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In a previous work, the full Glauber series of the elastic scattering between two cluster nuclei has been
evaluated in an approximate way. The present paper introduces a more elaborate technique to calculate such
series rigorously. The deuteron-carbon elastic angular distribution is calculated by the two approaches and the
results showed that the inaccuracy of the previous approach is significant at large angles. Impressive fit is
observed to the experimental data when the phase variation is included in the present analysis.
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I. INTRODUCTION

During the past three decades, hadron-nucleus and
nucleus-nucleus high-energy elastic collisions have been ex-
tensively analyzed by the multiple scattering theory of
Glauber and his co-worker[1,2]. The attractive point of ap-
plying this model is that even with simple uncorrelated wave
functions and effective nucleon-nucleonsNNd scattering am-
plitudes, one can obtain a microscopic description for these
reactions. As a matter of fact, the theory has shown great
success in describing the elastic scattering of hadrons from
various target nuclei. The data are excellently reproduced
especially when the higher orders of the multiple scattering
series are taken into account[3–5]. For nucleus-nucleus col-
lisions, a definite answer about the success of this theory is
still lacking. The reason is that the actual calculation of the
scattering amplitude becomes very tedious and difficult for
projectile and target mass numbers greater than or equal to 4.
In such cases, the full Glauber multiple scattering series con-
tains numerous terms so that its complete summation is im-
practical. Moreover, the higher-order multiple scatterings in-
volve multdimensional integrals, which are cumbersome to
evaluate even for simple Gaussian forms of the nuclear den-
sities andNN scattering amplitudes. In the early stages of the
analyses made, the theory has been applied by proposing
different approximate methods in which the series is trun-
cated[6–9]. The results showed that such incomplete calcu-
lations are clearly less well founded, especially at higher
angle cross sections. Eventually, the question of the signifi-
cance of the higher-order corrections in improving the pre-
dictive power of the Glauber model cannot be assessed un-
less one retains the full multiple scattering series in the
calculations.

Later, with the aid of permutation group, Yin, Tan, and
Chen[10] have succeeded in classifying the multiple scatter-
ing terms into sets; each set contains the terms that have
equal contribution to the scattering amplitude. As a result,
the terms of the same contribution are represented by one
typical term, referred to as an orbit, and the number of these
equally contributing terms is referred to as the length of this
orbit. Furthermore, using Gaussian forms for theNN scatter-
ing amplitude and the nuclear density, they have transferred
the multdimensional integrals corresponding to the typical

terms (orbits) into simple recursion formulas. Their results
obtained fora-a collision showed that the evaluation of the
full series brings the Glauber model predictions closer to the
experimental data over the available range of momentum
transfer[4,10].

The preliminary applications of this method have been
restricted to study the elastic scattering between two very
light nuclei (mass numbers less than or equal to 4), because
the number of generators of the permutation group grows
rapidly for heavier systems[11,12]. As an attempt to extend
the application of this method, Huang[13] has proposed a
technique, in which the cluster structures are assumed for the
colliding nuclei. The idea is that the multiple scattering oc-
curring by the collision between clusters and the subcollision
between nucleons in such clusters will consider fewer num-
ber of particles so that the method developed by Yin, Tan,
and Chen can be used. However, this attempt does not ac-
count properly for the possible sub-collisions between these
clusters[14]. Actually, exact classification of the multiple
scattering terms obtained by this technique is lengthy and
time consuming. We have to classify first the multiple scat-
tering terms representing the collisions between clusters into
orbits, then the subcollision terms between the nucleons of
the clusters involved in each orbit. In fact, each cluster-
cluster orbit contains a different kind and number of subcol-
lisions, and therefore their classification will depend on
which clusters are colliding. To avoid this trouble, El-Gogary
and co-workers[15,16] have approximated the multiple scat-
tering picture corresponding to this technique by treating the
cluster-cluster orbits of the same order as if they have equal
contribution to the scattering amplitude, and this contribution
has the value of the single scattering orbit result raised to a
power equal to the order of each orbit. Using this approxi-
mation, the angular distributions of the reactions
a-12C, a-40Ca,12C-12C, 16O-12C, and16O-16O have been cal-
culated and compared with the experimental data and the
comparison has shown that a clear difference at large angles
still persists.

In the present work, the analysis[16] is improved by ac-
counting for the multiple scattering series between two clus-
ter nuclei accurately. The multiple scattering terms of such
series have been classified into the exact set of orbits and the
corresponding multidimensional integrals have been calcu-

PHYSICAL REVIEW C 68, 054609(2003)

0556-2813/2003/68(5)/054609(19)/$20.00 ©2003 The American Physical Society68 054609-1



lated analytically using single Gaussian forms for the nuclear
densities and theNN scattering amplitudes. The results ob-
tained by the developed formulas are used to account for the
inaccuracy of the previous approximation and the reliability
of the Glauber model in explaining the nucleus-nucleus scat-
tering data. In Sec. II the optical phase-shift function result-
ing from the scattering between two cluster nuclei is derived
rigorously. Section III contains a comparison between the
results of the present formula and the previous one[16], by
taking the D-12C collision as an example. The method
of integration is shown in Appendix A, while the orbits
and lengths needed in the calculations are exhibited in
Appendix B.

II. NUCLEUS-NUCLEUS PHASE SHIFT FUNCTION
UNDER CLUSTER STRUCTURE

In Glauber theory the nucleus-nucleus elastic scattering
amplitudeFABsqd is specified by the optical phase-shift func-

tion xABsbWd as [9]

FABsqd = ik HsqdE
0

`

J0sqbdh1 − expfixABsbWdgjb db s1d

=ikE
0

`

J0sqbdh1 − expfixABsbWdgjb db, s2d

whereq is the momentum transferred from the projectile
nucleusA to the target nucleusB, k is the incident mo-

mentum of the projectile nucleus, andbW is the impact pa-
rameter vector.Hsqd is the correction factor arising from

the effect of the center-of-mass correlationsf6g. xABsbWd
stands for the phase-shift function containing such a cor-
rection consistentlyf9g and it is related to the uncorrelated

one,xABsbWd, by

expfixABsbWdg =E
0

`

J0sqbdHsqdq dqE
0

`

J0sqb8d

3expfixABsb8W dgb8 db8. s3d

From the multiple scattering picture of Glauber,xABsbWd
can be related to the elementalNN phase shiftsxi jsbWd as

xABsbW, hsWij, hsW j8jd = o
i=1

A

o
j=1

B

xi jsbW + sWi − sW j8d

and is given by

expfixABsbWdg

= kCAshr iW jdCBshrW j8jdu expfixABsbW, hsWij, hsW j8jdguCACBl,

s4d

where, CAshrWijd fCBshrW j8jdg is the projectileftargetg wave
function that depends on the position vectorshrWij fhrW j8jg of
the projectileftargetg nucleons whose projections on the
impact parameter plane arehsWijfhsW j8jg. With the definition

of the NN profile function,GsbWd=1−expfixsbWdg, the phase-
shift operator is given by

expfixABsbW, hsWij, hsW j8jdg = p
i=1

A

p
j=1

B

f1 − Gi jsbW + sWi − sW j8dg. s5d

As seen in Eq.s5d the multiple scattering between nucle-
ons will contain too many terms forA, Bù4. For more
tractable calculations, the projectile and target nuclei are
assumed to have cluster structure withMN nucleons in
each cluster, leading toMA clusters in nucleusA and MB
clusters in nucleusB snote thatMN is a common divisor
for A andBd. Under this treatment, Eq.s5d is reexpressed
as f13g

