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We examine isovector and isoscalar proton-neutron-pairing correlations for the ground state of even-even Ge
isotopes with mass numberA=64–76 within the deformed BCS approach. ForN=Z 32

64Ge the BCS solution
with only T=0 proton-neutron pairs is found. For other nuclear systemssN.Zd a coexistence ofT=0 andT
=1 pairs in the BCS wave function is observed. The problem of fixing of strengths of isoscalar and isovector
pairing interactions is addressed. The dependence of number of like and unlike pairs in the BCS ground state
on the difference between number of neutrons and protons is discussed. We found that for nuclei withN much
bigger thanZ the effect of proton-neutron pairing is small but not negligible.
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I. INTRODUCTION

The proton-neutron(pn) pairing correlations remain to be
a subject of great interest as it is expected that they play an
important role in nuclear structure and decay for proton-rich
nuclei with N<Z. In these nuclei proton and neutrons oc-
cupy identical orbitals and have maximal spatial overlap.
New experimental facilities involving radioactive nuoclear
beams offer opportunities to studyN=Z nuclei up to100Sn
[1,2]. There is still much to be learned about systems out of
the region of stability. New information could be helpful in
understanding various phases of stellar evolution including
nucleosynthesis and the abundance of elements. Decay prop-
erties and nuclear structure are closely related. The influence
of the pn pairing on the position and stability of the proton
drip line due to the additionalpn-pairing binding energy are
becoming an important issue in nuclear structure[3,4]. The
recent progress in sensitivity achieved with the largeg-ray
detector arrays allows one to study the consequences of the
pn-pair correlations for the rotational spectra[5].

The pn-pair correlations have been a major challenge to
the nuclear structure models for a long time(for a review of
the early work onpn-pairing problem see Ref.[6]). In con-
trast to the proton-proton(pp) and the neutron-neutron(nn)
pairing, the proton-neutron pairing may exist in two different
varieties, namely isoscalarsT=0d and isovectorsT=1d pair-
ing. A generalized pairing formalism, which includesT=0
andT=1 pn correlations, was derived by Chen and Goswami
[7]. The interplay of isovector and isoscalar pairing has been
studied in various contexts especially forN=Z nuclei
[8,7,9–16]. In recent publications phenomena such as pos-
sible phase transition between different pairing modes, com-
petition of isoscalar and isovectorpn pairing, and the ground
state properties of both even-even and odd-oddN=Z nuclei
were studied mostly within schematic models[17–27]. It was
also shown that both single- and double-b decay transitions
are affected by the proton-neutron pairing[28,29].

The aim of this paper is to study thepn-pairing effect
within the generalized BCS approach with schematic forces

by taking into account the deformation degrees of freedom.
The main point is to use the advantage of the formalism
constructed by Chen and Goswami[7], which is flexible
enough to account for both theT=1 andT=0 pairing corre-
lations between nucleons in time-reversed orbitals, in order
to study the interplay and competition of isovector and iso-
scalar pairing. For this purpose a schematic nuclear Hamil-
tonian with separatedpp, nn, andpn (T=1 andT=0) pairing
interactions is written. We focus our attention also on the
problem whether thepn-pairing correlations are restricted
only to the vicinity of theN=Z line for medium heavy nuclei.
Questions related to the fixing of pairing strength parameters
will be discussed.

II. THEORY

The ground state of even-even nuclei is determined by the
deformed pairing Hamiltonian, which includes monopole
sK=0d proton, neutron, and proton-neutron pairing interac-
tions:

H = o
s
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0 − lpdo

s
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s
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0 − lndo
s
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− Gpp
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whereeps
0 and ens

0 are the unrenormalized proton and neu-
tron single-particle energies, respectively.lp slnd is the
proton sneutrond Fermi energy andSstt8

T † creates isovector
sT=1d or isoscalarsT=0d pairs in time-reversed orbits
f27g:

PHYSICAL REVIEW C 68, 054319(2003)

