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We argue that fermion-boson mapping techniques represent a natural tool for studying many-body super-
symmetry in fermionic systems with pairing. In particular, using the generalized Dyson mapping of a many-
level fermion superalgebra with the &) type of pairing we investigate two kinds of supersymmetry con-
necting excitations in the systems with even and odd particle numbers: dynamical supersymmetry, which
ensures a unified classification of states for both even and odd populations, and invariant supersymmetry with
actual degeneracies of states within the same supermultiplet. Dynamical supersymmetries based on the dy-
namical algebra of the type(K/2Q) (whereK and ) denote the number of fermion-pair and single-fermion
states, respectivelynaturally arise in the bosonized description of the system. Conditions for invariant super-
symmetry are determined in a restricted case of bilinear supercharge operators.
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I. INTRODUCTION respectivelyinto the d]ynamical superalgebraKJ2Q)) (with

. the mixed generators’a, and albj added makes it possible
SupersymmetrySUSY) is commonly known as a hypo- 1, gimyltaneously describe low-lying spectra of doublets

thetical algebraic scheme in quantum field theory that U”iﬁe?S—lo,lz] or quartetg11] of neighboring even and odd nu-
internal and space-time symmetries and predicts elementagfej. (Note that in this paper direct products are used also for
particles of matter occurring in boson-fermion doublgs  algebras, although rigorously we should speak about a direct
As shown by Witten[2], the same scheme can be applied insum of generators associated with the corresponding product
nonrelativistic quantum mechanics, yielding a generalizedf groups)

dynamical algebrasuperalgebrawhich leads to an analo- It should be stressed that nuclear supersymmetry, intro-
gous doublet structur@xcept for the unique ground state  duced by lachelld8] already in 1980, was historically the
the spectra of relevant quantum systems. In the simpledi'st application of the SUSY ideas in nonrelativistic physics.
case, the SUSY Hamiltoniar=a'a+b'b is just the anticom- -rrehcilrntmé);;edrier;[qa;ﬁglv\?vg?lga&)nl\/llgt:;ta:fre[zlljl]p t%g:rid_lgpthe
mutator of supercharge®=ba’ and Q'=ab' that change b - LEATOR

bosonic excitart)ions{b’r)g(ier?o fermioni(? ones(a’) and vicge further questions in the SUSY many-body physics. Unfortu-
versa, so that the excited statles, n,) (wheren, and ny, nately, discussions of supersymmetry on the phenomenologi-

: e : cal nuclear-structure level, and its relation to the notion of
respe_ctlvely, are numb_erg of fermionic and bosonic ql)amaSUSY guantum mechanics, have not always clarified the dis-
exhibit the characteristic twofold degenerady|0,ny) ’

. . = o b tinction between them, nor focused on the microscopic basis
=H|1,n,—1), coupling bosonlike and fermionlike excitations. P

) . of nuclear SUSY. It is therefore not totally surprising to find
Applications of SUSY quantum mechanics soon followed.ih 4t somewhat negative opinions such as the following one

Analytically solvable and isospectral sets of potentials Werg,y 't Hooft [15] have been voiced: “At first sight, the fact
constructed on the basis of SU%¥ee Refs[3,4] and refer-  nat supersymmetric patterns were discovered in nuclear
ences thereinand some of these potentials were found rel-physics has little to do with the question of supersymmetry
evant for experimental spectroscopic data of certain atomgmong elementary particles, but it may indicate that, as the
and ions. Thus gapproximatg manifestation of phenomeno- spectrum of particles is getting more and more complex,
logical supersymmetry was established in atomic physicsome supersymmetric patterns might easily arise, even if
[5,6]. Methods based on the SUSY formalism were also dethere is no ‘fundamental’ reason for their existence.”
veloped in random matrix theory and applied to systems that Of particular interest in phenomenological SUSY studies
exhibit signatures of quantum chapg. are so-calleddynamical supersymmetries.e., situations

In nuclear physics, the concept of supersymmetry found avhen the many-body Hamiltonia can be written solely in
natural applicatiorisee, e.g., Ref§8—17)) in the framework terms of the Casimir invariants(4;) of (supeyalgebras in a
of the interacting boson-fermion modéBFM) [13]. The  Particular chaifD> .4, A4,5- -+ decomposing the dynami-
embedding of the IBFM dynamical algebra of the typecal superalgebrd. Nuclear SUSY focuses on various dy-
Ug(K)® U(2Q2) [formed byK? bosonic generatorb{rbj and Namical supersymmetries associated witke U(K/2()) and

by (20)2 fermionic generators{a, wherei, j=1 K and ©n the transitions between them. Experimentally relevant dy-
Kl=1 2) enumerate single—t;oson ar'1d —f(,a}r.ﬁion Statesnamical SUSY chains always rely on an immediate decom-