expfixABsbW, hsWiaj, hsW jd8 jdg = p
i=1

MA

p
j=1

MB

f1 − Gi jsbW, hsWiaj, hsW jd8 jdg

s6d

with

Gi jsbW, hsWiaj, hsW jd8 jd = 1 − p
a=1

MN

p
d=1

MN

f1 − Gia,jdsbW + sWia − sW jd8 dg,

s7d

whereGi j represents the profile function of scattering be-
tween theith cluster in nucleusA and j th cluster inB and
Gia,jd is the scattering between theath nucleon of theith
cluster inA and dth nucleon ofj th cluster inB. One can
simplify further this problem by applying the permutation
group method of Yin, Tan, and Chenf10g. In this method,
the multiple scattering terms are classified into sets of
terms, each set contains the terms of equal contribution to
the scattering amplitude. All terms in each set are repre-
sented by one typical term, referred to as an “orbit,” and
the number of terms in this set is referred to as the
“length” of that orbit. Now, having classified the terms of
the multiple scattering between clusters inton1 orbits, Eq.
s6d can be rewritten as

expfixABsbW, hsWiaj, hsW jd8 jdg

= 1 +o
y=1

n1

T1sydp
i=1

MA

p
j=1

MB

f− Gi jsbW, hsWiaj, hsW jd8 jdgDi j syd. s8d

In this equation, each cluster-cluster orbity is represented
by an sMA3MBd-dimensional matrixDsyd, with element
Di,jsyd either equal to 1 or 0, andT1syd is the number of
repetitionsslengthd of the corresponding orbit. The matrix
Dsyd corresponds uniquely to a typical term expressing the
multicluster collision and its elementDi,jsyd is equal to “1”
or “0” according to whetherGi j is considered or not in the
typical term sorbitd. Of course, the number of elements
having value 1, in a matrix, is the order of scattering of
the collision term expressed by this matrix. Applying Eq.
s7d into Eq. s8d, it can be written in terms of theNN
collisions as
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expfixABsbW, hsWiaj, hsW jd8 jdg

= 1 +o
y=1

n1

T1sydp
i=1

MA

p
j=1

MB H o
hi j=1

m1

p
a=1

MN

p
d=1

MN

f− Gia,jd

3sbW + sWia − sW jd8 dgDia,jdshi j dJDi j syd

. s9d

Here, m1=s2MN
2
−1d is the number ofNN collisions be-

tween two clusters. The matrix whose elementsDia,jdshi jd
is an sMA3MBd- dimensional matrix, where eachith row
and j th column element in this matrix is also a matrix of
dimensionMN3MN. Expanding the product signs oni and
j in Eq. s9d, we can get theNN collision terms correspond-
ing to each cluster-cluster orbit by

expfixABsbW, hsWiaj, hsW jd8 jdg

= 1 +o
y=1

n1

T1sydFp
i=1

MA

p
j=1

MB S o
hi j=1

m1 DDi j sydG
3Fp

i=1

MA

p
j=1

MB

p
a=1

MN

p
d=1

MN

f− Gia,jdsbW + sWia − sW jd8 dgDia,jdshi j dG ,

s10d

provided that, ifDi,jsyd=0 the corresponding summation
sign o

hi j

m1 is dropped out and all the elementsDia,jdshi jd of

the absent indexhi j are omitted. Clearly, Eq.s10d shows
that the subcollisions proceeded by a cluster-cluster orbit
y depend on which elementsDi jsyd equal to 1. Thus, the
present form accounts for the multiple scattering between
two cluster nuclei more comprehensively than the previ-
ous formula in Ref.f16g. Now, after classifying the sub-
collision terms corresponding to each cluster-cluster orbit,
Eq. s10d takes the form

expfixABsbW, hsWiaj, hsW jd8 jdg

= 1 +o
y=1

n1

T1sydH o
m=1

n2syd

T2sm, ydp
i=1

MA

p
j=1

MB

p
a=1

MN

p
d=1

MN

f− Gia,jd

3sbW + sWia − sW jd8 dgDia,jdsm,ydJ , s11d

where m is the serial index to number the subcollision
orbits representing the collision between clusters with an
orbit y and T2sm, yd is the length of these orbits.Gia,jd is
related to theNN scattering amplitudef ia,jd by

Gia,jdsbWd =
1

2pikN
E d2qWe−siqW·bWdf ia,jdsqWd, s12d

wherekN is the wave number of the incident nucleon.
Assuming, for simplicity, that all theNN amplitudes are

equal(which is approximately true at high energy) and ne-
glecting further the spin effects,fia,jd can be parametrized by
[9]

f ia,jdsqWd =
kNs

4p
si + rde−bq2/2, s13d

wheres is the totalNN cross section, andr is the ratio of
the real part to the imaginary part of the forwardNN scat-
tering amplitude. Here,b is taken to be complex:b=b2

+ ig2, the real partb2 is typically the slope parameter of
the NN differential cross section while the imaginary part
g2 is a free parameter introducing a phase variation of the
NN scattering amplitude. Inserting Eq.s13d into Eq. s12d,
we obtain

Gia,jdsbW + sWia − sW jd8 d = g expf− sbW + sWia − sW jd8 d2/2bg s14d

with

g =
s

4pb
s1 − ird.

Substituting Eq.(14) into Eq. (11) gives the result

expfixABsbW, hsWiaj, hsW jd8 jdg = 1 +o
y=1

n1

T1sydH o
m=1

n2syd

T2sm, yds− gdV2sm,ydexpF− o
i=1

MA

o
j=1

MB

o
a=1

MN

o
d=1

MN

Dia,jdsm, ydsbW + sWia − sW jd8 d2/2bGJ
s15d

with

V2sm, yd = o
i=1

MA

o
j=1

MB

o
a=1

MN

o
d=1

MN

Dia,jdsm, yd.

Let us consider the wave function of the system to have
the form

uCACBu2 = p
i=1

MA

p
a=1

MN

rAsrWiadp
j=1

MB

p
d=1

MN

rBsrW jd8 d, s16d

whererA andrB are the normalized single particle density
functions and they are chosen to be of the single Gaussian
type

risrd =
ai

3

p3/2e−ai
2r2

, i = A, B.

Adopting wave function(16) and the phase-shift function
(15), we can perform the integration of Eq.(4) analytically
and get
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expfixABsbdg = 1 +cAcBo
y=1

n1

T1sydH o
m=1

n2syd

T2sm, yds− gdV2sm,yd

3 Rsm, ydexpf− Wsm, ydb2gJ s17d

with

Cr = Far
2

p
GMrMN

, r = A, B,

Rsm, yd = Fp
i=1

MA

p
a=1

MN

f4pb2wiasm, ydgGFp
j=1

MB

p
d=1

MN S p

ajd,jds j , ddDG
and

Wsm, yd = o
j=1

MB

o
d=1

MN FaB
2 −

cjd
2 s j , dd

4ajd,jds j , ddG .

The details of the integration process and the definition of
wia anda ’s andc’s coefficients are given in Appendix A.
Now, the single Gaussian model chosen for the nuclear
density leads to an exact result for the center-of-mass cor-
relation functionHsqd given by f6g

Hsqd = expFq2

4 S 1

AaA
2 +

1

BaB
2DG . s18d

Incorporating Eqs.s17d and s18d into Eq. s3d, the corre-
lated phase-shift functionxABsbd can be obtained as

expfixABsbdg = 1 +cAcBo
y=1

n1

T1sydH o
m=1

n2syd

T2sm, yds− gdV2sm,yd

3 Rsm, ydexpf− Wsm, ydb2gJ , s19d

where

W= F 1

W
− S 1

AaA
2 +

1

BaB
2DG−1

and

R=
RW

W
.

