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Anharmonic features of the low-lying collective states in the98–106Ru isotopes have been investigated
systematically by using the microscopic anharmonic vibrator approach(MAVA ). MAVA is based on a realistic
microscopicG-matrix Hamiltonian, only slightly renormalized in the adopted large realistic single-particle
spaces. This Hamiltonian is used to derive equations of motion for the mixing of one- and two-phonon degrees
of freedom starting from collective phonons of the quasiparticle random-phase approximation. Analysis of the
level energies and the electric quadrupole decays of the two-phonon type of states indicates that100Ru can be
interpreted as being a transitional nucleus between the spherical anharmonic vibrator98Ru and the quasirota-
tional heavier102–106Ru isotopes.
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I. INTRODUCTION

It is well known that spherical and nearly spherical nuclei
exhibit low-energy collective spectra with vibrational-like
states below the pairing gap. The pairing gap is produced by
the short-range nucleon correlations whereas the collective
features emerge from the long-range residual interaction. In-
vestigation of these collective states as collective phonons
and their multiples has been of extensive interest both ex-
perimentally and theoretically. In quasiparticle description of
the superfluid nuclei these vibrational phonons have been
described as coherent combinations of two-quasiparticle
states, the residual interaction causing these phonons to fall
far below other two-quasiparticle states, which remain above
the pairing gap. Collective(an)harmonic vibrational states
built of two or even three of these phonons(two-phonon and
three-phonon states) have been the subject of systematic phe-
nomenological analysis, e.g., in Ref.[1]. Microscopic de-
scription of these multiphonon states involves configuration
mixing of two-quasiparticle, four-quasiparticle, six-
quasiparticle, etc., degrees of freedom.

From the microscopic point of view the low-energy col-
lective phonons of the medium-heavy and heavy open-shell
nuclei are conveniently described within the framework of
the quasiparticle random-phase approximation(QRPA),
which in our case describes harmonic small-amplitude vibra-
tions around a spherical nuclear shape[2–4]. These collec-
tive low-energy solutions of the QRPA equations can be
combined to multiphonon states, e.g., in the multistep shell
model [5,6], in the quasiparticle phonon model of Soloviev
[7], and in the extended QRPA approach[8]. In our recent
theoretical framework[9], the microscopic anharmonic vi-
brator approach(MAVA ), the one-phonon states are based on
the QRPA phonons, and the one-phonon and two-phonon
states are allowed to interact among each other through the
H31 part of the quasiparticle representation of the residual
two-body Hamiltonian. In this way the degeneracy of the

two-phonon triplet is broken, partly by theH31 operator and
partly by the metric matrix containing the overlaps between
the two-particle states. It is worth pointing out that the
MAVA is a completely microscopic scheme derived by using
the equations-of-motion approach of Rowe[3]. The inclusion
of the Pauli principle is taken care of by diagonalizing the
metric matrix thus creating a complete orthonormal basis and
then diagonalizing the residual Hamiltonian in this basis.

In recent years, several calculations of spectra of even-
even ruthenium nuclei have been performed within the
framework of the interacting boson model(IBA ) and its ex-
tensions. In the original version of the IBA, IBA-1, no dis-
tinction is made between neutron and proton bosons. The
proton-neutron interacting boson model IBA-2, one of the
extensions of the IBA, distinguishes proton and neutron de-
grees of freedom. The consistent-Q formalism (CQF) is an-
other development of the IBA as also is the extended
consistent-Q formalism (ECQF) [10].

In experimental paper by Hirataet al. [11] a comparison
between their determination of theBsE2d values and the re-
sults of IBA-1 and IBA-2 calculations was made. TheBsE2d
values calculated in the framework of the IBA-1[12,13] are
significantly lower than the experimental values. TheBsE2d
values obtained from IBA-2 calculations by Van Isackeret
al. [14] are systematically higher than the experimental mean
values, whereas theBsE2d values obtained from IBA-2 cal-
culations by Giannatiempoet al. [15] are systematically
lower.

In their paper, Van Isackeret al. [14] have also paid spe-
cial attention to the occurrence of 0+ states which are not
reproduced by their calculation. In100Ru and102Ru the 02

+

states are suspected to be intruder states of some kind. For
the heavier isotopes the 02

+ states are considered to be rota-
tional collective states. Contrary to that, in the study of Gi-
annatiempoet al. [15] the excitation energy of the 02

+ state is
well reproduced all along the isotopic chain. They also sug-
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gest that the 02
+ state shows a rather pure full symmetry struc-

ture, without any mixed symmetry contributions, all along
the chain.

