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The low-lying spectrum of32
72Ge nucleus is constructed in the context of a deformed configuration mixing

shell model approach based on Hartree-Fock states. We use as two-body interaction the modified Kuo
effective-interaction for thef5/2pg9/2 valence space. Subsequently, the matrix elements for transitions to low-
lying excitations induced by the exoticm-e conversion operators on this isotope are calculated. This study is,
among other reasons, motivated by the recent estimations on them−→e− branching ratio,RmesA, Zd, which have
shown thatRme becomes maximum forZ<30–60, a region of the periodic table that includes the Ge isotopes.
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I. INTRODUCTION

The muon-electron conversion in nuclei,sA, Zd+mb
−→e−

+sA, Zd*, is an important and challenging electroweak pro-
cess[1–3] which violates the conservation of lepton-flavor
quantum numbersLm and Le by one unit. Recently, it has
been the subject of considerable theoretical[2,4,5] and ex-
perimental [6–10] work. From the experimental attempts
performed with the objective to “measure” the branching ra-
tio Rme of this process, stringent limits on the lepton-flavor
violation (LFV) parameters have been obtained while signifi-
cant improvements over these limits are expected in the near
future by the new m-e conversion experiments, i.e.,
SINDRUM II at PSI[6,7], MECO at BNL[8,9], and PRIME
at KEK [10]. On the other hand, the formulation of them−

→e− nucleon-level Lagrangian has been done[11] in terms
of the nucleon effective fields in a Lorentz covariant form
where all possible types of interactions—(pseudo)scalar,
(axial)vector and tensor—are included. Furthermore, the
one-body nuclear matrix elements of the basic nuclear-level
operators resulting from this Lagrangian have been com-
pactly formulated[12] and the many-body nuclear wave
functions(with definite spin and parity) describing the low-
lying nuclear excitations induced by them−→e− operators
have been deduced in the context of some nuclear methods
[shell model, quasiparticle random phase approximation
(QRPA), renormalized QRPA, etc.] for various nuclei
[13–16].

Recently, it was argued that several from the aforemen-
tioned nuclear structure methods, mostly used to investigate
nuclear matrix elements for many electroweak processes,
rely upon symmetry violating model Hamiltonians[17–19],
i.e., Hamiltonians for which symmetries such as the transla-
tional and rotational invariance, the particle number conser-
vation, the Pauli exclusion principle, etc., are not satisfacto-
rily fulfilled. As a result, spurious contaminations are

inserted into the produced nuclear spectrum(e.g., the 0+, 1−,
etc.). In some processes, such as thebb-decay,m-e conver-
sion, etc., a great part of the transition strength is predicted to
proceed via such excitations, so that the restoration of the
broken symmetries and the subsequent elimination of the
spurious admixture inserted into the calculated spectrum is
required[17–19]. In addition, the nuclear deformation(e.g.,
for axially symmetric nuclear systems) should necessarily be
considered by applying appropriate treatments and using re-
liable methods.

The present paper, in addition to the above arguments, is
also motivated by the conclusions of the recent calculations
carried out for studying the nuclear structure dependence of
the branching ratioRmesA, Zd throughout the periodic table
[20]. These results have shown that the coherent ratioRme
becomes maximum whenZ<30–60, a conclusion that may
be helpful in choosing the appropriate target nuclei for future
m-e conversion experiments. In spite of the fact that the in-
coherentsm−, e−d rate (not estimated in Ref.[20] and much
harder to be calculated) is less significant portion of the total
rate, however, it is important for estimating the experimen-
tally interesting quantity of the ratio of the coherent to the
total sm−, e−d rate. This quantity needs reliable calculations
for both coherent and incoherent nuclear strengths. As is well
known, the incoherent branching ratio can be experimentally
estimated by taking the difference between the measured and
Monte Carlo muon decay-in-orbitsm−→e−nnd spectra[6].
Theoretically, this rate can be explicitly evaluated by con-
structing the excited nuclear states included in a chosen
model space.

