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An improved prescription for choosing a transformed harmonic-oscill#iddO) basis for use in
configuration-space Hartree-Fock-Bogoliub@¥B) calculations is presented. The new HFB+THO frame-
work that follows accurately reproduces the results of coordinate-space HFB calculations for spherical nuclei,
including those that are weakly bound. Furthermore, it is fully automated, facilitating its use in systematic
investigations of large sets of nuclei throughout the periodic table. As a first application, we have carried out
calculations using the Skyrme force SLy4 and volume pairing, with exact particle-number projection following
application of the Lipkin-Nogami prescription. Calculations were performed for all even-even nuclei from the
proton drip line to the neutron drip line having proton numbgrs2, 4, ...,108 and neutron numbeks
=2,4,...,188. We focus on nuclei near the neutron drip line and find that there exist numerous particle-bound
even-even nuclegfi.e., nuclei with negative Fermi energjethat have at the same time negative two-neutron
separation energies. This phenomenon, which was earlier noted for light nuclei, is attributed to bound shape
isomers beyond the drip line.
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I. INTRODUCTION (HO) basis is particularly attractive because of the simple

The development of experimental facilities that acceleraté)mp.ert'es. of oscillator states. Therg have been many
radioactive ion beam,2] has opened up a window to many conﬁgu_rauon-space HFB+HO calculations rgpor_ted, elt_her
nuclei that were heretofore inaccessible. With these new fa€mploying Skyrme forces or the Gogny effective interaction
cilities and the new detector technology that is accompanyt11-14, or using a relativistic Lagrangiafil5,1§. This
ing them, it is becoming possible to study the properties ofmethodology has proven particularly useful when treating
nuclei very far from the valley oB stability, all the way out nuclei in or near the valley of stability. For nuclei at the drip
to the particle “drip lines” and perhaps even beyond. lines, however, the HFB+HO expansion converges slowly as

Much work is now in progress to develop appropriatea function of the number of oscillator shell6], producing
theoretical tools for describing nuclei in these exotic regimesvave functions that decrease too steeply at large distances.
[3]. A proper theoretical description of such weakly boundThe resulting densities, especially in the pairing channel, are
systems requires a careful treatment of the asymptotic part @rtificially reduced in the outer region and do not reflect cor-
the nucleonic density. An appropriate framework for theserectly the pairing correlations of these weakly bound nuclei.
calculations is Hartree-Fock-BogoliuboyHFB) theory, A related approach that has recently been proposed is to
solved in coordinate representatipf-6]. This method has instead expand the quasiparticle HFB wave functions in a
been used extensively in the treatment of spherical systemmmplete set of transformed harmonic-oscillafbHO) basis
but is much more difficult to implement for systems with states[17-19, obtained by applying a local-scaling coordi-
deformed equilibrium shapd3—9]. nate transformatiofLST) [20—22 to the standard HO basis.

In the absence of reliable coordinate-space solutions tdhe THO basis preserves many useful properties of the HO
the deformed HFB equations, it is useful to consider insteadvave functions, including its simplicity in numerical algo-
the configuration-space approach, whereby the HFB solutiorithms, while at the same time permitting us to incorporate
is expanded in a single-particle basis. One approach has be#re appropriate asymptotic behavior of nuclear densities.
to use a truncated basis composed partly of discrete localized Applications of this new HFB+THO methodology have
states and partly of discretized continuum and oscillatingoeen reported both in the non-relativisi,19 and relativ-
stateq7,8,10. Because of the technical difficulties in imple- istic domaing17]. In all of these calculations, specific global
menting this method, it has typically been restricted to in-parametrizations were employed for the scalar LST function
clude states in the continuum up to at most several MeV. Ashat defines the THO basis. There are several limitations in
a consequence, such an approach should not be able to drich an approach, however. On the one hand, any global
scribe adequately the spatial properties of nuclear densities parametrization of the LST function will of necessity modify
large distances. properties throughout the entire nuclear volume, in order to

An alternative possibility is to expand in a basis of spa-improve the asymptotic density at large distances. This is not
tially localized states. Expansion in a harmonic-oscillatordesirable, however, since the HFB+HO results are usually
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reliable in the nuclear interior, even for weakly bound sys-tons in the system, which determine the two correspond-
tems. In addition, because of the need to introduce matchining chemical potentialg, and\,.
conditions between the interior and exterior regions, a global In coordinate representation, the HFB approach consists
LST function will invariably have a very complicated behav- of solving Eq.(2.1) as a set of integrodifferential equations
ior, especially around the classical turning point, making itwith respect to the amplitude$(g,, r) andV(E,, r), both of
difficult to simply parametrize. Perhaps most importantly, thewhich are functions of the position coordinateThe result-
minimization procedure that is needed in such an approach tmg density matrix and pairing tensor then read
optimally define the basis parameters is computationally very
time consuming, especially when a large number of shells is pr,r )= > V(E,r)V(E,r"), (2.29
included, making it very difficult to apply the method sys- 0=<En=<Emax
tematically to nuclei across the periodic table.