With the result of Eq.s19d, the integration in Eq.s2d gives
the scattering amplitude by

FABsqd = 1 +cAcBo
y=1

n1

T1sydH o
m=1

n2syd

T2sm, yds− gdV2sm,yd

3
Rsm, yd

2Wsm, yd
expF−

q2

4Wsm, ydGJ . s20d

The angular distribution of the elastic scattering is then
determined by

dssqd
dV

= uFABsqdu2. s21d

III. APPLICATION TO D- 12C SCATTERING

In Sec. II, using simple Gaussian forms for the nuclear
densities and theNN scattering amplitudes, the nuclear
phase-shift function representing the full Glauber multiple
scattering series between two cluster nuclei has been derived
analytically. The present analysis is an exact treatment to the
approximation introduced in Ref.[16]. To test the signifi-
cance of such a correction in an application the exact and the
approximate phase-shift formulas are applied to calculate the
angular distribution of the D-12C elastic scattering. As a mat-
ter of significance of this comparison, the effect of the Cou-
lomb field is neglected in these calculations. The lab energy
of the deuteron is taken to be 94, 125, 156, 170, 425, and
650 MeV, where the corresponding experimental data are
available [22–25]. The cluster structure specific to the
D-12C system is assumed asMA=1, MB=6, andMN=2. The
orbits, lengths, andD-matrices required in the present for-
mula for this structure are exhibited in the Tables III–IX, in
Appendix B. The formula in Ref.[16] requires only Tables
III and IV representing the cluster-cluster collisions, and the
sub-collisions corresponding to the single scattering between
these clusters, respectively. The subcollisions corresponding
to the higher orders are approximated in terms of the single
scattering ones. The input parameters are those associated
with the NN scattering amplitude and the nuclear densities.
For the parameters of theNN scattering amplitude, the values
used corresponding to above energies are listed in Table I.

In this table, the usualNN parameterss, r, and b2 (the
real part of “b” ) are obtained by averaging the values of the
neutron and proton parameters available in the references
stated. The values ofr, andb2, which are not available, have
been determined either by interpolating between the avail-
able ones or by requiring the unitarity condition[18] that

b2 = fs1 + r2d/16pgs.

The phase-variation parameterg2 sthe imaginary part of
“b” d is obtained by comparing the calculated and the ex-

TABLE I. Parameters of the nucleon-nucleon amplitude.

E/A sMeV/nucleond s sfm2d r b sfm2d Ref.

47 11.951 0.97 0.464-i1.25 [17,18]
62.5 9.15 1.17 0.375-i0.89 [19]
78 6.79 1.32 0.325-i0.51 [18,19]
85 5.99 1.00 0.238-i0.39 [17]
212.5 3.28 0.93 1.240-i0.98 [17,20]
325 2.86 0.53 0.061-i1.05 [21]

TABLE II. Nuclear rms radii[9].

Nucleus P D 12C

kr2l1 / 2 sfmd 0.81 2.17 2.453
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perimental D-12C angular distributions. The density pa-
rameter is obtained fromf9g

ai
2 = S3

2D s1 − 1/id
fkr i

2l − krp
2lg

, i = A, B

where kr i
2l and krp

2l are the mean square radii of the col-
liding nuclei and the proton, respectively, and the mea-
sured values of their square roots are given in Table II.

At the beginning, the accuracy of the present analysis has
been checked by reproducing the exact Glauber results of
two applications, calculated independently using the same
parametrization for the inputs needed: First, the cross sec-
tions of 1980, 2570, and 4200 MeVa-a scattering are cal-
culated by taking the cluster structure(MA=2, MB=2, and
MN=2) and once again by considering(MA=1, MB=1, and
MN=4). The results obtained from the two structures are
found identical and in agreement with the exact Glauber se-
ries calculations given in Ref.[4]. This ensures that the
present approach accounts properly for the multiple scatter-
ing between the clusters considered in the nuclear system,
the fact that the previous analysis does not verify. Second,
using this analysis the calculation of the D-12C total cross
section at 4200 MeV yields the exact Glauber result reported
in Ref. [9] given bystot=620.46 mb. Now, the D-12C angular

FIG. 1. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 94 MeV. The curves compare the
results obtained by the nuclear phase-shift formula of this work(the
solid curve) and the corresponding formula of Ref.[16] (the dashed
curve). The dashed curve is an approximation to the solid curve
calculations. The curves display the predictions obtained by taking
the phase-variation parameterg2=0. The dots are the experimental
data[22].

FIG. 2. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 125 MeV. The curves are labeled as
in Fig. 1. The dots are the experimental data[22].

FIG. 3. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 156 MeV. The curves are labeled as
in Fig. 1. The dots are the experimental data[22].
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distributions resulting from the present approach(solid
curve) and previous approximation(dashed curve) are com-
pared with the experimental data(dots) in Figs. 1–6. The
curves are calculated by setting the phase-variation param-
eter g2 equal to zero. Figures 1–6 show that the two ap-
proaches yield similar results at small angles and give sig-
nificantly different ones at large momentum transfers. As
mentioned in Sec. I, the inaccuracy of the previous approach
relative to the present one is neglecting the actual subcolli-
sions of the higher-order multiple scattering between clusters
and approximating their contributions as powers of the single
scattering ones. So the significance of such a difference
would be at large angles where the contributions of higher
orders are dominant. Of course, the heavier the system ap-
plied, the bigger the error resulting from this approximation.
Concerning their agreement with the experimental data, all
calculations as shown do not agree with the measurements at
large angles. Also, it is clear that the results obtained with the
previous approximation(dashed curves) are closer to the
large angle data at energies 94, 125, 156, and 170 MeV than
the exact calculation ones(solid curves). This trend has been
justified previously in Refs.[5,21] as a result of the approxi-
mation made in the calculation of the multiple scattering
series. On the other hand, the reverse situation obtained here
for energies 425 and 650 MeV reflects that the energies hav-
ing this trend are not sufficiently high for the Glauber theory.

FIG. 4. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 170 MeV. The curves are labeled as
in Fig. 1. The dots are the experimental data[23].

FIG. 5. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 425 MeV. The curves are labeled as
in Fig. 1. The dots are the experimental data[24].

FIG. 6. Full Glauber series analysis for angular distribution of
the D-12C elastic scattering at 650 MeV. The curves are labeled as
in Fig. 1. The dots are the experimental data[25].
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FIG. 7. Effect of phase varaition on the angular distribution of
94 MeV D-12C elastic scattering. All curves are obtained from the
nuclear phase-shift formula introduced in this work. The solid curve
showsg2Þ0 calculated result with the value given in Table I. The
dashed curve showsg2=0 calculated result. The dots are the experi-
mental data[22].

FIG. 8. Effect of phase variation on the angular distribution of
125 MeV D-12C elastic scattering. The curves are labeled as in Fig.
7. The dots are the experimental data[22].

FIG. 9. Effect of phase variation on the angular distribution of
156 MeV D-12C elastic scattering. The curves are labeled as in Fig.
7. The dots are the experimental data[22].

FIG. 10. Effect of phase variation on the angular distribution of
170 MeV D-12C elastic scattering. The curves are labeled as in Fig.
7. The dots are the experimental data[23].
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In general, the full Glauber series calculation performed with
the present analysis does not reproduce well the experimen-
tal data of the D-12C angular distributions. However, better
agreement may be obtained if one improves the accuracy of
the values used for theNN amplitude parameters and the
unrealistic Gaussian form used for the nuclear density.