The region of the periodic table withZ<30–60 includes
the GesZ=32d isotopes(the most abundant are70Ge 21.2%,
72Ge 27.7%, and74Ge 35.9%). In the present work, we take
this advantage, first, to construct the low-lying spectrum of
the rather deformed30

72Ge nucleus(it presents moderate de-
formation having quadrupole deformation-parameterb2
=−0.214) by using the deformed Hartree-Fock(DHF)
method[21–23], and, second, to calculate its incoherent and
coherentsm−, e−d transition matrix elements. This method
provides, in general, a good description of the low-lying
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spectroscopic properties of even-even, odd-even, and odd-
odd nuclear systems and over the last two decades it has
been applied to several nuclei in theA<60−100 region
[21–23]. The restoration of some symmetry violations, men-
tioned before, in the DHF method may automatically be in-
corporated. Moreover, the DHF method, by employing as
two-body interaction a modified Kuo effective interaction in
the f5/2pg9/2 active space, has good success in analyzing the
band structures seen in manysNÞZd nuclei, such as even-
even isotopes of Ge, Kr, Sr, etc.[21]. This means that, the
nuclear wave functions of the DHF are well tested and the
confidence level of the obtained results may be high in a
region where the ratioRme takes the largest value[20]. In
view of these events, it would be interesting to examine the
predictions of the DHF regarding the exoticm-e conversion
matrix elements(coherent and incoherent) in the 72Ge iso-
tope and compare them with the existing results obtained by
single Slater determinant calculations(closure approxima-
tion) [24], and results obtained by using RPA methods[16].
We remark that, in the sets of nuclei of these studies
[16,20,24] only 72Ge from the Ge isotopes is included.

The paper, is organized as follows. In Sec. II, we present
in brief the formalism, first, for them→e conversion nuclear-
level operators and then for their transition matrix elements
within the deformed HF method. The calculated spectrum of
72Ge and them-e conversion transition matrix elements are
presented and compared with previous results in Sec. III, and
finally (Sec. IV) the extracted conclusions are summarized.

II. FORMALISM OF m2\e2 TRANSITION MATRIX
ELEMENTS IN THE DHF

A. The basic nuclear-level operators

In order to write down at nuclear level the relevant opera-
tors describing the assumedm−→e− mechanism, one starts
from a nucleon-level Lagrangian. Here we use the general
effective Lagrangian written in a Lorentz covariant form
with isospin structure as[11]

Lef f
N =

GF

Î2
o

A,B,C,D
f jm

AsaAB
s0dJs0d

Bm + aAB
s3dJs3d

Bmd + jCsaCD
s0d Js0d

D

+ aCD
s3d Js3d

D d+ jmnsaT
s0dJs0d

mn + aT
s3dJs3d

mndg, s1d

sit refers to the nonphotonicm-e mechanisms shown in
Fig. 1d. In Eq. s1d the symbols areA, B=hA, Vj, C, D

=hS, Pj, with S standing for scalar,V for vector, A for
axial-vector,P for pseudoscalar, andT for tensor interac-
tions sthe coefficientsalm

skd contain the couplings of the
specific modelf11gd. The isoscalarJs0d and isovectorJs3d
nucleon currents are defined as

Jskd
Vm = NgmtkN, Jskd

Am = Ngmg5tkN, Jskd
S = NtkN, s2d

Jskd
P = Ng5tkN, Jskd

mn = NsmntkN,

wherek=0, 3 andt0; Î. The leptonic currentsjm are de-
scribed in Ref.f11g.

Then the formulation of the nuclearm−→e− operators is
usually done within the impulse approximation, by carrying
out a multipole decomposition on the hadronic current-
density matrix elements. This multipole analysis, assuming
conserved vector current theory, leads to seven types of basic
single-body multipole operators(they are denoted asTi,M

J , i
=1, 2, .. ., 7) [12]. These operators are given in terms of the
projection functions

MM
J sr d = dLJjLsrdYM

L sr̂d, M M
sL1dJsr d = jLsqrdYM

sL1dJsr̂d.

s3d

They involve the spherical Bessel functionsjLsrd and the
spherical HarmonicsYM

L sr̂d or the vector spherical Har-
monics

YM
sL1dJsr̂d = o

m,m8

kLm1m8uJMlYm
L sr̂dq̂m8. s4d

r̂ and q̂ are unit vectors in the directions ofr and q,
respectively. The magnitude of the three-momentum
transfer uqu=q is related to the nuclear excitation energy
Ex as

q = mm − eb − Ex, s5d

wheremm is the muon mass,eb is the muon atomic binding
energy andEx is the excitation energy of the nucleus.
Equations5d shows that them−→e− operators are strongly
momentum dependent.

