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Asymmetric nuclear matter is studied in the frame of relativistic mean-field theory, using scalar-isoscalars,
vector-isoscalarv meson together with their self-interactions, vector-isovectorr meson with its cross interac-
tion with v meson too, and scalar-isovectord meson as degrees of freedom. The model is used to parametrize
the nuclear matter property results calculated by more fundamental Dirac-Brueckner-Hartree-Fock theory, and
thus to provide an effective Dirac-Brueckner-Hartree-Fock model applicable also to finite nuclei. Vector
v-r cross interaction seems to be an useful degree of freedom for describing of the asymmetric nuclear matter,
mostly due to its impact on density dependence of the symmetry energy.
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I. INTRODUCTION

The study of nuclear matter—hypothetical uniform infi-
nite system of nucleons interacting via strong forces—has
already been an important part of the nuclear physics devel-
opment for several decades. It is a good starting point for
both nuclear physics of finite systems(e.g., structure and
properties of finite nuclei, dynamics of heavy-ion collisions)
and astrophysics(e.g., structure and evolution of stars). The
early attempts were based on the nonrelativistic Brueckner-
Hartree-Fock(BHF) theory (see, e.g., Refs.[1] for review
and references therein), and related the bare nucleon-nucleon
(NN) interaction to nuclear ground-state properties in a
parameter-free way with a limited success.

The breakthrough was achieved when the relativistic ex-
tension of the BHF theory[so called Dirac-Brueckner-
Hartree-Fock(DBHF) approach] was developed[2–4] and
successfully applied to nuclear matter problems. An essential
feature of the DBHF is the incorporation of the relativistic
dynamics, governed by the Dirac equation with strong scalar
and vector fields. The explicit treatment of the lower compo-
nents of Dirac spinors gives rise to strongly density-
dependent relativistic effects. They shift the nuclear matter
saturation points(“Coester band”) towards empirical values
[5]. Subsequently, a great effort has been devoted to the suc-
cessful DBHF description of both symmetric and(to lesser
extent) isospin-asymmetric nuclear matter.

Thus, the DBHF approach is currently considered to be a
microscopic parameter-free nuclear model based on realistic
NN interaction. However, due to its complexity, this sophis-
ticated approach is successfully manageable for nuclear mat-
ter properties only; finite nuclei are at present beyond the
scope of this model. To overcome this restriction, several
approaches were developed which relate the DBHF output
for nuclear matter to the parameters of the relativistic mean-
field (RMF) theory[6,7]. The RMF approach is widely used
and powerful phenomenological tool for various aspects of
nuclear many-body problems which provides an effective
framework for calculation of both nuclear matter and(con-

trary to DBHF) finite nuclei. The nonlinear RMF approach
[8] has already been proven to be a reliable tool for the
calculation of normal nuclei close to the valley of stability
[9], exotic and superheavy nuclei[10].

Now new experimental facilities are available to study
properties of exotic nuclei with high isospin asymmetry. Ad-
ditionally, increasingly more precise observations and mea-
surements of properties of neutron stars and supernovas have
been carried out. This naturally brings a need for better de-
scription of isospin degree of freedom, which can be done by
enhancing the isovector meson sector. The isovector scalard
meson[11] and vector cross interactions[12] were included
into RMF for this purpose.

The goal of this paper is obtaining effective parametriza-
tion applied to asymmetric nuclear matter, using different
degrees of freedom in order to study influence ofd meson
and vector meson cross interaction on quality of the repro-
duction of DBHF results, as well as their influence on calcu-
lated nuclear matter properties, especially on density depen-
dence of nuclear symmetry energy.