As a matter of fact, the exact Glauber theory results of
hadron-nucleus anda-a collisions have shown very close
agreement with the experimental data when the phase varia-
tion is invoked in their calculations[4,15]. The authors in
these attempts have treated the effect of this phase as an

overall q-dependent phase factor multiplied by theNN scat-
tering amplitude. Taking a nonzero value forg2 will intro-
duce such a factor in the present analysis. As in their calcu-
lations, no restriction has been imposed on the values of the
phase-variation parameter except the fitting with the scatter-
ing data. Justg2 is varied as a free parameter and the best fit
of the g2Þ0 calculated results with the data is achieved at
the values given in Table I. The effect of such a phase in the
exact Glauber calculations of the D-12C angular distribution
is presented in Figs. 7–12. We can see from these figures that

TABLE III. Orbits, lengths, andD matrices representing the
terms of the multiple scattering betweenMA=1 andMB=6 clusters.
The elementsD1jsnd in the third column are given in the same order

as theG’s obtained by the cluster-cluster collision termpj=1

6 fG1jgD1j.

Total number of collisions terms is 63.

y T1snd D1jsyd

1 6 100000
2 15 110000
3 20 111000
4 15 111100
5 6 111110
6 1 111111

TABLE IV. Orbits, lengths, andD matrices representing the sub-
collisions between the constituents of the cluster-cluster scattering
expressed by the termG11. The elementsD1a,1d in this table are
given in the same order as theG’s obtained by the subcollision term

p
a=1

2 pd=1

2 fG1a,1dgD1a,1d. Total number of subcollisions terms is 15.

m T2sm, 1d D1a,1dsm, 1d

1 4 1
2 2 5
3 2 6
4 2 7
5 4 11
6 1 15

FIG. 11. Effect of phase variation on the angular distribution of
425 MeV D-12C elastic scattering. The curves are labeled as in Fig.
7. The dots are the experimental data[24].

FIG. 12. Effect of phase varaition on the angular distribution of
650 MeV D-12C elastic scattering. The curves are labeled as in Fig.
7. The dots are the experimental data[15].
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consideration of the phase improves remarkably the agree-
ment of the Glauber model predictions with the data at en-
ergies 94, 125, and 156 MeV and relatively at 170, 425, and
650 MeV. Furthermore, this phase has its strongest effect at
large angles where higher orders of interference are domi-
nant. The physical origin of the phase variation has not yet
been settled, despite its impressive role in fitting various ex-
perimental data. Also, the values obtained in Table I show
that the energy dependence ofg2 is varying. It should be
mentioned here that the phase-shift analyses could impose
some constraints on the phase-variation parameter of theNN
scattering amplitude generated from a particular parametri-
zation for theNN potential. The analysis in Ref.[26], for
example, provides values forg2 at energies 210 and
325 MeV/nucleon considered here. The values are obtained
from the parametrization of the spin- and isospin-averaged
NN amplitude, generated from the phase shifts, with a series
of Gaussians. Particularly, the spin independent part of such
a parametrization has yielded forg2 the value −0.49 fm2 at
210 MeV and the value −0.75 fm2 at 325 MeV (see Tables
III and IV of Ref. [26]). In this work the Gaussian form of
the NN amplitude that neglects the spin effects has yielded
numerically higher values −0.98 and −1.05 fm2 at the corre-
sponding energies(see Table I). The difference occurs be-
tween the predictions of the two approaches arising from the
reliability of their dependencies, namely, the inputs needed
and the approximation made[20]. Unfortunately, the errors
associated with these dependencies are not known in order to

TABLE V. Orbits, lengths, andD matrices representing the sub-
collisions between the constituents of the cluster-cluster scattering

expressed by the termpj=1

2 fG1jg. The elementsD1a,jd in this table

are given in the same order as theG’s obtained by the subcollision

term, pj=1

2 fp
a=1

2 pd=1

2 sG1a,jddD1a,jdg. Total number of subcollisions

terms is 225.

m T2sm, 2d D1a,jdsm, 2d

1 8 1 1
2 8 1 3
3 8 1 6
4 16 1 5
5 24 3 6
6 2 6 6
7 24 1 11
8 8 6 7
9 4 5 5
10 24 5 7
11 6 6 10
12 8 6 11
13 24 1 15
14 24 7 11
15 12 6 15
16 4 5 15
17 12 7 15
18 8 11 15
19 1 15 15

TABLE VI. Orbits, lengths, andD matrices representing the
subcollisions between the constituents of the cluster-cluster scatter-

ing expressed by the termpj=1

3 fG1jg. The elementsD1a,jd in this

table are given in the same order as theG’s obtained by the subcol-

lision termpj=1

3 fp
a=1

2 pd=1

2 sG1a,jddD1a,jdg. Total number of subcolli-

sions terms is 3375.

m T2sm, 3d D1a,jdsm, 3d

1 16 1 1 1

2 48 1 1 3

3 24 1 1 6

4 48 1 1 5

5 96 1 1 7

6 48 1 3 5

7 72 1 3 7

8 12 1 6 6

9 96 1 5 6

10 60 3 6 6

11 48 1 5 5

12 288 3 5 6

13 120 3 6 7

14 2 6 6 6

15 60 1 6 11

16 12 6 6 7

17 144 1 1 15

18 240 3 6 11

19 30 6 6 10

20 8 5 5 5

21 144 5 5 7

22 180 5 7 7

23 20 7 7 7

24 12 6 6 11

25 120 5 6 11

26 60 6 7 11

27 96 5 5 11

28 360 5 7 11

29 120 7 7 11

30 30 6 6 15

31 120 5 6 15

32 120 6 7 15

33 12 5 5 15

34 120 5 7 15

35 90 7 7 15

36 40 6 11 15

37 60 5 11 15

38 120 7 11 15

39 30 6 15 15

40 6 5 15 15

41 30 7 15 15

42 12 11 15 15

43 1 15 15 15
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assess the uncertainty in these predictions. Surely, the poten-
tial model approaches are more consistent and comprehen-
sive in restricting theNN parameters, but the phase-variation
parameter may change substantially with more elaborate po-
tential models. However, Franco and Yin[4] have obtained a
similar difference between the two findings at 643 and

1050 MeV and Ahmed and co-workers[27] have clarified
that the values ofg2 provided by the potential model calcu-
lation are not necessarily the same as the values obtained
with a phenomenological factor describing at best the small
angle data. The best determination in the present analysis
would be obtained when one uses realistic nuclear density,

TABLE VII. Orbits, lengths, andD matrices representing the subcollisions between the constituents of the

cluster-cluster scattering expressed by the termpj=1

4 fG1jg. The elementsD1a,jd in this table are given in the

same order as theG’s obtained by the subcollision termpj=1

4 fp
a=1

2 pd=1

2 sG1a,jddD1a,jdg. Total number of

subcollisions terms is 50 625.