position
U(K/2Q) D Ug(K) ® UR(2Q) D -+ (1)
*Electronic address: pavel.cejnar@mff.cuni.cz of the dynamical superalgebra into a product of the corre-
"Electronic address: hbg@sun.ac.za sponding bosonic and fermionic algebras. For instance,
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the dynamical supersymmetry described in Ré¢fsl, 14 nuclei along transitions between two or more dynamical su-
is based on the decomposition ,(6/12®U_(6/4) persymmetrieg12]; then the integrability is lost but the si-
DUg,(6)®Ug,(6) @Ur,(12) @ U (4)D--+, where v and  multaneous description of even and odd neighbors with gen-
m, respectively, stand for neutron and proton realizationgrally nondegenerate states remains vplithe invariant

of the above (supejalgebras. This implies that the Supersymmetry, on the other hand, does not fully classify the
achieved SUSY description does not really go beyond aftates, but results in actual degenereatyleast on a relative
application of the same IBFM Hamiltoniatwith fixed  SCal9 of a certain subset of states in the even-odd doublet,
interaction strengthsto a quartet of neighboring even- Which has not been observed yet. Needless to say, that in
even, even-odd, odd-even, and odd-odd nuclei. Indeecf',eld t_heory, as well, the SUSY scenario naturally assumes
since the dynamical-superalgebra irreps with more tha?'€aking of the supersymmetry between elementary bosons
one fermion in a given nucleus are highly excited ang@nd fermions, as large mass differences for particles within

thus do not mix with the low-energy spectrum, the SUSY!N€ same supermultiplet must be accommodated.
Casimir invariants can be skipped as they only yield the In this work, we extend the approach of Rff6] to study

same additive constants to level energies in all four nucleflicroscopic conditions for supersymmetric schemes in fer-
considered11,14. The remaining Casimir invariantef  Mionic many-body systems. Our present discussion aims to

the embedded algebraare precisely those that appear in clarify‘that while dynamical boson-fermion symme_tries and
the standard IBFM description. transitions between them seem to be firmly established, and

As recently demonstrated in RéfL6], any collective su- in the final instance based on the nuclear interaction in situ-

peralgebra of fermion-pair and single-fermion operators&tions where some collective pairs are favofegether with
linked to a microscopicperspective of the IBFM, can be the ut|I|t_y of boson-fermion mappings, see Seg. the direct _
naturally embedded into the phenomenological-type bosor2Nal0g in many-body systems of SUSY quantum mechanics
fermionic dynamical superalgebraK/20)). HereK and 2) _(mvarlant su.p(_arsymmet})g;nll requires clarllfllcanon and may
now denote the number of pair- and single-fermion operalndeed be difficult to realize. This is explicitly demonstrated
tors, respectively, contained in the fermionic collective Sec. lll. Again the precise nature of the interaction on the

superalgebra. Moreover, the same analysis leads to the cofermionic level _vviII o_f course turn out to be crucial for the
clusion that all microscopically relevant dynamical super-2PPearance of invariant SUSY.
symmetries musseparatelyconserve the numbers of bosons
and fermions, so that they are always of faftn and should Il. BOSONIZED FORMS OF THE PAIRING SYSTEM
then only be referred to as dynamical boson-fermion symme-
tries. These symmetries and the transitions between them are
extensions of the IBFM description, rather than what would [N this section we present a bosonized form of a many-
primarily be considered a genuine realization of supersymlevel fermionic system with the S@) type of pairing, a
metry in nuc'ei(see a|So the discussion in Rej_Z] and the standard interaction to Capture the essence of SupercondUC'
elaboration below tivity in solids and nuclei[18]. We will deal with a set of

An interesting, though so far mostly hypothetical possibil-Single-particle states, enumeratedksl, ... (), and the re-
ity was, nevertheless, considered by Jolos and von Brentargpective time-reversal conjugate states, denoted kby
[17]. It is based on the requirement that supercha@gs =1, ...,Q), occupied by an arbitrary numbé-<[0, 2] of
generating the odd sector of a boson-fermion superalgebf@rmions. The fermion creation and annihilation operators
TCU(K/2Q)), together with generators of the even sector,corresponding to individual states aaéva% and ag,ag. The
commute with the Hamiltonian, and th@sforms a superal-  Hamiltonian
gebra ofinvariant supersymmetrgf the system. This repre-
sents principally the same kind of symmetry as the one in- = Tau + atar) — Totaar
troduced by the SUSY quantum mechanics, although the e 2k"Ek(akak %) %Gmakaka{a{
form of the Hamiltonian can be more general than simply the

A. Pairing Hamiltonian

. . - _ t
anticommutator of supercharges discussed above. It should - % SR % GiByBy (@)
be stressed that the bosons considered in this work are intro- '
duced on a purely phenomenological level. contains as free parameters single-particle energgs

The distinction between the above two SUSY schemes i%statesk and R are degenerate due to the time-reversal
similar to the difference between invariant and dynamicalinyariance and strengths of the pairing interactia®y

symmetries in standard quantum mechanics: in the formeeg, = we can anticipate that the pairing interaction acts
case, all generators of the given symmetry algebra commuignly petween fermions in a certain subseP
with the Hamiltonian, while in the latter this is satisfied only =i, k, ... kz} (with all k’s mutually different, = <)
for Casimir operators of a certain chain of subalgelithe  of states—most likely states in some interval around the

last algebra in the chain thus represents invariant symmetryFermj energy—so thaB,# 0 only fork, | e P.
Dynamical supersymmetry, as presented in nuclear data, im- The operators

plies that all(low-energy states in the neighboring even and

odd systems are described by a single energy formula and Bl:a%al (3)
completely classified by SUSY quantum numbers, but these

states are not necessarily degener@ee can also deal with and BkE(BE)":aka; create and annihilate, respectively, a
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pair of fermions(bifermion on the shelk (thus there aré)
such pairg and together with thé-shell fermion number
operatorNk=alak+a1—ﬁa; form the SU2) algebra associated
with each shell;[B, B,]J=N,—1. Thus the Hamiltoniar(2)
leads to the dynamical algebeg, SU(2),.

