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We argue that fermion-boson mapping techniques represent a natural tool for studying many-body super-
symmetry in fermionic systems with pairing. In particular, using the generalized Dyson mapping of a many-
level fermion superalgebra with the SU(2) type of pairing we investigate two kinds of supersymmetry con-
necting excitations in the systems with even and odd particle numbers: dynamical supersymmetry, which
ensures a unified classification of states for both even and odd populations, and invariant supersymmetry with
actual degeneracies of states within the same supermultiplet. Dynamical supersymmetries based on the dy-
namical algebra of the type UsK/2Vd (whereK and 2V denote the number of fermion-pair and single-fermion
states, respectively) naturally arise in the bosonized description of the system. Conditions for invariant super-
symmetry are determined in a restricted case of bilinear supercharge operators.
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I. INTRODUCTION

Supersymmetry(SUSY) is commonly known as a hypo-
thetical algebraic scheme in quantum field theory that unifies
internal and space-time symmetries and predicts elementary
particles of matter occurring in boson-fermion doublets[1].
As shown by Witten[2], the same scheme can be applied in
nonrelativistic quantum mechanics, yielding a generalized
dynamical algebra(superalgebra) which leads to an analo-
gous doublet structure(except for the unique ground state) in
the spectra of relevant quantum systems. In the simplest
case, the SUSY HamiltonianH=a†a+b†b is just the anticom-
mutator of superchargesQ=ba† and Q†=ab† that change
bosonic excitationssb†d into fermionic onessa†d and vice
versa, so that the excited statesuna, nbl (where na and nb,
respectively, are numbers of fermionic and bosonic quanta)
exhibit the characteristic twofold degeneracyHu0,nbl
=Hu1,nb−1l, coupling bosonlike and fermionlike excitations.

Applications of SUSY quantum mechanics soon followed.
Analytically solvable and isospectral sets of potentials were
constructed on the basis of SUSY(see Refs.[3,4] and refer-
ences therein) and some of these potentials were found rel-
evant for experimental spectroscopic data of certain atoms
and ions. Thus a(approximate) manifestation of phenomeno-
logical supersymmetry was established in atomic physics
[5,6]. Methods based on the SUSY formalism were also de-
veloped in random matrix theory and applied to systems that
exhibit signatures of quantum chaos[7].

In nuclear physics, the concept of supersymmetry found a
natural application(see, e.g., Refs.[8–12]) in the framework
of the interacting boson-fermion model(IBFM) [13]. The
embedding of the IBFM dynamical algebra of the type
UBsKd ^ UFs2Vd [formed byK2 bosonic generatorsbi

†bj and
by s2Vd2 fermionic generatorsak

†al, where i, j=1, .. .,K and
k, l=1, .. ., 2V enumerate single-boson and -fermion states,

respectively] into the dynamical superalgebra UsK/2Vd (with
the mixed generatorsbi

†al andak
†bj added) makes it possible

to simultaneously describe low-lying spectra of doublets
[8–10,12] or quartets[11] of neighboring even and odd nu-
clei. (Note that in this paper direct products are used also for
algebras, although rigorously we should speak about a direct
sum of generators associated with the corresponding product
of groups.)

It should be stressed that nuclear supersymmetry, intro-
duced by Iachello[8] already in 1980, was historically the
first application of the SUSY ideas in nonrelativistic physics.
Their most detailed verification in nature up to date—in the
recent experimental work by Metzet al. [14]—opened up
further questions in the SUSY many-body physics. Unfortu-
nately, discussions of supersymmetry on the phenomenologi-
cal nuclear-structure level, and its relation to the notion of
SUSY quantum mechanics, have not always clarified the dis-
tinction between them, nor focused on the microscopic basis
of nuclear SUSY. It is therefore not totally surprising to find
that somewhat negative opinions such as the following one
by ’t Hooft [15] have been voiced: “At first sight, the fact
that supersymmetric patterns were discovered in nuclear
physics has little to do with the question of supersymmetry
among elementary particles, but it may indicate that, as the
spectrum of particles is getting more and more complex,
some supersymmetric patterns might easily arise, even if
there is no ‘fundamental’ reason for their existence.”

Of particular interest in phenomenological SUSY studies
are so-calleddynamical supersymmetries, i.e., situations
when the many-body HamiltonianH can be written solely in
terms of the Casimir invariantsCsAid of (super)algebras in a
particular chainD.A1.A2.¯ decomposing the dynami-
cal superalgebraD. Nuclear SUSY focuses on various dy-
namical supersymmetries associated withD;UsK/2Vd and
on the transitions between them. Experimentally relevant dy-
namical SUSY chains always rely on an immediate decom-
position

UsK/2Vd . UBsKd ^ UFs2Vd . ¯ s1d

of the dynamical superalgebra into a product of the corre-
sponding bosonic and fermionic algebras. For instance,
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the dynamical supersymmetry described in Refs.f11,14g
is based on the decomposition Uns6/12d ^ Ups6/4d
.UBns6d ^ UBps6d ^ UFns12d ^ UFps4d.¯, where n and
p, respectively, stand for neutron and proton realizations
of the above ssuperdalgebras. This implies that the
achieved SUSY description does not really go beyond an
application of the same IBFM Hamiltonianswith fixed
interaction strengthsd to a quartet of neighboring even-
even, even-odd, odd-even, and odd-odd nuclei. Indeed,
since the dynamical-superalgebra irreps with more than
one fermion in a given nucleus are highly excited, and
thus do not mix with the low-energy spectrum, the SUSY
Casimir invariants can be skipped as they only yield the
same additive constants to level energies in all four nuclei
consideredf11,14g. The remaining Casimir invariantssof
the embedded algebrasd are precisely those that appear in
the standard IBFM description.