0556-2813/2003/68(5)/054319(8)/$20.00 ©2003 The American Physical Society68 054319-1



Sspp
T=1† = o

s

cpss
† cpss̃

† , Ssnn
T=1† = o

s

cnss
† cnss̃

† ,

Sspn
T=1† = o

s

1

Î2
scpss

† cnss̃
† + cnss

† cpss̃
† d,

Sspn
T=0† = o

s

1

Î2
scpss

† cnss̃
† − cnss

† cpss̃
† d. s2d

Here,ctss
† andctpss stand for the creation and annihilation

operators of a particlest=p and t=n denote proton and
neutron, respectivelyd in the axially symmetric harmonic
oscillator potential. These states are completely deter-
mined by a principal set of quantum numberss
=sN, nz, L, Vd. s is the sign of the angular momentum
projectionVss= ±1d. We note that the intrinsic states are
twofold degenerate. The states withV and −V have the
same energy as a consequence of the time-reversal invari-
ance., indicates time-reversed states.

The Hamiltonian in Eq.(1) is invariant under Hermitian
and time-reversal operations. The four coupling strengths
Gpp

T=1, Gnn
T=1, Gpn

T=1, andGpn
T=0 are real and characterize the as-

sociated isovector(pp, nn, andpn) and isoscalar(pn) mono-
pole sK=0d pairing interactions. The isospin symmetry of the
Hamiltonian in Eq. (1) is restored foreps

0 =ens
0 and Gpp

T=1

=Gnn
T=1=Gpn

T=1=Gpn
T=0. In the particular case whereGpn

T=1=Gpn
T=0

we get

H = o
sst
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tt8
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sss8s8

ctss
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It is assumed thatGtt8=Gt8t. In this limit one cannot dis-
tinguish betweenT=0 and T=1 pairing. We note that a
similar Hamilton was discussed in Ref.f23g, where the
representation of the single-particle states with good an-
gular momentum quantum number was considered.

If the proton-proton, neutron-neutron, and proton-neutron
pairing correlations are considered for axially symmetric nu-
clei, the particle(ctss

† andctss, t=p, n) and the quasiparticle
(arss

† andarss, r=1, 2) creation and annihilation operators for
the deformed shell model states are related each to other by
the generalized BCS transformation[10]:

1
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where the occupation amplitudesus1p, vs1p, us2n, vs2n are
real andus1n, vs1n, us2p, vs2p are complexf6g. In the case
where only theT=1 proton-neutron pairing is considered,
all amplitudes are realf6,28g. In the limit in which there is
no proton-neutron pairing,us2p=vs2p=us1n=vs1n=0. Then
the isospin generalized BCS transformation in Eq.s4d re-
duces to two conventional BCS two-dimensional transfor-
mations, first for protonssus1p=usp, vs1p=vspd and second
for neutronssus2n=usn, vs2n=vsnd.

The diagonalization of Hamiltonian(1) is equivalent to
the matrix diagonalization[10]

1
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that yields the quasiparticle energiesEsr and the occupa-
tion amplitudes. Here,ets st=p, nd are the renormalized
single-particle energies which include terms describing
the coupling of the nuclear average field with the charac-
teristics of the pairing interactionsf31g. The protonsDppd,
neutron sDnnd, and proton-neutronsDpnd pairing gaps are
given as
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Dpn
T=1 = Gpn

T=1ReHo
s,r

vsrpusrn
* J ,

Dpn
T=0 = Gpn

T=0ImHo
s,r

vsrpusrn
* J . s7d

The real and imaginary parts of the proton-neutron pairing
gap Dpn are associated withT=1 andT=0 pairing modes,
respectively. This phenomenon was first pointed out by
Goswami f7,10g, which made possible almost all subse-
quent treatments ofpn pairing. We note that forGpn

T=0 equal
to zero the occupation amplitudes of the isospin generalized
BCS transformations are real. The Langrange multiplierslp
and ln entering Eq.s5d are adjusted so that the number-
conservation relations