II. THEORETICAL FRAMEWORK

The starting point of the model is Lagrangian density that
introduces nucleon fieldc, isoscalar-scalar meson fields,
isoscalar-vector meson fieldv, isovector-vector meson field
r and isovector-scalar meson fieldd (pion field does not
contribute, because it is pseudoscalar, and nuclear matter is
parity invariant), and takes a form

Lsc, s, v, r, dd

= cfgmsi]m − gvvm − sM − gssdgc + 1
2s]ms]ms − ms

2s2d

− 1
4vmnvmn + 1

2mv
2vmvm − 1

3bsMsgssd3

− 1
4cssgssd4 + 1

4cvsgv
2vmvmd2 + 1

2s]md]md − md
2d2d

+ 1
2mr

2rm . rm − 1
4rmn . rmn + 1

2LVsgr
2rm . rmd

3sgv
2vmvmd − grrmcgmtc + gddctc, s1d

where antisymmetric field tensors are given by

vmn ; ]nvm − ]mvn,
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rmn ; ]nrm − ]mrn,

and the symbols used have their usual meaning. The pa-
rameters entering the Lagrangian areM, denoting the
nucleon free mass, whereasms, mv, m%, andmd are masses
assigned to the meson fields. The first term together with
the last two ones describe interaction of isoscalar and is-
ovector mesons with nucleons where the strength of these
interactions is determined by dimensionless coupling con-
stantsgs, gv, g%, and gd. Three terms in the third line
represent cubic and quartic scalar self-interactionsf8g and
quartic vector self-couplingsf13,14g, the strength of
which is also given by dimensionless self-interaction cou-
pling constantsbs, cs, andcv. The second and fourth lines
represent freesnoninteractingd Lagrangian for all mesons,
and the fifth line realizes cross interaction betweenv and
r mesons characterized by cross-coupling constantLV
f12g.

The constraint of stationarity of the action leads to the
well-known Euler-Lagrange field equations and equations of
motion follow after their application to Lagrangian(1). This
produces the Dirac equation for nucleon field,

fgmsi]m − gvvm − grrm . td − sM − gss − gdd . tdgc = 0.

s2d

Isoscalar meson fields, v are then described by Klein-
Gordon and Proca equations, respectively,

s]m]m + ms
2ds = gsfcc − bsMsgssd2 − cssgssd3g, s3d

]mvmn + mv
2vn = gvfcgnc − cvgv

3svmvmvnd

− LVgr
2rm . rmgvvmg. s4d

Analogically, isovectorr and d meson fields read,

]mrmn + mr
2rn = grfcgmtc − LVgrrmgv

2vmvmg, s5d

s]m]m + md
2dd = gdctc. s6d

Due to the fact that these equations are nonlinear, nowa-
days no suitable method is known to solve them. The way
to avoid this is to replace the operators of meson fields by
their expectation values, the so called mean-field approxi-
mation. The fields are thus treated as classicalc numbers.
Its reasonability increases with increasing baryon density.
The second approximation introduced is the nonsea ap-
proximation which does not take account of the Dirac sea
of negative energy states.

In this model we are dealing with static, homogenous,
infinite nuclear matter that allows us to consider some other
simplifications due to translational invariance and rotational
symmetry of nuclear matter. This causes the expectation val-
ues of spacelike components of vector fields vanish and only
zero components—r0 andv0—survive[9]. In addition, rota-
tional invariance around third axis of isospin space results in
taking into account only the third component of isovector
fields—rs3d and ds3d [7,11]. The above mentioned can for-
mally be written as

s → ksl ; s,

vm → kvml ; dm0vm = v0,

rm → krml ; r0
s3d,

d → kdl ; ds3d.

Having inserted the above simplifications the field equa-
tions are reduced and we can easily obtain potentials of
both isoscalar meson fields,

