
Pairing correlations and resonant states in the relativistic mean field theory

N. Sandulescu,1,2,3 L. S. Geng,3,4 H. Toki,3 and G. C. Hillhouse3,5

1Royal Institute of Technology, SCFAB, SE-10691 Stockholm, Sweden
2Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 76900 Bucharest, Romania

3Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
4School of Physics, Peking University, Beijing 100871, People’s Republic of China
5Department of Physics, University of Stellenbosch, Matieland 7602, South Africa

(Received 5 June 2003; published 25 November 2003)

We present a simple scheme for taking into account the resonant continuum coupling in the relativistic mean
field-BCS calculations. In this scheme, applied before in nonrelativistic calculations, the effect of the resonant
continuum on pairing correlations is introduced through the scattering wave functions located in the region of
the resonant states. These states are found by solving the relativistic mean field equations with scattering-type
boundary conditions for the continuum spectrum. The calculations are done for the neutron-rich Zr isotopes. It
is shown that the sudden increase of the neutron radii close to the neutron drip line, the so-called giant halo, is
determined by a few resonant states close to the continuum threshold.
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I. INTRODUCTION

As recognized a long time ago[1], the basic features of
superfluidity are the same in atomic nuclei and infinite Fermi
systems. Yet, in atomic nuclei the pairing correlations have
many features related to the finite size of the system. The
way in which the finite size affects the pairing correlations
depends on the position of the chemical potential. If the
chemical potential is deeply bound, such as in stable and
heavy nuclei, the finite size influences the pairing correla-
tions mainly through the shell structure induced by the spin-
orbit interaction. The situation becomes more complex in
nuclei close to the drip lines, where the chemical potential
approaches the continuum threshold. In this case the inho-
mogeneity of the pairing field produces strong mixing be-
tween the bound and the continuum parts of the single-
particle spectrum. Due to this mixing the quasiparticle
spectrum becomes dominated by resonant quasiparticle
states, which originate both from single-particle resonances
and deep hole states[2–5].

The continuum effects on pairing correlations is com-
monly taken into account in the Hartree-Fock-Bogoliubov
(HFB) [6] or relativistic-Hartree-Bogoliubov(RHB) [7] ap-
proach. In most of these calculations the continuum is re-
placed by a set of positive energy states determined by solv-
ing the HFB or RHB equations in coordinate space and with
box boundary conditions[8,9]. Due to this fact the genuine
continuum properties, as the widths of the quasiparticle reso-
nant states, are not accounted for straightforwardly in these
types of calculations.

Recently the HFB equations were also solved with exact
boundary conditions for the continuum spectrum, both for a
zero range[5] and a finite range pairing forces[10]. It was
thus shown that close to the drip lines the discretization of
the continuum generally overestimates the pairing correla-
tions. A similar conclusion was obtained earlier in a simpler
BCS approach, in which the resonant part of the continuum
was studied[11,12]. Comparing these BCS results with the

exact HFB solutions[5] one finds that for the heavy nuclei
close to the drip line the main effect of the continuum on
pairing correlations is given usually by a few resonant states
close to the continuum threshold.

For the relativistic models an exact solution of the con-
tinuum spectrum is not available yet, neither for RHB nor for
relativistic mean field-BCS(RMF-BCS) approach. A com-
parison between RHB and RMF-BCS calculations, per-
formed by using box boundary conditions, is discussed in
Ref. [13]. This comparison indicates also the special role
played by the resonant states, which in these calculations are
approximated by positive energy states. This approximation
works well only if the positive energy states correspond to
very narrow resonances. Moreover, since a discrete represen-
tation of the continuum does not provide a direct measure of
the width of the resonant states, the selection of the relevant
positive energy states is ambiguous if the resonant states
close to the continuum threshold are not very narrow.

The scope of this paper is to show how the resonant con-
tinuum can be treated accurately in the RMF-BCS approach.
The single-particle states belonging to the resonant part of
the continuum spectrum will be calculated by solving the
RMF equations with scattering-type boundary conditions.
Then the resonant continuum will be handled in the BCS
equations in a similar way as in the nonrelativistic HF-BCS
calculations[12]. This approach is applied for the case of Zr
isotopes for which earlier calculations predict a very large
neutron skin close to the neutron drip line. It is shown that
the sudden increase of the nuclear radii in these isotopes is
essentially determined by a few single-particle resonant
states close to the continuum threshold.