As recently demonstrated in Ref.[16], any collective su-
peralgebra of fermion-pair and single-fermion operators,
linked to a microscopicperspective of the IBFM, can be
naturally embedded into the phenomenological-type boson-
fermionic dynamical superalgebra UsK/2Vd. HereK and 2V
now denote the number of pair- and single-fermion opera-
tors, respectively, contained in the fermionic collective
superalgebra. Moreover, the same analysis leads to the con-
clusion that all microscopically relevant dynamical super-
symmetries mustseparatelyconserve the numbers of bosons
and fermions, so that they are always of form(1) and should
then only be referred to as dynamical boson-fermion symme-
tries. These symmetries and the transitions between them are
extensions of the IBFM description, rather than what would
primarily be considered a genuine realization of supersym-
metry in nuclei(see also the discussion in Ref.[12] and the
elaboration below).

An interesting, though so far mostly hypothetical possibil-
ity was, nevertheless, considered by Jolos and von Brentano
[17]. It is based on the requirement that superchargesQi,
generating the odd sector of a boson-fermion superalgebra
I,UsK/2Vd, together with generators of the even sector,
commute with the Hamiltonian, and thusI forms a superal-
gebra ofinvariant supersymmetryof the system. This repre-
sents principally the same kind of symmetry as the one in-
troduced by the SUSY quantum mechanics, although the
form of the Hamiltonian can be more general than simply the
anticommutator of supercharges discussed above. It should
be stressed that the bosons considered in this work are intro-
duced on a purely phenomenological level.

The distinction between the above two SUSY schemes is
similar to the difference between invariant and dynamical
symmetries in standard quantum mechanics: in the former
case, all generators of the given symmetry algebra commute
with the Hamiltonian, while in the latter this is satisfied only
for Casimir operators of a certain chain of subalgebras(the
last algebra in the chain thus represents invariant symmetry).
Dynamical supersymmetry, as presented in nuclear data, im-
plies that all(low-energy) states in the neighboring even and
odd systems are described by a single energy formula and
completely classified by SUSY quantum numbers, but these
states are not necessarily degenerate.(One can also deal with

nuclei along transitions between two or more dynamical su-
persymmetries[12]; then the integrability is lost but the si-
multaneous description of even and odd neighbors with gen-
erally nondegenerate states remains valid.) The invariant
supersymmetry, on the other hand, does not fully classify the
states, but results in actual degeneracy(at least on a relative
scale) of a certain subset of states in the even-odd doublet,
which has not been observed yet. Needless to say, that in
field theory, as well, the SUSY scenario naturally assumes
breaking of the supersymmetry between elementary bosons
and fermions, as large mass differences for particles within
the same supermultiplet must be accommodated.

In this work, we extend the approach of Ref.[16] to study
microscopic conditions for supersymmetric schemes in fer-
mionic many-body systems. Our present discussion aims to
clarify that while dynamical boson-fermion symmetries and
transitions between them seem to be firmly established, and
in the final instance based on the nuclear interaction in situ-
ations where some collective pairs are favored(together with
the utility of boson-fermion mappings, see Sec. II), the direct
analog in many-body systems of SUSY quantum mechanics
(invariant supersymmetry) still requires clarification and may
indeed be difficult to realize. This is explicitly demonstrated
in Sec. III. Again the precise nature of the interaction on the
fermionic level will of course turn out to be crucial for the
appearance of invariant SUSY.

II. BOSONIZED FORMS OF THE PAIRING SYSTEM

A. Pairing Hamiltonian

In this section we present a bosonized form of a many-
level fermionic system with the SU(2) type of pairing, a
standard interaction to capture the essence of superconduc-
tivity in solids and nuclei[18]. We will deal with a set of
single-particle states, enumerated byk=1, .. .,V, and the re-
spective time-reversal conjugate states, denoted byk
=1, .. .,V, occupied by an arbitrary numberNFPf0, 2Vg of
fermions. The fermion creation and annihilation operators
corresponding to individual states areak

†,ak
† and ak,ak. The

Hamiltonian

HF = o
k

Eksak
†ak + ak

†akd − o
k,l

Gklak
†ak

†alal

= o
k

EkNk − o
k,l

GklBk
†Bl s2d

contains as free parameters single-particle energiesEk

sstatesk and k are degenerate due to the time-reversal
invarianced and strengths of the pairing interactionGkl

=Glk
* . We can anticipate that the pairing interaction acts

only between fermions in a certain subsetP
;hk1, k2, . . . ,kJj swith all ki’s mutually different,JøVd
of states—most likely states in some interval around the
Fermi energy—so thatGklÞ0 only for k, l PP.

