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Pairing correlations and resonant states in the relativistic mean field theory
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We present a simple scheme for taking into account the resonant continuum coupling in the relativistic mean
field-BCS calculations. In this scheme, applied before in nonrelativistic calculations, the effect of the resonant
continuum on pairing correlations is introduced through the scattering wave functions located in the region of
the resonant states. These states are found by solving the relativistic mean field equations with scattering-type
boundary conditions for the continuum spectrum. The calculations are done for the neutron-rich Zr isotopes. It
is shown that the sudden increase of the neutron radii close to the neutron drip line, the so-called giant halo, is
determined by a few resonant states close to the continuum threshold.
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[. INTRODUCTION exact HFB solutiong5] one finds that for the heavy nuclei
As recognized a long time add], the basic features of clo.s.e to the dr.lp I|n_e the main effect of the continuum on
pairing correlations is given usually by a few resonant states

superfluidity are the same in atomic nuclei and infinite Ferm'close 1o the continuum threshold.

systems. Yet, in atomic nuclei the pairing correlations have For the relativistic models an exact solution of the con-
way in which the finite size affects the pairin correlations(talnuurn spectrum is not available yet, neither for RHB nor for
Y P g relativistic mean field-BCSRMF-BCS approach. A com-

depends on thg p93|tlon of the chemical potgntlal. If the arison between RHB and RMF-BCS calculations, per-
chemical potential is deeply bound, such as in stable anﬁ

heavy nuclei, the finite size influences the pairing correla—Ormed by using box boundary conditions, is discussed in

tions mainly through the shell structure induced by the spin-Ref' [13]. This comparison indicates also the special role

orbit interaction. The situation becomes more complex inplayed by the resonant states, which in these calculations are

nuclei close to the drip lines, where the chemical potentiaf"lppm)(imat(ad by positive energy states. This approximation

approaches the continuum threshold. In this case the inhoV-VO”‘S well only if the positive energy states correspond to

: - : - very narrow resonances. Moreover, since a discrete represen-
mogeneity of the pairing field produces strong mixing be-, ~. . . .
. g tation of the continuum does not provide a direct measure of
tween the bound and the continuum parts of the single: : .
. . - -~ Y “the width of the resonant states, the selection of the relevant
particle spectrum. Due to this mixing the quasiparticle

: N Positive energy states is ambiguous if the resonant states
spectrum becomes dominated by resonant quasipartic .
close to the continuum threshold are not very narrow.

states, which originate both from single-particle resonances : :
and deep hole statd2-5]. The scope of this paper is to show how the resonant con-
tinuum can be treated accurately in the RMF-BCS approach.

The continuum effects on pairing correlations is com—_l_h inal il belonai h ¢
monly taken into account in the Hartree-Fock-Bogoliuboy | € Single-particle states belonging to the resonant part o

(HFB) [6] or relativistic-Hartree-BogoliuboyRHB) [7] ap- the continugm spe_ctrum wiII. be calculated by solving_ the
proach. In most of these calculations the continuum is reRMF equations with scattering-type boundary conditions.
placed by a set of positive energy states determined by sohthen the resonant continuum will be handled in the BCS
ing the HFB or RHB equations in coordinate space and Witrﬁquations in a similar way as in the nonrelativistic HF-BCS
box boundary condition§8,9]. Due to this fact the genuine calculationg12]. This approach is applied for the case of Zr
continuum properties, as the widths of the quasiparticle resdsotopes for which earlier calculations predict a very large
nant states, are not accounted for straightforwardly in thesgeutron skin close to the neutron drip line. It is shown that
types of calculations. the sudden increase of the nuclear radii in these isotopes is
Recently the HFB equations were also solved with exacessentially determined by a few single-particle resonant
boundary conditions for the continuum spectrum, both for astates close to the continuum threshold.
zero rangg5] and a finite range pairing forcg40]. It was The article is organized as follows. In Sec. Il we discuss
thus shown that close to the drip lines the discretization oghortly the scattering-type solutions of the relativistic mean
the continuum generally overestimates the pairing correlafield equations and we introduce the resonant-BCS equations
tions. A similar conclusion was obtained earlier in a simpler[12]. Then in Sec. Il we present the results of the calcula-
BCS approach, in which the resonant part of the continuuntions for Zr isotopes. Sec. IV contains the summary of the
was studied11,17. Comparing these BCS results with the paper.
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Il. RESONANT STATES IN THE RMF-BCS APPROACH d2G k(k+1)
) ) -t a? - =0, (6)
A. Continuum-RMF solutions dr
In the relativistic mean field approach the nuclear interac-
tion is usually described by the exchange of three mesons: _ 1 [dG N K .
the scalar mesow, which mediates the medium-range at- TE+Mmlar ) (7)