m T2sm, 4d D1a,jdsm, 4d m T2sm, 4d D1a,jdsm, 4d

1 32 1 1 1 1 42 70 7 7 7 7
2 128 1 1 1 3 43 16 6 6 6 11
3 96 1 1 3 3 44 336 1 6 6 15
4 64 1 1 1 6 45 112 6 6 7 11
5 128 1 1 1 5 46 960 1 5 6 15
6 320 1 1 1 7 47 1680 1 6 7 15
7 384 1 1 3 5 48 336 6 7 7 11
8 640 1 1 3 7 49 320 1 5 5 15
9 48 1 1 6 6 50 2880 1 5 7 15
10 320 1 1 1 11 51 3360 1 7 7 15
11 288 1 1 6 7 52 560 7 7 7 11
12 192 1 1 5 5 53 56 6 6 6 15
13 1280 1 1 5 7 54 560 1 6 11 15
14 720 1 1 7 7 55 336 6 6 7 15
15 192 1 3 5 5 56 720 5 5 6 15
16 960 1 3 5 7 57 2240 5 6 7 15
17 480 1 3 7 7 58 840 6 7 7 15
18 16 1 6 6 6 59 32 5 5 5 15
19 288 1 1 6 11 60 720 5 5 7 15
20 112 1 6 6 7 61 1680 5 7 7 15
21 640 1 1 1 15 62 560 7 7 7 15
22 1440 1 1 7 11 63 112 6 6 11 15
23 336 1 6 7 7 64 560 1 11 11 15
24 128 1 5 5 5 65 560 6 7 11 15
25 1920 1 1 3 15 66 288 1 5 15 15
26 2880 1 5 7 7 67 1680 1 7 15 15
27 560 1 7 7 7 68 1120 7 7 11 15
28 2 6 6 6 6 69 140 6 6 15 15
29 112 1 6 6 11 70 336 1 11 15 15
30 16 6 6 6 7 71 560 6 7 15 15
31 720 1 1 6 15 72 24 5 5 15 15
32 672 1 6 7 11 73 336 5 7 15 15
33 56 6 6 7 7 74 420 7 7 15 15
34 640 1 1 5 15 75 112 6 11 15 15
35 2880 1 1 7 15 76 112 1 15 15 15
36 1680 1 7 7 11 77 336 7 11 15 15
37 112 6 7 7 7 78 56 6 15 15 15
38 16 5 5 5 5 79 8 5 15 15 15
39 640 1 3 5 15 80 56 7 15 15 15
40 2160 1 3 7 15 81 16 11 15 15 15
41 1120 3 7 7 11 82 1 15 15 15 15
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TABLE VIII. Orbits, lengths, andD matrices representing the subcollisions between the constituents of

the cluster-cluster scattering expressed by the termpj=1

5 fG1jg. The elementsD1a,jd in this table are given in

the same order as theG’s obtained by the subcollision term,pj=1

5 fp
a=1

2 pd=1

2 sG1a,jddD1a,jdg. Total number of

subcollisions terms is 759 375.

m T2sm, 5d D1a,jdsm, 5d m T2sm, 5d D1a,jdsm, 5d

1 64 1 1 1 1 1 71 720 15 6 6 6 1
2 320 1 1 1 1 3 72 180 11 6 6 6 7
3 640 1 1 1 3 3 73 4480 15 5 6 6 1
4 160 6 1 1 1 1 74 5040 15 7 6 6 1
5 320 5 1 1 1 1 75 720 11 7 6 6 7
6 960 7 1 1 1 1 76 5600 15 15 1 1 1
7 1280 5 1 1 1 3 77 2240 15 11 7 1 1
8 2400 7 1 1 1 3 78 1512 15 7 7 6 1
9 960 5 1 1 3 3 79 1680 11 7 7 6 7
10 1600 7 1 1 3 3 80 960 15 5 5 5 1
11 160 6 6 1 1 1 81 1680 15 5 5 7 1
12 960 11 1 1 1 1 82 4480 15 5 7 7 1
13 1120 6 7 1 1 1 83 2520 15 7 7 7 1
14 640 5 5 1 1 1 84 2520 11 7 7 7 7
15 4800 5 7 1 1 1 85 90 15 6 6 6 6
16 3360 7 7 1 1 1 86 1680 15 11 6 6 1
17 1920 5 5 1 1 3 87 720 15 6 6 6 7
18 9600 5 7 1 1 3 88 5600 15 15 6 1 1
19 5600 7 7 1 1 3 89 1008 15 11 6 7 1
20 80 6 6 6 1 1 90 2520 15 6 6 7 7
21 1120 11 6 1 1 1 91 3360 15 15 5 1 1
22 640 6 6 7 1 1 92 2240 15 15 7 1 1
23 2400 15 1 1 1 1 93 2520 15 11 7 7 1
24 6720 11 7 1 1 1 94 5040 15 6 7 7 7
25 2240 6 7 7 1 1 95 80 15 5 5 5 5
26 640 5 5 5 1 1 96 3360 15 5 5 5 7
27 9600 5 5 7 1 1 97 1680 15 5 5 7 7
28 1680 5 7 7 1 1 98 1680 15 5 7 7 7
29 4480 7 7 7 1 1 99 3150 15 7 7 7 7
30 640 5 5 5 1 3 100 240 15 11 6 6 6
31 7200 5 5 7 1 3 101 2520 15 15 6 6 1
32 1120 5 7 7 1 3 102 1680 15 11 6 6 7
33 2800 7 7 7 1 3 103 4480 15 15 5 6 1
34 20 6 6 6 6 1 104 1260 15 15 7 6 1
35 640 11 6 6 1 1 105 5040 15 11 7 6 7
36 180 6 6 6 7 1 106 1120 15 15 5 5 1
37 3360 5 5 6 6 1 107 1344 15 15 5 7 1
38 4480 11 6 7 1 1 108 2520 15 15 7 7 1
39 720 6 6 7 7 1 109 8400 15 11 7 7 7
40 3200 15 5 1 1 1 110 420 15 15 6 6 6
41 1680 15 7 1 1 1 111 2520 15 15 11 6 1
42 1344 11 7 7 1 1 112 2520 15 15 6 6 7
43 1680 6 7 7 7 1 113 2240 15 15 15 1 1
44 320 5 5 5 5 1 114 1008 15 15 11 7 1
45 9600 15 5 1 1 3 115 6300 15 15 6 7 7
46 3360 15 7 1 1 3 116 80 15 15 5 5 5
47 2240 11 7 7 1 3 117 2240 15 15 5 5 7
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precise nucleon-nucleon amplitudes, full multiple scattering
series, and coupling of inelastic channels for the reaction
concerned.

Finally, one can summarize the findings of the present
study as follows.

(1) The calculation of the full Glauber series of the mul-
tiple scattering between two nuclei has been simplified by
introducing an approach in which the colliding nuclei are
decomposed into clusters and the scattering between these
clusters is classified by the permutation group method of Yin,
Tan, and Chen[10]. As an example, the cluster approach
introduced in this work has reduced the straightforward cal-
culation of s224−1d multiple scattering terms of the D-12C
collision into merely 513 equivalent orbits(the typical terms
and their repetitions). In such a way, the scattering amplitude
is very easy to compile and at the same time is rigorous like
the formula containing all terms in Ref.[21]. In comparison
with an approximation[16] to the present approach, the re-
sults show that it is necessary to include all the terms of the
Glauber multiple scattering series in order to obtain accurate
values for the differential cross section, especially at large
momentum transfer.

(2) In general, c1assifying the terms of the multiple scat-
tering series by Yin’s method without clustering the colliding
nuclei is practically limited to mass numbers less than or
equal to 4 [4,11–13]. The cluster approach makes this

method more practical and efficient so it can be used now to
extend the full Glauber series calculations to systems with
greater mass numbers. In particular, proposing a cluster pic-
ture for the composite-composite scattering gives an advan-
tage in the following technical points. First, the classification
in this picture is performed in parts depending on the order
of scattering between clusters, therefore the application of
Yin’s method will concern only the particles contained in the
colliding clusters. Second, the method of Yin in this picture
catches a larger number of terms having equal contribution
to the scattering amplitude and consequently obtains a
smaller number of orbits than the situation where no cluster-
ing is used.

(3) The g2Þ0 calculated results presented here have
shown a strong signature that the effect of the phase variation
must be considered in Glauber theory calculations.

