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We present predictions for energies, proton and neutron rms radii, and neutron skins of some closed-shell
nuclei based upon a microscopic model of the equation of state for asymmetric nuclear matter which is used as
input for a mass formula. We employ realistic two-body forces and the Dirac-Brueckner-Hartree-Fock ap-
proach to nuclear matter. We compare with experimental information, when available, and point out the need
for accurate determinations of neutron densities and skins.
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I. INTRODUCTION

One of the main challenges in nuclear physics is to un-
derstand how the properties of nuclei arise from the interac-
tions among the protons and the neutrons.

The ability to vary the ratio between protons and neutrons
over a large range is a crucial tool to reach that understand-
ing, but has so far been rather limited. The advent of beams
of short-lived, radioactive nuclei promises to change this
situation, providing new opportunities to explore unknown
regions and possibly phenomena and symmetries different
from those seen in the stability region. If approved for con-
struction, the Rare Isotope Accelerator(RIA) will allow the
study of unique nuclear systems which are expected to exist
at the boundaries of the nuclear chart.

Furthermore, studies of the strong interactions between
protons and neutrons in exotic matter are important for our
understanding of astrophysical processes, such as structure of
neutron stars and what supports them against gravitational
collapse. Thus, it is important and timely to develop micro-
scopic effective interactions which can account for the asym-
metry between proton and neutron densities.

Neutron skins are crucial observables and may have im-
pact on phenomena such as phase transitions inside a neutron
star. Recent calculations by Horowitz and Piekarewicz[1]
have suggested a relation between the skin of a heavy
nucleus and the properties of neutron star crusts. A softer
symmetry energy implies larger central densities and thus
smaller radii. However, although a strong correlation is
found between skin thickness and star radius, the latter is not
uniquely constrained by a measurement of the neutron skin,
because the skin depends on the equation of state(EOS) at or
below saturation density, while the star radius is also sensi-
tive to the high density behavior of the EOS. Separate mea-
surements of the two could provide valuable information on
the EOS at low and high densities[1].

Our knowledge of matter distribution inside asymmetric
nuclei must be improved and broadened. The doubly magic
nucleus208Pb is perhaps one of the most asymmetric nuclei
for which a considerable database exists. Nevertheless, de-
terminations of neutron densities differ considerably depend-
ing on the model used in the analysis[2], while almost noth-
ing is known about much more neutron-rich nuclei.

The recent analysis by Clarket al. [3] finds values of

neutron rms radii and neutron skins generally not in agree-
ment with those predicted by relativistic mean-field models,
which are typically larger. In Ref.[4], Furnstahl investigates
the spread in neutron skin predictions for208Pb within mean-
field models. The nature of that variation is studied using
correlations between basic properties of the models and neu-
tron skin thickness in208Pb. The results suggest that mean-
field models may overestimate the skin thickness and that
additional constraints may be needed to improve the model
functionals[4].

Phenomenological EOS based on the nonrelativistic
Skyrme Hartree-Fock theory and the relativistic mean-field
theory, respectively, have been used to predict neutron skins
of Na isotopes[5]. When compared with the available data
[6], which carry considerable uncertainties, the two calcula-
tions appear to be the two extreme cases bounding a region
consistent with experiment.

In a previous work[7], we presented microscopic calcu-
lations of the equation of state for asymmetric matter. We
used realistic nucleon-nucleon(NN) forces and the Dirac-
Brueckner-Hartree-Fock(DBHF) framework. We also calcu-
lated properties of astrophysical significance, such as the
pressure in symmetric matter and neutron matter up to about
five times the saturation density, and compared with recent
experimental constraints obtained from analyses of nuclear
collisions [8].

Following that work, the purpose of this paper is to
present predictions for energies, proton and neutron radii,
and neutron skins of finite nuclei based upon the EOS. We
will use a liquid droplet model, which, in spite of its simplic-
ity, provides a useful mean to relate the EOS directly to
structural properties of nuclei, thus allowing a study of the
sensitivity of those properties to the EOS model.

In Sec. II, we describe our calculations(Sec. II A) and
present results obtained with three relativistic potentials and
the DBHF framework(Sec. II B). For comparison, we also
present a sample of predictions obtained within the nonrela-
tivistic context of conventional Brueckner theory(Sec. II C).
Our predictions are a direct reflection of the EOS which, in
turn, is determined by the nature of the two-body force as
well the chosen many-body methods. In Sec. II D, we take a
critical look at both of these aspects. Section III contains our
conclusions and related future plans.