In t.he present work! we propose a new prescription for Kt r)= S VI(E, DUE, ). (2.2b)
choosing the THO basis. For a given nucleus, our new pre- 0=En=Eqnan
scription requires as input the results from a relatively simple ] o ] o
HFB+HO calculation, with no variational optimization. The Typically, the HFB continuum is discretized in this approach
resulting THO basis leads to HFB+THO results that almosty putﬂng_the system in a large box with appropriate bound-
exactly reproduce the coordinate-space HFB results foy conditions[6].

spherical[5] and axially deformed10] nuclei and are of In the configurational approach, the HFB equations are
comparable quality to those of the former, more Comp|ex,solved by matrix diagonalization within a chosen single-
HFB+THO methodology. particle basigy,} with appropriate symmetry properties. In

Because the new prescription requires no variational opthis sense, the amplitudés, andV, entering Eq(2.1) may
timization of the LST function, it can be readily applied in b€ thought of as expansion coefficients for the quasiparticle
systematic studies of nuclear properties. As the first sucgtates in the assumed basis. The nuclear characteristics of
application, we carry out a detailed study of nuclei betweerinterest are determined from the density matrix and pairing
the two-particle drip lines throughout the periodic table, us-t€Nsor,
ing the Skyrme force SLy#23] and volume pairing19]. In .
order to restore good particle number, we apply the Lipkin- p(r, 1) =2 pagthaD)ip(r), (2.39
Nogami (LN) prescription [24-29 followed by exact ap
particle-number projectiotPNP) [30].

‘The structure of the paper is the following. In Sec. Il, we k(r,r')y=> Koo D)W1), (2.3b
briefly review the HFB and LN methods, noting several fea- aB
tures particular to its coordinate and configurational repre- . . .
sentation. In Sec. Ill, we introduce the THO basis and ther\{Vh'Ch.are exprgssed n teirms of the basis stgfeand the
formulate our new prescription for the LST function. The associated basis matrix elements as

results of systematic calculations of even-even nuclei are re- _ *
ported in Sec. 1V, with special emphasis on those nuclei that Pap = 0<E2<E VanE)Vpn(En), (249
are at the neutron drip line and just beyond. Conclusions and o
thoughts for the future are presented in Sec. V. )
Kap = 0 EEE Van(En)UBn(En)- (24b)

Il. OVERVIEW OF HARTREE-FOCK-BOGOLIUBOV

THEORY AND THE LIPKIN-NOGAMI METHOD In configuration-space calculations, all quasiparticle states
have discrete energids,.
The results from configuration-space HFB calculations
V§hould be identical to those from the coordinate-space ap-
oach when all the statefs, from a complete single-particle

In this section, we review the basic ingredients of Hartree
Fock-Bogoliubov theory and the Lipkin-Nogami method fol-
lowed by particle-number projection. Since these are by no
standard tools in nuclear structure, we keep the presentati . . o .
brief and refer the reader to Rg80] for further details. asis are taken into account. Of Course, th's. IS never p055|bl_e.

HFB is a variational theory that treats in a unified fashion" the presence of truncation, it is essential that the basis

mean-field and pairing correlations. The HFB equations cat‘?gzd.ucz ra%']q converg;te?ce, ISIC') t.rt'a:. rehablethresults bcan ]E)e
be written in matrix form as obtained within computational limitations on the number o

basis states that can be included.
h-X A U, U, The LN method serves as an efficient method for restor-
(_ AN —h o+ )\><Vn) = n(v ) (2.9 ing pa_lrtlc_le number before variatid24]. W|th only a _sh_ght
modification of the HFB procedure outlined above, it is pos-
whereE, are the quasiparticle energiesjs the chemical sible to obtain a very good approximation for the optimal
potential,h=t+I" and A are the Hartree-FockHF) Hamil- ~ HFB state, on which exact particle-number projection then
tonian and the pairing potential, respectively, didand  has to be performef28,31].
V, are the upper and lower components of the quasiparti- In more detail, the LN method is implemented by per-
cle wave functions. These equations are solved subject tiorming the HFB calculations with an additional term in-
constraints on the average numbers of neutrons and praiuded in the HF Hamiltonian,

*

n
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h' =h-2\,(1 - 20), (2.5

and by iteratively calculating the constaxi (separately
for neutrons and protonsso as to properly describe the
curvature of the total energy as a function of particle num-

ber. For an arbitrary two-body interactioi, A, can be

calculated from the particle-number dispersion according

to [24],

_ (0]V]|4)4N?0)

= — (2.6)
? (O|N?|4)(4|N?|0)

where |0y is the quasiparticle vacuunf\l is the particle-
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the asymptotic conditions. Effectively, this means that the
standard Fermi energy has to be replaced by

N=N+ 2)\2(1 - 2nmin) (213)

or by

N =N+ 2\, (2.14)

where n.,, is the norm of the lower HFB component
V(Enmin, ) corresponding to the smallest quasiparticle en-
ergy Emin.

The first expressioni2.13 assumes that the asymptotic
properties can be inferred from the HFB equation in the ca-
nonical basis, in whiclp is diagonal and has eigenvalues that

number operator, and)(4| is the projection operator onto can be estimated by norms of the second HFB components.
the four-quasiparticle space. On evaluating all requiredrhe second expressiq@.14) pertains to the HFB equation

matrix elements, one obtaihg7]

_ AT p(1-p) +4TrA' (1 - p)k

- ’ (2
2= BTrp(1 - p) P~ 16Ti2(1 — ) )
where the potentials
F;LM/ = 2 V,uv,u’v’(p(l _p))v'vl (283
, 1
A,uv = 5 ,E, V,uV,u’V’(pK),u,’V’ (28b)
MoV

can be calculated in full analogy 16 and A by replacingp
and  in terms of which they are defined y1-p) and pk,

respectively. In the case of the seniority-pairing interaction

with strengthG, Eq. (2.7) simplifies to

_GTr(1-p)x Trpx—2 Tr(1 -p)?p?
274 [Trp(l-p)P -2 Tp’(L-p)?