traction between the nucleons, the vector meagrwhich

mediates the short-range repulsion, and the isovector-vectdyhere o?=E?~M2. These equations are suited for fixing
meson 5, which provides the isospin dependence of thethe scattering-type boundary conditions for the continuum
nuclear force. The equations of motion are commonly despectrum. They are given by

rived from the effective Lagrangian density,14] G = Car[cos 9 (ar) - si S (ar)] ®
- | | '
1

_ 1 .
L=yl1y*d, -~ M]y+ Eéﬂaﬁ”a——m 0'2——g20' ——g30' 2
F

= M[COS(5)J| 1(ar) = sin(é)ni_y(ar)], 9

1 1
- O A #)?
grbal 4 H 2 WO Ty @) wherej, andn, are the Bessel and Neumann functions and
B 1 B 6 is the phase shift associated to the relativistic mean
- g Y, — _Ga GaMY + —mﬁpipa"—gplﬁ)’ﬂalﬂp"a field. The constanC is fixed by the normalization condi-

roamm 2 tion of the scattering wave functions and the phase shift
1 — (-7 is calculated from the matching conditions. In the vicinity
- ZF/“F "—egy, Ay, (1)  of an isolated resonance the derivative of the phase shift

has a Breit-Wigner form, i.e.,

where a nonlinear self-coupling is considered both dor

andw mesons. The vector fieldd, G, andF are given by do(E) - 172

= 10
dE  (E,-E)?+T%4 (10
H,, =d,0,—-d,w,, ) ) )
py # from which one estimates the energy and the width of the
be b resonance. In the vicinity of a resonance the radial wave
GZV: u p5— 9, PZ— 2g,€* Cpﬂpﬁ, functions of the scattering states have a large localization
inside the nucleus. Close to a resonance the energy depen-
F=d,A,—dA dence of both components of the Dirac wave functions can
nv Mmoo e

be factorized approximatively by a unique energy depen-
The nucleons are described by the Dirac spinor figld dent function[15]. As in the nonrelativistic casgl6], this
which in the case of spherical symmetry can be written agnergy dependent factor is the square root of the Breit-
Wigner function written above, or, equivalently, the
1(i G Vim square root of the derivative of the phase shift. Using this
7 F oo Pm/’ (2 property all the matrix_elements of a two-body interaction
between these scattering states can be expressed in term of
where ), denotes the spinor spherical harmonics, whilea unique matrix element, i.e., the one corresponding to the
G and F are the radial wave functions for the upper andscattering state with energy equal to the energy of the
lower components, respectively. They satisfy the radiaresonance. This property is employed below for the treat-
equations ment of the resonant continuum in the BCS equations.

d_G + I:G (M+E+V,-V,)F=0, (3) B. Resonant states in the BCS approach

dr Since the meson exchange forces do not properly describe

the pairing correlations in nuclei, the relativistic mean field is
combined usually with nonrelativistic pairing models. Here
we use for the pairing treatment the BCS approach and for
the pairing force we take &type interaction.

whereV, andV, are the scalar and the vector mean fields Compared to the approximations based on the general Bo-

dF «
_E+FF+(M_E+VS+VU)G:O' (4)

and « is given by goliubov transformation, e.g., HFB and RHB, in the BCS
approach the correlations induced by the pairs formed in