The matrix elements of the fundamental single-particle
operators obtained from the decomposition procedure,Ti

JM,
1=1, 2, .. ., 7, in a harmonic oscillator basis can be cast in
closed analytical forms as[12]

k j1iT̂Ji j2l = e−yyL/2 o
m=0

nmax

Pm
J ym, y = sqb/2d2 s6d

where j i ;snil id j i and

nmax= sN1 + N2 − Ld/2, s7d

with

Ni = 2ni + l i .

The integerL that appears in Eqs.s6d and s7d depends on
the specific operatorTi

JM. The coefficientsPm
J are, in gen-

eral, simple rational numbers for the diagonal matrix ele-
ments of Eq.s6d, and square roots of simple rational num-
bers for the nondiagonal onesf12g.

FIG. 1. Diagrams contributing tom−→e− conversion:(a) Photon
exchange, and(b) four-fermion contact interaction(nonphotonic
mechanisms) mediated by heavy particles(W bosons, Higgs par-
ticles,s-fermion, etc.).
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B. The main ingredients of the DHF

The method employed in this work has comprehensively
been discussed previously[21–23]. Here we provide in brief
its essential ingredients required for our purposes. Assuming
an axially symmetric nuclear regime, the construction of the
many-body wave functions for the initialuJi

pl and final uJf
pl

states needed for a partialm-e conversion rate, proportional
to matrix elements of the type,

Mi→f , ukJf
puÔM

J uJi
plu2,

fthe operatorsÔJ
M are defined below in Eq.s13dg in the

framework of the DHF proceeds with the following steps.
(i) At first, one chooses a model space consisting of a

given set of single-particle orbitsull and the appropriate two-
body effective interaction matrix elements.

(ii ) By solving the axially symmetric HF single-particle
equations self-consistently, the lowest-energy prolate(or ob-
late) intrinsic state(an antisymmetrized product of the HF
orbits ull denoted asuxKl) for the nucleus in question is ob-
tained.

(iii ) The various excited intrinsic statesuxKsmdl are ob-
tained by making particle-hole(p-h) excitations over the
lowest-energy intrinsic state(lowest configuration) followed
by a constrained HF calculation(tagged HF) for each of
these states.

(iv) Then, because the HF intrinsic nuclear statesuxKsmdl
do not have definite angular momenta, a projection on good
angular momentum statesufMK

J smdl is required.
(v) Finally, for practical purposes one has, in general, to

normalize the good angular momentum statesufMK
J l for each

J and obtain a set of orthonormalized vectorsuFM
J l.

In order to, furthermore, explain the above steps, we make
now some additional remarks. Since the nucleus is assumed
to be axially symmetric, each intrinsic state has a definite
azimuthal quantum numberK and is denoted byuxKsmdl,
where the indexm counts the intrinsic states having the same
K. Apparently, the statesufMK

J smdl are antisymmetrized prod-
ucts of the deformed single particle orbitsull, which in our
present work are chosen to be shell model orbits(see Sec.
II C). As a consequence, they do not have definite angular
momentum but they are linear combinations of states with
good angular momentum.

States of good angular momentum are provided prefer-
ably via the projection method, i.e., by applying with the
angular momentum projection operator

PMK
J =

2J + 1

8p2 E dVDMK
J*

sVdRsVd s8d

on the intrinsic statesxKshd, whereV=sa, b, gd represent
the Euler angles,RsVd represent the known general-
rotation operator,

RsVd = exps− iaJzdexps− ibJydexps− igJzd,

and the functionsDMK
J sVd are defined as

DMK
J sVd = kJMuRsVduJKl.

The normalized states of good angular momentumJ ob-
tained via this procedure take the form

ufMK
J shdl =

2J + 1

8p2ÎNJK
E dVDMK

J*
sVdRsVduxKshdl, s9d

whereNJK is the normalization constant whichsassuming
axial symmetryd is given by

NJK =
2J + 1

2
E

0

p

db sin bdKK
J sbdkxKshdue−ibJyuxKshdl.

s10d

The functionsdKK
J sbd are the diagonal elements of the ma-

trix dMK
J sbd=kJMue−ibJyuJKl.

In the case when the overlap matrix constructed from the
good angular momentum statesufMK

J l, i.e., the matrix

NK1h1,Kh
J = kfM1K1

J sh1dufMK
J shdl, s11d

is nondiagonalfwhich means thatufMK
J shdl are nonor-

thogonalg, a diagonalization of the matrixNK1h1,Kh
J is car-

ried out to give the orthonormal vectorsFM
J shd. Again, the

index h distinguishes between different states having the
same angular momentumJ, by writing

uFM
J shdl = o

K,a
SKh

J sadufMK
J sadl.