Z = 2o
sr

vsrpvsrp
* , N = 2o

sr

vsrnvsrn
* s8d

are satisfied.
The ground state energy can be written as

Hg.s.= H0 + Hpair, s9d

where H0 is the BCS expectation value of the single-
particle Hamiltonian

H0 = 2o
ts

etso
r
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* s10d

and Hpair represents the pairing energy,

Hpair = −
Dpp
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We note thatpp, nn, andpn sT=0 andT=1d pairing modes
contribute coherently to the ground statesg.s.d energyHg.s..

In Ref. [22] it has been suggested that the effect of differ-
ent pairing modes can be quantified by measuring pair num-
bers in the nuclear wave function[25]. For this purpose we
define the operators

Npp = o
s,s8

Sspp
T=1†Ss8pp

T=1 , Nnn = o
s,s8

Ssnn
T=1†Ss8nn

T=1 ,

N pn
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s,s8

Sspn
T=1†Ss8pn

T=1 , N pn
T=0 = o

s,s8

Sspn
T=0†Ss8pn

T=0 , s12d

which are rough measures of the numberspp, nn, pn, sT
=1d, andpn sT=0d pairs, respectively. The BCS ground state
expectation values of these operators are related with the
corresponding pairing gaps. After subtracting the mean field
values we find

kNppl <
Dpp

2

sGpp
T=1d2, kNnnl <

Dnn
2

sGnn
T=1d2 ,

kN pn
T=1l <

sDpn
T=1d2
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T=1d2, kN pn

T=0l <
sDpn

T=0d2

sGpn
T=0d2 . s13d

We note that the number of these pairs cannot be observed
directly.

III. EMPIRICAL PAIRING GAPS

The magnitude of proton, neutron, and proton-neutron
pairing gaps can be determined only indirectly from the ex-
perimental data. Usually they are deduced from systematic
study of experimental odd-even mass differences:

MsZ, Ndodd-odd= MsZ, Nd

MsZ, Ndodd-proton= MsZ, Nd + Dp
emp

MsZ, Ndodd-neutron= MsZ, Nd + Dn
emp

MsZ, Ndodd-odd= MsZ, Nd + Dp
emp+ Dn

emp− dpn
emp. s14d

Here, MsZ, Nd are the experimental nuclear masses and
MsZ, Nd denotes a smooth mass surface formed by a set
of even-even nuclei, i.e., for these nuclei the measured
mass is identical to the smooth mass. The mass of odd-
proton sodd-neutrond nucleus is given by addition of the
proton pairing gapDp

emp sneutron pairing gapDn
empd to

MsZ, Nd. The mass of an odd-odd nucleus is the sum of
the smooth massMsZ, Nd and the sum of the proton and
neutron pairing gaps minus the attractive residual proton-
neutron interaction energydpn

emp.
Using the Taylor series expansion of theMsZ, Nd, the

quantitiesDp
emp, Dn

emp, anddpn
emp for even mass nuclei can be

expressed as

Dp
emp= − 1

8fMsZ + 2,Nd − 4MsZ + 1,Nd + 6MsZ, Nd

− 4MsZ − 1,Nd + MsZ − 2,Ndg,

Dn
emp= − 1

8fMsZ, N + 2d − 4MsZ, N + 1d

+ 6MsZ, Nd − 4MsZ, N − 1d + MsZ, N − 2dg,

dpn
emp= 1

4h2fMsZ, N + 1d + MsZ, N − 1d + MsZ − 1,Nd

+ MsZ + 1,Ndg − 4MsZ, Ndg − fMsZ + 1,N + 1d

+ MsZ − 1,N + 1d + MsZ + 1,N − 1d

+ MsZ − 1,N − 1dg. s15d

The first systematic studies of nuclear masses have shown
that the average pairing gapssDtt, t=p, nd decrease slowly
with A1/2 (traditional model) [32]. Vogel et al. found evi-
dence for the dependence of the average pairing gaps on the
relative neutron excesssN−Zd/A [33]. The parametrizations
of the average pairing gaps and the average proton-neutron
residual interaction within these two models are as follows:

Dt = 12 MeV/A1/2, dpn = 20 MeV/A straditional modeld

Dt = S7.2 − 44
sN − Zd2

A2 D MeV/A1/3,

dpn = 31 MeV/A sVogel et ald. s16d

We note that recently Madland and Nixf34g presented a
model for calculation of these average quantities by fixing
a larger set of parameters.