Us ; − gss = −
gs

2

ms
2 frS− bsMsgssd2 − cssgssd3g, s7d

Uv ; gvv0 =
gv

2

mv
2 frB − cvsgvv0d3 − Ur

2LVsgvv0dg, s8d

and isovector meson fields,

Ur ; grr0
s3d =

gr
2

mr
2fcg0t3c − grr0

s3dLVsgvv0d2g

=
gr

2

mr
2FS2

Z

A
− 1DrB − grr0

s3dLVUv
2G , s9d

Ud ; − gdds3d = −
gd

2

md
2ct3c =

gd
2

md
2srn

S− rp
Sd, s10d

where scalar densityrS is expressed as the sum of proton
spd and neutronsnd part

rS= kccl = rp
S+ rn

S, s11d

which are given by

ri
S=

2

s2pd3E
0

ki

d3k
Mi

*

sk2 + Mi
*2d1/2, i = p, n. s12d

In Eq. s12d ki is nucleons’ Fermi momentum andMp
* , Mn

*

denote proton and neutron effective masses, respectively,
which can be written as

Mp
* = M − gss − gdds3d, s13d

Mn
* = M − gss + gdds3d. s14d

One can see that condensed scalars meson field generates
a shift of nucleon mass, in consequence of which nuclear
matter is described as a system of pseudonucleons with
massesM* moving in classical fieldss, v0, and r0

s3d,
where additionallyd meson field is responsible for split-
ting of proton and neutron effective masses, which is an
important feature ofd meson influence on the nuclear
matter saturation mechanism and its properties. Thed me-
son seemed to be an useful degree of freedom in describ-
ing of asymmetric nuclear matter, indicated by its influ-
ence on, e.g., stiffness of equation of state, slope, and
curvature of symmetry energy and properties of warm
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asymmetric nuclear matterf11,15g.
The solution requires to be performed self-consistently,

which can be clearly seen from Eqs.(7)–(10), wheres po-
tential (7) must be solved using iterations.

The baryon density is given by

rB = kcg0cl=
4

s2pd3E
0

kF

d3k =
2

3p2kF
3 , s15d

with kF being an average Fermi momentum. It can be seen
that scalar densitys11d is less than baryon density due to
the termMi

* /sk2+Mi
*2d1/2 that causes reduction of the con-

tribution of rapidly moving nucleons to scalar source
term. This mechanism is responsible for nuclear matter
saturation in the mean-field theory and essentially distin-
guishes relativistic models from nonrelativistic ones.

Cross coupling of thev andr mesons requires also self-
consistent calculation of Eqs.(8) and(9), with iterative pro-
cedure forv potential.

By reason thatd field splits nucleon effective masses, the
proton and neutron Fermi momenta will be also split, while
they have to fulfill

rB = rp + rn =
2

s2pd3E
0

kp

d3k +
2

s2pd3E
0

kn

d3k, s16d

wherekF is average Fermi moment of the matter, andkp,
kn are Fermi momenta of protons and neutrons, respec-
tively. The different values of Fermi momenta have con-
sequences for transport properties of asymmetric nuclear
matter.

To obtain formula for energy density of nuclear matter it
is essential to have cognizance of the energy tensor, in con-
tinuum mechanics defined[16] as

Tmn = − gmnL +
] Fi

] xn

] L
] s] Fi/] xmd

, s17d

where Fi generally denotes physical fields. The energy
density of such a system is the zero component of the
energy tensor«=kT00l, and finally the binding energy per
nucleon is related to energy density by

Eb =
«

rB
− M . s18d

The energy density per nucleon is a starting quantity for
further properties of nuclear matter. Incompressibility is
given as its second derivative with respect to baryon den-
sity, at the saturation point

K = 9Fr2 ]2

] r2S «

rB
DG

r=r0

. s19d

Symmetry energy of nuclear matter is defined as a second
derivative of binding energy per nucleon with respect to
the asymmetry parametera=srp−rnd/srp+rnd:

«sr, ad = «sr, 0d + S2srda2 + S4srda4, s20d

where parametersS2 and S4 are defined as

S2 =
1

2F ]2«sr, ad
] a2 G

a=0

, s21d

S4 =
1

24F ]4«sr, ad
] a4 G

a=0

. s22d

The parameterS2 is often used as symmetry energy itself,
argumented by negligible contribution of higher orderS4
parameter, especially for densities relevant for common
nuclei.