PHYSICAL REVIEW C 68, 054305(2003)

0556-2813/2003/68(5)/054305(8)/$20.00 ©2003 The American Physical Society68 054305-1



II. EOS-BASED PREDICTIONS OF NUCLEAR ENERGIES
AND RADII

A. Description of the calculation

Asymmetric(infinite) nuclear matter can be characterized
by the neutron densityrn and the proton densityrp. It is also
convenient to define the total densityr=rn+rp and the asym-
metry (or neutron excess) parametera=srn−rpd/r. Clearly,
a=0 corresponds to symmetric matter, anda=1 to neutron
matter.

The average Fermi momentum is related to the total den-
sity in the usual way,

r =
2kF

3

3p2 . s1d

The EOS, or energy per nucleon as a function of density,
is defined as

esrn, rpd =
rnen + rpep

r
s2d

or

eskF, ad =
s1 + aden + s1 − adep

2
s3d

with en/p, the energy per neutron/proton.
Figure 1 provides a three-dimensional view of the equa-

tion of state, shown as a function of the neutron excess pa-
rameter and the average Fermi momentum. The two-body
interaction used for that figure is the BonnB potential(used
within the relativistic Thompson scattering equation[9]). De-
tails of the calculation are reported in Ref.[7].

We expect the relation between energies and radii to be
sensitive to the details of the EOS. How the energy moves up
as a function ofa and how the minimum shifts towards
lower densities for increasing neutron fraction will determine
the most stable configuration predicted for the nucleus under
consideration, as well as variations of the central density for
increasing number of neutrons. To which extent excess neu-

trons are pushed out to diffuse the neutron surface thus de-
veloping a neutron skin will clearly reflect the saturation
density of asymmetric matter.

A relatively straightforward way to relate the microscopic
EOS directly to structural properties of finite nuclei is a
simple liquid droplet model[5], where the “volume” term is
directly related to the EOS. Schematically, one may write the
energy of a nucleus in terms of a mass formula

E =E
0

`

efrnsrd, rpsrdgrsrd4pr2dr +E
0

`

f0u,rsrdu24pr2dr

+
e2

4pe0
s4pd2E

0

`

dr8r8rpsr8dE
0

r8
drrpsrdr2, s4d

where the last two terms on the right-hand side are the
surface energy and the Coulomb energy, respectively. The
latter is calculated integrating the electrostatic interaction
between a uniformly charged sphere of radiusr8 and a
uniformly charged spherical shell of thicknessdr8. The
constantf0 is taken to be 70 MeV fm5 from fits to binding
energies and radii ofb-stable nucleif10g. The integrand in
the first term contains precisely the EOS for asymmetric
matter. The proton and neutron densities, or, equivalently,
the total densityrsrd=rnsrd+rpsrd and the neutron excess
parameterasrd=frnsrd−rpsrdg/rsrd, are now functions of
the radial coordinate.

One can then parametrize the proton and neutron density
functions and search for the values of those parameters that
maximize the binding energy of the nucleus. We have used
standard two-parameter Fermi distributions, that is,

risrd =
ai

1 + esr−bid/ci
, s5d

with i =n, p for neutron/proton, respectively. The param-
etersbi andci are the radius and diffuseness, and the value
of ai is determined by normalizing the density distribu-
tions toN or Z. For each set of trial parameters, the func-
tions rsrd and asrd are evaluated over the integration
range, and the EOS from Fig. 1 is interpolated as a func-
tion of two variables. Alternatively, we can save one in-
terpolation by writing the EOS as an analytical function of
a f7g

esr, ad − esr, 0d = essrda2, s6d

with es the symmetry energy. We observed no significant
differences in the results when using Eq.s6d to represent
the EOS for anya.

B. Results with DBHF-based EOS

The energy per particle obtained from Eq.(4) are shown
in Table I for some magic or semimagic nuclei. We have
considered40Ca as a nucleus withN=Z, two cases with dif-
ferent levels of asymmetry,90Zr and208Pb (average asymme-
try parametersN−Zd/A equal to 0.11 and 0.21, respectively),
and the more strongly asymmetric266Pb for which no experi-
mental information is available, but which could be doubly
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FIG. 1. Energy per nucleone as a function of the Fermi mo-
mentumkF and the neutron excess parametera.
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magic [11]. The binding energy per particle for this nucleus
predicted with a phenomenological Skyrme interaction is
6.669 MeV[11].

