these
relations for arbitraryM (note thatw3 and w6 only differ
relative to Ref.[57]; we denote belowz=cosu):

w1 =
m2s2«k + md

4«kk
2 f2 +

m2

4«ks«k + md
sÎ2f1 − f3 + zf4 − Î3zf6d,

w2 =
m

4«k
sÎ2f1 − f2 − f3 − 2zf4d,
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w3 = −
Î2s2«k − Md2k

16«k
2s«k + md

zf1 −
s2«k + mds2«k − Md2

16«k
2k

zf2

+
s4«k

2 + 8M«k + M2dk
16«k

2s«k + md
zf3

+
3M

4k S1 −
z2s2«k − Md2k2

12M«k
2s«k + mdD f4

+
Î3M

4k S1 +
z2s2«k − Md2k2

4M«k
2s«k + md D f6,

w4 = −
3m

2k
f4 +

Î3m

2k
f6,

w5 =
1

2
Î3

2

m2

k«k
f5,

w6 =
s2«k − Md2

8m«k
sÎ2f1 − f2 + zf4 − Î3zf6d

−
s4«k

2 + 8M«k + M2d
8m«k

f3. sB1d

The state withJ=1,a=1 is determined by Eq.(67) as a
decomposition in four orthogonal spin structuresSim

s1d. These
four structures are expressed by Eq.(68) in terms of six
structuresSjm, defined in Eq.(48), with the coefficientshij
given below. These coefficients are found as follows. We
substitute formulas(66) into Eqs.(B1) and then Eqs.(B1)
into Eq.(49). In this way the wave functionfm

s1d is expressed
in terms of the four functionsgi

s1d, i.e., obtains the form(67).
The coefficients at the front ofgi

s1d are the structuresSim
s1d.

Collecting these coefficients, we findSim
s1d in terms of six

structuresSjm, in the form of Eq.(68) with the following
coefficientshij :

h11 =
Î3m2

4«ks«k + md
, h12 =

Î3m

4«k
,

h13 = −
Î3s«k − mds4«k

2 + M2dz
16«k

2k
,

h14 = h15 = 0, h16 =
Î3s4«k

2 + M2d
8«km

,

h21 =
Î3m2f«ks1 − z2d + ms1 + z2dg

4«kk
2s1 − z2d

, h22 = −
Î3m

4«k
,

h23 = −
Î3s4«k

2 + M2df«ks1 − z2d + ms1 + z2dgz
16«k

2ks1 − z2d
,

h24 =
Î3mz

ks1 − z2d
,

h25 = 0, h26 = −
Î3s4«k

2 + M2ds1 + z2d
8«kms1 − z2d

,

h31 =
Î3m2z

2«ks«k + mdÎ2s1 − z2d
, h32 = 0,

h33 = −
Î3s«k − mds4«k

2 + M2dz2

8«k
2kÎ2s1 − z2d

,

h34 = −
Î3m

kÎ2s1 − z2d
, h35 = 0,

h36 =
Î3s4«k

2 + M2dz

4«kmÎ2s1 − z2d
,

h41 = h42 = h43 = h44 = 0, h45 =
Î3m2

2«kkÎ2s1 − z2d
,

h46 = 0. sB2d
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