For more details and explanations of the symbols, the
reader is referred to Refs.f21–23g.

It should be noted that in the DHF method one considers
all low-lying intrinsic states in the band mixing calculations.
In this way, the pairing correlations, which in other methods
(RPA, QRPA, etc.) are explicitly taken into account, are in-
cluded in the formalism.

C. The m-e conversion matrix elements in the DHF

The deformed orbitsull entering the HF single-particle
equations are expanded to a chosen(spherical) basis set of
statesujl. In the present work, the two-body interaction ma-
trix elements are available in the shell model representation.
For basis statesujl we use spherical harmonic oscillator shell
model states asujl;usnldjktl. In our axially symmetric solu-

tions the orbitsull are eigenstates of theĴz operator and the
latter expansion is limited to states with a givenkl, so as we
have

ull = o
j

cjkl
u jkltll s12d

where j denotes thessphericald single-particle angular mo-
mentum andkl its projection along the symmetry axis
snotice thatkl is not summed over since this is a con-
served quantityd. In Eq. s12d the index tl distinguishes
proton and neutron orbits, but sincem-e conversion is a
charge-preserving process, its operators do not mix proton
and neutron states, and henceull=o j cjkl

u jkll. The expan-
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sion coefficientscjkl
are determined via the iterational

procedure.
In the case of axially symmetric nuclear systems, the

evaluation of the required reduced matrix elements of the
m-e conversion operators

ÔM
sl,sdJ = o

l=1

n

T̂M
sl,sdJsld, s13d

where n=ZsNd, for proton sneutrond states, relies on the
formula

kfK1

J1 smdiÔsl,sdJifK2

J2 shdl

=
2J2 + 1

2
Î 2J1 + 1

NJ1K1
NJ2K2

o
n
F J2 J J1

K2 n K1
G

3E
0

p

db sin bdK1,K2
J1 kxK1

smdue−ibJyÔn
sl,sdJuxK2

shdl.

s14d

In the latter equation, the square bracketf g represents the
Clebsch-Gordon coefficient and the matrix element of the
kernel is written asf22g

kxK1
smdue−ibJyÔn

sl,sdJuxK2
shdl

= o
i,k=1

n

s− 1di+kDi,k
n−1o

j i,jk

s− 1ds3j i−jk−nd

s2jk + 1d1/2

3cjimi

* cjkmk
dmi,mk+n

j i F j i J jk
mk + n − n mk

G
3ksnil id j iuT̂n

sl,sdJusnklkd jkl. s15d

This can be provedf22g by noting that

kxK1
ue−ibJyuxK2

l = detfMilsbdg, s16d

where

Milsbd = kliuexps− ibJydulll = o
j

cjki

* cjkl
dkikl

j sbd. s17d

In Eq. s15d, Di,k
n−1 stand for the determinants made of the

matrix elements given by Eq.s17d. They are determinants
of rank sn−1d obtained from then3n determinant given
in Eq. s16d by removing theith row andkth column. The
single-particle reduced matrix elements of the type

k j iiT̂sl,sdJi jkl entering Eq.s15d are given in Eq.s6d.

III. RESULTS AND DISCUSSION

Let us, first, describe shortly the calculational procedure
followed in the context of DHF method[21] in order to
obtain the low-lying spectrum.

A. Construction of the low-lying spectrum within DHF

The model space employed for the calculations comprises
as active orbits the 1p3/2, 0f5/2, 1p1/2, and 0g9/2 single-particle
levels, assuming that the56Ni nucleus plays the role of an

inert core. The spherical single particle energies of these or-
bitals relative to 56Ni are taken as 0.0, 0.78, 1.08, and
4.5 MeV, respectively(same for protons and neutrons). As
effective interaction matrix elements in the regionA
,70–80, several authors[21–23] used those of Kuo which
have subsequently modified[23]. This effective interaction
has been successfully used in describing many nuclear prop-
erties and important features of the nuclei in this region.

The ground statesg.s.d of 32
72Ge in this method corre-

sponds to the lowest 0+ level obtained from the lowestK
=0+ intrinsic state.

The testing of the DHF g.s. wave function is illustrated in
Fig. 2, where the lowest prolate Hartree-Fock single-particle
spectrum for72Ge is shown. In this nucleus, the protons are
distributed in thep-f single-particle orbits, but two neutrons
occupy theg orbit (there is a gap of about 1 MeV above the
neutron Fermi surface).