=+ if j=1+1/2 states that are not time-reversed partners are neglected. Al-

A if j=1-1/2. ®) though these correlations can induce particular effects when

the coupling to the continuum states is taken into account,
At large distances, where both the scalar and the vectoe.g., the widths of deep hole states, their relative contribution
mean fields are zero, the radial equations can be written ito the physical properties of drip line nuclei appears to be of
the form less importanc¢5,12,13.
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In the BCS approach applied here the coupling to thdions evaluated at resonance energies and normalized in-
continuum is introduced through the resonant states locateside a finite volume.
nearby the Fermi level. In heavy nuclei close to the drip line, The RMF and the rBCS equations are solved iteratively.
these states have usually the dominant contribution to thAt each iteration the densities are modified through the oc-
pairing correlations[5,11,13. This is expected since the cupation probabilities provided by the rBCS, as in the non-
resonant states, trapped by the centrifugal or Coulomb barelativistic HF-rBCS calculationgl2].
rier, are much more localized inside the nucleus compared to
the nonresonant continuum states. For the neutrwvaves,
which are not trapped by a centrifugal barrier, the localiza- !ll: RMF-rBCS CALCULATIONS FOR NEUTRON-RICH
tion of the scattering wave functions inside the nucleus can Zr ISOTOPES
be relatively large, and eventually important for pair correla-
tions, only if there is an antibound state close to the con

tinuum threshold15]. This is a rather special case, known SOyelop close to the neutron drip lifd7]. In Ref.[17] these

e S ardn®
far only in light halo nuclei, e.g.,"Li [22]. o isotopes were calculated by solving the RHB equations in

The extension of the BCS equations for taking into ac-cyordinate representation and using box boundary condi-
count the resonant continuum was proposed in R&#512.  (ions The mean field was described by using the parameter

For the case of a general pairing interaction thgse equationggt NLSH[18] and for the pairing interaction was employed
referred below as the resonant-BBCS) equations, reads 5 density dependerdtinteraction. In the calculations all the

[12] positive energy states up to 120 MeV were considered.
In order to compare our calculations with the RHB pre-
A, :EVﬁjIUjUi +2Vii-,1/e ;J g,(eu,(e)v,(e)de, dictions of Ref.[17] we use for the mean field the same
i v mrh, parameter set, i.e., NLSH. The results are not much different
(11)  even when we use other parameter sets, e.g., NL3 and TM1
[19,20. The appropriate choice for the pairing interaction is
more difficult because the pairing correlations estimated with
A= EVvevy_ey,jIUjvj a zero range force depend strongly on the energy cutoff,
i which is very different in the two calculations. Thus in the

Zr isotopes were discussed recently in connection to the
so-called giant halo structure, which these isotopes may de-

) ) o RMF-rBCS approach we include from all the continuum
+2 Vvsvv_ev,u'evyy'_evyf g, (e)u, (€' )v,(€')de’, only a few resonant states close to zero energy, while in the
v b RHB calculations the pairs are virtually scattered in all the

(12) positive energy states up to the energy cutoff, i.e., 120 MeV.
This energy cutoff here is much larger than the maximum
quasiparticle energy calculated in RMF-rBCS, which corre-
N=> vi2+ > f g,c,(e)v,z,(e)de. (13 sponds to the single-particle bound stasg,1 Due to these
i v J1, facts we cannot compare meaningfully the results of the two
calculations if we use the same zero range force. The best we
can do is to choose in the RMF-rBCS calculations a pairing
averaged gaps for the resonant states. The quagiii®y o ce which provides on average pairing energies close to the
=(2j,+1/m)(dé,/de) is the total level density and, |scthe RHB values, at least for some isotopes. Following this pro-
phase shift of angular momentulyj,. The factorg,(e)  cedure we chose in the RMF-rBCS calculations a zero range
takes into acqount the varlatlon of the Iocallzatl_on of Scat'pairing force given byW=Vy(r;—r,), with Vo=—275 MeV.
tering states in the energy region of a resonafte., the  \ye found that the strength of the force can be actually in-
width effecy and goes to @ function in the limit of a very  reas5ed up to abov,=-350 MeV without affecting signifi-

narrow _width. The int.eraction matrix_ elements are calcu—%m“y the separation energies and the nuclear radii shown
lated with the scattering wave functions at resonance engg|ow.