We have used three relativistic one-boson-exchange po-
tentials, the BonnA, B, and C potentials. In all cases, the
EOS to be used in Eq.(4) is obtained in a DBHF calculation
of infinite nuclear matter. As is well known, BonnA is the
most attractive among the three potentials[9]. This behavior
is related to the strength of the tensor force, which contrib-
utes to nuclear matter binding through second-order contri-
butions to the central force. As a consequence of that, a
weaker tensor force implies a larger central force and thus
larger binding. In all cases(where experimental information
is available), the BonnB predictions appear to be the best
(this point will be revisited in Sec. II D), with the significant
model dependence reflecting the different saturation energies
predicted by the three potentials. These are shown in Fig. 2,
where the EOS as a function of the average Fermi momen-
tum is displayed for the three potentials at two values ofa.
The purpose of the figure is to show how the differences
among the three curves decrease as the proton fraction de-
creases, and become very small in the limit of neutron mat-
ter. This is because, as we pointed out above, the tensor force
is the major source of model dependence among these po-
tentials. Clearly, the tensor force is mostly reflected in the3S1
partial wave, which, as aT=0 contribution, will lose strength
when the system approaches neutron matter.

Figures 3–6 show the predicted proton and neutron point
density distributions for the nuclei in Table I obtained with
Bonn A, B, and C. Consistent with the observations made
above, the model dependence is strongest in the central re-
gion [whereasrd is generally small].

In order to compare with the experimental charge radii,
our predicted point proton density is folded with the proton
charge form factor to yield the charge density through the
usual convolution integral,

rchsrd =E d3r8gsrW − r8W drpsr8d, s7d

whereg is the proton charge form factor which is taken to
be of Gaussian shapef12g,

gsrd = saÎpd−3e−r2/a2
, s8d

and the constanta is related to the charge radius of the
proton sequal to 0.8 fmd throughrch,p=Îs2/3da.

TABLE I. Binding energy/particle(in MeV) obtained with three
relativistic potentials.

Nucleus Binding energy(expt.) Potential Binding energy

Bonn A 9.23
40Ca 8.55 BonnB 8.44

Bonn C 7.99
Bonn A 9.70

90Zr 8.71 BonnB 8.74
Bonn C 8.18
Bonn A 8.97

208Pb 7.87 BonnB 7.95
Bonn C 7.35
Bonn A 7.81

266Pb BonnB 6.92
Bonn A 6.41
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FIG. 2. Energy/nucleon as a function of the Fermi momentum
predicted with BonnA (solid line), BonnB (dotted line), and Bonn
C (dash-dot), for a=0 (lower group) anda=0.4 (upper group).

FIG. 3. Neutron(a) and proton(b) density distributions for40Ca
obtained with three relativistic one-boson-exchange potentials. All
calculations are DBHF.
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Figures 7–9 show predictions for the rms charge radius,
the neutron rms radius, and the neutron skin. The latter is
calculated as the difference between thepoint neutron and
proton rms radii.

As observed with the energies, the best agreement with
the charge radii is obtained with BonnB. The predicted radii
getting larger from BonnA to BonnC is again a reflection of
the larger attraction generated by the former.

Concerning neutron radii and skins, the empirical infor-
mation available on them is unavoidably indirect, analyses
being usually based on fits to proton scattering data. For
208Pb, for instance, analyses of scattering data provide values
of the neutron rms radius ranging from about 5.6 fm to
5.7 fm. The generally accepted range for the neutron skin is
quoted as 0.16±0.02 fm, but values as large as 0.38 fm have
been reported[2]. Most recently, Clark and collaborators[3]
have found the neutron rms radius to be between 5.52 and
5.55 fm, and the neutron skin between 0.083 and 0.111 fm.

FIG. 4. As in Fig. 3, for90Zr.

FIG. 5. As in Fig. 3, for208Pb.

FIG. 6. As in Fig. 3, for266Pb.
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FIG. 7. Charge radii predicted with BonnAs+d, BonnBs3d, and
Bonn Cs* d. The squares represent the experimental charge radii.
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Although in reasonable agreement with nonrelativistic
Skyrme Hartree-Fock models, these are smaller than the gen-
erally accepted values we quoted above, including those
from the present study, which are 5.60 fm for the neutron
radius and 0.188 fm for the skin(with Bonn B).

Table II summarizes BonnB predictions for charge radii,
neutron radii, and skins. For comparison, some results from
recent calculations are also included. For the charge radii, the
values shown in the last column are from the relativistic
Hartree calculation of Ref.[13]. For neutron radii and skins,
the first entry in the last column refers to the analysis of Ref.
[3], while the second entry gives the smallest and largest

values from the analysis of Ref.[2]. Clearly, agreement(be-
tween analyses and theoretical predictions as well as among
various analyses) is still elusive.