In the CQF proposed by Warner and Casten[16], the
original IBA-1 Hamiltonian is specified to contain exactly
the operator used for the electric transitions. Use of this new
Hamiltonian leads to a description of the transitional nuclei
between the axially deformed SU(3) limit and theg-unstable
O(6) limit in terms of essentially only one free parameter
[17]. However, in the study of Stachelet al. [18] the struc-
ture of even ruthenium isotopes was suggested, based on an
analysis limited to the full symmetry states(IBA-1), to per-
tain to the Us5d-Os6d side of the Casten triangle[19]. There-
fore, Bucurescuet al. [17] have applied in their study a for-
malism similar to the CQF to a more general Hamiltonian,
which can also describe the Us5d-Os6d transition. This ap-
proach, called ECQF, gives an overall fit comparable to that
of the IBA-2. Very recently, the98–110Ru nuclei were ana-
lyzed in search of theEs5d critical symmetry[20]. This sym-
metry should be found midway between the spherical vibra-
tor and the g-unstable rotor[21]. Another critical point
symmetryXs5d should be found midway between a spherical
vibrator and an axially symmetric rotor[22].

In the present paper we perform a systematic analysis of
the electric decay properties of the98–106Ru nuclei by using
the MAVA. A comparison of the calculated level energies
with the IBA-1 results of Ref.[23] has been done. In this
way we hope to learn about the systematic evolution of an-
harmonic effects and deformation along the ruthenium chain
of isotopes. Our paper is organized as follows. In Sec. II we
outline the necessary theoretical aspects and their numerical
application to Ru isotopes. In Sec. III we review the results
and discuss them. The conclusions are drawn in Sec. IV.

II. NUMERICAL APPLICATION TO
RUTHENIUM ISOTOPES

We start our microscopic approach from a single-particle
basis of a suitable size. In the present work we use eigenval-
ues of the spherical Woods-Saxon nuclear mean field with
the Coulomb terms included using the parametrization of

Ref. [24]. The single-particle wave functions are taken, how-
ever, to be eigenstates of a spherical harmonic oscillator with
a suitable oscillator constant which is a good approximation
for bound states in nuclei. We have chosen for the studied
98–106Ru isotopes a basis of ten proton and neutron single-
particle levels around the proton and neutron Fermi surfaces,
spanning the following valence space:pf-sdg-h11/2 shells.
The BCS occupation amplitudes and the QRPA eigenstates
were calculated using as residual two-body interaction the
G-matrix elements of the Bonn one-boson-exchange interac-
tion [25]. Different channels of this interaction are scaled by
constants as described in Refs.[26,27].

The pairing strength for protons and neutrons was ad-
justed by requiring the calculated pairing gaps to reproduce
the empirical ones obtained from the proton and neutron
separation energies[28]. The resulting pairing parameters,
along with the used pairing gaps, have been listed in Table I.
In this case the valuesgpair

spd =1.0 andgpair
snd =1.0 correspond to

pairing matrix elements coming from the bare monopole part
of the G matrix.

TheG-matrix elements for theJp=2+, 4+ multipoles in the
QRPA calculations have been parametrized by two param-
eters [27], namely, the particle-hole parametergph and the
particle-particle parametergpp. Here the particle-particle part
has practically no effect on the physical observables so that
its value has been set togpp=1.0, corresponding to the bareG
matrix. The value of the particle-hole parameter controls the
energy of the lowest 2+ and 4+ states in the QRPA calcula-
tion. Thus this parameter can be used to control the position
of the first 2+ and second 4+ states in the final theoretical
spectrum. The adopted values of thegph parameters are listed
in Table I. The available experimental data about the energies
of the second 4+ states are quite poor. Therefore, the param-
eter is chosen to begphs4+d=1.0 for all considered nuclei.

In our effective many-body framework the two-phonon
states are built in terms of the QRPA degrees of freedom
using the equations-of-motion technique of Rowe[3]:

fĤ, Ga4a4m4

† g = Ea4a4
Ga4a4m4

† , s2.1d

where the ansatz wave function has been chosen to be of
the form

TABLE I. Basic data for the discussed ruthenium nuclei. The pairing gapssDd and the corresponding
pairing strengthssgpaird for protons and neutrons are given in columns 2–5. In columns 6 and 7 the particle-
hole parameters of the QRPA are given for the 2+ and 4+ multipoles. In column 8 the experimental
BsE2;21

+→01
+d are given in Weisskopf units(W.u.), and finally, in column 9 we list the values of the corre-

sponding polarization parameter for the effective proton and neutron charges.