III. RESULTS AND DISCUSSION

The mean-field parametrizations were obtained by calcu-
lation using three different DBHF results for nuclear matter
as initial data—results of Li, Machleidt, and Brockmann
[17], results of Lee, Kuo, Li, and Brown[18,19], and finally
calculations of Huber, Weber, and Weigel[20,21].

Based on the realistic and relativisticNN interaction of
the Bonn group, in Ref.[17] DBHF calculations are shown,
which yield an effectiveNN interaction, and subsequently
the single-particle potentials, equations of state, nucleon ef-
fective masses, and speed of sound for both symmetric and
neutron matter were studied. The Bonn-A potential repro-
duced quantitatively the empirical saturation properties of
nuclear matter as well as nucleon effective mass.

Reference[18] deals with asymmetric matter also using
the DBHF approach with Bonn A one-boson-exchangeNN
interaction. Not only saturation properties, but in addition
even the empirical value of the symmetry energy at the satu-
ration density were reproduced satisfactorily. Isoscalar me-
son potentials for symmetric matter are calculated in Ref.
[19].

Finally, energy per nucleon for several asymmetries using
DBHF approach is calculated in Ref.[20], together with pro-
ton and neutron scalar and vector potentials from Ref.[21]
making possible to fit also the mean-field parameter for cou-
pling of d meson to nucleons. Furthermore, in these two
works momentum dependence of self-energies is also tested;
however, due to momentum independence of mean-field
theory coupling constants, the momentum independent re-
sults were chosen to fit.

As it is easily seen from equations for meson potentials
and for energy per nucleon, the squares of coupling constants
appear exclusively in ratios with meson masses and thus one
can fix the meson masses to experimental values without any
physical restriction of the RMF. The meson masses consid-
ered in this work arems=550 MeV, mv=783 MeV, mr

=770 MeV, andmd=980 MeV.
The first fit was performed usings, v, r mesons and

scalar-isoscalar cubic and quartic self-interactions, vector-
isoscalar quartic self-interactions as well as cross interactions
between vector mesons, fitting energies per nucleon for sym-
metric and neutron matter, and symmetric isoscalar poten-
tials. The corresponding parameter set obtained either with
vector meson cross interaction(MA ) or without it (MB) is
listed in Table I. This parametrization reproduces the DBHF
results satisfactorily in the whole fitting range of densities
relevant for common nuclei, which can be said both for en-
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ergy per nucleon and also for isoscalars and v meson po-
tentials. Growth of ther potential is decreasing with baryon
density, being result of the isovector cross-interactions. This
has impact on the energy per nucleon especially for extreme
asymmetries and consequently on curvature of symmetry en-
ergy, which is plotted in the Fig 1, upper panel. The cross
interactions significantly affect density dependence of the
symmetry energy—they increase rise of symmetry energy
below 0.24 fm−3 and decrease it above this density. Symme-
try energy at the saturation density is 33.3 MeV, which is in
accordance with experimental value of about 34 MeV. The
incompressibility of symmetric matter at the saturation den-
sity is 347 MeV.

For better description of asymmetry behavior of matter it
is of course profitable to use not only symmetric and neutron
case, but also other nonsymmetric cases with partial fraction

of protons, as was calculated with DBHF theory by Leeet al.
[18,19]. Results of the fit with the same degrees of freedom
as were in the previous case, performed for binding energy
per nucleon for several asymmetries as well as for symmetric
matter scalar and vector potentials, are listed in Table II(pa-
rametrization LA), also with parameter set obtained using
model without vector-meson cross interactions(LB). All of
the relevant physical quantities for all of the asymmetries are
reproduced closely. Also in these parametrizations there is
strong influence of cross interaction, which is displayed in
Fig. 1, lower panel. There is increasing growth of symmetry
energy below approximately 0.25 fm−3 and deceleration in
higher density region. This fact will be commented more
closely in the last dataset.