The article is organized as follows. In Sec. II we discuss
shortly the scattering-type solutions of the relativistic mean
field equations and we introduce the resonant-BCS equations
[12]. Then in Sec. III we present the results of the calcula-
tions for Zr isotopes. Sec. IV contains the summary of the
paper.
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II. RESONANT STATES IN THE RMF-BCS APPROACH

A. Continuum-RMF solutions

In the relativistic mean field approach the nuclear interac-
tion is usually described by the exchange of three mesons:
the scalar mesons, which mediates the medium-range at-
traction between the nucleons, the vector mesonv, which
mediates the short-range repulsion, and the isovector-vector
meson rW, which provides the isospin dependence of the
nuclear force. The equations of motion are commonly de-
rived from the effective Lagrangian density[7,14]
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where a nonlinear self-coupling is considered both fors
andv mesons. The vector fieldsH, G, andF are given by
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The nucleons are described by the Dirac spinor fieldc,
which in the case of spherical symmetry can be written as

c =
1

r
S i G Y jlm

F s· r̂Y jlm
D , s2d

whereY jlm denotes the spinor spherical harmonics, while
G and F are the radial wave functions for the upper and
lower components, respectively. They satisfy the radial
equations
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whereVs andVy are the scalar and the vector mean fields
and k is given by

k = H− sl + 1d if j = l + 1/2

+ l if j = l − 1/2.
s5d

At large distances, where both the scalar and the vector
mean fields are zero, the radial equations can be written in
the form
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r2 DG = 0, s6d

F =
1

E + M
SdG

dr
+

k

r
GD , s7d

where a2=E2−M2. These equations are suited for fixing
the scattering-type boundary conditions for the continuum
spectrum. They are given by

G = Carfcossdd j lsard − sinsddnlsardg, s8d

F =
Ca2r

E + M
fcossdd j l−1sard − sinsddnl−1sardg, s9d

where j l andnl are the Bessel and Neumann functions and
d is the phase shift associated to the relativistic mean
field. The constantC is fixed by the normalization condi-
tion of the scattering wave functions and the phase shiftd
is calculated from the matching conditions. In the vicinity
of an isolated resonance the derivative of the phase shift
has a Breit-Wigner form, i.e.,

ddsEd
dE

=
G/2

sEr − Ed2 + G2/4
s10d

from which one estimates the energy and the width of the
resonance. In the vicinity of a resonance the radial wave
functions of the scattering states have a large localization
inside the nucleus. Close to a resonance the energy depen-
dence of both components of the Dirac wave functions can
be factorized approximatively by a unique energy depen-
dent functionf15g. As in the nonrelativistic casef16g, this
energy dependent factor is the square root of the Breit-
Wigner function written above, or, equivalently, the
square root of the derivative of the phase shift. Using this
property all the matrix elements of a two-body interaction
between these scattering states can be expressed in term of
a unique matrix element, i.e., the one corresponding to the
scattering state with energy equal to the energy of the
resonance. This property is employed below for the treat-
ment of the resonant continuum in the BCS equations.

B. Resonant states in the BCS approach

Since the meson exchange forces do not properly describe
the pairing correlations in nuclei, the relativistic mean field is
combined usually with nonrelativistic pairing models. Here
we use for the pairing treatment the BCS approach and for
the pairing force we take ad-type interaction.

Compared to the approximations based on the general Bo-
goliubov transformation, e.g., HFB and RHB, in the BCS
approach the correlations induced by the pairs formed in
states that are not time-reversed partners are neglected. Al-
though these correlations can induce particular effects when
the coupling to the continuum states is taken into account,
e.g., the widths of deep hole states, their relative contribution
to the physical properties of drip line nuclei appears to be of
less importance[5,12,13].
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In the BCS approach applied here the coupling to the
continuum is introduced through the resonant states located
nearby the Fermi level. In heavy nuclei close to the drip line,
these states have usually the dominant contribution to the
pairing correlations[5,11,13]. This is expected since the
resonant states, trapped by the centrifugal or Coulomb bar-
rier, are much more localized inside the nucleus compared to
the nonresonant continuum states. For the neutrons-waves,
which are not trapped by a centrifugal barrier, the localiza-
tion of the scattering wave functions inside the nucleus can
be relatively large, and eventually important for pair correla-
tions, only if there is an antibound state close to the con-
tinuum threshold[15]. This is a rather special case, known so
far only in light halo nuclei, e.g.,11Li [22].

The extension of the BCS equations for taking into ac-
count the resonant continuum was proposed in Refs.[11,12].
For the case of a general pairing interaction these equations,
referred below as the resonant-BCS(rBCS) equations, reads
[12]
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Here Di are the gaps for the bound states andDn are the
averaged gaps for the resonant states. The quantitygn

csed
=s2jn+1/pdsddn/ded is the total level density anddn is the
phase shift of angular momentumln jn. The factorgn

csed
takes into account the variation of the localization of scat-
tering states in the energy region of a resonances i.e., the
width effectd and goes to ad function in the limit of a very
narrow width. The interaction matrix elements are calcu-
lated with the scattering wave functions at resonance en-
ergies and normalized inside the volume where the pairing
interaction is active. For more details see Ref.f12g.