For special choices d&, andG,,, the Hamiltonian can be
rewritten via a smaller numbgK <) of pairs,

Cl= > X,qas (4)
andC,= (CT)+ (u=1, ...,K), with the coefﬂmento(ﬂk sat-

|sfy|ng the normaI|zat|on constraln}:kxﬂk)(yk . The
condition for the Hamiltonian reads &-=HY, where

0_ T T
H const+EUW[C ,C]+2v CIC

=const + >, (E UMVX,ukak) Nic
k \wv

+> (2 vwxﬂkx’;.)BlB. (5)
k1 \ u,v

(U, _UWV V are arbitrary interaction constaints

Since creation and annihilation operatorsaofy set of fer-

mion pairs, together with their commutators, close under

PHYSICAL REVIEW C 68, 054324(2003

=j1, )2, - eeeajke With @ Hamiltonian expressed just via inter-
actions ofJ=0 pairs on individual shellsS|=(a/ a/ )©:
pow
s
E E.N, - E V., S.S, (7)
(E, are the j—sheII energles,N# the corresponding
occupation-number operators, and,, the interaction
strength$. Again, the Hamiltonian(7) is of the general
form (2), with the conjugate statdsandk corresponding

to opposite projectionsm, and -m, of the angular mo-
mentum for the same level.

B. Mapping via noncollective pairs

The dynamical algebra of the fermion pairing problem
can be translated into boson language with available boson
mapping techniquegl9], mostly explored for even fermion
systems. If both even and odd particle humbers are to be
described simultaneously, the algebra of fermion pairs must
be extended to take into account also the odd degrees of
freedom. This can most naturally be done by adding the
single-fermion creation and annihilation operators to the
given set of bifermions. The resulting collection of operators
then forms a superalgebra with the algebra of pair operators
as a subalgebra.

As shown in Refs[20-23, partial bosonization of this

commutation, the dynamical algebra generating the Hamilextended superalgebra can be achieved by a generalized
tonian in Eq.(5) can be identified with the algebra associatedDyson mapping which, in the case of the superalgebra based

with pairs (4) instead of those in Eq(3). We call theC
bifermions in Eq.(4) collective Note that they couple fermi-

ons into pairs in entangled single-particle states, in contrast

to the noncollectiveB bifermions(3) whose wave functions

are separabléexcept, of course, unavoidable entanglement

due to the antisymmetrizatipnNote that Eq.(4) represents

the most general ansatz for the collective pairs that conserves

the form of the Hamiltoniari2).
The possibility to rewrite the pairing Hamiltonig®) via
a collective algebra with a small number Gfbifermions is

not very exceptional. In general, it requires to satisfy a set of

equations for unknown coefficientg, and for interaction

parameters) cf. Egs.(2) and(5). Dimensionality con-

Vs

on the above noncollective pai(3), leads to

siderations suggest that some solutions should typically exist

if KIQ=\1+10+(E/Q)?-1, which forE<Q indeed leads

to K<(). Let us stress here the importance of the require-

ment that also single-particle termskt, not only the inter-
actions, are expressed via the collective algebra, seéskq.

For instance, the constancy of interaction strengths in E

(2), Gy=G, would not imply that the simple SU@) collective
algebra generated by the single bifermiorC’

=Skep ala{/\s‘g is the dynamical algebra of the problem, un-
less all the single-particle states subject to interactions are

degenerate, i.eE,.=E for ke P:

HS= > E.N+EN,-G E C'C,
ké P

(6)

whereNp=3, _p Ny.

Another example of the use of a collective algebra con-

cerns a system of fermions of singlej shells, j

Bl — bi(1-n =Ny, (8)
BkH bk! (9)
N — 2n, + Ny (10)
for the even sector, and
+1- Ny - 1-N,—n
+ k Tt k k
al = bl + al = 25 - alaba i
(11
; 1
A afb N ekeads e

(12

%or the odd sectof22,16]. In the right-hand side images,

b’r (bk) creates(annlhllate$ a bosonof the kth type andn,
—bkbk, while ak () create(annlhllate) |deal fermionsin the
statesk (similarly for k), and V= akak+aka'|'< These bosons
and ideal fermions are kinematically independent, i.e., all
boson operators commute with all fermion operators. The
images ofa%r andag can be deduced from Egdll) and(12),

respectively, after thk« k exchange of indices in the fermi-

onic operators and inverting signs of the first term in Eq.
(11) and of the second and third terms in Eg2).