In the theoretical framework we were dealing also with
isovector-scalar sector of nucleon-nucleon effective interac-
tion. In Ref.[20] binding energy per nucleon was calculated
for several asymmetries in the DBHF approach, using Bonn
potential B with density independent self-energies. Addition-
ally, in Ref. [21] authors performed calculation also for pro-
ton and neutron scalar and vector potentials, enabling us to
fit not only r potential but alsod potential value. The fit was
thus usings, v mesons, their self-interactions,r meson with
its cross interaction tov meson, and finally evend meson as
degree of freedom. Results of the fit for binding energy per
nucleon for several considered asymmetries are drawn in
Fig. 2. Fit values(represented by lines) follow closely the
DBHF results(scatter symbols) for all asymmetries. Corre-
sponding parameter set is listed in Table III(HA), together
with fit parameters obtained without vector cross interactions
(HB).

Negative values of the quartic self-interaction constants
are consequence of the fact that dependence of symmetric
scalar and vector potentials ensued from DBHF calculations
on the baryon density is almost linear, which brings some
difficulties into the determination of the self-interaction force
of isoscalar mesons, and thus results in negative and positive
second derivative of vector and scalar potential, respectively.
One of the explanations of this verity could be the fact that
the Van Hove theorem[22] is, unlike for the DBHF theory,
fully consistent with the mean-field model only. The fit of
Lee et al. DBHF calculations is not the case(see Table II—
all self-interaction constants have positive sign), due to more
distinct curvature of density dependence of the potentials

TABLE I. Parameter sets resulting from the RMF fit to DBHF
results of Machleidt and co-workers[17].

MA MB

gs
2 106.85 112.27

gv
2 180.61 204.36

gr
2 18.445 9.4932

bs −0.0025823 −0.0029820
cs 0.011529 0.013345
cv 0.015849 0.020449
LV 0.25857
x2/N 2.76 9.95

FIG. 1. Density dependence of the symmetry energy for two
different parametrization sets. Upper panel shows results for the fit
of Machleidt and co-workers DBHF results[17], with mean-field
parametrizations listed in Table I, wheres, v mesons with their
self-interactions andr mesons were used as degrees of freedom,
and both with and without inclusion of vector-meson cross interac-
tions (VCI), plotted with solid and dotted lines, respectively. The
lower panel displays analogical calculation results for the fit of Lee
et al. DBHF results[18,19], with parametrizations in Table II.

TABLE II. Parameter sets resulting from the fit of Leeet al.
DBHF calculations[18,19].

LA LB

gs
2 103.91 102.11

gv
2 147.84 146.73

gr
2 17.432 9.6697

bs 0.00097186 0.00083559
cs 0.0012694 0.0012411
cv 0.0054204 0.0051878
LV 0.18790
x2/N 1.69 2.62
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(not shown in this paper). The incompressibility of nuclear
matter is 235 MeV.

Simultaneously with binding energies fit to the symmetric
scalar and vector potentials(Fig. 3) and also to above-
mentioned proton and neutron scalar and vector potentials
for proton fraction 0.125(Fig. 4) was performed. As can be
seen, all of these potentials are reproduced satisfactorily
within several MeV.

Evaluation ofr-v cross-interaction influence on symme-
try energy and its comparison withd meson influence is pos-
sible from Fig. 5. There it is drawn density dependence of
the symmetry energy, where each of the lines is correspon-
dent to different degrees of freedom used(see Table III): HA
contains both cross interactions andd meson contribution;
then inclusion of thed meson without vector cross interac-
tion is accomplished by HB; HC considers the vector cross
interaction but withoutd meson, and finally basic model with
s and v mesons with their self-interactions andr mesons

only (HD). Vector cross interaction has significant impact on
symmetry energy, where its influence has analogical nature
as in the previous two datasets, thus supporting those results
also in the case ofd meson inclusion. It increases growth of
the symmetry energy in this case below approximately
0.13 fm−3, which is important for description of properties of
exotic nuclei near the dripline and is similar as consequences
of density dependence of the isovector couplings due to Fock
contributions, which was calculated in Ref.[23]. Above
0.13 fm−3 it decreases symmetry energy rise, thus implicat-
ing an impact on higher density behavior of matter(high
energy beam collisions, supernova explosions, and neutron
stars properties), and it is also in agreement with recent Har-
tree calculations[24], where similar high-density influence
of cross interactions was concluded. In comparison,d meson
contributes relatively slightly to the behavior of symmetry
energy—for lower and intermediate densities its contribution
is almost inconspicuous, thus not significantly affecting
properties of atomic nuclei. For higher densities in absence