The rBCS equations written above are applied here with
the single-particle spectrum of the RMF equations. For the
pairing interaction we use in the following section ad force,
i.e., V=V0dsrW1−rW2d. In this case the matrix elements of the
pairing interaction are given by

kst1t1d0+uVust2t2d0+l =
V0

8p
E dr

1

r2sGt1

! Gt2
+ Ft1

! Ft2
d2.

s14d

For the resonant states these matrix elements are calcu-
lated as mentioned above, i.e., using the radial wave func-

tions evaluated at resonance energies and normalized in-
side a finite volume.

The RMF and the rBCS equations are solved iteratively.
At each iteration the densities are modified through the oc-
cupation probabilities provided by the rBCS, as in the non-
relativistic HF-rBCS calculations[12].

III. RMF-rBCS CALCULATIONS FOR NEUTRON-RICH
Zr ISOTOPES

Zr isotopes were discussed recently in connection to the
so-called giant halo structure, which these isotopes may de-
velop close to the neutron drip line[17]. In Ref. [17] these
isotopes were calculated by solving the RHB equations in
coordinate representation and using box boundary condi-
tions. The mean field was described by using the parameter
set NLSH[18] and for the pairing interaction was employed
a density dependentd interaction. In the calculations all the
positive energy states up to 120 MeV were considered.

In order to compare our calculations with the RHB pre-
dictions of Ref. [17] we use for the mean field the same
parameter set, i.e., NLSH. The results are not much different
even when we use other parameter sets, e.g., NL3 and TM1
[19,20]. The appropriate choice for the pairing interaction is
more difficult because the pairing correlations estimated with
a zero range force depend strongly on the energy cutoff,
which is very different in the two calculations. Thus in the
RMF-rBCS approach we include from all the continuum
only a few resonant states close to zero energy, while in the
RHB calculations the pairs are virtually scattered in all the
positive energy states up to the energy cutoff, i.e., 120 MeV.
This energy cutoff here is much larger than the maximum
quasiparticle energy calculated in RMF-rBCS, which corre-
sponds to the single-particle bound state 1s1/2. Due to these
facts we cannot compare meaningfully the results of the two
calculations if we use the same zero range force. The best we
can do is to choose in the RMF-rBCS calculations a pairing
force which provides on average pairing energies close to the
RHB values, at least for some isotopes. Following this pro-
cedure we chose in the RMF-rBCS calculations a zero range
pairing force given byV=V0sr1−r2d, with V0=−275 MeV.
We found that the strength of the force can be actually in-
creased up to aboutV0=−350 MeV without affecting signifi-
cantly the separation energies and the nuclear radii shown
below.

First we analyze the behavior of the single-particle states
in the vicinity of the continuum threshold. These states play
the major role in the formation of the neutron skin structure
discussed below. The neutron single-particle levels for theZr
isotopes closest to the neutron drip line, i.e., from the mass
numberA=120 up toA=138 are shown in Fig. 1. The dashed
line represents the chemical potential, which stays close to
zero from A=124 to A=138. The positive energies shown
here are the energies of the resonant states. As seen in Fig. 1,
the states 2f5/2, 1h9/2, and 1i13/2 remain resonant states for all
the isotopes, and their energies are changing with the neutron
number in the same way as the energy of the bound state
1h11/2. The other three states, i.e., 2f7/2, 3p3/2, and 3p1/2, are
resonant states forA,126 and become loosely bound states
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for heavier isotopes. Their radial wave functions forA=124
are shown in Fig. 2. The figure shows the upper components
of the radial wave functions calculated at the resonance en-
ergies for which their localization inside the nucleus is the
largest.

The widths of the resonant states are plotted in Fig. 3. The
resonant states 1h9/2 and 2f5/2 have rather small widths for all
the isotopes. On the other hand the widths of the resonant
states 3p1/2 and 3p3/2 are changing dramatically with the neu-
tron number. This is especially the case for the resonant state
3p1/2. Considering that these states with lowlj values have a
major contribution to the formation of the neutron skin, their
wave functions should be calculated accurately, both for
positive and negative energies. The resonant states with high
lj values give instead the dominant contribution to the pair-
ing correlations. Since these resonant states have a small
width they could be eventually treated like quasibound states
in the pairing calculations.

Next we examine the two-neutron separation energiesS2n,
i.e.,

S2nsZ, Nd = BsZ, Nd − BsZ, N − 2d. s15d

Their values are shown in Fig. 4. The empirical values
correspond to Ref.f21g and the RHB results are from Ref.
f17g.