The good angular momentum states, which are projected
out of this intrinsic HF state, are compared with the experi-
mental levels of the ground state band in Fig. 3. We see that,
with the exception of the 2+→0+ separation(its difference
from the experimental value may be due to the nonexplicit
consideration of pairing correlations), the relative energies of
all the levels agree reasonably well with experiment. We
have considered only the levels up toJ=6+. For levels with
J=8+ and higher the angular momentum alignment effects
become important and one should carry out full spectro-
scopic calculations. On the other hand, for studying the tran-
sition matrix elements of the exoticsm−, e−d conversion pro-
cess, such high-lying levels are, in general, not important
[15] (except the dipole and spin-dipole resonances which,
however, cannot be studied with our restricted model space).
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FIG. 2. The lowest prolate Hartree-Fock single-particle spec-
trum for 72Ge. The single particle levels are characterized by twice
the projection of the angular momentum to the symmetry axis of the
nucleuss2kid. The HF energyE is in MeV and the mass quadrupole
momentQ is units of the square of the oscillator parameterb. In the
notationK=0+, the totalK-quantum number of the intrinsic state is
K=oi ki=0, where the sum runs over occupied states, and the parity
is p= +1. Protons are represented by circles and neutrons by
crosses.
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In addition to the ground state band, we have considered
the following four excited intrinsic positive parity states.

(1) One excited intrinsic state withK=0+ is obtained by
promoting two valence protons tok=3/2− orbital and then
performing a “tagged” HF calculation in which the occu-
pancy of these two protons is held fixed and for the rest of
the particles a self-consistent HF calculation is performed.

(2) We have considered two excited intrinsic states, one
with K=1+ and the other withK=2+, produced by the exci-
tation of a valence proton to thek=3/2− level and then per-
forming a “tagged” HF calculation.

(3) We have obtained anotherK=2+ excited intrinsic state,
by exciting a neutron fromk=1/2+ orbit to k=3/2+ orbit.
Good angular momentum states are projected from each of
these intrinsic states and these good angular momentum
states are used for evaluating them-e conversion matrix ele-
ments discussed below(see Sec. III C).

In our model space we can also obtain negative parity
intrinsic bands(their contribution tom-e strengths in QRPA
calculations was found to be very important[18]) in two
ways: by exciting either a neutron or a proton fromp- f orbit
to g9/2 orbit. The negative parity intrinsic band obtained by
exciting a proton tog9/2 orbital lies high in energy, at around
5 MeV. The neutron excited negative parity band lies at
about 2.2 MeV. In each of the above cases tagged HF calcu-
lation is carried out to obtain the excited intrinsic states.

In summary for our calculation we consider the following
bands.

(i) The lowestK=0+ band, which gives on angular mo-
mentum projection the lowestJ=0+, 2+, 4+, etc., levels.

(ii ) The first excitedK=0+ intrinsic band, which on angu-
lar momentum projection gives also the excited levelsJ
=0+, 2+, 4+, etc.

(iii ) Two K=2+ intrinsic bands obtained, respectively, by
neutron and proton excitation. These intrinsic bands give the
excitedJ=2+, 3+, 4+, etc., levels of theg band.

(iv) The K=1+ intrinsic band, which gives the levelsJ
=1+, 2+, 3+, etc. None of these levels has been observed even
though they appear in the theoretical spectrum at an excita-
tion energy about 1 MeV.

(v) One K=1− negative parity band, which on angular
momentum gives the levelsJ=1−, 2−, 3−, 4−, . . .. As discussed
earlier, this band is obtained by exciting a valence neutron
from p-f orbit to g9/2 orbit. These levels lie at an excitation of
about 2.2 MeV.

(vi) One K=0− intrinsic band, which is obtained by pro-
moting a valence proton fromp-f orbit to g9/2 orbit. The
projected levels of this band lie very high in energy, at
around 5 MeV. Experimentally a negative parity band has
not been observed for this nucleus. However some negative
parity levels have been identified at an excitation of around
2.5 MeV.

B. Coherent m-e matrix elements

The coherent mode is the only potentially measured di-
rectly m-e conversion channel(its rate is currently measured
at the SINDRUM II [6] and MECO[8,9] detectors and is
expected to be measured in the future PRIME experiment at
KEK (Japan) [10,20]). Also, on the theoretical side, mostly
the coherent contribution is employed for the estimation of
the branching ratioRme. It is utilized in combining nuclear
physics input with experimental limits onRme, to put con-
straints on the LFV parameters entering them-e conversion
effective currents in modern gauge theories[11,20].