A Dp Dn gpair
spd gpair

snd gphs2+d gphs4+d BsE2dexpsW.u.d x

98 1.2006 1.5715 1.1354 1.1673 0.992 1.000 27.8(6)a 0.28
100 1.2701 1.5976 1.0638 1.1750 0.898 1.000 35.8(4)b 0.37
102 1.3512 1.6119 1.0265 1.1845 0.828 1.000 43.9(4)c 0.47
104 1.4164 1.5465 1.0543 1.1547 0.791 1.000 60(3)d 0.58
106 1.3375 1.3910 1.0295 1.0911 0.765 1.000 0.67

aData from Ref.[38].
bData from Ref.[39].
cData from Ref.[42].
dData from Ref.[40].
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Ga4a4m4

† = o
a2

Z1sa2;a4a4dQa2a4m4

† s2.2d

+ o
a2a2øb2b2

Z2sa2a2b2b2;a4a4dsQa2a2

† Qb2b2

† da4m4
,

s2.3d

containing a one-phonon part with quantum numbers
a2a4m4 and a two-phonon part coupled to a total angular
momentum sand parityd a4 with z-projection m4. The
quantum numbersa2 anda4 indicate the eigenvalue index
of a QRPA phonon and the final diagonalized MAVA
wave function, respectively.

Equation(2.1) together with ansatz(2.2) lead to a system
of equations given explicitly in Ref.[9]. These equations
contain, as a relevant part, the metric matrix consisting of
overlaps between all the two-phonon combinations included
in the calculations. This metric matrix is angular-momentum
dependent and hence contributes to the splitting of the two-
phonon-like MAVA states. Diagonalization of the metric ma-
trix preserves the Pauli principle as described in detail in
Ref. [9]. It has to be mentioned that the results for the five
lowest calculated MAVA states(21

+, 02-ph
+ , 22-ph

+ , 42-ph
+ , and

42
+) depend on the number of the QRPA 2+ and 4+ phonons

included into the ansatz wave function(2.2) and the subse-
quent diagonalization of the eigenvalue problem. According
to our calculations it is enough to take five lowest QRPA
phonons of both of these angular momenta to achieve stable
energies and wave functions for the above mentioned MAVA
states. All the results presented in the following section have
been calculated using this number of the QRPA phonons.

In the MAVA, the metric matrix plays an important role in
the theoretical expressions for the electric decay amplitudes
[9]. These amplitudes can be used to produce the reduced
electric quadrupole decay probabilities,BsE2d, to be com-
pared with the experimental data. For this comparison we
adopted proton and neutron effective charges,ep anden, and
used the experimentalBsE2;21

+→01
+d value, also listed in

Table I, to fix their value, by using the relationsep=s1
+xde,en=xe (see, e.g., Ref.[24]). The polarization parameter
x is listed in the last column of Table I. As the mass-number
A increases, larger and larger effective charges are needed to

reproduce the experimentalBsE2d. However, for the nucleus
A=106 there are no experimental data available so that thex
value had to be extrapolated.

III. RESULTS AND DISCUSSION

We present our results for the energies and theBsE2d val-
ues in Tables II and III, and Figs. 1–8. Figures 1–5 show the
theoretical and experimental energies of the 21

+ state and the
two-phonon triplet of98–106Ru. For comparison, Figs. 1–4
show also the results of the IBA-1 calculations of Kernet al.
[23]. The decomposition of the five lowest states obtained by
using our theory in terms of the QRPA phonons and their
two-phonon combinations can be seen in Figs. 6 and 7. Fig-
ure 8 presents the evolution, as functions of the mass num-
ber, of the energies for the QRPA(dots) 21

+,41
+,22

+,42
+ phonons

and the corresponding MAVA states(stars) containing the
QRPA 21

+,41
+,22

+,42
+ phonons as main components. For com-

pleteness, we plot also the evolution of the two-phonon
states of the MAVA.