One can see that RMF-rBCS gives practically the same
results as the RHB calculations. The two-neutron separation
energies remain close to zero all the way fromA=124 toA
=138, which in RMF corresponds to the filling of the group
of states 2f7/2, 3p3/2, and 3p1/2.

In order to see the amount of the pairing correlations in
these isotopes we plotted in Fig. 5 the pairing correlation
energies, i.e., the binding energies referred to the RMF val-
ues. The pairing correlation energy curve shows a minimum
for A=136, which corresponds to the filling of the states
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2f7/2, 3p3/2. These states have almost the same energy and
behave like a closed major shell for the pairing correlation
energy.

As discussed in Refs.[5,11], the pairing correlations usu-
ally become stronger when the widths of resonant states is
not taken into account, i.e., when the resonant states are con-
sidered as quasibound state. This effect can also be seen in
Fig. 5. On the other hand, the effect of the widths of resonant
states is practically negligible for the two-neutron separation
energies plotted in Fig. 4. This is because the effect of the
widths on pairing energies is washed out by the subtraction
performed in Eq.(15). Actually this is also the reason why
the two-neutron separation energies are not too much sensi-
tive to the details of the pairing models(e.g., volume or
surface pairing).

The most interesting phenomenon in these isotopes is the
behavior of the neutron radii, which are shown in Fig. 6.
First, one notices that the RMF-rBCS results follow again
very closely the RHB values. As shown in Fig. 6, the neutron

radii increases sharply fromA=122 to A=124. From the
Figs. 7 and 8 one can see that this is mainly due to the filling
of the states 3p3/2, 2f7/2, and 3p1/2. For A=124 the wide reso-
nant state 3p1/2 has almost the same energy as the resonant
state 3p3/2, but its relative contribution to the radius is
smaller. The states 3p3/2, 3p1/2, and 3f7/2, which give the
dominant contribution to the tail of the radii, become quasi-
bound or loosely bound states forA.126 and the occupation
probabilities of the resonant states 2f5/2 and 1h9/2 remain
relatively small for all the isotopes. Therefore the calculated
radii are practically insensitive to the widths of the resonant
states. From Fig. 7 we can see also that the occupancy of the
highest resonant state introduced in the calculations, i.e.,
1i13/2, is negligible. Thus for the pairing interaction used in
the present RMF-rBCS calculations the energy of the reso-
nant state 1i13/2 acts like a natural cutoff for the pairing cor-
relations induced by the resonant continuum states.

The behavior of the nuclear radii close to the drip line is
very sensitive to the relative occupancy of the loosely bound
states and the low-lying narrow resonances with high angular
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momenta. Thus if the diffusivity of the Fermi sea is increas-
ing the pairs scatter from the loosely bound states to the
narrow resonances, which are more localized around the
nucleus. Consequently the nuclear radii might decrease if the
average pairing gap is increasing.

This effect can also be seen in the present calculations. In
the RHB calculations the occupancy of the narrow reso-
nances with high angular momenta is larger than in RMF-
rBCS calculations. Accordingly, as seen in Fig. 6, the RHB
radii are smaller than in RMF-BCS calculations. This situa-
tion is quite general since in the RHB or HFB calculations,
based on a big energy cutoff, the Fermi sea is usually more
diffusive than in the rBCS-type calculations, even if the pair-
ing correlation energies might be rather similar in the two
calculations. Summarizing this point, the reason why the
RMF-rBCS radii in Fig. 6 are larger than the RHB radii is
due to the fact that in the RMF-rBCS calculations the occu-
pancy of the loosely bound states are larger and not because
there are more particles scattered in the non-localised con-
tinuum states.

IV. CONCLUSIONS

In this paper we discussed how the resonant states can be
treated accurately in the RMF-BCS approach. The resonant
states are described through the scattering states located in
the vicinity of the resonance energies. These states are cal-
culated by solving the RMF equations with scattering-type

boundary conditions for the continuum spectrum. In the
RMF-BCS equations the matrix elements of the pairing in-
teraction involving resonant states are calculated by using
the scattering states evaluated at the resonance energies and
normalized inside a finite region close to the nucleus. The
variation of the matrix elements of the pairing interaction
due to the widths of the resonant states is taken into account
by the derivative of the phase shift. This approximation
scheme, used previously in nonrelativistic HF-BCS calcula-
tions, is applied here for the neutron-rich Zr isotopes. It is
shown that the sudden increase of the neutron radii close to
the neutron drip line depends on a few resonant states close
to the continuum threshold. Including only these resonant
states into the RMF-BCS calculations one gets for the neu-
tron radii and neutron separation energies practically the
same results as in the more involved RHB calculations.
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