ergies and normalized inside the volume where the pairing  rirst we analyze the behavior of the single-particle states
interaction is active. For more details see R@f2]. _in the vicinity of the continuum threshold. These states play
The rBCS equations written above are applied here withhe major role in the formation of the neutron skin structure

the single-particle spectrum of the RMF equations. For thejiscyssed below. The neutron single-particle levels foZihe
pairing interaction we use in the following sectiodorce, jsotopes closest to the neutron drip line, i.e., from the mass

i.e., V=Vpd(i ). In this case the matrix elements of the n,mberA=120 up toA=138 are shown in Fig. 1. The dashed

Here A; are the gaps for the bound states ahdare the

pairing interaction are given by line represents the chemical potential, which stays close to
v 1 zero fromA=124 to A=138. The positive energies shown
((my7)0*|V|(7579)0") = =2 dr=(G* G, +F*F_)? here are the energies of the resonant states. As seen in Fig. 1,
171 272 8 PR ) .
the states &5, 1hgs, and 1,3, remain resonant states for all

(14) the isotopes, and their energies are changing with the neutron
number in the same way as the energy of the bound state
For the resonant states these matrix elements are calclih, 1. The other three states, i.ef;3, 3ps;,, and 3y, are
lated as mentioned above, i.e., using the radial wave funcaesonant states fak<<126 and become loosely bound states
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FIG. 1. The energies of bound and resonant single-particle states FIG- 3- The width of the single-particle resonant states shown in
close to the continuum threshold in Zr isotopes. The Fermi energ;'/:'g- 1
is shown by the dashed line.

S . . _ Next we examine the two-neutron separation energigs
for heavier isotopes. Their radial wave functions for124

are shown in Fig. 2. The figure shows the upper components

of the radial wave functions calculated at the resonance en-

ergies for which their localization inside the nucleus is the Sn(Z,N)=B(Z,N) -B(Z,N-2). (15
largest.

The widths of the resonant states are plotted in Fig. 3. Th%heir values are shown in Fig. 4. The empirical values

resonant statesh},, and &, have rather small widths for all
the isotopes. On the other hand the widths of the resonalff;]reSpond to Ref.21] and the RHB resuilts are from Ref.

states By» and Js,, are changing dramatically with the neu-
tron number. This is especially the case for the resonant staje,

3p1{2. Con5|_der|_ng that these sta}tes with lgwwalues hgve a. energies remain close to zero all the way frém124 toA
major contribution to the formation of the neutron skin, thelr:138 which in RMF corresponds to the filling of the group
wave functions should be calculated accurately, both forfstates 221 30s and Py,

positive anq negative energies. The resonant states with h.'g% In order to see the amount of the pairing correlations in
lj values give instead the dominant contribution to the pair-

. . ) these isotopes we plotted in Fig. 5 the pairing correlation
ing correlations. Since these resonant states have a sm Tl] P P 9 b 9

; : . ergies, i.e., the binding energies referred to the RMF val-
‘.N'dth the_y_could be e\_/entually treated like quasibound Stateges. The pairing correlation energy curve shows a minimum
in the pairing calculations.

for A=136, which corresponds to the filling of the states

One can see that RMF-rBCS gives practically the same
sults as the RHB calculations. The two-neutron separation

0.16 —————— ———————r
124 | [ T T T T T T ]
0.12 Zr 3p i 30 _%b 4
30| [ —m—RMF-rBCS |
[ — p i A-

_ oo : .‘ 112 AZEO --0-- RHB ]
= 0\ 20, — 2} A EX .
W o4 N . - S I _ p. ]

Ml . . - > ;
= B — s | AN ]
E oo0of- T = | Em; ]
Q) I ' ] &0t UQQAA! .
: w | Reg, 1
-0.04 | - . I ﬁigg ]
_0'080 s — 0 15 20 of , , , , , '-!?--!i:
Radius r [fm] T w0 100 1o 10 10 140