The ruthenium isotopes have been a subject of a variety
of theoretical model analyses along the years
[14,15,17,18,23,29–37]. The key in the many discussions is
the phenomena of shape transitions and shape coexistence
along the isotopic chain of ruthenium isotopes. Frank[34]
suggests a transition from spherical to ag-unstable structure,
whereas Troltenieret al. [32] discuss a spherical-triaxial
transition. In papers by Zajaçet al. and Bucurescuet al.
[29,17] the conclusion is that the heavier ruthenium nuclei
are in general triaxial butg soft or veryg soft. Because of
the postulated shape transition, the Ru nuclei with
98,A,102 are thought to be soft vibrators and those with

TABLE II. Experimental and theoretical ratiosRifsE2d of Eq. (3.1) for the 98–102Ru isotopes.

98Rua 100Rub 102Ruc

Transition Theor Expt. Theor Expt. Theor Expt.

21
+→01

+ 1 1 1 1 1 1

02-ph
+ →21

+ 1.736 1.603 1.0(2) 1.432 0.80(9)
22-ph

+ →21
+ 1.650 1.6(7) 1.438 0.64(13) 1.433 0.62(8)

42-ph
+ →21

+ 1.499 1.5(3) 1.338 1.51(8) 1.231 1.5(3)
22-ph

+ →01
+ 0.034 0.036(15) 0.061 0.041(6) 0.050 0.0250(8)

aData from Ref.[38].
bData from Ref.[39].
cData from Ref.[42].

TABLE III. The same as Table II for the104–106Ru isotopes.

104Rua 106Ru
Transition Theor Expt. Theor Expt.

21
+→01

+ 1 1 1

02-ph
+ →21

+ 1.297 0.42(7) 1.296

22-ph
+ →21

+ 1.317 0.63(11) 1.330

42-ph
+ →21

+ 1.141 1.2(3) 1.174

22-ph
+ →01

+ 0.068 0.035(9) 0.086

aData from Ref.[40].
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A.104 quasirotors, whereasA=104 is a transitional nucleus
forming a zone between soft vibrators on one side and nearly
deformed rotors on the other side[30,31]. Among these stud-
ies the Ru isotopes have been investigated extensively within
the IBA-1 model because its versatile symmetry structure is
considered to be particularly appropriate for treating transi-
tional nuclei.

Survey of Figs. 1–4 shows that the IBA-1[23] calcula-
tions give better numerical values for energies. On the other

hand, our calculations give better correspondence with the
experimental data when comparing the ordering of the states.
Especially satisfying are the 42-ph

+ states forA=98,102 and
02-ph

+ states for A=102,104. In our calculations the two-
phonon-like 4+ state is always below the 2+ state coinciding
with the interpretation of Refs.[38–41] for the98,100,104,106Ru
nuclei. For the102Ru nuclei our theoretical result contradicts
the view of Ref.[42] where the two-phonon-like 2+ and 4+

states are separated only by 10 keV.

FIG. 1. Theoretical and experi-
mental[38] low-energy spectra of
98Ru.

FIG. 2. Theoretical and experi-
mental[39] low-energy spectra of
100Ru.
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However, our model does not reproduce the correct order-
ing of all the measured two-phonon members in the dis-
cussed ruthenium chain. The simple energetics of our model
calculation can be interpreted as missing intruder degrees of
freedom which could perturb our calculated wave functions.
Also the presence of three-phonon states could affect the
energies of the two-phonon states as happens in the case of
the Cd isotopes[43]. Nevertheless, one has to bear in mind
that although our calculation does not contain the three-

phonon states and the deformed intruder degrees of freedom,
it contains anharmonicities in any wanted amount, so that we
are in a position to analyze the effects of such anharmonici-
ties in a consistent way for the energies and theBsE2d values.

The anharmonicities can be clearly seen in Figs. 6 and 7
where we have decomposed the five lowest theoretical
MAVA levels into their one- and two-phonon components.
From Fig. 6 one can see that the members of the two-phonon
triplet 02

+, 22
+, 41

+ have a larges21
+21

+dJ component, thus sup-

FIG. 3. Theoretical and experi-
mental[40] low-energy spectra of
102Ru.