FIG. 2. Density dependence of the binding energy per nucleon
for five different asymmetries from pure neutron matter to symmet-
ric nuclear matter, resulting from mean-field theory fit(represented
by lines) of Huber et al. DBHF results[20,21] (scatter symbols),
with corresponding parametrizations listed in Table III. Isoscalars
and v mesons with their self-interaction, isovectorr mesons with
(solid lines, parametrization HA) and without(dotted lines, param-
etrization HB) cross interaction withv mesons, andd mesons was
used as degrees of freedom.

TABLE III. Parameter sets resulting from the fit of Huberet al.
DBHF results[20,21].

HA HB HC HD

gs
2 90.532 86.432 91.110 87.591

gv
2 108.95 106.89 109.26 107.61

gr
2 36.681 28.795 20.804 15.335

gd2 28.739 25.170
bs 0.0043852 0.0033779 0.0044388 0.0035745
cs −0.0052045 −0.0037762 −0.0052076 −0.0039753
cv −0.0001421 −0.0010509 −0.0000385 −0.0007753
LV 0.10647 0.34805
x2/N 2.05 3.80 5.85 6.89

FIG. 3. Isoscalar potentials of symmetric nuclear matter, result-
ing from the fit of Huberet al.DBHF results[20,21], with the same
parametrization and notation as in Fig 2.

FIG. 4. Scalar and vector potentials of protons and neutrons of
the asymmetric matter with proton fractionZ/A=0.125, for the pa-
rametrization and notation identical with previous figures.
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of cross interaction it slightly increases symmetry energy.
Also this result is in concordance with recent calculations of
other authors [25]. However, the presence of cross-
interaction causes an opposite influence ofd meson—for
higher densities it softly fortifies decrease of symmetry en-
ergy growth. This leads to the conclusion thatr-v cross-
interactions seems to be an important degree of freedom
which should be used in further calculations.

IV. SUMMARY

In this work the relativistic mean-field theory was used to
obtain an effective parametrization of the properties of asym-

metric nuclear matter calculated by more fundamental Dirac-
Brueckner-Hartree-Fock theory. The energy per nucleon to-
gether with the symmetric isoscalar potentials were fitted,
and simultaneously also proton and neutron scalar and vector
potentials. Isoscalars, v mesons with their selfinteractions,
and isovectorr, d mesons withr-v cross interaction were
used as degrees of freedom and parameters of the fit. Gener-
ally a good reproduction of both the energy and the poten-
tials was reached, and thus the parameter sets are represent-
ing an effective DBHF description of asymmetric nuclear
matter at normal baryon densities applicable as well for cal-
culation of finite nuclei properties. The cross interaction be-
tweenr andv mesons turns out to improve reproduction of
properties of asymmetric nuclear matter. Additionally, it in-
creases symmetry energy in common nuclei density region,
e.g., approximately below saturation density, and decreases
this energy above saturation point. This has consequences for
properties of finite nuclei, especially with large isospin
asymmetry, and also for description of nuclear matter at
higher densities, relevant in high energy nuclear collisions
and several astrophysical processes and phenomena(e.g.,
neutron star properties and supernova explosions). Isovector
d meson also improves quality of the mean-field model, but
without such a strong impact on density dependence of sym-
metry energy. These results imply thatr-v cross interaction
is very useful for better description of nuclear matter and that
it could be important for calculations of properties of finite
nuclei with high isospin asymmetry.
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