The operators

Bk
† = ak

†ak
† s3d

and Bk;sBk
†d+=akak create and annihilate, respectively, a
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pair of fermionssbifermiond on the shellk sthus there areV
such pairsd, and together with thek-shell fermion number
operatorNk=ak

†ak+ak
†ak form the SUs2d algebra associated

with each shell;fBk
†, Bkg=Nk−1. Thus the Hamiltonians2d

leads to the dynamical algebrâk SUs2dk.
For special choices ofEk andGkl, the Hamiltonian can be

rewritten via a smaller numbersK,Vd of pairs,

Cm
† = o

k
xmkak

†ak
† s4d

andCm;sCm
†d+ sm=1, . . . ,Kd, with the coefficientsxmk sat-

isfying the normalization constraintok xmkxnk
* =dmn. The

condition for the Hamiltonian reads asHF=HF
0, where

HF
0 = const +o

m,n
UmnfCm

†, Cng + o
m,n

VmnCm
†Cn

= const8 + o
k
So

m,n
Umnxmkxnk

* DNk

+ o
k,l

So
m,n

Vmnxmkxnl
* DBk

†Bl s5d

sUmn=Unm
* , Vmn=Vnm

* are arbitrary interaction constantsd.
Since creation and annihilation operators ofany set of fer-
mion pairs, together with their commutators, close under
commutation, the dynamical algebra generating the Hamil-
tonian in Eq.s5d can be identified with the algebra associated
with pairs s4d instead of those in Eq.s3d. We call theC
bifermions in Eq.s4d collective. Note that they couple fermi-
ons into pairs in entangled single-particle states, in contrast
to the noncollectiveB bifermionss3d whose wave functions
are separablesexcept, of course, unavoidable entanglement
due to the antisymmetrizationd. Note that Eq.s4d represents
the most general ansatz for the collective pairs that conserves
the form of the Hamiltonians2d.

The possibility to rewrite the pairing Hamiltonian(2) via
a collective algebra with a small number ofC bifermions is
not very exceptional. In general, it requires to satisfy a set of
equations for unknown coefficientsxmk and for interaction
parametersUmn,Vmn, cf. Eqs.(2) and(5). Dimensionality con-
siderations suggest that some solutions should typically exist
if K/VùÎ1+1/V+sJ/Vd2−1, which for J!V indeed leads
to K!V. Let us stress here the importance of the require-
ment that also single-particle terms inHF, not only the inter-
actions, are expressed via the collective algebra, see Eq.(5).
For instance, the constancy of interaction strengths in Eq.
(2), Gkl=G, would not imply that the simple SU(2) collective
algebra generated by the single bifermionC†

=okPP ak
†ak

†/ÎJ is the dynamical algebra of the problem, un-
less all the single-particle states subject to interactions are
degenerate, i.e.,Ek=E for kPP:

HF
0 = o

kP” P
EkNk + ENP − G J C†C, s6d

whereNP=okPP Nk.
Another example of the use of a collective algebra con-

cerns a system of fermions onK single-j shells, j

= j1, j2, . . ....,jK, with a Hamiltonian expressed just via inter-
actions ofJ=0 pairs on individual shells,Sm

† =sajm
† ajm

† ds0d:

HF
0 = o

m

EmNm − o
m,n

Vmn Sm
†Sn s7d

sEm are the j-shell energies,Nm the corresponding
occupation-number operators, andVmn the interaction
strengthsd. Again, the Hamiltonians7d is of the general
form s2d, with the conjugate statesk and k corresponding
to opposite projections +mm and −mm of the angular mo-
mentum for the same levelm.

B. Mapping via noncollective pairs

The dynamical algebra of the fermion pairing problem
can be translated into boson language with available boson
mapping techniques[19], mostly explored for even fermion
systems. If both even and odd particle numbers are to be
described simultaneously, the algebra of fermion pairs must
be extended to take into account also the odd degrees of
freedom. This can most naturally be done by adding the
single-fermion creation and annihilation operators to the
given set of bifermions. The resulting collection of operators
then forms a superalgebra with the algebra of pair operators
as a subalgebra.

As shown in Refs.[20–22], partial bosonization of this
extended superalgebra can be achieved by a generalized
Dyson mapping which, in the case of the superalgebra based
on the above noncollective pairs(3), leads to

Bk
† ° bk

†s1 − nk − Nkd, s8d

Bk ° bk, s9d

Nk ° 2nk + Nk s10d

for the even sector, and

ak
† ° bk

†ak + ak
†1 −Nk − nk

1 −Nk
− ak

†ak
†
ak

1 −Nk − nk

s2 −Nkds1 −Nkd
,

s11d

ak ° ak + ak
†bk

1

1 −Nk
+ ak

†ak
†
akbk

1

s2 −Nkds1 −Nkd
s12d

for the odd sectorf22,16g. In the right-hand side images,
bk

† sbkd createssannihilatesd a bosonof the kth type andnk

=bk
†bk, while ak

† sakd createsannihilated ideal fermionsin the
statesk ssimilarly for kd, andNk=ak

†ak+ak
†ak. These bosons

and ideal fermions are kinematically independent, i.e., all
boson operators commute with all fermion operators. The
images ofak

† andak can be deduced from Eqs.s11d ands12d,
respectively, after thek↔k exchange of indices in the fermi-
onic operators and inverting signs of the first term in Eq.
s11d and of the second and third terms in Eq.s12d.