Some experimental information specifically on neutron
skins is also available for a few isotopic chains, but carries
large uncertainties. In Fig. 10, our predictions obtained with
BonnA, B, andC for Sn isotopes are compared with the data
of Krasznahorkayet al. [14]. The data were obtained from
cross section measurements of isovector spin-dipole reso-
nances excited by thes3He,td charge-exchange reaction at
450 MeV, and are not free of model assumptions[14]. Ac-
curate determinations of neutron skins are obviously needed.

To conclude this section, we compare in Fig. 11 the pre-
dicted total matter densities(upper panel) and asymmetries
asrd (lower panel) for the 208Pb and266Pb isotopes.

The central density is down by about 3% in266Pb, which
we find to be consistent with the lower saturation density of
asymmetric matter whena increases from about 0.2 to about
0.33 (see lower panel of Fig. 11).

C. A sample of nonrelativistic predictions

For completeness, we will also briefly mention some non-
relativistic calculations. In such cases, the input of Eq.(4) is
the EOS as calculated in a conventional Brueckner-Hartree-
Fock (BHF) calculation. We will show just one case, for the
purpose of demonstration. Figure 11 displays the proton and
neutron densities for208Pb calculated with the BHF frame-
work in comparison with the DBHF predictions(Bonn B is
used here). Nonrelativistic calculations imply central densi-
ties that are too high and radii that are unrealistically small.
The proton and neutron(point) radii corresponding to Fig. 12
are 4.95 fm(corresponding to a charge radius of 5.01 fm)
and 5.13 fm, respectively. We have observed very similar
conclusions to apply to nonrelativistic calculations with more
modern, high-precision interactions, such as CD-Bonn[15].
One must keep in mind that consideration of many-body
forces is a crucial issue in nonrelativistic calculations,
whereas some three-body forces are effectively included in
the DBHF framework[16]. As it has been observed on many
other occasions, the latter proves to be an effective and reli-
able method to describe microscopic interactions in the
nuclear medium for both symmetric and asymmetric matter.

D. Further discussion

Before we proceed with our final summary and conclu-
sions, we will take a closer look at our predictions in relation
to the (symmetric) nuclear matter calculations of Ref.[17].
We also like to examine our findings with respect to the
relative quality of the three potentials we apply(Bonn A, B,
C) as seen through their reproduction ofNN data.

First, we point out that our EOS calculations are moder-
ately different from those reported in Ref.[17] using the
same potentials, with our predictions showing more attrac-
tion. There are two sources of differences between our cal-
culations and the ones of Ref.[17]. The first one is the ab-

sence of the two-nucleon center-of-mass momentumsPW d in
the spinor normalization factors of our Eqs.(8) and (9) in
Ref. [7].
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FIG. 8. Neutron rms radii predicted with BonnAs+d, Bonn
Bs3d, and BonnCs* d.
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FIG. 9. Neutron skins predicted with BonnAs+d, Bonn Bs3d,
and BonnCs* d.
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We leave this contribution out whereas the authors of Ref.
[17] include it, but use the(untested) approximation

fs1/2dPW ±KW g2<s1/4dP2W ±K2W .
The second source of differences is in a technical aspect

of the self-consistent calculation for the single-particle po-
tential. The “effective mass ansatz” requires the choice of
specific momenta at which the potential is to be evaluated, so
that it can be fitted with a suitable analytic function. In con-
trast to what is done in Ref.[17], we reproduce the single-
particle potential at momenta above the Fermi level, which
we find more appropriate when using the continuous choice
for the single-particle potential. By doing so we obtain effec-

tive masses that are larger(that is, closer to the free-space
value), than those from Ref.[17]. (We adopted this point of
view already a while ago in the context of proton-nucleus
scattering calculations[18], where we noticed that “gentler”
effective masses are more consistent withp-A scattering ob-
servables.)

TABLE II. Charge radii, point neutron radii, and neutron skins(in fm) predicted with BonnB. When
available, experimental values and/or results from recent studies are given. See text for details.

Nucleus Observable
Experimental

value BonnB Other sources

rch 3.48 3.54 3.47a

40Ca rn 3.40 (3.310,3.314)b

Sn −0.0454 s−0.067, −0.063db

rch 4.27 4.30 4.26a

90Zr rn 4.31
Sn 0.0809
rch 5.50 5.47 5.49a

208Pb rn 5.60 (5.522,5.550),b (5.61,5.83)c

Sn 0.188 (0.083,0.111),b (0.16,0.38)c

rch 5.84
266Pb rn 6.30

Sn 0.518

aReference[13].
bReference[3].
cReference[2].
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FIG. 10. Neutron skins predicted with BonnAs+d, Bonn Bs3d,
and BonnCs* d for Sn isotopes. Data from Ref.[14].