The term “ideal fermion” is used to distinguish the
fermion-type particles resulting from the mappigghere
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they appear as necessary ingredients of any superalgebraic HL = S ECNAN) - leblb|
k|

extension of boson mapping techniquéem the real fermi- K

ons in the original formulation of the problem. The !

Bogoliubov-Valatin-like structure of Eq$11) and(12) sug- =D BN+ X (2E¢— Gdne— >, Gyblby  (15)
k k k1

gests a physical interpretation of ideal fermions as general-

ized quasiparticleg23]. Anticipating discussions that follow  js manifestly Hermitian. We see that the Hamiltonids)
below, we already point out here that possible divergencegontains no interaction terms—it is just a combination of
associated with the denominators in these formulas simplyosonic and fermionic mean fields—although both boson-
do not appear in the physical subspace. Furthermore the log%son and boson-fermion interactions were present in the
of symmetry between creation and annihilation operators Ungriginal mapped Hamiltoniari13). This implies that the
der Hermitian conjugatioria typical feature of the Dyson jnteractions in Eq(13) do not affect physical states.

type of mappingpis accounted for in the calculation of ob-  The Hamiltonian15) has the same form as the one in Eq.
servables within the general Dyson framework, see Refs3) of Ref.[26]. Note that while in their treatment of pairing

(19,18. o the authors of the cited work introduce bosonlike particles,
The mapped Hamiltonian reads as follows: so-called cooperons, by modifying fundamental anticommu-

t tation relations of real fermions, our bosons result from the

Hg = % E2n+ Mo = % Gibhi(L + g = = Ny mapping of a conventional multifermionic superalgebra. In

contrast to cooperons, the bosons in our case obey ordinary
(13) commutation relations, but for the limitations concerning the

It is clear that this Hamiltonian conserves both the totalPlySical subspace they are in faard-core bosonsi.e.,
number of bosonsNg=3, n,, and of ideal fermions\; bosons with occupation numbers restricted to 0 and 1.

=3, M so that by considering a fixed total numberreél ( 15I)n ifsIt(jeiaoi);gTizsaltri]ng]e-iEatr(telfrlr?s fg;rgo?;;hr?exa& '223?”
fermions, Ne=3, N,, we also fix the sum Bg+A: to the ’ 9 :

_ T . . ge . _
given valueN,: see Eq(10). =3 Biby and identification of the ground state for even sys

The Dyson mapping of states can be trivially deduceotems with a condensate
from Eqgs.(8)—«(12). Four real-fermion basis states in edch +\Ng
subspace yield the ideal boson-fermion images as follows: [cona = (% "kbk> 0) (16)
0)>10), a{|0)— a[0), al|0)— a1|0), Bf|0)—b{|0); we denote , .
real- and ideal-space vectors by angular and circled bradfVhereNg=Ng/2 and =B, with |y denoting thed boson
kets, respectively, as in case of real and ideal vdopand ~ With minimum energy are not physically allowed opera-
|0). All the states in the ideal Hilbert space that actlinear ~ ions. Indeed, such a procedure does not keep under con-
combinations of the images just given are spurious. In parLrol physicality of the transformed states; the condensate
ticular, the components containing in akyshell more than state has a finite spurious admixture as it contains terms
one ideal particlewhether bosons or fermions, or bptre ~ With more than one boson on a givénshell (cf. Ref.
nonphysical. We see, therefore, that the present model ¢#7))- The overlap of statel6) with the physical subsp.acg
pairing allows us to write the projector to the physical sub-Of the ideal space is given by the following expression:
space in the followingxplicit form: 2

M ey """ Thk
Ky ko #ky, L Ne

Pon=TT (PooPxco* PooPxics + PoctPrco) (14) [(congPyricond|” _
: condeond (7

whereP’s on the right-hand side represent projectors onto K
the ideal subspaces with the given number of ideal par- 17
ticles (bosons or fermionsof the kth type. L .

Because of the nonunitary character of the Dyson map/Nich is less than unity for £Ng<Ng/2 and any non-
ping, the boson-fermionic Hamiltonian in E(L3) (as well  trvial set of 7's. At t,he same timePyjcond is generally
as images of other physical observabliss non-Hermitian ~Notan eigenstate dfl, nor of H.

with respect to the standard boson-fermion Fock space inner ON the other hand, properties of the ground state of an
product. However, it is well known that Dyson mappings €Ve" system can be estimated from the bosonic equivalent of

lead to so-called quasi-Hermitian structures which are contn® BCS apprOX|mat|on18], using the image of the BCS
sistent with standard quantum mechanics, and in particula?tate|BCS>:Hk(Uk+UkBk)|0>! namely,

guarantees real eigenvalues for observablsse Refs.