(2.9

An explicit calculation ofx, from Eq. (2.7) requires cal-

culating new sets of fields, E@2.8), which is rather cum-

bersome. However, we have fouff8P] that Eq.(2.7) can be

in coordinate representation, in which the integral kernel
p(r,r') vanishes at large distances. Neither of these expres-
sions can be rigorously justified, thereby demonstrating limi-
tations of using the LN method to analyze spatial properties
of wave functions. These ambiguities are enhanced by the
fact that the LN method overestimates the curvatuyr@ear
magic number$28,31.

Note that in the exact projection before variation method,

the Fermi energy is entirely irrelevant, and hence one should
not attribute too much importance to the choice between
and\”. Nevertheless, since the PNP affects only occupation
numbers, leaving the canonical wave functions unchanged,
in what follows we use the modified Fermi energy in
modeling the asymptotic behavior needed to implement the
THO method.
Finally, we should note that the HFB machinery detailed
above can be readily implemented with a quadrupole con-
straint [30], as is the case for some of the calculations we
will be reporting.

Ill. THE TRANSFORMED HARMONIC-OSCILLATOR
BASIS

In the present study, we carry out HFB calculations in

well approximated by the seniority-pairing expression, Ed.onfiguration space, expanding in a transformed harmonic-

(2.9), with the effective strength

Kz
G:Geff:_E_ (210)
pair
determined from the pairing energy
Epair=—3TrAk (2.12)
and the average pairing gap
- Trp '

oscillator basis. This basis was originally introduced in Refs.
[17-19, and we refer the reader to R¢L9] for details con-
cerning the use of the deformed THO basis and for a discus-
sion of the cutoff procedure that is used to perform the sum-
mations in Eq.(2.4). We also refer the reader to an
interesting new application of the THO basis to one-
dimensional problems of interest in molecular phygig3].

As noted earlier, all previous calculations using the THO
basis in HFB calculations employed a global parametrization
of the LST function that defined the basis. In the following
sections, we develop a new and improved form for the trans-
formation, which we then use in the HFB+THO applications
to be reported in Sec. V.

The use of the LN method in HFB theory requires special
consideration of the asymptotic properties of quasiparticle
states[4,5], which are of essential importance for weakly
bound systems. Because of the modified HF Hamiltonian
(2.5, new terms appear in the HFB+LN equation, which are  The main differences between the results of coordinate-
non local in coordinate representation and thus can modifgpace HFB calculations and those from configuration-space

A. Comparison of coordinate-space HFB calculations and
configuration-space HFB+HO calculations
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coordinate-space and harmonic-oscillator HFB calculations,
both values being shown by the same line in the upper panel
of Fig. 1.

Soon beyond the poilR,,;,, the HFB+HO density begins
to deviate dramatically from that obtained in the coordinate-
space calculation. For relatively small numbers of harmonic-
oscillator shellsNg;, the logarithmic derivative of the HFB
+HO density goes asymptotically to zero following the
Gaussian behavior of the harmonic-oscillator basis. The re-
sulting HFB+HO density does not develop a minimum
around the poinR,,,, as seen from th&l,,=8 curve shown
in the upper panel of Fig. 1. When the number of harmonic-
oscillator shelld\y, increases, the HFB+HO solution tries to
capture the correct density asymptotics. Due to the Gaussian
asymptotic of the basis, however, the logarithmic derivative
of the HFB+HO density only develops oscillations around
the exact solutiorisee theNg,=12 and 20 curves in the upper
panel of Fig. 3. As a result, the logarithmic derivative of the
HFB+HO density is very close to the coordinate-space result
FIG. 1. Logarithmic derivative of the densifypper pangland  ground the midpoinR,,=(Rpax—Rmin)/2, WhereR . is the

the density in logarithmic scaldower pane), as functions of the  osition of the first maximum of the logarithmic derivative
radial distance. The coordinate-space HFB restdtdid line) are  gar R
n-

compared with those for the HFB+HO meth@tenoted byp) with
Nsn=8, 12, and 20 HO shells, as well with the approximatide-
noted byp) given by Eq.(3.7) (small circles.

In summary, the following HFB+HO quantities agree
with the coordinate-space HFB resultsy the value of the
density decay constaRt (ii) the local density up to the point
. . Rnin Where the logarithmic derivativp’/p shows a clearly
HFB+HO calculations can be seen in plots of the correefined minimumjiii) the actual value of this poirR
sponding local density distributions. A typical example iS jy) the value of the logarithmic derivative of the density at
shown in Fig. 1, where the densities and their logarithmicihe pointR,, defined above. In fact, the last of the above is
derivatives from coordinate-space HFB calculatiasslid ot established nearly as firmly as the first three; neverthe-
lines) are compared with those from a configurational HFB |ess, we shall make use of it in developing our new formu-
+HO calculation. Although the calculations were done for ajation of the HEB+THO method.
specific spherical nucleus and Skyrme interaction, the fea- Beyond the poinR,, the HFB+HO solution fails to cap-
tures exhibited are generic. Note that the coordinate-spaGgre the physics of the coordinate-space results, especially in
HFB calculations were carried out in a box of 30 fm, so thalthe far asymptotic region. It is this incorrect largéehavior
the logarithmic derivative of the density obtained in that cal-that we now try to cure by introducing the THO basis.
culation shows a sudden drop near the box edge.