FIG. 4. Theoretical and experi-
mental[41] low-energy spectra of
104Ru.
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porting the picture of a two-phonon vibrational state with
anharmonicities showing up as other nonzero components of
one-phonon and two-phonon types. Particularly interesting is
the decomposition of the 42-ph

+ state which reveals a promi-
nently large 41

+ component. From Fig. 7 it can be seen that

the two one-phonon-like states, 21
+ and 42

+, have as the major
component the corresponding QRPA phonon. Anharmonici-
ties show up as mixing of two-QRPA-phonon components
into these states, the componentss21

+21
+dJ and s21

+41
+dJ being

the largest ones of these anharmonicities.
In Fig. 8 we show the relation between the QRPA and

MAVA energies. As one can see, the MAVA energies follow
quite smoothly the corresponding QRPA energies. However,
the MAVA energies are lowered by few hundred keV com-
pared to the QRPA energies. Notable exception is the 42

+

state: forA=98 the MAVA energy is almost the same as the
corresponding QRPA energy. ForA=100 energies are sepa-
rated by about 200 keV and forA.100 the separation be-

FIG. 5. Theoretical and experi-
mental[42] low-energy spectra of
106Ru.

FIG. 6. Decomposition of the calculated wave function into one-
and two-QRPA-phonon amplitudes for the 02-ph

+ state(panel a), 22-ph
+

state(panel b), and 42-ph
+ state(panel c) for the discussed98–106Ru

nuclei.

FIG. 7. Decomposition of the calculated wave function into one-
and two-QRPA-phonon amplitudes for the 21

+ state(panel a) and 42
+

state(panel b) for the discussed98–106Ru nuclei.
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comes larger, being about 300 keV. The MAVA 2+ and 4+

two-phonon states seem to follow the trend of the QRPA 21
+

state as one would expect.
In Tables II and III we summarize the experimental infor-

mation about the values of the ratio

RifsE2d =
BsE2;Ji

+ → Jf
+d

BsE2;21
+ → 01

+d
s3.1d

for the ruthenium isotopes under discussion. The relevant
theoretical results concerning the five lowest calculated
states have also been given. Choosing the experimental 02

+,
22

+, and 41
+ states to correspond to our calculated triplet of

anharmonic two-phonon-like states leads to the numbers
of Tables II and III. For the ruthenium isotopeA=106 no
experimental data are available and no conclusions about
the correspondence can be drawn.

Let us look closer at the correspondence of the calculated
and experimentalBsE2d values of Tables II and III. From
Table II one can see that for the isotopeA=98 all the calcu-
latedBsE2d values correspond extremely well to the experi-
mental data. Even the very weak transition 22-ph

+ →01
+ is very

well reproduced. This means that98Ru can be considered to
be a good anharmonic vibrator of(nearly) spherical shape.
For the other rutheniums the situation is worse. From Tables
II and III one can see that judging by the transitions from the
two-phonon-type states to the 21

+ state one can say that
100–106Ru seem to be less pure vibrators than the theory pre-
dicts. First we note that for the transitions 02-ph

+ →21
+ and

22-ph
+ →21

+ in these nuclei the theoretical value is always
much larger than the experimental one. For the transition
42-ph

+ →21
+ the theoretical value is slightly too large in the case

of 100,102Ru, whereas in the case of104Ru it is slightly too
small. For the very weak 22-ph

+ →01
+ transition the theoretical

BsE2d values are somewhat too large but still quite accept-
able. From the theoretical point of view this transition can
proceed mainly through the mixing of the lowest 2+ phonon

of the QRPA into the 22-ph
+ state of the MAVA. The square of

this mixing amplitude determines the theoreticalBsE2d value
for this transition.

It is instructive to look at the evolution of the vibrational
excitations to rotational ones within the Sheline-Sakai
scheme[44]. In this scheme the two-phonon 0+, 2+, and 4+

states of the(an)harmonic spherical(or nearly spherical) vi-
brator evolve to the corresponding rotational states of a well-
deformed rotator nucleus. These states are the 0+ b-band
head, 2+ g-band head, and the 4+ member of the ground-state
rotational band. On the rotational regime the 2+ member of
the ground-state band would correspond to the first 2+ vibra-
tional state of the(an)harmonic vibrator, and theg-decay
feeding of this state(called 21

+ state below) from the above
mentioned 0+, 2+, and 4+ states can be classified into inter-
band and intraband transitions. The intraband transition from
the 4+ to the 21

+ state is typically strong, the corresponding
BsE2d being 1.43 times theBsE2d of the 21

+ to ground state
transition in the limit of very large deformations, reproduc-
ing the Alaga rule[45]:

BsE2;4g
+ → 2g

+d
BsE2;2g

+ → 0g
+d

= 25S4 2 2

0 0 0
D2

= 1.43. s3.2d

On the other hand, the interband 2+→21
+ and 0+→21

+ tran-
sitions are very weak, even vanishing at the limit of large
deformations.