[24,16,29). Although explicit Hermitization has been |BCS):H(uk+vkbE)|O):Pph exp>, (In Uy + ﬂ(bl>|0)
achieved in some particular casgp], it seems that this k k Uy
procedure will generally introduce higher order many-body (18)
interaction terms into the Hamiltonian. Fortunately, in the

present case, it can be easily checked that the Hamiltonian with the normalization condition?+v2=1 for eachk. The
Eq. (13) is already Hermitianwithin the physical subspace, trial wave function(18) yields the following energy func-
i.e., it satisfiesHgP,n=HgPpn, Where tional:

054324-4



DYNAMICAL AND INVARIANT SUPERSYMMETRY IN ... PHYSICAL REVIEW C 68, 054324(2003

(BCYHE — 2\Ng|BCS) = 3 (2B~ Gy— 2\)vf [CL, Cl= = 8.+ 2 Xk Ni
K K
- G (19 +2> > X,ukX:kX:ukXﬂ-k chea (22
k#I w,m K

Now c' and c, create and annihilate, respectively, the

(with A denoting a Lagrange multipligrthe same expres- hoson' corresponding to theith collective bifermion.
sion as in the standard BCS approximation. Note, however, that single-particle creation and annihila-

We see that the bosonic BCS stét®) is just an ordinary  tion operators generating the odd sector of the general
Glauber coherent state projected onto the physical subspaggllective superalgebra are more difficult to determine
(while the original BCS state is a generalized coherent statghan in the SW2)-based special casés6].
of the fermion dynamical grouf28]). If the exponential on It should be stressed that although the collectvbifer-
the right-hand side in Eq18) is projected onto a fixed num- mions are just linear combinations of the noncollective ones,
ber of particles(instead of the projection onto the physical CL =3, X,LkBL the respective collective and noncollective
spacg one would get exactly the condensate st with  posons arenot connected by the same linear relation. Note
vl but—as discussed above—this would not be ahat the two kinds of boson operators can be viewed to act
physically justified procedure. Instead, the us®gfleads to  formally in two different Hilbert spaces, so that their com-
the cutoff of spurious components, which also modifies thearison requires to introduce an operafawhich transforms
normalization factor in front of exp 7d;l0) in Eq. (18)  the physical space of the collective mapping onto the physi-
with respect to the standard bosonic coherent state. cal space of noncollective mapping. Equati@1) and lin-
earity of all mapping procedures trivially yieffic, T'=¢,
=S X;kbk; it means that the linear relation betwe€randB
bifermions is preserved for the respective boson annihilation

If the pairing Hamiltonian can be expressed in foff), operators. For the creation operators, however, the situation
one can perform the fermion-boson mapping via the correis much more complicated, as the applicationTobn the
sponding collective pairs. This is particularly simple in both appropriate linear superposition of mappif2) results in a
the SU?2) special cases discussed above, see Byand(7): difficult self-consistent relation containing combinations of
The C bifermion from Eq.(6) yields ac boson,Ch—c'[1 operator&’ =Tc' T2 bf, b, and alsaV=TA,T % This re-
~(n+N)/E], while theTS blfTermlons from _Eq(17) map ontos  |ation cannot be generally satisfied by any ansatz of the type
bosons as followsS,—s,[1-(n,+\,)/(j,+3)]. Note that T =3, x,bi, wherey,, would represent some unknown co-

the bifermion annihilation operators are in both casesificients, and thus the correspondence between both kinds
mapped trivially just onto the corresponding boson annihila mapping is not linear.

tion operators, and the fermion number operators from the
collective algebras onto analogous combinations as in Ec1.

(10). For instanceNMHZnMﬂ\/M, wherenM and/\/’ﬂ stand for Il. SUPERSYMMETRY OF THE PAIRING HAMILTONIAN

the boson- and ideal-fermion number operators, respectively, A. Possible SUSY schemes

of the uth level in Eq.(7). It is clear that in this case the - o
physical space is not restricted to tedoson occupation _ AS explicitly demonstrated by the Hamiltonian in Eq.

numbersn,=0 and 1, but contains states with up to j,, (15), the total number of par_ticles is a_conserve_d quantity in
the system of bosons and ideal fermions obtained by map-

+32. The single-fermion operators, which in both of the dis- " .
cjssed cases supplement the bifermion algebra to yield t ng (.8)_(12)' The same holdg true also for any COIIeCt'.Ve
corresponding collective superalgebra, are also mappe'a‘app'ng' see Eq$20)—(22_) (nenher projection to the physi-
analogously as in the preceding section, cf. expressions i al space nor the Herm|t|zat|on can spoil this propétsy).
Refs.[22,16. herefore, the dynamics of the mapped system does not rule
out the use of the (K/2Q)) superalgebra as the spectrum

The collective algebra of bifermion®) is not generally . . i
of the SU2) type because different collective pa@ and generating(dynamica) superalgebra. In fact, the superalge
bra of real fermions and bifermions, either collective or non-

CI, M v, may contain components with the sakeNever- . . .
theless, using the formalism described in R¢#d, 16, the gﬁlpl)z(;g;/geéb:z mappednto (but generally not onfo this

Dyson bosonic images can be easily constructed: For the noncollective mapping, for instantes () and the
even sector of (1)/20)) is formed by generators/b;, afa,
+ t_ t * aaq, and their Hermitian conjugateall together 5)? opera-
Cur> a2 CV(% Xudok Nic tors), while the odd sector is generated lalyy, bja;, and the
L. conjugates(all together 4)? operators We see, however,
+ 2 2 X kX kX kX ik CLCW>, (200  that the odd sector is not used in the construction of the
o7 K Hamiltonian, so that B(Q) ® U(2Q)) can equally well be
chosen as the dynamical algebra. This means that the decom-
position in Eq.(1) is applicable, which preselects possible
C,—c (21 dynamical symmetries of the system and, consequently, also