The scalar and vector g.s.→g.s. transition matrix ele-
ments, if the corresponding couplings of the prevailing
mechanism inm-e conversion are known to a rather good
approximation(depending on the properties of the nuclear
target), can be determined by the proton(FZ) and neutron
(FN) nuclear form factors[25]. In Table I, we quote the re-
sults forFZ andFN of 72Ge obtained with the deformed HF
(present work) and compare them with the results of(i) the

-1.0

0.0

1.0

2.0

3.0
E

X
C

IT
A

T
IO

N
 E

N
E

R
G

Y
 (

M
eV

)

THEORY EXPT

0

2

4

6+

+

+

+ 0

2

4

6+

+

+

+

72 Ge

FIG. 3. Theoretical and experimental ground state band spec-
trum of the72Ge nucleus. These levels correspond to the lowestK
=0+ intrinsic state.

TABLE I. Proton FZ and neutronFN nuclear form factors, obtained with “spherical” and “deformed”
models in the case of72Ge nucleus. The corresponding coherent matrix elements for them-e conversion in
photonic(g-exchange) and nonphotonic(W-exchange) mechanism are also shown.

72Ge Expt. Independent particle SM QRPA[16] RQRPA[16] DHF (this work)

bh.o. sfmd 2.04 2.07 2.07 1.90
FZ 0.443 0.456 0.472 0.441 0.449
FN 0.435 0.451 0.422 0.429
Mcoh

2 sg−excd 200.9 212.9 169.9 199.1 206.0

Mcoh
2 sW−excd 595.8 477.1 558.9 623.2
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independent particle shell model calculations using a single
Slater determinant[24], (ii ) the normal QRPA[15], and(iii )
the renormalized QRPA[16] (previous works). We see that
the proton and neutron nuclear form factors agree rather well
among each other and with experiment. It is, however,
worthwhile noting that, in DHF the h.o. size parameterb is
treated rather as a parameter determined by the variational
procedure and not obtained by the known semiempirical for-
mulas(see discussion in Refs.[15,18]) as is the case in other
methods. The value obtained,b=1.90 fm, is quite smaller
than those of the other methods and slightly different than
that given by the standardA1/6 parametrization. If in DHF we
use the value of RPA and QRPA calculations[15,18], b
=2.07 fm−1 (see Table I), at q=mm−eb=0.525 fm−1 (the co-
herent momentum transfer of72Ge), we obtain proton and
neutron form factors equal toFZ=0.392 andFN=0.371, re-
spectively, values which are not in good agreement with the
experimental data. Subsequently, the obtained in DHF coher-
ent matrix elements are appreciably smaller than those cor-
responding to the valueb=1.90 fm.

In Table I, the coherent matrix elementsMcoh
2 of the

present DHF calculations and those of Ref.[15,16,24] refer
to the photonic andW-boson exchange(nonphotonic)
mechanisms. As can be seen, the results of DHF for the
g-exchange process lie in-between those given by the other
methods[15,16,24], but those for theW-exchange mecha-
nisms are a bit larger. Since, neutrons do not participate in
the photonic mechanism, the DHF method gives(for 72Ge) a
larger neutron contribution compared to other methods. We
should mention, however, that, the neutron contribution for
the photonic diagrams is assumed to be zero by definition of
the specific isospin dependence of the vector-type operator in
the m-e process, which(at the quark level) is determined by
the ratio of isovector to isoscalar couplings[parameterb of
Eq. (2) of Ref. [13])]. The axial vector contribution is van-
ishing for the 0+ g.s. of the even-even72Ge nucleus.

C. Incoherent m-e matrix elements

In this work we performed detailed calculations for the
dominantm-e matrix elements(scalar, vector, and axial vec-
tor). Extensive results including contributions from other op-
erators (for isotopes in the region 30øZø60, where the
branching ratioRme takes the largest value[20]) will be pro-
vided by applying special QRPA treatments elsewhere[26].