In Table I we present the calculated experimental pairing
gaps and proton-neutron excitation energies for Ge isotopes
with A=64–76 and compare them with the averaged ones.
We see that a better agreement between empirical and aver-
age values is achieved for the model developed by Vogelet
al. [33]. The differences between empirical and average val-
ues are small especially for isotopes close to the valley ofb
stability. It is worthwhile to note that the values of proton-
neutron interaction energies are not negligible in comparison
with the values of pairing gaps even for isotopes with large
neutron excess. This fact is clearly illustrated in Fig. 1. Thus
the proton-neutron pairing interaction is expecting to play a
significant role in construction of the quasiparticle mean field
even for these nuclei. It is supposed that the origin of this
phenomenon is associated with the effect of nuclear defor-
mation, which is changing the distribution of proton and neu-
tron single-particle levels inside the nucleus.

For performing a realistic calculation within the deformed
BCS approach it is necessary to fix the parameters of the
nuclear Hamiltonian in Eq.(1). Following the procedure of
Ref. [28] it is done in the following two steps.

The proton (neutron) pairing interaction strength
Gpp

T=1sGnn
T=1d is adjusted by requiring that the lowest proton

(neutron) quasiparticle energy be equal to the empirical pro-
ton (neutron) pairing gapDp

empsDn
empd.

With Gpp
T=1 and Gnn

T=1 already fixed we adjust the proton-
neutron pairing interaction strengthsGpn

T=1 and Gpn
T=0 to the

empirical proton-neutron interaction energydpn
emp using the

formula
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dpn
theor= − fsHg.s.

s12d + E1 + E2d − sHg.s.
spnd + Ep + Endg. s17d

Here, Hg.s.
s12dsHg.s.

spndd is the total deformed BCS ground state
energy with swithoutd proton-neutron pairing andE1
+E2sEp+End is the sum of the lowest two quasiparticles
energies withswithoutd proton-neutron pairing gapDpn.

We note that the calculation of ground state energies of
odd-odd nuclei within macroscopic pairing models is based
on the assumption that there are one unpaired proton and
neutron with energies close to the Fermi energies[33,37].
The resulting expectation value of an attractive short-range
residual interaction between them, which can be approxi-
mated by ad force, is considered to be the origin of the
proton-neutron interaction energy. Unfortunately, this simpli-
fied approach cannot be exploited in microscopic treatment
of nuclear properties of open shell nuclei, as the construction
of the many-body wave function is required.

In our deformed BCS approach the ground state of the
odd-odd nucleus is described as the lowest two quasiparticle
excitation of the even-even nucleus. The considered proce-
dure of fixing the pairing strengths has been exploited al-
ready in Refs.[28,30]. However, some questions arise about
the ambiguity of equating the pairing-gap expressions that

are used to determine the strength of pairing matrix elements
for microscopic pairing calculations with the macroscopic
pairing-gap model that is used to describe average mass dif-
ferences. Thus, we shall study the importance of the proton-
neutron-pairing effect forN.Z nuclei also by assuming a
different scenario, namely, commonly used pairing strengths,

Gpp
T=1 = Gnn

T=1 = 16/A MeV, Gpn
T=0 = 20/A MeV, s18d

which decrease with increasing neutron excess.