The term “ideal fermion” is used to distinguish the
fermion-type particles resulting from the mapping(where
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they appear as necessary ingredients of any superalgebraic
extension of boson mapping techniques) from the real fermi-
ons in the original formulation of the problem. The
Bogoliubov-Valatin-like structure of Eqs.(11) and (12) sug-
gests a physical interpretation of ideal fermions as general-
ized quasiparticles[23]. Anticipating discussions that follow
below, we already point out here that possible divergences
associated with the denominators in these formulas simply
do not appear in the physical subspace. Furthermore the loss
of symmetry between creation and annihilation operators un-
der Hermitian conjugation(a typical feature of the Dyson
type of mappings) is accounted for in the calculation of ob-
servables within the general Dyson framework, see Refs.
[19,16].

The mapped Hamiltonian reads as follows:

HB = o
k

Eks2nk + Nkd − o
k,l

Gklbk
†bls1 + dkl − nk − Nkd.

s13d

It is clear that this Hamiltonian conserves both the total
number of bosons,NB=ok nk, and of ideal fermions,NF

=ok Nk, so that by considering a fixed total number ofreal
fermions, NF=ok Nk, we also fix the sum 2NB+NF to the
given valueNF; see Eq.s10d.

The Dyson mapping of states can be trivially deduced
from Eqs.(8)–(12). Four real-fermion basis states in eachk
subspace yield the ideal boson-fermion images as follows:
u0l° u0d, ak

†u0l°ak
†u0d, ak

†u0l°ak
†u0d, Bk

†u0l°bk
†u0d; we denote

real- and ideal-space vectors by angular and circled bras/
kets, respectively, as in case of real and ideal vacuau0l and
u0d. All the states in the ideal Hilbert space that arenot linear
combinations of the images just given are spurious. In par-
ticular, the components containing in anyk shell more than
one ideal particle(whether bosons or fermions, or both) are
nonphysical. We see, therefore, that the present model of
pairing allows us to write the projector to the physical sub-
space in the followingexplicit form:

Pph = p
k

sPnk=0PNk=0 + Pnk=0PNk=1 + Pnk=1PNk=0d, s14d

whereP’s on the right-hand side represent projectors onto
the ideal subspaces with the given number of ideal par-
ticles sbosons or fermionsd of the kth type.

Because of the nonunitary character of the Dyson map-
ping, the boson-fermionic Hamiltonian in Eq.(13) (as well
as images of other physical observables) is non-Hermitian
with respect to the standard boson-fermion Fock space inner
product. However, it is well known that Dyson mappings
lead to so-called quasi-Hermitian structures which are con-
sistent with standard quantum mechanics, and in particular
guarantees real eigenvalues for observables(see Refs.
[24,16,25]). Although explicit Hermitization has been
achieved in some particular cases[25], it seems that this
procedure will generally introduce higher order many-body
interaction terms into the Hamiltonian. Fortunately, in the
present case, it can be easily checked that the Hamiltonian in
Eq. (13) is already Hermitianwithin the physical subspace,
i.e., it satisfiesHBPph=HB8Pph, where

HB8 = o
k

Eks2nk + Nkd − o
k,l

Gklbk
†bl

= o
k

EkNk + o
k

s2Ek − Gkkdnk − o
kÞl

Gklbk
†bl s15d

is manifestly Hermitian. We see that the Hamiltonians15d
contains no interaction terms—it is just a combination of
bosonic and fermionic mean fields—although both boson-
boson and boson-fermion interactions were present in the
original mapped Hamiltonians13d. This implies that the
interactions in Eq.s13d do not affect physical states.

The Hamiltonian(15) has the same form as the one in Eq.
(3) of Ref. [26]. Note that while in their treatment of pairing
the authors of the cited work introduce bosonlike particles,
so-called cooperons, by modifying fundamental anticommu-
tation relations of real fermions, our bosons result from the
mapping of a conventional multifermionic superalgebra. In
contrast to cooperons, the bosons in our case obey ordinary
commutation relations, but for the limitations concerning the
physical subspace they are in facthard-core bosons, i.e.,
bosons with occupation numbers restricted to 0 and 1.

In spite of the single-particle form of the Hamiltonian
(15), its diagonalization in terms of some new bosonsdl

†

=ok blkbk
† and identification of the ground state for even sys-

tems with a condensate

ucondd ~ So
k

hkbk
†DNBu0d s16d

swhereNB=NF/2 andhk=bl0k, with l0 denoting thed boson
with minimum energyd are not physically allowed opera-
tions. Indeed, such a procedure does not keep under con-
trol physicality of the transformed states; the condensate
state has a finite spurious admixture as it contains terms
with more than one boson on a givenk shell scf. Ref.
f27gd. The overlap of states16d with the physical subspace
of the ideal space is given by the following expression:

usconduPphuconddu2

sconducondd
=
U o

k1Þk2Þ¯ÞkNB

hk1
hk2

¯ hkNBU2

So
k

uhku2DNBNB!
,

s17d

which is less than unity for 1,NBøNF/2 and any non-
trivial set of h’s. At the same time,Pphucondd is generally
not an eigenstate ofHB8 , nor of HB.