C. Mapping via collective pairs

14
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the relevant transitional regimes. Realizing that all these _kg... knki...Kply. .y :Akl,...,kn,El,.. o b b b b
symmetries are given by standard decompositions of the ki,...kyKj...K 0. 7k gk KE T ey
Ug(K)®UR(2Q) algebra into chains of embedded subalge- (24)

bras, we skip here their explicit discussion. In general, con-
ditions for any specific dynamical symmetry, given by a
chain DD A;DA,D... of decomposition of the boson-
fermion dynamical algebr®, are obtained from the set of
constraints[Hg, C(A4;)]=0 required to hold in the physical

where A, is defined in the same way aQ{l in Eq.
. o
(23), but with the real-fermion operators substituted by the

space. This naturally yields speciffor each symmetrysets corresponding ideal-fermion operators. As in the previous
of equations for parameteis, and Gy, of the Hamiltonians case, even and Odd. sectors Of. the superalgebdn are
(15) and (2). distinguished acc_ordmg to the_ d_|ff§renﬁe\/p between the
Although—as we just saw—the odd sector of the dynami-numbers of creation and annihilation operatorsﬁxljz’r’:::.
cal superalgebra (&/2Q)) can be ruled out, it is also clear  Although the mapping in Sec. Il B was performed only
that the SUSY quantum numbBrNg+A¢ still classifies all ~ for a small subset of the above general fermionic superalge-
eigenstates of the mapped many-body Hamiltonian. Consebra, the images of operatoi23) in the physical space can be
vation of the total particle number is a common feature of theconstructed as the corresponding products of the images in
generalized Dyson mapping. Let us stress that this simpl&ds.(11) and(12) [20]. Superalgebr&23) is thus mapped to
conclusion was not at all clear in the early days of nucleaseries of operator@4), i.e., onto the given superalgebra act-
supersymmetry, especially in view of the fact that the realng in the space of bosons and ideal fermions._ Trivially, even
fermion number maps onto the number of ideal fermions2Nd 0dd sectors of superalgel@8) are not mixed by the
plus twice the number of bosong\g— Ng+2Ng, which ex- mapping—the image of an element with a given value of
cludes the particle-number conservation law for real fermi2Ne has ANg+2ANg=ANg, where ANg=m-m, see Eq.
ons from the explanation of the conservatiorRoindeed, as (24). Taking ANg=+1, for example, we get an |£nage with
shown in Ref[16], the conservation law far (as well as the t(e_r;ns+ ) (+§0£r§s(p_%n(fr21)g o (ANgANg)=(+1,0,
f:rﬁa(r:fgigsn;e;xzt'?gaﬁ%e?rg?oﬁ/ Fé;?}';%\i;{ O;ngbﬁg,mwsmch This expansion would hardly be tractable in its general

_ : i . form, but fortunately, it can be considerably simplified if
must represent the interaction as well as single-particle "M ates with more than one ideal fermion are physically irrel-

of the fermion Hamiltonian. Therefore, it is only the pOSsi- o 41t Indeed, such states correspond to real-fermionic states
bility of fully algebraic formulatlonof the fermion pairing  \\ith broken pairs which are supposed to have relatively high
problem that automatically creates the(KU2()-based eycitation energies. Under this restriction, the invariant-
boson-fermion description, with all potential dynamical- SUSY Supercharges connect states in doublets N#t}and
supersymmetry chains and transitional classes included. N_+1 fermions, and can be constructed just from the
Potentialinvariant supersymmetries of the pairing Hamil- (AN ANg)=(+1,0 and (-1, +1) terms. The first term ap-
tonian (2) also depend on the energi& and interaction plies in case thalg corresponding to the left system in the
strengthsGy. On the fermion level, all such supersymmetriesdoublet is even, the second Mg is odd. To make contact
are described in the framework of the most general superalwvith the standard notion of a supercharge, we here only fo-
gebra of multifermion operators, cus on the second term that changes a fermion into a boson
(or vice versa It reads as

BB ... BBy ... A A ... AR, _
n ®1 1 n 1 n QT = 2 bl fk|(b|Tbj’ aTman)(qk|a| + qk|a|-)! (25)
k|

(23)

where f,, are arbitrary functions of operators conserving

where a given element belongs to the even or odd SeCtOE’eparater the numbers of bosons and fermions, gnd

respectively, according to whether the differenddlg andg, are some coefficients.