Invariably, the logarithmic derivative'/p associated with
the coordinate-space HFB solution shows a well-defineds, approximation to the coordinate-space HFB local densities
minimum near some poinR,,;, in the asymptotic region,
after which it smoothly approaches a constant vallke -
where

Our goal is to try to find an approximation to tkeact
(coordinate-spageHFB density that is based only on infor-
mation contained in the HFB+HO results. Towards that end,
. we make use of the WKB asymptotic solution of the single-

k= 2k = 2\2M(Epin— \')/H? (3.)  particle Schrédinger equation for a given potenti@l), as-

suming that beyond the classical turning point only the state

is associated with the HFB asymptotic behavior for thewith the lowest decay constakt2« contributes to the local
lowest quasiparticle state that has the corresponding qualensity. Under this assumption, the logarithmic derivative of
siparticle energyE,, (see Eq.(2.13 and Ref.[6]). This  the density can be written as
property is clearly seen in the upper panel of Fig. 1. One can
also see that the HFB+HO densities and logarithmic deriva-
tives are in almost perfect agreement with the coordinate- p'(r)
space results up téor around the distanceR,;,. We con- plr) e
clude, therefore, that the HFB+HO densities are numerically
reliable up to that point.

Moreover, the HFB value of the density decay constanivhere the first term comes from the three-dimensional
k=2«, when calculated from Eq3.1), is also correctly re- volume element, while the next two correspond to the
produced by the HFB+HO results. It is not possible to dis-first- and second-order WKB solutiori84]. The reduced
tinguish between the values d&f that emerge from the potentialV,

!

2 1
:—F—z\»K2+v—— (3.2

2k2+Y’

054312-4



SYSTEMATIC STUDY OF DEFORMED NUCLEI AT THE..

£ +1)

2m 2mzé
V(r) = ?V(r) =Pyt 2 +—

h2

(3.3

is the sum of the nuclear, centrifugal, and Coulofihdr
protong contributions, with¢ being the single-particle or-
bital angular momentum.

In practical applications, it turns out that nd&y the next-

to-lowest quasiparticle states still contribute to the local den-
sity p in a way that may be more important than the second- \

order WKB term shown in Eq.3.2). Moreover, in deformed
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p
p(r)  forr =Ry

3 2 2
al ar®  2r’Ryp rRmm>
Aeexpl - — - +
p[ r5< 3-s 2-s 1-s

for Rmin Srs Rmax

) =1

r
exd - ZJ Vi©+Vdr]
B

for r = Rpax

rZ\’/Kz +V

(3.7

nuclei the quasiparticle states do not have good total angular ) ] )
momentuny, so that several quasiparticles may contribute toVhere the integration constans and B are determined

the asymptotic density depending on théicontent and the

from the matching conditions for the density at poiRts,

value of k. Therefore, we need a practical prescription to fix@Nd Rmay respectively. Finallys(r) is normalized to the
a reasonable approximate asymptotic form of the densitftPPropriate particle number.

with minimal numerical effort but high reliability. This can
be achieved by using in E@3.2) a reduced potential of the
form

V()_C+2mZe2
Vet

(3.4)

where the nuclear parVy (which is small around and
beyondR,) is neglected, and the coefficiefitis allowed
to differ from its centrifugal barrier valu€(€+1). The
actual value ofC is fixed by the requirement that the
logarithmic derivative(3.2) coincides at the midpoinR,,
with the €=0 component of the HFB+HO density, i.e.,
with

72
ﬁ(r):J p(r, O)P,_o(cog h))sin(H)dé. (3.5
0

The approximate densitg3.7) works fairly well for all
nuclei that we have considered. This is illustrated in Fig. 1
where the approximate densify (circleg is seen to be in
perfect agreement with the coordinate-space HFB results.

It should be stressed that the above procedure is appli-
cable only when the number of shells is large enough that the
HFB+HO density has a minimum at the poiRt,, The
minimum value ofNg, required to satisfy this condition de-
pends on the particular deformations or on the nuclei consid-
ered. For the number of shellé,=20 used in our calcula-
tions, the above condition is always satisfied.

C. LST function for HFB + THO calculations

The starting point of our new and improved HFB+THO
procedure is, thus, to carry out a standard HFB+HO calcu-
lation for the nucleus of interest, thereby generating its local
density and its locat=0 densityp(r) (3.5), and then to use
the method outlined in the preceding section to correct that

Next, in order to make a smooth transition from the density at large distancgsee Eq(3.7)] by calculatingp(r).