On the other hand, properties of the ground state of an
even system can be estimated from the bosonic equivalent of
the BCS approximation[18], using the image of the BCS
stateuBCSl=pk suk+vkBk

†du0l, namely,

uBCSd = p
k

suk + vkbk
†du0d = Pph expo

k
Sln uk +

vk

uk
bk

†Du0d

s18d

with the normalization conditionuk
2+vk

2=1 for eachk. The
trial wave functions18d yields the following energy func-
tional:
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sBCSuHB8 − 2lNBuBCSd = o
k

s2Ek − Gkk − 2ldvk
2

− o
kÞl

Gklukvkulvl s19d

swith l denoting a Lagrange multiplierd, the same expres-
sion as in the standard BCS approximation.

We see that the bosonic BCS state(18) is just an ordinary
Glauber coherent state projected onto the physical subspace
(while the original BCS state is a generalized coherent state
of the fermion dynamical group[28]). If the exponential on
the right-hand side in Eq.(18) is projected onto a fixed num-
ber of particles(instead of the projection onto the physical
space) one would get exactly the condensate state(16) with
hk=vk/uk, but—as discussed above—this would not be a
physically justified procedure. Instead, the use ofPph leads to
the cutoff of spurious components, which also modifies the
normalization factor in front of expok hkbk

†u0d in Eq. (18)
with respect to the standard bosonic coherent state.

C. Mapping via collective pairs

If the pairing Hamiltonian can be expressed in form(5),
one can perform the fermion-boson mapping via the corre-
sponding collective pairs. This is particularly simple in both
the SU(2) special cases discussed above, see Eqs.(6) and(7):
The C bifermion from Eq.(6) yields a c boson,C†°c†f1
−sn+Nd/Jg, while theSbifermions from Eq.(7) map ontos
bosons as follows:Sm

† °sm
†f1−snm+Nmd/sjm+ 1

2dg. Note that
the bifermion annihilation operators are in both cases
mapped trivially just onto the corresponding boson annihila-
tion operators, and the fermion number operators from the
collective algebras onto analogous combinations as in Eq.
(10). For instance,Nm°2nm+Nm, wherenm andNm stand for
the boson- and ideal-fermion number operators, respectively,
of the mth level in Eq.(7). It is clear that in this case the
physical space is not restricted to thes-boson occupation
numbersnm=0 and 1, but contains states withnm up to jm
+ 1

2. The single-fermion operators, which in both of the dis-
cussed cases supplement the bifermion algebra to yield the
corresponding collective superalgebra, are also mapped
analogously as in the preceding section, cf. expressions in
Refs.[22,16].

The collective algebra of bifermions(4) is not generally
of the SU(2) type because different collective pairsCm

† and
Cn

†, mÞn, may contain components with the samek. Never-
theless, using the formalism described in Refs.[21,16], the
Dyson bosonic images can be easily constructed:

Cm
† ° cm

† − o
n

cn
†So

k
xmk

* xnk Nk

+ o
v,p

o
k

xmkxnk
* xvk

* xpk cv
†cpD , s20d

Cm ° cm, s21d

fCm
†, Cng ° − dmn + o

k
xmkxnk

* Nk

+ 2o
v,p

o
k

xmkxnk
* xvk

* xpk cv
†cp. s22d

Now cm
† and cm create and annihilate, respectively, the

boson corresponding to themth collective bifermion.
Note, however, that single-particle creation and annihila-
tion operators generating the odd sector of the general
collective superalgebra are more difficult to determine
than in the SUs2d-based special casesf16g.

It should be stressed that although the collectiveC bifer-
mions are just linear combinations of the noncollective ones,
Cm

† =ok xmkBk
†, the respective collective and noncollective

bosons arenot connected by the same linear relation. Note
that the two kinds of boson operators can be viewed to act
formally in two different Hilbert spaces, so that their com-
parison requires to introduce an operatorT which transforms
the physical space of the collective mapping onto the physi-
cal space of noncollective mapping. Equation(21) and lin-
earity of all mapping procedures trivially yieldTcmT−1;c̃m

=ok xmk
* bk; it means that the linear relation betweenC andB

bifermions is preserved for the respective boson annihilation
operators. For the creation operators, however, the situation
is much more complicated, as the application ofT on the
appropriate linear superposition of mapping(20) results in a
difficult self-consistent relation containing combinations of

operatorsc̃m
† ;Tcm

†T−1, bk
†, bl, and alsoÑk;TNkT

−1. This re-
lation cannot be generally satisfied by any ansatz of the type
c̃m

† =ok xmk8 bk
†, wherexmk8 would represent some unknown co-

efficients, and thus the correspondence between both kinds
of mapping is not linear.

III. SUPERSYMMETRY OF THE PAIRING HAMILTONIAN

A. Possible SUSY schemes

As explicitly demonstrated by the Hamiltonian in Eq.
(15), the total number of particles is a conserved quantity in
the system of bosons and ideal fermions obtained by map-
ping (8)–(12). The same holds true also for any collective
mapping, see Eqs.(20)–(22) (neither projection to the physi-
cal space nor the Hermitization can spoil this property[16]).
Therefore, the dynamics of the mapped system does not rule
out the use of the UsK/2Vd superalgebra as the spectrum
generating(dynamical) superalgebra. In fact, the superalge-
bra of real fermions and bifermions, either collective or non-
collective, is mappedinto (but generally not onto) this
superalgebra.