IV. RESULTS AND DISCUSSION

The starting point of our calculations is the eigenstates of
a deformed axially symmetric Woods-Saxon potential with
the parametrization of Ref.[35], i.e., spherical symmetry is
broken already from the beginning. For description of the
ground states of Ge isotopes we use the values of the quad-
rupole sb2d and the hexadecapolesb4d nuclear deformation
parameters from Ref.[36], which are in good agreement with
the predictions of the macroscopic-microscopic model of
Möller, Nix, Myers, and Swiatecki[37]. In the BCS calcula-
tion the single-particle states are identified with the
asymptotic quantum numberssN, nz, L, Vd. We note that in-
trinsic states are twofold degenerate. The states withV and
−V have the same energy as a consequence of the time-
reversal invariance. A truncated model space withNø5 is
considered. As stated in Sec. II only the coupling of nucleon
states in time-reversed components of the same orbitals are
taken into account.

We performed calculations within the generalized BCS
formalism associated with the nuclear Hamiltonian in Eq.
(1). The solutions obtained can be classified as follows.

The BCS solution withoutpn pairing: In this caseDpp and
Dnn are real andDpn=0.

The BCS solution withT=1 pn pairing: It corresponds to
the case the whereDpp, Dnn, andDpn are realsDpn

T=0=0d, i.e.,
all the occupation amplitudes are real.

The BCS solution withT=0 pn pairing, which is charac-
terized by realDpp andDnn and purely imaginaryDpn sDpn

T=1

=0d. In this case the occupation amplitudes associated with
pn pairing (us1n, vs1n, us2p, andvs2p) are imaginary.

TABLE I. The empirical [see Eq.(15)] and average[see Eq.(16)] pairing gaps and proton-neutron
residual energy for Ge isotopes withA=64–76.

Empirical values Average values
Traditional model Vogelet al.

Nucleus Dp
emp Dn

emp dpn
emp Dp,n dpn Dp,n dpn

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

64Ge 1.807 2.141 1.498 1.500 0.313 1.800 0.484
66Ge 1.586 1.859 0.816 1.477 0.303 1.770 0.470
68Ge 1.609 1.882 0.630 1.455 0.294 1.727 0.455
70Ge 1.551 1.866 0.594 1.434 0.285 1.668 0.443
72Ge 1.614 1.836 0.583 1.414 0.278 1.600 0.430
74Ge 1.621 1.715 0.424 1.350 0.270 1.523 0.419
76Ge 1.561 1.535 0.388 1.376 0.263 1.441 0.408
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FIG. 1. The experimental protonsDp
empd and neutronsDn

empd pair-
ing gaps and proton-neutron interaction energysdpn

empd for even-even
Ge isotopes withA=64–76[see Eq.(15)].
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No coexistence ofT=0 andT=1 proton-neutron pairing
modes were found. There is a very simple competition be-
tween the two kinds ofpn pairing. For Gpn

T=1.Gpn
T=0 and

Gpn
T=1,Gpn

T=0, scenarios(ii ) and(iii ) are realized, respectively.
In the particular caseGpn

T=1=Gpn
T=0 both T=0 andT=1 pairing

modes are indistinguishable as was indicated in Sec. II. We
note that the absolute values of the occupation amplitudes
associated with solutions(ii ) and (iii ) are equal to one an-
other if theT=1 pn-pairing strength used in generating solu-
tion (ii ) is equal to theT=0 pn-pairing strength considered in
the calculation of solution(iii ) (proton and neutron pairing
strengths are the same). In the case ofN=Z s64Ged for large
enoughpn-pairing strengthGpn

T=0 or Gpn
T=1, a BCS solution

without like-particle pairing modes was observed.
In Figs. 2 and 3 we show the BCS gap parameters as a

function of the ratioGpn/Gtt for 64Ge and70Ge, respectively.
Gpn stands for the larger of theT=1 sGpn