APPENDIX A
In this appendix, the detailed derivation of the analytic

formula of the nuclear phase-shift function given by Eq.(17)
is presented. The formula is developed by performing the
integration of Eq.(4) via Eq.(16) for the nuclear density and
Eq. (15) for phase-shift operator. With these ingredients the
integration overz coordinates is straightforward and Eq.(4)
with the remaining integral becomes

TABLE VIII. (Continued.)

m T2sm, 5d D1a,jdsm, 5d m T2sm, 5d D1a,jdsm, 5d

48 2520 6 7 7 7 3 118 7560 15 15 5 7 7
49 2 6 6 6 6 6 119 4200 15 15 7 7 7
50 180 11 6 6 6 1 120 504 15 15 11 6 6
51 20 6 6 6 6 7 121 1680 15 15 15 6 1
52 2240 15 6 6 1 1 122 2520 15 15 11 6 7
53 1440 11 6 6 7 1 123 640 15 15 15 5 1
54 90 6 6 6 7 7 124 5040 15 15 15 7 1
55 5600 15 11 1 1 1 125 5040 15 15 11 7 7
56 1344 15 6 7 1 1 126 420 15 15 15 6 6
57 5040 11 6 7 7 1 127 720 15 15 15 11 1
58 240 6 6 7 7 7 128 1680 15 15 15 6 7
59 2400 15 5 5 1 1 129 40 15 15 15 5 5
60 2240 15 5 7 1 1 130 720 15 15 15 5 7
61 3360 15 7 7 1 1 131 1260 15 15 15 7 7
62 1008 11 7 7 7 1 132 240 15 15 15 11 6
63 420 6 7 7 7 7 133 180 15 15 15 15 1
64 32 5 5 5 5 5 134 720 15 15 15 11 7
65 2400 15 5 5 1 3 135 90 15 15 15 15 6
66 1680 15 5 7 1 3 136 10 15 15 15 15 5
67 2240 15 7 7 1 3 137 90 15 15 15 15 7
68 6300 5 7 7 7 7 138 20 15 15 15 15 11
69 252 6 7 7 7 10 139 1 15 15 15 15 15
70 20 11 6 6 6 6
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TABLE IX. Orbits, lengths, andD matrices representing the subcollisions between the constituents of the cluster-cluster scattering

expressed by the termpj=1

6 fG1jg. The elementsD1a,jd in this table are given in the same order as theG’s obtained by the subcollision term

pj=1

6 fp
a=1

2 pd=1

2 sG1a,jddD1a,jdg. Total number of subcollisions terms is 11 390 625.

m T2sm, 6d D1a,jdsm, 6d m T2sm, 6d D1a,jdsm, 6d

1 1280 1 1 1 3 3 3 110 403200 15 5 5 7 7 1
2 1920 1 1 1 1 3 3 111 80640 15 5 5 5 6 3
3 768 1 1 1 1 1 3 112 2688 15 5 5 5 5 1
4 128 1 1 1 1 1 1 113 7920 11 6 7 7 7 7
5 13440 7 1 1 1 3 3 114 110880 15 6 7 7 7 1
6 7680 5 1 1 1 3 3 115 302400 15 11 7 7 1 1
7 8064 7 1 1 1 1 3 116 201600 15 15 7 1 1 1
8 3840 5 1 1 1 1 3 117 26880 15 15 5 1 1 1
9 2688 7 1 1 1 1 1 118 3960 11 6 6 7 7 7
10 768 5 1 1 1 1 1 119 47520 15 6 6 1 7 7
11 384 6 1 1 1 1 1 120 100800 15 11 6 1 1 7
12 16800 7 7 1 1 3 3 121 40320 15 15 6 1 1 1
13 26880 5 7 1 1 3 3 122 1320 11 6 6 6 7 7
14 5760 5 5 1 1 3 3 123 11880 15 6 6 6 1 7
15 26880 7 7 1 1 1 3 124 14400 15 11 6 6 1 1
16 40320 5 7 1 1 1 3 125 264 11 6 6 6 6 7
17 7680 5 5 1 1 1 3 126 1320 15 6 6 6 6 1
18 13440 7 7 1 1 1 1 127 24 11 6 6 6 6 6
19 16128 5 7 1 1 1 1 128 16632 15 7 7 7 7 7
20 1920 5 5 1 1 1 1 129 138600 15 5 7 7 7 7
21 3840 6 7 1 1 1 1 130 252000 15 15 7 7 1 3
22 2688 11 1 1 1 1 1 131 120960 15 15 5 7 1 3
23 480 6 6 1 1 1 1 132 13440 15 5 5 5 5 7
24 40320 7 7 7 1 1 3 133 192 15 5 5 5 5 5
25 134400 5 7 7 1 1 3 134 27720 15 6 7 7 7 7
26 80640 5 5 7 1 1 3 135 221760 15 11 7 7 7 1
27 7680 5 5 5 1 1 3 136 378000 15 15 7 7 1 1
28 26880 7 7 7 1 1 1 137 161280 15 15 5 7 1 1
29 80640 5 7 7 1 1 1 138 13440 15 15 5 5 1 1
30 40320 5 5 7 1 1 1 139 15840 15 6 6 7 7 7
31 2560 5 5 5 1 1 1 140 110880 15 11 6 1 7 7
32 11520 6 7 7 1 1 1 141 151200 15 15 6 1 1 7
33 26880 11 7 1 1 1 1 142 40320 15 15 11 1 1 1
34 8064 15 1 1 1 1 1 143 5940 15 6 6 6 7 7
35 2880 6 6 1 1 1 7 144 31680 15 11 6 6 1 7
36 3840 11 6 1 1 1 1 145 25200 15 15 6 6 1 1
37 320 6 6 6 1 1 1 146 1320 15 6 6 6 6 7
38 15120 7 7 7 7 1 3 147 3960 15 11 6 6 6 1
39 100800 5 7 7 7 1 3 148 132 15 6 6 6 6 6
40 134400 15 7 1 1 3 3 149 55440 15 11 7 7 7 7
41 40320 15 5 1 3 1 3 150 277200 15 15 7 7 7 1
42 1920 5 5 5 5 1 3 151 302400 15 15 5 7 7 1
43 25200 6 7 7 7 1 3 152 80640 15 15 5 5 7 1
44 161280 11 7 7 1 1 3 153 3840 15 15 5 5 5 1
45 201600 15 7 1 1 1 3 154 36960 15 11 6 7 7 7
46 53760 15 5 3 1 1 1 155 166320 15 15 6 1 7 7
47 1920 5 5 5 5 1 1 156 151200 15 15 11 1 1 7
48 14400 6 7 7 7 1 1 157 26880 15 15 15 1 1 1
49 80640 11 7 7 1 1 1 158 15840 15 11 6 6 7 7
50 80640 15 7 1 1 1 1 159 55440 15 15 6 6 1 7
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TABLE IX. (Continued.)