In the IBA-1 model the above described transition from
the harmonic vibrator to the deformed rotor through anhar-
monic vibrator regime corresponds to transition from the
U(5) symmetry to the SU(3) symmetry along the base of the
Casten triangle. The anharmonicities of the MAVA can also
be viewed as deviations from the base of the triangle towards
the g-unstable O(6) top of the triangle. In any case, the an-
harmonicities contained in the MAVA are able to cover a
considerable part of the Casten triangle, missing only the
deformed regions towards the SU(3) corner of the triangle.

Considering theg decays of the two-phonon-like states in
the 100–106Ru nuclei from the point of view of the interband
and intraband transitions, one can say that the experimental
data would point to increasing rotational character of these
nuclei as function of the mass number. This observation is
based on the weakening of the interband type of transitions
and the persistence of the strong intraband type of transitions
along the isotopic chain. This behavior cannot be reproduced
by the MAVA for the 102–106Ru nuclei, since MAVA tends to
produce rather strong interband type of transitions. It seems,
however, that the nucleus100Ru is described moderately well
by the MAVA, and thus100Ru would be at a “phase-transition
point” between the anharmonic vibrator region and the de-
formed rotor region. Thus, according to our calculations,
98Ru seems to be an anharmonic vibrator and102–106Ru (qua-
si)rotors,100Ru being a “transitional” nucleus between these
two regimes. Related to this, an interesting discussion about
the possible phase-transition point in the98–110Ru chain has
been carried out in Ref.[20], based on the work of Iachello
in Ref. [21]. In Ref. [20] the critical point symmetryEs5d,
supposed to lie midway between the spherical vibrator limit
U(5) and theg-unstable limit O(6), was sought for. The

FIG. 8. Evolution of the energies for the QRPA(dots)
21

+, 41
+, 22

+, 42
+ phonons, for the corresponding MAVA states(stars)

containing the mentioned QRPA phonons as main component, and
for the two-phonon states of the MAVA for the discussed98–106Ru
nuclei.
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104Ru nucleus was proposed to lie at this phase-transition
point. Similarly, the nucleus102Pd was proposed to be an
Es5d nucleus in Ref.[46].

All these observations are interesting from the point of
view of theb-decay and double-b-decay feeding of the100Ru
nucleus, since in Refs.[47–49] it was verified that it is im-
possible to describe theb and double-b feeding of 100Ru
within a simple spherical QRPA approach using simple har-
monic wave functions for the two-phonons-like states. These
matters will be discussed within the MAVA in future publi-
cations.

IV. CONCLUSIONS

We have presented results of calculations of the properties
of the even-even98–106Ru isotopes, in particular the feasibil-
ity of certain states to be interpreted as two-phonon states of
vibrational origin, and found in many cases good agreement
between our calculations and experiment. The simple micro-
scopic formalism, which we have applied, is based on a large
single-particle valence space and a realistic nuclear Hamil-
tonian using phenomenologically renormalized two-body in-
teraction based on the Bonn one-boson-exchangeG matrix.
The used theoretical formalism naturally embraces vibra-
tional degrees of freedom starting from the QRPA collective
phonons. The above mentioned nuclear Hamiltonian is used

to introduce anharmonicities into the description of the low-
lying excited states leading to dynamical splitting of the en-
ergies of the two-phonon vibrational states. At the same time
the Hamiltonian is also allowed to mix the one-phonon and
two-phonon collective degrees of freedom.

There were mainly two reasons for studying the Ru iso-
topes: First there are several papers available about ruthe-
nium isotopes, both theoretical and experimental, and second
within the isotopic chain of rutheniums there are experimen-
tal indications of shape transitions. According to our calcu-
lations98Ru seems to be an anharmonic vibrator and98–106Ru
more or less well defined quasirotors,100Ru being a transi-
tional nucleus between these two regimes. This view was
supported by the comparison of the calculatedBsE2d values
with the experimental data. One can say that the MAVA tech-
nique is able to bring a new viewpoint to the study of this
mass region and could further be used for studying the prop-
erties of other isotopic mass chains in this or other mass
regions.
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