For the noncollective mapping, for instance,K=V and the
even sector of UsV/2Vd is formed by generatorsbk

†bl, ak
†al,

ak
†al, and their Hermitian conjugates(all together 5V2 opera-

tors), while the odd sector is generated bybk
†al, bk

†al, and the
conjugates(all together 4V2 operators). We see, however,
that the odd sector is not used in the construction of the
Hamiltonian, so that UBsVd ^ UFs2Vd can equally well be
chosen as the dynamical algebra. This means that the decom-
position in Eq.(1) is applicable, which preselects possible
dynamical symmetries of the system and, consequently, also
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the relevant transitional regimes. Realizing that all these
symmetries are given by standard decompositions of the
UBsKd ^ UFs2Vd algebra into chains of embedded subalge-
bras, we skip here their explicit discussion. In general, con-
ditions for any specific dynamical symmetry, given by a
chain D.A1.A2.. . . of decomposition of the boson-
fermion dynamical algebraD, are obtained from the set of
constraintsfHB, CsAidg=0 required to hold in the physical
space. This naturally yields specific(for each symmetry) sets
of equations for parametersEk and Gkl of the Hamiltonians
(15) and (2).

Although—as we just saw—the odd sector of the dynami-
cal superalgebra UsK/2Vd can be ruled out, it is also clear
that the SUSY quantum number:=NB+NF still classifies all
eigenstates of the mapped many-body Hamiltonian. Conser-
vation of the total particle number is a common feature of the
generalized Dyson mapping. Let us stress that this simple
conclusion was not at all clear in the early days of nuclear
supersymmetry, especially in view of the fact that the real
fermion number maps onto the number of ideal fermions
plus twice the number of bosons,NF°NF+2NB, which ex-
cludes the particle-number conservation law for real fermi-
ons from the explanation of the conservation of:. Indeed, as
shown in Ref.[16], the conservation law for: (as well as the
separate conservation ofNB andNF) follows from a consis-
tent choice of the real-fermion dynamical algebra, which
must represent the interaction as well as single-particle terms
of the fermion Hamiltonian. Therefore, it is only the possi-
bility of fully algebraic formulationof the fermion pairing
problem that automatically creates the UsK/2Vd-based
boson-fermion description, with all potential dynamical-
supersymmetry chains and transitional classes included.

Potentialinvariant supersymmetries of the pairing Hamil-
tonian (2) also depend on the energiesEk and interaction
strengthsGkl. On the fermion level, all such supersymmetries
are described in the framework of the most general superal-
gebra of multifermion operators,

A
k18,. . .,k

n8
8 ,k18,. . .,k

n8
8

k1,. . .,kn,k1,. . .,kn = ak1

† . . .akn

† ak1

† . . .akn

† ak18
. . .ak

n8
8 ak18

. . .ak
n8
8 ,

s23d

where a given element belongs to the even or odd sector,
respectively, according to whether the differenceDNF

=sn+nd−sn8+n8d is even or odd. Operators of the even
sector transform states with even and odd fermion num-
bers separately, while operators of the odd sector intercon-
nect even and odd populations. The invariant SUSY takes
place if the Hamiltonians2d commutes with any of the
operatorss23d belonging to the odd sector, which implies
the existence of a degenerate supermultiplet of states dif-
fering by a given odd number ofDNF fermions.

In the Hilbert space of bosons and ideal fermions created
by mapping(8)–(12), similarly, one can consider the super-
algebra of operators

B
k18,. . .,kn8,k18,. . .,k

n8
8 ,l18. . .,l

m8
8

k1,. . .,kn,k1. . .,kn,l1,. . .,lm = A
k18,. . .,kn8,k18,. . .,k

n8
8

k1,. . .,kn,k1,. . .,kn bl1
† . . .blm

† bl18
. . .bl

m8
8 ,

s24d

whereAk18,. . .
k1,. . . is defined in the same way asAk18,. . .

k1,. . . in Eq.

s23d, but with the real-fermion operators substituted by the
corresponding ideal-fermion operators. As in the previous
case, even and odd sectors of the superalgebras24d are
distinguished according to the differenceDNF between the
numbers of creation and annihilation operators inAk18,. . .

k1,. . ..

Although the mapping in Sec. II B was performed only
for a small subset of the above general fermionic superalge-
bra, the images of operators(23) in the physical space can be
constructed as the corresponding products of the images in
Eqs.(11) and(12) [20]. Superalgebra(23) is thus mapped to
series of operators(24), i.e., onto the given superalgebra act-
ing in the space of bosons and ideal fermions. Trivially, even
and odd sectors of superalgebra(23) are not mixed by the
mapping—the image of an element with a given value of
DNF has DNF+2DNB=DNF, where DNB=m−m8, see Eq.
(24). Taking DNF= +1, for example, we get an image with
terms corresponding to sDNF, DNBd=s+1, 0d,
s−1, +1d, s+3, −1d, s−3, +2d, . . ..

This expansion would hardly be tractable in its general
form, but fortunately, it can be considerably simplified if
states with more than one ideal fermion are physically irrel-
evant. Indeed, such states correspond to real-fermionic states
with broken pairs which are supposed to have relatively high
excitation energies. Under this restriction, the invariant-
SUSY supercharges connect states in doublets withNF and
NF+1 fermions, and can be constructed just from the
sDNF, DNBd=s+1, 0d and s−1, +1d terms. The first term ap-
plies in case thatNF corresponding to the left system in the
doublet is even, the second ifNF is odd. To make contact
with the standard notion of a supercharge, we here only fo-
cus on the second term that changes a fermion into a boson
(or vice versa). It reads as

Q† = o
k,l

bk
† fklsbi

†bj, am
† andsqklal + qklald, s25d

where fkl are arbitrary functions of operators conserving
separately the numbers of bosons and fermions, andqkl
and qkl are some coefficients.