The incoherentm-e matrix elements are of the form

Sa = o
f
S qf

mm
D2E dq̂f

4p
ukJl

p, MuVaug.s.lu2, f ; sJl
p, Md.

s18d

In Sa sSS for the scalar,SV for the vector andSA for the
axial vector operatorsVa f13,14gd partial contributions
coming from all excited states produced by our DHF
model space are summed over. Since theug.s.l of 72Ge
nucleus corresponds to the lowest 0+ level obtained from
the lowestK=0+ intrinsic state, one important category of
the statesufl will correspond to the excited levels pro-
jected from thisK=0+ intrinsic state. The statesufl, how-
ever, can in addition be deduced from the good angular
momentum states projected out of other excited intrinsic
states. In Table II, the incoherent matrix elements listed
represent the sum of the contributions of all statesswith
energies up to about 5 MeV and spin up toJp=6+d pro-
duced as described in Sec. III A. We see that the main
incoherent rate originates from the excitations of the g.s.
band and that the maximum contribution comes from the
first excited state, a 2+ state that is reproduced very well,
at the experimental energy value by our DHF model.

An interesting feature comes out of the calculated
strengths for negative parity bands. In previous RPA calcu-
lations, such excitations(especially the 1− states) provided a
great portion of the incoherent rate. In the DHF results, the

TABLE II. Incoherent transition matrix element of theTsl,sdJ operators for selected spin-isospin combi-
nations. States not appearing in the first column contribute less than 10−3 for all components.

DHF excited states Photonic mechanism Nonphotonic mechanism
Jp Origin Vector Vector Axial-vector

2+ LowestK=0+ g.s. band 0.997 6.245 0.0002
2+ g band 0.035
4+ g band 1310−5 0.001
0+ First excitedK=0+ band 4310−4 0.006
2+ g band 0.114 0.438
4+ g band 0.001 0.005
2+ K=1+ band 0.018 0.073 0.005
3+ K=1+ band 0.011
4+ K=1+ band 2310−4 0.0002
3− Band (v) 0.0 0.001 1310−5

2− Band (vi) 0.016 0.178
3− Band (vi) 0.016 0.057 0.003
4− Band (vi) 0.016 0.0002

Total 1.157 6.826 0.201
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contribution of all negative parity states included in the trun-
cated model space differs significantly from that obtained by
RPA methods. This may be attributed to the following rea-
sons. The sphericalf7/2 orbital, which does not contribute to
the spectroscopic properties of nuclei in the region of Ge
isotopes[21], is not included in our valence space. Thus,
several 1− states, which in RPA methods may give significant
incoherent matrix elements, are not constructed in our DHF
model. Essentially, the rate that proceeds via the negative
parity excitations in the present calculations comes from the
K=1− band [case(v) of Sec. III A]. The only Jp=1− state
included into the sum of Eq.(18) is the one produced when
a neutron from theg9/2 orbit is excited(that produced when a
proton is excited from theg9/2 orbit lies much higher). This is
why the comparison with RPA results is worst for the pho-
tonic mechanism(only protons contribute) than for the non-
photonic one(see Table III). The general characteristics of
the DHF transition matrix elements resemble the(spherical)
shell model ones[13,14] where also reduced model space
was used(in the case ofs-d shell model results for27Al [13]
the negative parity contributions are not estimated).

At this point, we find it interesting for the reader to
shortly discuss the main features of our present method in
conjunction with the advantages and drawbacks of various
methods employed up to now to investigate the incoherent
m-e rate. Up to now, transition rates to excited nuclear states
for the m-e reaction have been studied by employing several
methods.

(i) Closure approximation(in the context of the indepen-
dent particle shell model[24] and QRPA[15]) which pro-
vides the average total rate to all excited states(including the
continuum spectrum) of the final nucleus[15].

(ii ) Relativistic Fermi gas approach utilizing a relativistic
Lindhard function to compute the average incoherent rate for
a nuclear matter system followed by a projection into finite
nuclei via a local density approximation[27].

(iii ) Sum over partial transition strengths evaluation
(state-by-state calculations) of the incoherent rate.
The excited nuclear states are explicitly constructed by uti-
lizing reliable nuclear structure models such as the QRPA,
shell model, etc.[13–15].