HFB+HO densityp(r) in the inner region to the approximate
asymptotic expressiof8.2) in the outer region, we introduce
the following approximatiorip for the logarithmic density
derivative:

.
p'(r)
—— forr =Ry,
p(r) Rmin
D' (r —1)2
’;)((r)):< a(Rm':S ) +b for Ryjn<r < Ry
———2“’K2+V—} , forr =R,
) 2,2 +V o
\
(3.6

The coefficientsa andb, and the powes, are determined
from the condition that the logarithmic derivativ@.6)

The next step is to define the LYT9] so that it transforms
the HFB+HO{=0 density(3.5) into the corrected density of
Eq. (3.7). This requirement leads to the following first-order
differential equation:

fAR)If(R
R )

which for the initial conditionf(0)=0 can always be
solved forf(R).

Once the LST function has been so obtained, we need
simply diagonalize the HFB matrices in the corresponding
THO basis. Most importantly, no information is required to
build the THO basis beyond the results of a standard HFB
+HO calculation. Since no further parameters enter, there is
no need to minimize the HFB+THO total energy. As a con-
sequence, with this new methodology we are able to system-

B(r) (3.8

and its first derivative are smooth functions at the pointatically treat large sets of nuclei within a single calculation.
Rnin andR,. Note that the first derivative of Eq3.6) at Despite the fact that the new HFB+THO method is sim-
Rnin is automatically equal to zero, so that there is no neegbler to implement than the earlier version, there are no dis-
to introduce a fourth parameter to satisfy this condition. cernible differences between the results obtained with the
Having determined the smooth expression for the logatwo distinct treatments of the LST function. Most impor-
rithmic derivative ofp(r), we can derive the approximate tantly, the current formulation leads to the same excellent

local density distributiofp(r) by simply integrating Eq(3.6).
The result is

reproduction of coordinate-space results as did the previous
one[18,19.
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IV. RESULTS nucleus with positive neutrofprotorn) Fermi energy. Fur-

In this section, we present the results of calculations perghermore, for each nuclide, three independent sets of HFB

formed for all particle-bound even-even nuclei witks 108 FTHO+LN calculations were performed, for initial wave

andN<188. The THO basis was implemented according tc)functlons correspondlng to o_blate, spherica_l, and pro_late
the prescription developed in the preceding section. Rhe SNapes, respectively. Depending on properties of a given
value used in the procedure was obtained in the followingucleéus, we could therefore obtain one, two, or three solu-
way. From the starting HFB+HO calculation, we determinedtions with different shapes. For each obtained solution we
k values separately for neutrons and protons, usingE@).  Performed a PNP calculation of the total energy. The lowest
We then associated tHevalue for the transformation with Of these energies for a given nucleus was then identified with
the smaller ok, andk,. In this way, the THO basis is always the ground-state solution.
adapted to the less-bound type of particle. The calculations Calculations of a microscopic mass table are greatly
were performed by building THO basis states from sphericahelped by taking advantage of parallel computing. We have
HO bases withNg,=20 HO shells and with oscillator fre- used two IBM-SP computers at ORNL: Eagle, a 1 Tflop
quencies ofiwy=1.2X41 MeV/AYS, machine, and Cheetah, a 4 Tflop machiné Tflop=1
In order to meaningfully test predictions of nuclear X 10*? operations/s The code performs at
masses for neutron-rich nuclei, we used the SLy4 Skyrm&50 Mflop/processor on Eagle. We created a simple load-
force parametrizatiofi23], as this was adjusted with special balancing routine that allows us to scale the problem to 200
emphasis on the properties of neutron matter. At presenfjrocessors. We are able to calculate the entire deformed
there also exist Skyrme forces that were adjusted exclusivelgven-even mass table in a single 24 wall-clock hour(am
to nuclear massg85]. These forces were used within a cal- approximately 4800 processor hour& complete calculated
culation scheme that was not focused on weakly bound numass table is available online in R¢R6].
clei. In the pairing channel, we used a pure volume contact The ground-state quadrupole deformatighdisplayed in
pairing force VO(r,r')=Vydr-r’') with strength V, Fig. 2 (upper panel were estimated from the HFB+THO
=-167.35 MeV frd and acting within a phase space limited +LN total quadrupole moments and rms radii through a
by a cutoff parametef19] of &,,=60 MeV. simple first-order expressiof80]. In that panel, all even-
Figure 2 summarizes the systematic results of our calcueven nuclei with negative Fermi energiag,<0 and\,<0,
lations, both for ground-state quadrupole deformatians  are shown. In the lower panel, showing two-neutron separa-
per panel and for two-neutron separation energigswer  tion energiesS,,, results are shown for tho$¢andZ values
pane). For this figure, calculations for a given mass numberfor which the nuclides with botiN and N-2 have\,<0.
A were carried out for increasindecreasingN-Z, up to the  Note that on the proton-rich side the lighter of them may
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TABLE I. Results of the HFB+THO calculations for drip-line nuclei with the SLy4 Skyrme force and voliipsering force. The left
and right columns show results for proton and neutron drip-line isotopes from He to Pb. For both drip lines we show defogmnadions
energiesh (in MeV), two-particle separation energiéa MeV), and neutron and proton pairing ga@s MeV).