T=1d andT=0 sGpn
T=0d

proton-neutron-pairing strengths andGtt=Gpp
T=1=Gnn

T=1. We
stress that there is no coexistence ofT=0 andT=1 proton-

neutron-pairing modes and that the absolute value of thepn-
pairing gap Dpn is the same in the case ofT=1 sGpn

=Gpn
T=1.Gpn

T=0d and T=0sGpn=Gpn
T=0.Gpn

T=1d pairing solutions.
In the case of 64Ges70Ged, Gtt was assumed to be
0.250 MeVs0.229 MeVd. Below some critical value of
Gpn/Gtt there are only proton and neutron pairing modes. For
64Ge there is only a narrow region above this critical point in
which like-particle and proton-neutron pairs coexist. With
additional increase of the ratioGpn/Gtt the system prefers to
form only proton-neutron pairs. For nuclei with nonzero neu-
tron excesssNÞZd such as70Ge there is a different situation.
In Fig. 3 we notice a less sharp phase transition to the
proton-neutron-pairing mode in comparison with that in Fig.
2. In addition, the proton-neutron-pairing mode does exist
only in coexistence with the like-particle pairing modes.

The binding energy gains between a system with no
proton-neutron interaction and the system where proton-
neutron pairs do exist. The ground state energy decreases
monotonically with increasingGpn

T=0,1. Although the energy
gain due to pairing correlations is rather modest, it is ex-
pected thatpn correlations influence many properties of the
atomic nuclei. In order to perform corresponding studies the
problem of fixing the pairing strength parameters has to be
understood.

There is very little known about theT=0 and T=1
strengths of thepn pairing. TheT=0, 3S pairing force is
expected to be stronger in comparison withT=1, 1S pairing
forces. A strong evidence of this is that the deuteron and
many other double evenN=Z nuclei prefer this type of cou-
pling due to the strong tensor force contribution. This fact
favors solution(iii ) in comparison with solution(ii ). In Fig. 4
the values of pairing strength adjusted to experimental pair-
ing gaps and proton-neutron interaction energy(see preced-
ing section for details) are presented. By comparingGpp

T=1 and
Gnn

T=1 strengths we see that the isospin invariance is signifi-
cantly violated especially for isotopes with large neutron ex-
cesssN−Zd. The T=0 proton-neutron forceGpn

T=0 is larger in

comparison withT=1 pp andnn (Gpp
T=1 andGnn

T=1) forces for
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FIG. 2. The protonsDppd, neutron sDnnd, and proton-neutron
sDpnd pairing gaps as a function of the ratioGpn/Gtt for the 32

64Ge.
Gtt represents the proton and neutron-pairing strengthssGtt=Gpp

T=1

=Gnn
T=1d. Gpn stands for the larger ofT=0 sGpn

T=0d and T=1sGpn
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proton-neutron-pairing strengths.Gtt was taken to be 0.250 MeV.
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FIG. 3. The protonsDpd, neutronsDnd, and proton-neutronsDpnd
pairing gaps as a function of the ratioGpn/Gtt for the 32

70Ge. Con-
ventions are the same as in Fig. 2 andGtt was equal to 0.229 MeV.
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FIG. 4. The protonsGpp
T=1d, neutronsGnn

T=1d, and proton-neutron
sGpn

T=0d pairing strengths as a function of the neutron excessN−Z.
For the curves f.e.g.(fitted to the experimental gaps) the strength is
adjusted to the experimental pairing gap(Dp

emp or Dn
emp) or proton-

neutron interaction energysdpn
empd.
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all considered Ge isotopes. TheN=Z 64Ge seems to be a
special case. For other Ge isotopesGpp

T=1 is more or less
stable with respect to theN−Z difference andGnn

T=1 slightly
decreases with increasingN−Z. The T=0 pn force offers a
different scenario, namely,Gpn

T=0 slightly growing with in-
creasing neutron excessN−Z, which is surprising. It can be
due to the fact that only the monopole pair Hamiltonian is
considered within the deformed BCS approach or connected
with the way of adjusting it. We note that the largest differ-
ences amongGpp

T=1, Gnn
T=1, and Gpn

T=0 forces are visible for
maximal value ofN−Z=12. We note that for Ge isotopes
with N−Z,0 andN−Z.12 the pairing strengths cannot be
fixed following the procedure presented in the preceding sec-
tion due to the lack of experimental information about
nuclear masses and/or proton and neutron separation ener-
gies.