m T2sm, 6d D1a,jdsm, 6d m T2sm, 6d D1a,jdsm, 6d

51 13440 15 5 1 1 1 1 160 30240 15 15 11 6 1 1
52 5400 6 6 1 1 7 7 161 3960 15 11 6 6 6 7
53 23040 11 6 1 1 1 7 162 7920 15 15 6 6 6 1
54 13440 15 6 1 1 1 1 163 440 15 11 6 6 6 6
55 1200 6 6 6 1 1 7 164 34650 15 15 7 7 7 7
56 2880 11 6 6 1 1 1 165 110880 15 15 5 7 7 7
57 120 6 6 6 6 1 1 166 75600 15 15 5 5 7 7
58 11088 6 7 7 7 7 3 167 11520 15 15 5 5 5 7
59 151200 11 7 7 7 1 3 168 240 15 15 5 5 5 5
60 403200 15 7 7 1 1 3 169 55440 15 15 6 7 7 7
61 268800 15 5 7 1 1 3 170 166320 15 15 11 7 7 1
62 40320 5 5 5 5 7 1 171 100800 15 15 15 7 1 1
63 768 5 5 5 5 5 1 172 11520 15 15 15 5 1 1
64 7920 6 7 7 7 7 1 173 27720 15 15 6 6 7 7
65 100800 11 7 7 7 1 1 174 66528 15 15 11 6 1 7
66 241920 15 7 7 1 1 1 175 25200 15 15 15 6 1 1
67 134400 15 5 7 1 1 1 176 7920 15 15 6 6 6 7
68 13440 15 5 5 1 1 1 177 11088 15 15 11 6 6 1
69 3960 6 6 7 7 7 1 178 990 15 15 6 6 6 6
70 43200 11 6 7 7 1 1 179 55440 15 15 11 7 7 7
71 80640 15 6 7 1 1 1 180 110880 15 15 15 7 7 1
72 26880 15 11 1 1 1 1 181 43200 15 15 15 5 7 1
73 1320 6 6 6 1 7 7 182 2880 15 15 15 5 5 1
74 10800 11 6 6 1 1 7 183 33264 15 15 11 6 7 7
75 11520 15 6 6 1 1 1 184 55440 15 15 15 6 7 1
76 264 6 6 6 6 1 7 185 14400 15 15 15 11 1 1
77 1200 11 6 6 6 1 1 186 11088 15 15 11 6 6 7
78 24 6 6 6 6 6 1 187 11088 15 15 15 6 6 1
79 924 7 7 7 7 7 7 188 1584 15 15 11 6 6 6
80 33264 5 7 7 7 7 7 189 18480 15 15 15 7 7 7
81 189000 15 7 7 7 1 3 190 23760 15 15 15 5 7 7
82 268800 15 5 7 7 1 3 191 5400 15 15 15 5 5 7
83 100800 15 5 5 7 1 3 192 160 15 15 15 5 5 5
84 8064 15 5 5 5 1 3 193 27720 15 15 15 6 7 7
85 64 5 5 5 5 5 5 194 31680 15 15 15 11 7 1
86 1584 6 7 7 7 7 7 195 5400 15 15 15 15 1 1
87 55440 11 7 7 7 7 1 196 11088 15 15 15 6 6 7
88 302400 15 7 7 7 1 1 197 7920 15 15 15 11 6 1
89 403200 15 5 7 7 1 1 198 1848 15 15 15 6 6 6
90 134400 15 5 5 7 1 1 199 15840 15 15 15 11 7 7
91 8064 15 5 5 5 1 1 200 11880 15 15 15 15 7 1
92 990 6 6 7 7 7 7 201 1200 15 15 15 15 5 1
93 31680 11 6 1 7 7 7 202 7920 15 15 15 11 6 7
94 151200 15 6 1 1 7 7 203 3960 15 15 15 15 6 1
95 161280 15 11 1 1 1 7 204 1584 15 15 15 11 6 6
96 33600 15 15 1 1 1 1 205 2970 15 15 15 15 7 7
97 440 6 6 6 7 7 7 206 1320 15 15 15 15 5 7
98 11880 11 6 6 1 7 7 207 60 15 15 15 15 5 5
99 43200 15 6 6 1 1 7 208 3960 15 15 15 15 6 7
100 26880 15 11 6 1 1 1 209 1320 15 15 15 15 11 1
101 132 6 6 6 6 7 7 210 990 15 15 15 15 6 6
102 2640 11 6 6 6 1 7 211 1320 15 15 15 15 11 7
103 5400 15 6 6 6 1 1 212 264 15 15 15 15 15 1
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expfixABsbdg = kCAshSW iajdCBshSjd8
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the integralIm,ysbd can be separated into two similar forms inx and y coordinates as

Im,ysbd = Im,ysbxdIm,ysbyd, sA2d

where, the form ofx is given by
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the integration in the curly bracket of Eq.sA4d is performed and we obtain
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where,

TABLE IX. (Continued.)

m T2sm, 6d D1a,jdsm, 6d m T2sm, 6d D1a,jdsm, 6d

104 24 6 6 6 6 6 7 213 440 15 15 15 15 11 6
105 264 11 6 6 6 6 1 214 132 15 15 15 15 15 7
106 2 6 6 6 6 6 6 215 12 15 15 15 15 15 5
107 11088 11 7 7 7 7 7 216 132 15 15 15 15 15 6
108 166320 15 7 7 7 7 1 217 24 15 15 15 15 15 11
109 504000 15 5 7 7 7 1 218 1 15 15 15 15 15 15
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Now, XshMBj, hMNjd can be evaluated recursively by the following procedure: First, separate the integration over the
variables of indexMB as

XshMBj, hMNjd =E Sp
b=1

MN

du1bDSp
b=1

MN

du2bD¯ Sp
b=1

MN

dusMB−1dbDexpF− o
j=1

MB−1

o
d=1

MN

ajd,jdsMB, MNdujd
2

+ o
j=1

MB−1

o
d=1

MN−1

o
b=d+1

MN

ajd,jbsMB, MNdujdujb + o
j=1

MB−2

o
l=j+1

MB−1

o
d=1

MN

o
b=1

MN

ajd,lbsMB, MNdujdulb

− bx o
j=1

MB−1

o
d=1

MN

cjdsMB, MNdujdGE Sp
b=1

MN

duMBbDexpF− o
d=1

MN

aMBd,MBdsMB, MNduMBd
2

+ o
d=1

MN−1

o
b=d+1

MN

aMBd,MBbsMB, MNduMBduMBb+ o
j=1

MB−1

o
d=1

MN

o
b=1

MN

ajd,MBbsMB, MNdujduMBb − bxo
d=1

MN

CMBdsMB, MNduMBdG ,

XshMBj, hMNjd = XshMB − 1j, hMNjdXsMB, hMNjd. sA7d

XsMB, hMNjd can be expressed also as

XsMB, hMNjd =E S p
d=1

MN−1

duMBdDexpF− o
d=1

MN−1

aMBd,MBdsMB, MNduMBd
2 + o

d=1

MN−2

o
b=d+1

MN−1

aMBd,MBbsMB, MNduMBduMBb

+ o
j=1

MB−1

o
d=1

MN

o
b=1

MN−1

ajd,MBbsMB, MNdujduMBb − bx o
d=1

MN−1

cMBdsMB, MNduMBbG
3E duMBMN

expF− aMBMN,MBMN
sMB, MNduMBMN

2 + S o
d=1

MN−1

aMBd,MBMN
sMB, MNduMBd

+ o
j=1

MB−1

o
d=1

MN

ajd,MBMN
sMB, MNdujd − bxcMBMN

sMB, MNdDuMBMNG . sA8d

Integrating over the variableuMBMN
in Eq. sA8d, we get
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XsMB, hMNjd = S p

aMBMN,MBMN
sMB, MNdD1/2

expS cMBMN

2 sMB, MNd

4aMBMN,MBMN
sMB, MNd

bx
2DXsMB, hMN − 1jd, sA9d

where the integration over the remaining variables of indexMB takes the form

XsMB, hMN − 1jd =E S p
d=1

MN−1

duMBMdDexpF− o
d=1

MN−1

aMBd,MBdsMB, MN − 1duMBd
2 + o

d=1

MN−2

o
b=d+1

MN−1

aMBd,MBbsMB, MN − 1duMBduMBb

+ o
j=1

MB−1

o
d=1

MN

o
b=1

MN−1

ajd,MBbsMB, MN − 1dujduMBb − bx o
d=1

MN−1

cMBdsMB, MN − 1duMBdG
with coefficients given by

aMBd,MBdsMB, MN − 1d = aMBd,MBdsMB, MNd − faMBd,MBMN

2 sMB, MNd/4aMBMN,MBMN
sMB, MNdg,

aMBd,MBbsMB, MN−1d=aMBd,MBbsMB, MNd+faMBd,MBMN
sMB, MNdaMBb,MBMN

sMB, MNd/2aMBMN,MBMN
sMB, MNdg,

ajd,MBbsMB, MN−1d=ajd,MBbsMB, MNd+fajd,MBMN
sMB, MNdaMBb,MBMN

sMB, MNd/2aMBMN,MBMN
sMB, MNdg,

cMBdsMB, MN − 1d = cMBdsMB, MNd + fcMBMN
sMB, MNdaMBd,MBMN

sMB, MNd/2aMBMN,MBMN
sMB, MNdg. sA10d

Using Eqs.sA6d and sA10d, we can deduce recursively all the coefficients of the differentsMB, hMN−1jd multiple
integrals. The solution ofXsMB, hMNjd can be obtained in terms of these coefficients as