Two-proton drip line Two-neutron drip line

Nucleus B Ny Sp Kn+)\2n Zp+)\2p Nucleus B \n S Zn+)\2n Kp+)\2p

‘He 0.00 -10.49 5.59 5.50 8He 0.00 -1.26 2.69 2.71 5.35
5Be 0.00 -2.13 1.79 5.51 2.89 12Be 0.00 -2.70 6.92 2.70 2.76
10c 0.00 -4.38 11.44 3.03 3.15 2c 0.00 -0.34 2.97 2.03 2.69
140 0.00 -3.76 10.80 3.17 2.86 260 0.00 -0.97 0.53 1.53 2.87
18\e 0.00 -3.46 7.26 2.96 1.85 3Ne 0.28 -0.39 0.50 1.40 1.76
2OMg 0.00 -1.64 2.76 2.98 1.84 “2Mg -0.18  -0.29 -0.44 1.09 1.64
24gj -0.07 -2.65 5.63 1.85 1.87 465 0.00 -0.99 1.71 1.07 1.86
28g 0.00 -2.08 6.10 1.92 1.92 52g 0.00 -0.05 -0.96 1.00 1.49
S2Ar 0.00 -1.85 4.50 2.15 1.48 58Ar 0.00 -0.39 2.37 1.31 1.39
36Ca 0.00 -1.49 5.24 1.77 1.76 68Ca 0.00 -0.11 0.40 1.10 1.73
40T 0.00 -0.95 2.31 1.74 1.26 727 0.00 -0.63 2.59 1.15 1.05
44cr 0.00 -1.57 3.58 1.94 1.30 80Cr -0.00 -0.07 0.01 0.72 1.14
46Fe 0.00 -0.25 1.07 1.94 1.31 8Fe 0.00 -0.12 0.60 0.80 1.15
52N -0.03 -1.45 3.74 1.37 1.56 88N 0.00 -0.19 0.09 0.91 1.53
567n 0.13 -0.57 2.45 1.39 1.24 1007y 0.24 -0.02 -0.29 0.90 1.10
50Ge -0.09 -0.17 0.63 1.67 1.22 19%Ge 0.16 -0.13 0.12 0.93 1.07
645e -0.17 -0.15 0.83 1.25 127  14ge 0.08 -0.27 0.69 0.91 1.08
70Ky -0.22 -1.10 2.67 1.38 1.10 118 0.00 -0.23 3.29 1.20 1.08
725y 0.36 -0.16 -1.74 1.26 1.18 1205y 0.00 -0.86 4.61 1.23 1.06
76zr 0.00 -0.19 0.89 1.37 1.25 1247y 0.00 -0.04 -0.74 0.60 1.05
82Mo 0.00 -0.83 2.09 1.37 098 %Mo 0.00 -0.05 0.14 0.66 0.87
86Ru 0.00 -0.83 2.27 1.13 098 MRy 0.27 -0.02 0.23 0.84 0.89
Opd 0.07 -0.90 2.57 1.11 0.93 150pg -0.22  -0.02 -0.44 0.84 0.82
%4cd 0.00 -0.88 1.72 1.08 0.89  18&qg -0.02 -0.01 -0.62 0.82 0.75
1025 0.00 -0.80 6.03 0.99 1.54 1745 0.00 -0.27 1.11 0.76 1.16
1087¢ 0.16 -1.00 2.39 1.13 0.89 176Tg 0.00 -0.83 1.90 0.78 0.77
2@ 0.22 -0.83 2.54 1.10 0.88  1%e 0.00 -1.37 2.82 0.80 0.83
11885 0.32 -1.02 2.60 1.07 0.87 18285 0.00 -0.28 4.36 1.26 0.87
s o) 0.37 -0.19 1.71 1.12 0.87  18%Ce 0.43 -0.11  -16.29 0.72 0.88
124Nd 0.38 -0.33 1.98 0.98 0.93 188\ d 0.44 -0.51 -15.32 0.75 0.71
1305m 0.36 -0.64 2.09 1.00 0.83  2045m 0.28 -0.01 0.11 0.69 0.75
134Gd 0.36 -0.44 1.60 0.99 0.82  20%gd 0.29 -0.20 0.84 0.73 0.74
138py 0.36 -0.12 0.78 0.98 0.82 216py -0.22  -0.02 -4.70 0.73 0.71
144y -0.19 -0.41 1.64 0.89 0.89 22y 0.28 -0.08 0.16 0.65 0.70
148y -0.16 -0.11 0.85 0.88 0.86 230y -0.21  -0.00 -0.06 0.70 0.71
1521f -0.10 -0.05 0.59 0.82 0.92 254t 0.00 -0.02 0.72 0.86

158y -0.06 -0.50 1.36 0.84 0.94 256yy 0.00 -0.30 0.70 0.83

1620s 0.11 -0.09 0.57 0.84 0.78  25%0s 0.00 -0.57 0.51 0.67 0.79
168p¢ 0.14 -0.04 0.43 0.96 0.66 260pt 0.00 -0.83 1.19 0.65 0.73
12Hg -0.08 -0.04 -1.13 1.14 0.69  %%g 0.00 -1.09 2.37 0.62 0.69
182pp 0.00 -0.11 1.65 1.24 1.38 266pp 0.00 -0.03 3.21 1.06 0.98

have\,>0; nevertheless, we show these points to make the As can be seen from Fig. 2 and Table I, our calculations
proton drip line in theS,, panel identical to that of the quad- produce several particle-bound even-even nuglei, nuclei
rupole deformation panel. Of course, on the proton drip-linewith negative Fermi energigghat at the same time have
values ofS,, are large and not very illuminating. negative two-proton(or two-neutron separation energies.