We find it interesting to compare the behavior of the ad-
justed pairing strengths with the commonly used prescrip-
tions for Gpp

T=1, Gnn
T=1, andGpn

T=0 [see Eq.(18)]. From Fig. 4 it
is evident that the agreement between them, especially, for
Gpp

T=1 andGpn
T=1 forces, is rather poor. The reason can be that

the considered strengths are expected to reproduce the gen-
eral behavior throughout the periodic table as a function of
A, but not as neutron excessN−Z. Other possibilities already
announced are the simplicity of the considered nuclear
model or the limitations of adjusting the parameters of the
microscopic pairing model to those of the macroscopic
pairing-gap model.

It is an open issue whether the value of pairing strength
Gpn

T=0 depends on the deformation of the considered isotope.
In Fig. 5 this point is analyzed for64Ge, 68Ge, and76Ge
assuming different deformations.Gpn

T=0 is displayed as a func-
tion of the deformation parameterb2 within the range −0.4
øb2ø0.4. We see thatGpn

T=0 is sensitive to the change of the
quadrupole parameterb2 especially if the shape of the con-
sidered nucleus is oblate. From the considered Ge isotopes,
68Ge exhibits the strongest sensitivity ofGpn

T=0 to b2 param-
eter.

In Fig. 6 the competition amongpp, nn, andpn pairs in
the ground state of even-even Ge isotopes is studied, as a
function of N−Z. The displayed quantitieskNppl, kNnnl, and

kN pn
T=0l correspond roughly to the number ofpp, nn, andT

=0 pn pairs [see Eq.(13)], respectively. These quantities, as
it was already stressed above, are closely related to the dif-
ferent contributions to the total pairing energy(11). The
number of pairs were measured both for the system with
only like-particle pairs(phase i) and for the system where
like-particle and proton-neutron pairs coexist(phase iii). In
Fig. 6(a) the results obtained with pairing strengths adjusted
to experimental pairing gaps(Dp

emp and Dn
emp) and proton-

neutron interaction energysdpn
empd are presented. We see that

in phase i there is a rough constancy of the number ofpp
pairs for Ge isotopes and that the number ofnn pairs is a
little bit greater and exhibits some fluctuations. There is a
different situation if the system of nucleons prefers the phase
iii. kNppl andkNnnl are equal to zero for64Ge and grow up to
maximum values about 7.6 and 4.8, respectively, for74Ge.
We note that the behavior ofkN pn

T=0l is different. The effect
of the proton-neutron-pairing decreases with increasingN
−Z. For large N−Z the value of kN pn

T=0l is significantly
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FIG. 5. TheT=0 proton-neutron-pairing strengthGpn
T=0 as a func-

tion of the deformation parameterb2 for 64Ge, 68Ge, and76Ge.
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FIG. 6. The quantitieskNppl, kNnnl, and kN pn
T=0l [representing

number ofpp, nn, andpn pairs; see Eqs.(13) for definition] for Ge
isotopes, as a function ofN−Z. The results are presented for a pure
like-particle pairing phase(phase i) and for a phase where like-
particle andT=0 proton-neutron pairs coexist(phase iii). The upper
panel (a) refers to calculation with pairing strengths adjusted to
experimental pairing gaps and proton-neutron interaction energy.
The lower panel(b) refers to calculation with pairing strengths
given in Eq.(18).
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smaller askNppl and kNnnl, but not negligible. If pairing
strengths given in Eq.(18) are used in the BCS calculation,
one finds that the effect of proton-neutron pairing disappears
at N−Zù8 in real nuclei as is shown in Fig. 6(b). Then, for
these isotopes one fails to explain the nonzero value of the
proton-neutron interaction energydpn

emp(see Table I). The val-
ues ofdpn

emp for all 70,72,74,76Ge isotopes are of the same order.
Thus it is expected that the role of thepn pairing for all these
isotopes is of comparable importance and not negligible.