In spite of the above restrictions, the commutator of su-
percharge(25) with the boson-fermion Hamiltonian still re-
mains completely unknown without a further specification of
fkl. This makes the general theoretical determination of in-
variant supersymmetries in fermionic systems a rather non-
trivial task, where no analytic insight seems available so far.
Nevertheless, the mapping procedure, as outlined in Sec. II,
provides a natural framework for the classification and analy-
sis of various special cases. In the next paragraph, for ex-
ample, we determine conditions for the invariant SUSY gen-
erated by supercharges(25) with fkl=1.
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B. Invariant SUSY with bilinear supercharges

We will look for conditions that the mapped Hamiltonian
from Sec. II B must satisfy to commute with the simplest
bilinear supercharges of the form

Q† = o
k,l

bk
†sqklal + qklald ; o

k,l
bk

†âkl, s26d

wherebk
† andal sor ald are noncollective bosons and ideal

fermions, respectively, from Eqs.s8d and s12d. If the su-
percharge is assumed to commute with the time reversal,
the coefficientsqkl and qkl should be set equalsup to a
phase factord, but this we do not generally require here.

The assumptionfHB8 , Q†g=0 s=fQ, HB8 g+d leads to the fol-
lowing equation to be valid for anyk and l:

s2Ek − El − Gkkdqkl − o
mÞk

Gkmqml = 0, s27d

and the same also with the change ofq’s to q’s. For a
fixed value of l, the condition for the existence of non-
trivial solutionsqkl and qkl reads as

det1
G11 − 2E1 + El G12 G13 . . .

G21 G22 − 2E2 + El G23 . . .

G31 G32 G33 − 2E3 + El . . .

. . . . . . . . . . . .
2

= 0. s28d

This equation has rather clear physical interpretation: it
says that diagonalization of the bosonic part of the single-
particle Hamiltonians15d gives one of the eigenvalues
equal to the fermionic energyEl. Mutual conversions of
the corresponding boson and fermion thus do not change
the total energy. One can apply Eq.s28d simultaneously to
a certain subset of fermionic states,l PS, which is equiva-
lent with taking qkl=qkl=0 for l ¹S. The supersymmetry
then concerns only a part of the spectrum.

An important special case of the above condition is ob-
tained if one assumes supercharges with diagonal matrices of
coefficients,qkl=qkdkl andqkl=qkdkl. Equation(27) then leads
to the following simple constraints:Gkl=0 for kÞ lPS and
Ek=Gkk for kPS, the coefficientsqk and qk being arbitrary
for kPS and zero otherwise. We thus haveHB8 =HSUSY8 with

HSUSY8 = o
kPS

Eksnk + Nkd + o
kP” S

Eks2nk + Nkd − o
k,lP” S

Gklbk
†bl .

s29d

The interpretation of this solution is the same as above,
with only the difference that the bosonic part of the
Hamiltonians15d is already supposed to be diagonalizeda
priori , allowing for the diagonal constraint on the super-
charge coefficients. By inserting the above constraints into
the original Hamiltonians2d, one can verify the existence of
degenerated supermultiplets withNk=1 and 2sfor kPSd di-
rectly on the fermionic level.

The Hamiltonian(29) is trivially invariant under the set of
transformationsbk

†ak, bk
†ak, ak

†ak, ak
†ak, ak

†ak, bk
†bk (and their

Hermitian conjugates) with kPS. These are generators of the

I=^kPS Uks1/2d superalgebra, which thus forms the
invariant-SUSY superalgebra of the problem. This is so in
spite of the fact that the dynamical algebra ofHSUSY8 in Eq.
(29) is just an ordinary algebraD,UBsVd ^ UFs2Vd where
seemingly no supersymmetry is involved. In view of the dis-
cussion above, the SUSY Hamiltonian obtained from the
general solution of Eq.(28) in case of nondiagonal matrices
of supercharge coefficients receives the same algebraic inter-
pretation, but with the original bosonsbk

† substituted by the
new onesdk

†, resulting from the diagonalization of the
bosonic Hamiltonian. Note that the above superalgebraic
scheme represents a direct generalization of the minimal
SUSY scheme[2], where the invariant-SUSY superalgebra
sl(1/1) is formed only by operatorsQ†, Q, and H=hQ†, Qj
[3,4]. In the present case, in particular, the relevant part of
the Hamiltonian is not just a supercharge anticommutator(or
a sum of such terms), but a linear combination of Casimir
invariants ofI.

Let us turn, at last, to the crucial question of physicality of
the above supersymmetric transformations. It was so far
completely ignored in this section but it is indeed very rel-
evant since the supercharge operator(26) can transform
some of the physical states out of the physical space given by
the projector in Eq.(14). In particular, the supercharge op-
erator acting within the physical space may produce a non-
physical state withsnk,Nkd=s1, 1d or s2, 0d, this being not
generally excluded—in case of nondiagonal matrices of su-
percharge coefficients—by the action ofal or al, associated
with bk

† in Eq. (26). Consequently, some of the supersymmet-
ric transformations that, as found above, constitute an invari-
ant supersymmetry of the HamiltonianHB8 may turn to be
nonphysical.