=(n+n)-(n"+7’) is even or odd. Operators of the even |, 'spite of the above restrictions, the commutator of su-
sector transform states with even and odd fermion numpercharge25) with the boson-fermion Hamiltonian still re-
bers separately, while operators of the odd sector interconnains completely unknown without a further specification of
nect even and odd populations. The invariant SUSY takes,. This makes the general theoretical determination of in-
place if the Hamiltonian(2) commutes with any of the variant supersymmetries in fermionic systems a rather non-
operators(23) belonging to the odd sector, which implies trivial task, where no analytic insight seems available so far.
the existence of a degenerate supermultiplet of states diNevertheless, the mapping procedure, as outlined in Sec. I,
fering by a given odd number &N fermions. provides a natural framework for the classification and analy-

In the Hilbert space of bosons and ideal fermions createdis of various special cases. In the next paragraph, for ex-
by mapping(8)«12), similarly, one can consider the super- ample, we determine conditions for the invariant SUSY gen-
algebra of operators erated by superchargé®5) with f,,=1.
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B. Invariant SUSY with bilinear supercharges I=®ycs U(1/2) superalgebra, which thus forms the
We will look for conditions that the mapped Hamiltonian invariant-SUSY superalgebra of the problem. This is so in

from Sec. Il B must satisfy to commute with the simplestSPite of the fact that the dynamical algebraktf,y in Eq.
bilinear supercharges of the form (29) is just an ordinary algebr® C Ug(Q)) ® U(2Q)) where

seemingly no supersymmetry is involved. In view of the dis-
Q"= bl(auay + Gap) = D, blay, (26)  cussion above, the SUSY Hamiltonian obtained from the
Kl kil general solution of Eq:28) in case of nondiagonal matrices
of supercharge coefficients receives the same algebraic inter-
pretation, but with the original bosorlrﬁ substituted by the
ew ones dl, resulting from the diagonalization of the
osonic Hamiltonian. Note that the above superalgebraic
scheme represents a direct generalization of the minimal
SUSY schemd?2], where the invariant-SUSY superalgebra
sl(1/1) is formed only by operator®', Q, and H={Q', Q}
[3,4]. In the present case, in particular, the relevant part of
e _ _ the Hamiltonian is not just a supercharge anticommutator
(2B~ B~ Gudd g‘k Gl =0, @ a sum of such termsbut a linear combination of Casimir
invariants ofZ.

wherebl and ¢ (or a7) are noncollective bosons and ideal
fermions, respectively, from Eq$8) and (12). If the su-
percharge is assumed to commute with the time reversa
the coefficientsq, and gy, should be set equalup to a
phase factor but this we do not generally require here.

The assumptiofiHg, Q']=0 (=[Q, H5]*) leads to the fol-
lowing equation to be valid for anlg andl:

and the same also with the change g to g's. For a Let us turn, at last, to the crucial question of physicality of
fixed value ofl, the condition for the existence of non- the apove supersymmetric transformations. It was so far
trivial solutionsqy andgy reads as completely ignored in this section but it is indeed very rel-
Gy 2E, + E Gy, Gya evant since the_supercharge operatd6) can transfo.rm
some of the physical states out of the physical space given by
de Ga1 G 2B+ F Gas the projector in Eq(14). In particular, the supercharge op-
Gs; Gso Ga3—2E3+E ... erator acting within the physical space may produce a non-

physical state with(n,, V)=(1,1 or (2,0, this being not
generally excluded—in case of nondiagonal matrices of su-
=0. (28)  percharge coefficients—by the action @for o, associated

. T .
This equation has rather clear physical interpretation: itVith b in Eq.(26). Consequently, some of the supersymmet-

says that diagonalization of the bosonic part of the single-ric transformations that, as found above, constitute an invari-

particle Hamiltonian(15) gives one of the eigenvalues ant supersymmetry of the Hamiltoniatg may turn to be
equal to the fermionic energl,. Mutual conversions of Nnonphysical. _ _ _ _
the corresponding boson and fermion thus do not change To examine this question, let us introduce a physical su-
the total energy. One can apply E&8) simultaneously to Percharge operator
a certain subset of fermionic statég S, which is equiva-
lent with taking qy=0q=0 for | € S. The supersymmetry -
then concerns only a part of the spectrum. PorQ"Ppn=Q"Pyy, (30)

An important special case of the above condition is ob-
tained if one assumes supercharges with diagonal matrices of
coefficients gy =y andtiy=0cdy. Equation(27) then leads Where
to the following simple constraintss,=0 for k#1eS and
E=Gy for ke S, the coefficientsy, and Gy being arbitrary

for ke S and zero otherwise. We thus haMg=HZ,,s, With Q"= 3 bl Pr=oPuz0+ X bldPrzo- (31
k2l K
Housy= 2 Edne+ M) + 2 B0+ M) = X Gigblby.
kes Kes Kles

Similarly, we define

(29) Y

The interpretation of this solution is the same as above, _

with only the difference that the bosonic part of the Hg=2 BN+ > (2B~ Gdnc— 2 GibibiPy, -oP:-o

Hamiltonian(15) is already supposed to be diagonalized k k k|

priori, allowing for the diagonal constraint on the super- (32

charge coefficients. By inserting the above constraints into

the original Hamiltonian(2), one can verify the existence of

degenerated supermultiplets with=1 and 2(for ke S) di-  that represents another form of the Hamilton{dB). The

rectly on the fermionic level. condition for the commutation of the supercharge with the
The Hamiltonian(29) is trivially invariant under the set of Hamiltonian in the physical space then reads as

transformationsoay, blag, afax, ajox, afar, blby (and their  [Hg, Q'P,,=0, which yields the following operator equal-