The method used in the present paper belongs to the latter
category. From the above description it becomes clear that
methods(i) and (ii ) may estimate the part of the rate that
goes to the continuum but they are not appropriate for evalu-
ating the individual contribution of each accessible channel.
On the other hand, RPA, QRPA, shell model(SM), DHF,
etc., offer the possibility of detailed term-by-term investiga-
tion of the individualsm−, e−d conversion channels included
in a chosen valence space. Obviously, the contribution of the
continuum spectrum, which includes the giant dipole reso-

nances, could hardly be studied within methods such as the
usual SM, ordinary RPA, as well as in our DFH method. It
could, for example, be studied in the context of the con-
tinuum RPA[28] or the large scale shell model calculations
developed recently[29]. The latter method was used very
successfully in the study of stable and exotic nuclei in the
region of Ge isotopes(fp and fpg shell nuclei) using as inert
core either48Ca or 56Ni as is our case here[30,31]. Such
detailed calculations may shed light on the question of the
level of spuriosity of the 1− multipole states. For RPA meth-
ods the 1− states contribute a great portion into the total
incoherentm-e rate, but recently it has been found by Bes
and Civitarese[19] that this contribution for some nuclear
systems is rather fully spurious.

As is known, spectroscopic calculations like our transition
matrix elements of Eq.(18), which rely on an inert core,
consider effective charges for protonssepd and neutronssend.
Since, there are no methods of calculating them starting from
first principles, they have to be fitted or adjusted. Thus, their
values depend on the effective interaction and the active
model space used. In previous calculations[21] performed
with the modified Kuo interaction in thef5/2pg9/2 valence
space, i.e., same as in the present work, the effective charges
ep=1.6e and en=1.0e have been used for all nuclei in the
upperp-f shell. These effective charges satisfactorily explain
the BsE2d values of a large number of nuclei in this region
[21]. In the present calculations of the transition strengths for
72Ge use of the above values for the effective chargesep and
en has been done both for photonic andW-exchange mecha-
nisms.

Before closing it is worth mentioning that the shape of a
nucleus is unambiguously determined from the measurement
of the static quadrupole moment. In theA,80 region, such
measurements are quite difficult. In Ref.[32], the calculated
quadrupole deformation parameter for72Ge was found to be
b=−0.214, which corresponds to an oblate nuclear shape.
However, if one follows this theoretical result assuming that
the shape of the nucleus72Ge is oblate, the description of the
spectroscopic data is very poor compared to the prolate case.
Furthermore, this is, in addition, not supported by the fact
that the only nucleus for which there is some indirect experi-
mental evidence regarding oblate shape is the68Se nucleus
[33]. For this reason, we assume a prolate shape for72Ge,
and in Fig. 2 we present the lowest prolate single-particle
energies.

IV. SUMMARY AND CONCLUSIONS

We have calculated the low-lying spectrum of32
72Ge

nucleus in the context of a deformed configuration mixing
shell model method based on Hartree-Fock states by using as

TABLE III. Deformed HF results for coherent, incoherentsMinc
2 =SV+3SAd and totalsMtot

2 =Mcoh
2 +Minc

2 d
matrix elements in32

72Ge. The photonic andW-exchange diagrams are included.

Mechanism SVscohd SAscohd Mcoh
2 SVsincd SAsincd Minc

2 Mtot
2

g exchange 206.0 206.0 1.2 1.2 207.2
W exchange 623.2 623.2 6.8 0.2 7.0 630.2
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two-body interaction the modified Kuo effective interaction
for the f5/2pg9/2 valence space. Using these axially deformed
HF wave functions, we have performed calculations for the
coherent and incoherentm−→e− transition matrix elements
of the 72Ge nucleus. This moderately deformed isotope lies
in the region of the periodic table where the branching ratio
Rme takes the largest value.

From comparison with previous results of the literature
where the nuclear deformation was not considered in72Ge,
we conclude the following. In the description of the coherent
m−→e− channel all methods do not show appreciable differ-
ences. However, in the case of the incoherent rate the DHF
gives very small matrix elements especially in the case of the
photonic mechanism. This is mainly due to the fact that the
treatment of this nucleus and the spectra derived by DHF and
RPA methods are different. Also, the model space of QRPA
calculations is much larger than that of the DHF, so that a
state-by-state comparison of the incoherent contributions ob-
tained by the two methods cannot be directly done for all

accessible individual channels.
The fact that the interaction used in the present DHF cal-

culations is well tested in the region of Ge isotopes provides
us with quite high confidence about the obtained results for
the low-lying transitions induced by them-e operators. How-
ever, detailed calculations for transitions to higher excita-
tions not derived by our reduced model space and especially
to the continuum spectrum(including the giant dipole and
spin dipole resonances) are still needed. This requires special
treatment(e.g., large scale shell model, continuum RPA, etc.)
due to the high sensitivity of them−→e− matrix elements and
its use as input to severely constrain the parameter space of
elementary models predicting LFV processes.
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