To examine this question, let us introduce a physical su-
percharge operator

PphQ
†Pph = Q̃†Pph, s30d

where

Q̃† = o
kÞl

bk
†âklPnk=0PNk=0 + o

k
bk

†âkkPnk=0. s31d

Similarly, we define

H̃B = o
k

EkNk + o
k

s2Ek − Gkkdnk − o
kÞl

Gklbk
†blPnk=0PNk=0

s32d

that represents another form of the Hamiltonians13d. The
condition for the commutation of the supercharge with the
Hamiltonian in the physical space then reads as

fH̃B, Q̃†gPph=0, which yields the following operator equal-
ity:
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o
k

sEk − Gkkdbk
†âkk + o

kÞl
s2Ek − El − Gkkdbk

†âklPnk=0PNk=0

− o
kÞl

Gklbk
†âllPnk=0PNk=0 − o

kÞl
Gklbk

†âlkPnl=0PNl=0

+ o
kÞlÞm

Gklbk
†âlmsPnl=1 − Pnl=0dPnk=0PNl=0PNk=0

− o
kÞlÞm

Gklbk
†bm

† blâmkPnm=0PNm=0 = 0 s33d

to be valid in the physical space. It is not difficult to see
that Eq.s33d can only be satisfied by imposing the above
SUSY conditions for supercharges with vanishing nondi-
agonal qkl and qkl elements, see Eq.s29d and the text
above. The Hamiltonians29d is the only invariant-SUSY
Hamiltonian with supermultiplet states contained entirely in
the physical space that can be constructed through a bilinear
supercharge in Eq.s26d. The other solutions, see Eq.s28d,
are spurious, i.e., have no real counterpart on the level of the
original fermion system.

Let us finally note that the search for invariant supersym-
metries would be much more involved for the mapping per-
formed via collective bifermions from Eq.(4). In this case,

we again have to check if the expressionfH̃B, Q̃†gPph8 van-
ishes, whereQ†=om,k cm

†sqmkak+qmkakd is a collective bilinear
supercharge andPph8 a projector onto the physical subspace
obtained via the collective superalgebra. Unlike the noncol-
lective case, boson-boson and boson-fermion interactions in

the HamiltonianH̃B are generally relevant also in the physi-
cal subspace[16] and must be considered in the commutator.
Moreover, the calculation is obscured by the fact thatPph8 has
a more complicated form in the general case than for the
noncollective superalgebra. The above-discussed relation be-
tween collective and noncollective bosons, see the end of
Sec. II C, indicates that the use of collective supercharges
has a similar effect as the generalization of Eq.(26) to form
(25).

IV. CONCLUSIONS

We have pointed out the need to distinguish between two
schemes in supersymmetric many-body physics(nuclear
structure in particular). The first one relies on the definition
of an appropriate dynamical superalgebra of the given sys-
tem and leads to the well-established notion of dynamical
supersymmetry. Phenomenological applications of the SUSY
IBFM represent the best known example. The second
scheme directly follows from SUSY quantum mechanics. It
aims at the identification of a superalgebra of invariant su-
persymmetry, which—unlike dynamical supersymmetries—

leads to actual degeneracies of many-body states in neigh-
boring even and odd fermionic systems.

In contrast to phenomenological studies based on the
IBFM, our search for the SUSY patterns is derived from a
purely fermionic level. Existing boson-fermion mapping
techniques allow us to introduce the relevant boson and fer-
mion degrees consistently, and facilitate our exploration of
dynamical and invariant supersymmetries in the simple case
of pairinglike Hamiltonians.

While the use of dynamical superalgebraUsK/2Vd with
various dynamical supersymmetries of form(1) and the cor-
responding transitional regions directly follows from the mi-
croscopic foundations of the IBFM, the problem of invariant
supersymmetries seems more difficult to solve on the micro-
scopic basis. Nevertheless, for Hamiltonians(2), and with
supercharges restricted to the bilinear type(26), it turns out
that invariant supersymmetry is ruled out for pairing other
than the simplest diagonal form, see Eq.(29). This is not in
contradiction with the result of Ref.[17] where the boson
interaction does not follow from a mapped fermion interac-
tion.

Although we have not exhausted all possibilities that may
result in invariant supersymmetry for generalized pairing in a
fermion system, going beyond the present analysis seems to
imply a tough problem when pursued analytically.

From a microscopic point of view, considering and ac-
counting for the physical subspace has been crucial for a
complete analysis, as shown in detail in Secs. II B and III B.
It is one of the main aims of this work to demonstrate on a
relatively simple example the restrictive role that the physi-
cal subspace may play in transferring results of phenomeno-
logical SUSY to the microscopic framework.

Finally, as argued in greater detail in Ref.[29], and as is
also clear from the present discussion, there is no reason to
expect(as, e.g., in Ref.[30]) that transfer operators in the
context of dynamical supersymmetry should be restricted to
the simplest supercharges appearing in invariant supersym-
metry situations. In fact, for dynamical symmetry the appro-
priate transfer operators aremapped imagesof single-
fermion operators, as, e.g., in Eqs.(11) and (12). In our
presentation these images may indeed be considered gener-
alized supercharges, but in general they are not of the simple
bilinear type.
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