Table | summarizes our results for even-even nuclei alonguch an effect was already noticed in light nuclei in Ref.
the two-particle drip lines. More specifically, for each value[19]. The current calculations suggest it may be generic, oc-
of Z<82, the results for the lightest isotope with<<0 and  curring near both the two-neutron and two-proton drip lines
the heaviest isotope with,<0 are presented. and for nuclei as light ad°Mg and as heavy a&'®Dy. It
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that neighboring nucleus has a shape that is different than
that of the parent nucleu&;) the shape of the excited bound

seems to be related to the fact that the Fermi energies pertain 30 32 34
g : - . Ne Ne Ne

to stability with respect to particle emission of a given con-

figuration or shape, namely, that of the ground state. In many T e PRAPOE

of the cases in which we observe this phenomet@rthe s 0 £ \ 4

neighboring even-even nucleus, the one to which it would S . § { /\ i

decay by two-nucleon emission, has two distinct shapes, = RN Y N .o

each with negative Fermi energig®) the ground state of -2} /\\ Lot
—— A

configuration is the same as that of the parent nucleus, and al I I

(d) decay to the excited configuration is energetically forbid- E’
den. o 2t

It should be stressed that the existence of particle-bound <
even-even nuclei with negative two-particle separation ener- o——yv— —— ——
gies, as emerge from our study, hinges on a very delicate 02002 -02002 -02002
balance between pairing and deformation effects. In such a Deformation B

situation, various corrections beyond mean field may turn out

':(r)] bZrltT;pg:a;t 2?3.?”20”;2?;?0??;; oé Zurostz?](t:'lgf tge.?:]fllts_binding energieglower panels calculated for®Ne, 3°Ne, and**Ne
particu . u ng . : . v p ! . INMU=55 functions of the quadrupole deformatiBn

ence the dilute neutron skin that is present in nuclei near the

neutron drip line. Because of the high complexity of SUChIndeed, in the constrained calculations the deformation

corrt_alatlpns, effects of this type cannot yet pe Systemat'ca")éerves as an additional variational parameter for the variation
.studled'm theory. Nevertheless, our analy5|§ points out tha&fter PNP. Optimally, the full variation after projection
interesting new phenomena can be present in weakly bounghq g be performed, which, however, requires a much larger
nuclei, and quantifies these possibilities within an approaciymerical effort, and is left for future work. Such an optimal
that can at present be applied in practice. method will also remove the ambiguities related to the defi-
Of course, our results also depend sensitively on propemition of the Fermi energy, discussed in Sec. II. At present,
ties of the interaction, both in the particle-hole and particle-we illustrate these ambiguities by showing in Figs. 3—6 the
particle channels. Despite its many good features, the forcghree possible values of the Fermi energy, \,, and\’.
we use is far from perfect. For example, the positions we Consider first the Ne isotopes, for which the results are
obtain for the two-neutron drip lines in the Be and O isotopesshown in Fig. 3. For the SLy4 interaction that we use, a
are not correct. In addition, the method itself has limitations strong shell gap ail=20 persists up to the heaviest isotopes
as it leaves out potentially important effects beyond meamf Ne, and this produces a stiff spherical minimum fexe.
field. Despite these limitations, we feel it is neverthelessAdding two neutrons gives rise to the nucle¥ide, which is
worthwhile to point out some of the interesting new physicalparticle bound(\,<0), but at the same time two-neutron
situations that are predicted in these calculations and whichnstable(S,,<<0). (Note that this nucleus does not exactly fit
may therefore occur in weakly bound systems. The abovénto the picture given earlier for such nucjeinterestingly,
example of nuclei that are formally beyond one of the two-when we add two more neutrons, we obtain a strorigip-
particle drip lines but nevertheless are localized and do not
spontaneously spill off a nucleon is just one of several. We 38 40 42
will now discuss in greater detail some specific isotopic M Mg Mg
chains to see how this and other interesting exotic new fea-
tures emerge.

FIG. 3. Neutron Fermi energies (upper panelsand the total

We focus our discussion on the heaviest isotopes of four % 0
isotopic chains; neon, magnesium, sulfur, and z8ee Figs. = e 7--"~
3-6, respectively The figures show the Fermi energies < Ar S5 A
A}, and\] [see Egs(2.13 and(2.14)], and the total binding ol f |

energies, obtained in constrained HFB+THO+LN+PNP cal-
culations as functions of the quadrupole deformat@for 4l
the last three particle-bound isotopes of the respective
chains. In each figure, the binding energies of the last three
isotopes are shown on a common energy scale. As a re-
minder, two neutron separation energies can be readily ob-
tained from the binding energies according $9=E(Z,N

AE (MeV)