XsMB, 1d =E duMB1expF− aMB1,MB1sMB, 1duMB1
2 + S o

j=1

MB−1

o
d=1

MN

ajd,MB1sMB, 1dujd − bxcMB1sMB, 1dDuMB1G
= S p

aMB1,MB1sMB, 1dD1/2

expS cMB1
2 sMB, 1d

4aMB1,MB1sMB, 1d
bx

2DexpFH o
j=1

MB−1

o
d=1

MN

ajd,MB1
2 sMB, 1dujd

2

+ 2 o
j=1

MB−1

o
d=1

MN−1

o
b=d+1

MN

ajd,MB1sMB, 1dajb,MB1sMB, 1dujdujb + 2 o
j=1

MB−2

o
l=j+1

MB−1

o
d=1

MN

o
b=1

MN

ajd,MB1sMB, 1dalb,MB1sMB, 1dujdulb

− 2bxcMB1sMB, 1d o
j=1

MB−1

o
d=1

MN

ajd,MB1sMB, 1dujdJY4aMB1,MB1sMB, 1dG .

Therefore,XsMB, hMNjd can be determined by

XsMB, hMNjd = p
d=1

MN

XsMB, dd. sA11d

Substituting with the result of Eq.sA11d into Eq. sA7d, it gives

XshMBj, hMNjd = Fp
d=1

MN S p

aMBd,MBdsMB, ddD1/2GexpFo
d=1

MN cMBd
2 sMB, ddbx

2

4aMBd,MBdsMB, ddGXshMB − 1j, hMNjd, sA12d

where

XshMB − 1j, hMNjd =E Sp
b=1

MN

du1bDSp
b=1

MN

du2bD¯ Sp
b=1

MN

dusMB−1dbDexpF− o
j=1

MB−1

o
d=1

MN

ajd,jdsMB − 1,MNdujd
2

+ o
j=1

MB−1

o
d=1

MN−1

o
b=d+1

MN

ajd,jbsMB − 1,MNdujdujb + o
j=1

MB−2

o
l=j+1

MB−1

o
d=1

MN

o
b=1

MN

ajd,lbsMB − 1,MNdujdulb

− bx o
j=1

MB−1

o
d=1

MN

cjdsMB − 1,MNdujdG
with new coefficients given by
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ajd,jdsMB − 1,MNd = ajd,jdsMB, MNd − o
k=1

MN

fajd,MBk
2 sMB, kd/4aMBk,MBksMB, kdg,

ajd,jbsMB − 1,MNd = ajd,jbsMB, MNd + o
k=1

MN

fajd,MBksMB, kdajb,MBksMB, kd/2aMBk,MBksMB, kdg,

ajd,lbsMB − 1,MNd = ajd,lbsMB, MNd + o
k=1

MN

fajd,MBksMB, kdalb,MBksMB, kd/2aMBk,MBksMB, kdg,

cjdsMB − 1,MNd = cjdsMB, MNd + o
k=1

MN

fcMBksMB, kdajd,MBksMB, kd/2aMBk,MBksMB, kdg. sA13d

Thus, repeating the above steps forMB-1 variables and the lower ones we obtain

XshMBj, hMNjd = Fp
l=1

MB

p
d=1

MN S p

ajd,jds j , ddD
1/2GexpFo

j=1

MB

o
d=1

MN cjd
2 s j , ddbx

2

4ajd,jds j , ddG . sA14d

Substituting Eq.sA14d into Eq.sA5d, Im,ysbxd and similarly
Im,ysbyd are obtained and then Eq.sA2d gives

Im,ysbd = Fp
i=1

MA

p
a=1

MN

h4pb2wiasm, ydjGFp
j=1

MB

p
d=1

MN S p

ajd,jds j , ddDG
3 expF− So

j=1

MB

o
d=1

MN

aB
2 −

cjd
2 s j , dd

4ajd,jds j , ddDb2G . sA15d

Thus, applying Eq.sA15d in Eq. sA1d the formula given
by Eq. s17d is obtained.

APPENDIX B
The D-12C scattering is assumed to have a cluster struc-

ture with MA=1 cluster in nucleusA, MB=6 clusters in
nucleusB, and MN=2 nucleons in each cluster. Using the
permutation method introduced in Ref.[20], the multiple
scattering terms representing the collisions between these
clusters and those representing the subcollisions between
their constituent nucleons have been classified into sets; each
set contains the terms that have equal contribution to the
scattering amplitude. All terms in each set are accounted for
by one of them as a typical term(referred to as an orbit) and
their number(called the length of this orbit). A set of s0, 1d
matrices is used to express the typical terms(they are called
D matrices for short). The orbits, lengths, andD matrices
representing the full Glauber series of the D-12C scattering
are tabulated in this appendix. They are obtained by enumer-
ating and investigating the possible cluster-cluster collisions
and the possible subcollisions proceed between the nucleons
involved in each cluster-cluster orbit. Trails are now under-
taken by the author to translate the details of this procedure
into a computer program. Table III contains the orbits,
lengths, andD matrices representing the possible collisions
betweenMA=1 and MB=6 clusters.n in the first column
represents the serial index of the orbit, andT1snd in the sec-

ond column represents the length of this orbit.D1jsnd refers
to the elements of theD matrices representing the cluster-
cluster orbits and the six binary numbers in the third column
are the values of the elementsD1jsnd,j=1, 2, .. ., 6, respec-
tively.

Tables IV–IX exhibit the orbits, lengths, andD matrices
representing the subcollisions resulting from the cluster-
cluster collisions given in Table III. In these tables,m repre-
sents the serial index of the subcollision orbit due to the
collision orbitn. T2sm, nd represents the length of the subcol-
lision orbit sm, nd. The elements of theD matrices represent-
ing the subcollisions orbits areDia,jd. In the D1a,jdsm, yd col-
umns of these, the corresponding binary numbers are
abbreviated with code numbers referring to their structure

TABLE X. The sets of binary numbers represented by the code
numbers given in theD1a,jdsm, yd columns of the Tables IV–IX.

Code number Corresponding set of binary numbers

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 0 0 1
8 0 1 1 0
9 0 1 0 1
10 0 0 1 1
11 1 1 1 0
12 1 0 1 1
13 1 1 0 1
14 0 1 1 1
15 1 1 1 1
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(the sets of binary numbers represented by these codes are
shown in Table X). The binary numbers corresponding to the
elementsDia,jdsm, yd can be obtained from these codes as
follows: The first code number represents the values of the

elementsD11,j1, D11,j2, D12,j1, D12,j2, j=1, respectively, as in
shown Table IV; the second number represents theD’s of j
=2, as in shown Table V;.. ., the six code represents theD’s
of j=6, as shown in Table IX.
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