Mass Number A
FIG. 2. The radial wave functions of the resonant stateg,?2

3pse and Py, in 12%Zr. The plot represents the upper components  FIG. 4. The two-neutron separation energies of even Zr isotopes
of the radial wave functions calculated at the resonance energiesas a function of the mass numbé&r
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. . ) . FIG. 7. The occupation probabilities of single-particle states
FIQ. 5. Pairing correlation energies of even Zr isotopes as &hown in Fig. 1 as a function of the mass numBer
function of the mass numbe.
radii increases sharply fromd=122 to A=124. From the
2f45, 3pgp. These states have almost the same energy arfeigs. 7 and 8 one can see that this is mainly due to the filling
behave like a closed major shell for the pairing correlationof the states s/, 275, and 3y,,. For A=124 the wide reso-
energy. nant state B;, has almost the same energy as the resonant
As discussed in Ref$5,11], the pairing correlations usu- state 35, but its relative contribution to the radius is
ally become stronger when the widths of resonant states ismaller. The statesp3,, 3p;»,, and J;, which give the
not taken into account, i.e., when the resonant states are codeminant contribution to the tail of the radii, become quasi-
sidered as quasibound state. This effect can also be seenliound or loosely bound states far-126 and the occupation
Fig. 5. On the other hand, the effect of the widths of resonanprobabilities of the resonant state$s2 and g, remain
states is practically negligible for the two-neutron separatiorrelatively small for all the isotopes. Therefore the calculated
energies plotted in Fig. 4. This is because the effect of theadii are practically insensitive to the widths of the resonant
widths on pairing energies is washed out by the subtractiostates. From Fig. 7 we can see also that the occupancy of the
performed in Eq(15). Actually this is also the reason why highest resonant state introduced in the calculations, i.e.,
the two-neutron separation energies are not too much sensii; s, is negligible. Thus for the pairing interaction used in
tive to the details of the pairing modelg.g., volume or the present RMF-rBCS calculations the energy of the reso-
surface pairiny nant state i3, acts like a natural cutoff for the pairing cor-
The most interesting phenomenon in these isotopes is thelations induced by the resonant continuum states.
behavior of the neutron radii, which are shown in Fig. 6. The behavior of the nuclear radii close to the drip line is
First, one notices that the RMF-rBCS results follow againvery sensitive to the relative occupancy of the loosely bound
very closely the RHB values. As shown in Fig. 6, the neutronstates and the low-lying narrow resonances with high angular

T T T T T T T T L ' ' ' ' ' ' ' '.
: " . Pz
55 | o T ]
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Mass Number A
FIG. 8. The relative contribution of single-particle states to the
FIG. 6. The root mean square neutron radii of even Zr isotopesiuclear radius ot2“Zr. The dotted line shows the total radius mul-
as a function of the mass numbér tiplied by a factor of 8.
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momenta. Thus if the diffusivity of the Fermi sea is increas-boundary conditions for the continuum spectrum. In the
ing the pairs scatter from the loosely bound states to th&@MF-BCS equations the matrix elements of the pairing in-
narrow resonances, which are more localized around theeraction involving resonant states are calculated by using
nucleus. Consequently the nuclear radii might decrease if thihe scattering states evaluated at the resonance energies and
average pairing gap is increasing. normalized inside a finite region close to the nucleus. The
This effect can also be seen in the present calculations. Imariation of the matrix elements of the pairing interaction
the RHB calculations the occupancy of the narrow resodue to the widths of the resonant states is taken into account
nances with high angular momenta is larger than in RMFby the derivative of the phase shift. This approximation
rBCS calculations. Accordingly, as seen in Fig. 6, the RHBscheme, used previously in nonrelativistic HF-BCS calcula-
radii are smaller than in RMF-BCS calculations. This situa-tions, is applied here for the neutron-rich Zr isotopes. It is
tion is quite general since in the RHB or HFB calculations,shown that the sudden increase of the neutron radii close to
based on a big energy cutoff, the Fermi sea is usually moréhe neutron drip line depends on a few resonant states close
diffusive than in the rBCS-type calculations, even if the pair-to the continuum threshold. Including only these resonant
ing correlation energies might be rather similar in the twostates into the RMF-BCS calculations one gets for the neu-
calculations. Summarizing this point, the reason why theron radii and neutron separation energies practically the
RMF-rBCS radii in Fig. 6 are larger than the RHB radii is same results as in the more involved RHB calculations.
due to the fact that in the RMF-rBCS calculations the occu-
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