-2)-E(Z,N). 030 03 030 03 030 03
We should note that the minima of the constrained ener- Deformation B
gies need not exactly correspond to the PNP of the HFB
+THO+LN minima, which were used in Fig. 2 and Table I.  FIG. 4. Same as in Fig. 3 but fd#Mg, “®Mg, and*’Mg.
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488 508 523 and have negative two-neutron separation energies at the
same time. It is obvious that in the case of so poorly defined
minimum, its precise location is not relevant and full con-
menans | figuration mixing, e.g., within the generator coordinate
0 | g R method(GCM) [30,37,38, should be applied. This compli-
SO cation specific to weakly bound nuclei is related to the fact
Ak % | o, | *A" . . .
LN St that it is not clear how to take into account in the GCM the
2P L e regions of the collective coordinate corresponding\te0,
M hence to particle-unbound states.
3t : : 1 In the results for the zinc isotop€Big. 6), we see strong
competition between oblate, prolate, and spherical shapes. In
2r I I I 97n, all shapes are particle bound and the ground state is
oblate. The situation changes ¥zn, where the oblate con-
-'\w”“ ] figuration, though Iowest'ir) energy, becomes particle un-
0 i bound and the prolate minimum becomes the ground-state
02 0 02 0 01 0 configuration. Though this ground state is two-neutron un-
Deformation p stable(S,,<0), its decay to the ground state ¥%n may be
hindered by the shape change. Finally%fzn the particle-
FIG. 5. Same as in Fig. 3 but féfS, 5°S, and5%s. stable prolate ground state is also two-neutron unstable.
Hence in this isotopic chain the lasto even isotopes are
unstable with respect to two-neutron emission.
In heavier nuclei near the neutron drip line, we often ob-
) : tain particle-stable and two-neutron-unstable isotopes right
Next we iurn to the Mg isotopes, for which results are after closed neutron magic shells. As in Ne, this reflects the

presented in Fig. 4. If°g the neutron Fermi energies, . S
have negative values for all deformations, so that the conf-aCt that strong shell gaps persist up to the heaviest isotopes

figurations for all deformations are particle bound, with the, & chain when the calculations are based on the SLy in-
9 . . : P > teraction. In theN=126 isotopes of Ce and Nd, for example,
prolate minimum being slightly lowest. The same is also tru

She ground- figurati ly spherical. In th
P i ground-state configurations are strongly spherical. In the
Igntii:nexésn?gﬁ]wr'(\)/llgt\évr,:grgbﬁg?egﬁ??g(ilzgtefrggogna 4neighboringN=128 isotopes, these spherical configurations
that in 42!\/?9 the two?neutron separat.ion energy is nega%‘\/e_become particle unbound. However, in these same isotopes,
however, sincd?Mg and“OMg have different shapes in their there are strongly prolate particle-bound configurations with

round states, the real process of emitting two neutrons may. . large negative two-neutron separation energ
9 ' pre ) g two ne S Ma¥able ). An analogous situation occurs in tid=186 and
occur towards the shape isomer“fiMg. (The situation will

be even more complicated if the oblate minimunfinlg is 188 drip-line nuclei, where the lasvo even isotopes may
> comp . S 9! have particle-bound prolate states with unbound spherical
unstable to triaxial deformations, i.e., it is a saddle ppint.

) . o configurations.
The results for the S isotopes are given in Fig. 5. Here, the Strong SLy4 neutron magic numbers also result in the

spherical HFB+THO+LN minimum i??S is shifted in the o : . :
constrained PNP calculations towards a small oblate defor(-:haraCte“St'C nonmonotonic behavior of g values(Fig.

; : 2). Indeed, lines of constarg,, often follow decreasingZ
mation. All shapes appear to be very weakly particle bound\’/vith increasingN, which is particularly conspicuous neldr

=126. This effect even creates a snhinsulaof stability

A (MeV)
1

AE (MeV)

late) deformed particle-bound ground configuration*five,
which is again two-neutron stab(&,,>0).

962n 982n 1002n nearN=140. Such strong neutron closed shells could create
- the well-known deficiencies in the-process abundances
L [ [39].
~ 0.5[ S T4 v U
2 po TOTMR o }'\\mj
S 00— — e V. CONCLUDING REMARKS
05 AN In this paper, we have reported the development of an
AN B S improved version of the configuration-space HFB method
2.0 - - ] expanded in a transformed harmonic-oscillator basis. In its
S 1.5} ] i ] current form, the method can be used reliably in systematic
S 10 studies of wide ranges of nuclei, both spherical and axially
& deformed, extending all the way out to the nucleon drip
< 0.5 1 i ] lines. The key step was the development of a prescription for
0.0 choosing a reliable transformation function to define the
02002 020 02020 02 THO basis that does not require variational optimization.
Deformation p The current prescription only involves information from a
preliminary configuration-space HFB calculation carried out
FIG. 6. Same as in Fig. 3 but f8fzn, °8zn, and'%%n. in a harmonic-oscillator basis. The transformation function is
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then tailored to correct the asymptotic properties of the In the description of very weakly bound systems, small
HFB+HO results. The resulting HFB+THO theory accu-changes in the results can have important consequences,
rately reproduces results of coordinate-space HFB theorghanging, for example, the precise locations of the drip lines.
where available, and also reproduces the results obtaindtlis important, therefore, to continue to improve the current
with an earlier version of the transformation that had to beHFB+THO methodology to accommodate effects not pres-
optimized separately for each nucleus. ently b.elng included. Part_|cularly |mport§mt could be effects
As a first application of the new HFB+THO methodol- that arise beyond mean fle!d. It is also important to develop
ogy, we carried out a systematic study of all even-even nuth® new HFB+THO formalism for application to odd-mass
clei having Z<108 andN<188. Variation after particle- systems, including the effects of Pauli blocking. But most

Lipkin-Nogami method, with exact projection performed for y X . : P

the final self-consistent solutions. We focussed our discust-lon.S of _the properties of exotic nuclei. Work along these
: . ' " "“various lines is currently underway.
sion on those nuclei that are very near the nucleon drip lines,
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