FIG. 11. Total matter density(a) and asymmetry(b) predicted
with Bonn B for 208Pb (solid line) and266Pb (dashed line).
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Under the conditions described above, our study of
nuclear energies and radii selects the BonnB predictions as
best, whereas it would be pointing at potentialA had we
done the EOS calculations exactly as in Ref.[17]. Either
way, this work supports the conclusion that bulk observables
such as energies and radii favor the EOS generated by po-
tentials with low deuteronD-state probabilityPD. It is gen-
erally true that ground state energies of nuclear few- and
many-body systems are sensitive mainly to the deuteron
D-state probability, and that a lowPD is necessary for suffi-
cient binding.

Now, in the light of the above considerations, it is inter-
esting to confront the aspect of quality of free-space predic-
tions. In particular, can a low-PD potential fit thee1 param-
eter correctly up to 300 MeV? Figure 5 of Ref.[17] suggests
that this is only marginally possible. However, one must
keep in mind that these potentials are relatively old. In the
1990s, potentials with high-precision fit to phase shifts were
developed.(These high-precision potentials are nonrelativis-
tic in nature and thus unsuitable for a DBHF framework,
which is why we have chosen three relativistic, but older
potentials, see comments in Sec. II C.)

Within the new generation of high-precision potentials,
we notice that CD-Bonn has aPD of 4.85% and fits thee1
parameter perfectly up to 350 MeV, thus showing that a si-
multaneous description of binding energies andNN scatter-
ing data is indeed possible.

III. SUMMARY AND CONCLUSIONS

We have presented calculations of nuclear energies, den-
sities, and rms radii for some nuclei, ranging from symmetric
to highly asymmetric. The main ingredient is the EOS from
Ref. [7]. We use a mass formula as a simple yet direct tool to
probe our EOS for infinite asymmetric matter in finite nuclei.
Our predictions are essentially parameter free.

We compare with empirical information, when available.
Realistic predictions for proton rms radii and binding ener-
gies are obtained if the EOS originates from DBHF calcula-
tions. An alternative popular approach is the use of a nonrel-
ativistic framework together with phenomenological three-
body forces.

Concerning the baseline force, the predictions obtained
with BonnB are best, reflecting a better balance of attraction
and repulsion as compared to both BonnA andC. (This issue
has been examined closely in Sec. II D.)

The purpose of this paper was not to achieve the most
accurate reproduction of empirical radii and energies, but
rather to demonstrate that a microscopic density-dependent
interaction based on realistic two-body forces and obtained
within a DBHF description of asymmetric matter is capable
of generating realistic predictions for both energies and radii
without phenomenological adjustments, even if used in the
simplest framework of a liquid drop model. The nuclei under
consideration were chosen so as to sample different levels of
asymmetries.

Our predictions for neutron radii and neutron skins are
consistent with generally accepted values, which, on the
other hand, are accompanied by large uncertainties. Addi-
tional theoretical work is clearly needed as well as accurate
determinations of neutron densities. These may be available
in the near future through parity violating measurements of
neutron densities which have been proposed as a tool for
measuring neutron distributions with unprecedented accu-
racy [19]. Parity violation arises from the interference of
electromagnetic and weak amplitudes, with theZ0 coupling
mainly to neutrons at lowQ2. The data may be interpreted
with as much confidence as electromagnetic scattering[19].

These measurements will provide more stringent con-
straints for theoretical models, as discussed in Ref.[19].

Our future plans include microscopic reaction studies
with highly asymmetric nuclei. A proper account of the dif-
ferent proton and neutron distributions within a nucleus im-
plies developing ana- and isospin-dependent effective inter-
action as discussed in Ref.[7]. We think the resulting effects
could be important, even though the energy per particle in
asymmetric nuclear matter is a very smooth function ofa
[7,20] and variations ofa for most (familiar) nuclei tend to
be small except near the skin. The main effect would indeed
come from the isospin dependence of the interaction in those
regions where variations ofa are largest. Thus, following the
asymmetry profile of a nucleus(for instance, shown in the
lower panel of Fig. 10) with the appropriate interaction
amounts to selecting the proper balance ofT=1 and T=0
contributions, as determined by the relative proton/neutron
densities. For instance, the interaction of, say, an incoming
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with a BHF calculation(dashed line) compared with the corre-
sponding DBHF predictions(solid line).
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neutron near the skin would be predominantlynn, and thus
mostlyT=1. This “isospin selection” could be important, es-
pecially for the more exotic topologies.
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