From the above discussion it follows that theT=0 proton-
neutron-pairing correlations should be considered also for
medium-heavy nuclei with large neutron excess, i.e., within a
procedure proposed in this paper. Usually, correlations be-
tween protons and neutrons in medium and heavy nuclei
were neglected on the ground that two Fermi levels are apart.
Here, it is shown that the proton-neutron-pairing effect is not
negligible for such nuclear systems. We strongly suspect that
the competition between the different kinds of pairs can af-
fect measurable properties of nuclei, in particularb+

strengths. The previousb- and bb-decay studies[28] per-
formed within the spherical quasiparticle random phase ap-
proximation (QRPA) with T=1 proton-neutron-pairing sup-
port this conclusion as well.

V. SUMMARY AND CONCLUSIONS

We performed generalized BCS calculation by assuming
axial symmetry and the Hamiltonian with schematicT=1 and
T=0 pairing forces in Eq.(1). The system of BCS equations
allows three different solutions. There is one solution with
only like-particle pairs, and two solutions in which like- and
unlike-particle pairs coexist, first withT=1 and second with
T=0 pn pairs. We note that none of the observed pairing
modes allows simultaneous presence of bothT=0 andT=1
pn correlations. The type of thepn pairs is determined by the
stronger form ofT=0 and T=1 pn-pairing interactions of
nuclear Hamiltonian. ForN=Z 64Ge pureT=0 pairing mode
is found and a sharp phase transition from the like-particle
pairing mode to the unlike particle-pairing mode is observed,
which seems to be a result of a simple monopole pair Hamil-
tonian. For pair Hamiltonians which are more complex, there
is phase coexistence betweenT=1 andT=0 pairing inN=Z
nuclei, and not a sharp transition from one to the other
[19,38]. For other Ge isotopes the phase transition between

different pairing modes is much smoother.
A competition between like particles and proton-neutron

pairing was studied in even-even Ge isotopes. The pairing
strengths were adjusted to reproduce the experimental odd-
even mass differences. The diminishing role of thepn pairs
with increasingN−Z was shown, however, the effect of
proton-neutron pairing was found to be important also for
isotopes with large neutron excessN−Z, in particular for
76Ge, which undergoes doubleb decay. These results con-
trast with the general belief that proton-neutron-pairing cor-
relations are restricted only to the vicinity of theN=Z line.
The values of the calculated proton-neutron interaction en-
ergy dpn

emp for N.Z isotopes are suggestive and should moti-
vate a greater effort to understand different properties of nu-
clei in the presence of theT=0 proton-neutron-pairing
correlations. However, we point out that there is some dis-
agreement between the calculation with pairing strengths ad-
justed to the experimental pairing gaps and proton-neutron
interaction energy and with the commonly used prescription
for pairing strengths given in Eq.(18). Within the second
scenario the deformed BCS solution withT=0 pairing was
not found forN−Zù8.

Of course the effect ofpn pairing on ground state proper-
ties of deformed nuclei can be studied self-consistently by
solving the Hartree Fock Bogoliubov(HFB) equations[39].
In this paper we used the advantage of the deformed BCS
approach to estimate the effect ofpn pairing forN.Z nuclei,
which can undergo single- or double-b decay. At present, a
great effort to increase the accuracy and reliability of the
calculated single- and double-b decay matrix elements is be-
ing made. The effects ofpn pairing and deformation on these
matrix elements can be studied within a coupled deformed
BCS plus QRPA approach[40,41]. The results of our paper
indicate that some of theb decay and maybe also the double
b decay observables might be influenced by theT=0 proton-
neutron-pairing.
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