Hermitian conjugateswith k e S. These are generators of the ity:
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E. — Gbl due + 2E, - E - Gu)bl aP Py Ieac_js to actual degenerac_ies of many-body states in neigh-
zk:( <~ Grdbicda g( <~ B~ Gadbidg M=t N0 boring even and odd fermionic systems.
. ‘. In contrast to phenomenological studies based on the
= 2, Gy Pry 0P =0~ 2 GidbiécPry=oP =0 IBFM, our search for the SUSY patterns is derived from a
Kzl Kzl purely fermionic level. Existing boson-fermion mapping
+ Gubl &t (P i =P VP Prr P s techniques allow us to introduce the relevant boson and fer-
k#lz#m Pie@im(Pry=1 = Pry=0)PryzoPyi=0Pi0 mion degrees consistently, and facilitate our exploration of

dynamical and invariant supersymmetries in the simple case
= 2 GyblbibiamPr P, 0= 0 (33)  of pairinglike Hamiltonians.
k#l7m While the use of dynamical superalgeldsék/2Q) with
to be valid in the physical space. It is not difficult to see various dynamical supersymmetries of fo(l and the cor-
that Eq.(33) can only be satisfied by imposing the above responding transitional regions directly follows from the mi-
SUSY conditions for supercharges with vanishing nondi-croscopic foundations of the IBFM, the problem of invariant
agonal g, and g, elements, see Eq29 and the text supersymmetries seems more difficult to solve on the micro-
above. The Hamiltoniari29) is the only invariant-SUSY  scopic basis. Nevertheless, for Hamiltoniay, and with
Hamiltonian with supermultiplet states contained entirely insupercharges restricted to the bilinear ty@é), it turns out
the physical space that can be constructed through a biline#ffat invariant supersymmetry is ruled out for pairing other
supercharge in Eq26). The other solutions, see E(8),  than the simplest diagonal form, see E29). This is not in
are spurious, i.e., have no real counterpart on the level of theontradiction with the result of Ref17] where the boson
original fermion system. interaction does not follow from a mapped fermion interac-
Let us finally note that the search for invariant supersym-ion.
metries would be much more involved for the mapping per- Although we have not exhausted all possibilities that may
formed via collective bifermions from Eq4). In this case, resultin invariant supersymmetry for generalized pairing in a
we again have to check if the express[&i\g,@]P‘;h van- ferrrluon syst(re]m, gbollng beﬁlond the péesentI a'nalﬁlss seems to
ishes, wher@*=zﬂkcl(quak+qﬂka;) is a collective bilinear |m;|):y a tough problem when pursued analytically.
= ¢ . rom a microscopic point of view, considering and ac-
supe_rcharge anéy, a pr_OJector onto the phys_lcal SUbSpacecounting for the physical subspace has been crucial for a
;)bt:?uned via tt?e CO”SCUVe sugetr)algebrfa. U_nllk(_a the nc.mml.'complete analysis, as shown in detail in Secs. 11 B and Il B.
ective case, 0Son-boson and boson-termion INteractions ) js one of the main aims of this work to demonstrate on a
the HamiltonianHg are generally relevant also in the physi- relatively simple example the restrictive role that the physi-
cal subspacgl6] and must be considered in the commutator.cal subspace may play in transferring results of phenomeno-
Moreover, the calculation is obscured by the fact Ih@,thas logical SUSY to the microscopic framework.
a more complicated form in the general case than for the Finally, as argued in greater detail in R§29], and as is
noncollective superalgebra. The above-discussed relation batso clear from the present discussion, there is no reason to
tween collective and noncollective bosons, see the end adxpect(as, e.g., in Ref[30]) that transfer operators in the
Sec. II C, indicates that the use of collective superchargesontext of dynamical supersymmetry should be restricted to
has a similar effect as the generalization of E2f) to form  the simplest supercharges appearing in invariant supersym-
(29). metry situations. In fact, for dynamical symmetry the appro-
priate transfer operators armapped imagesof single-
IV. CONCLUSIONS fermion operators, as, e.g., in Eq4l) and (12). In our

presentation these images may indeed be considered gener-

We have pointed out the need to distinguish between tWayjizeq supercharges, but in general they are not of the simple
schemes in supersymmetric many-body physiogclear pijinear type.

structure in particulgr The first one relies on the definition
of an appropriate dynamical superalgebra of the given sys-
tem and leads to the well-established notion of dynamical
supersymmetry. Phenomenological applications of the SUSY P.C. thanks J. Dobe$§, J. HoSek, and D. Nosek for interest-
IBFM represent the best known example. The secondng discussions. This work was supported by the S.A. Na-
scheme directly follows from SUSY quantum mechanics. lttional Research Foundation under Grant Nos. GUN 2047181
aims at the identification of a superalgebra of invariant suand GUN 2044653 and by the Grant Agency of Czech Re-
persymmetry, which—unlike dynamical supersymmetries—public under Grant No. 202/02/0939.
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