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Previous nonrelativistic calculations have demonstrated a high sensitivity of hard bremsstrahlungpp
→ppg at the beam energies of 350–500 MeV to the kind of nucleon-nucleon potential(meson exchange
potentials versus the Moscow one). Here, bremsstrahlung calculations are generalized by means of relativistic
considerations(point form dynamics). The necessary formal technique is presented. Resulting cross sections
become smaller in comparison with nonrelativistic theory and their angular dependence changes. However, the
high sensitivity to the kind of potential continues to exist and is characteristic of the differential cross section
even at a relatively low beam energy ofE0=280 MeV where corresponding experimental data do exist. Our
calculations give some preliminary indication that one of the versions of the Moscow potential may be valid
here.
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I. INTRODUCTION

There are two principally different kinds of models of the
nucleon-nucleon interaction. The first traditional model rep-
resented by meson exchange potential(MEP) goes concep-
tually back to the famous idea by Yukawa. Such phenomeno-
logical potentials contain a repulsive core representing the
exchange of vector mesons. We will use two popular poten-
tials of this kind, namely, the Paris one[1] and the Nijmegen
one[2]. Some quark model potentials obtained both by reso-
nating group method(RGM) [3] and by superposition of
different shell-model 6q configurations[3,4] are pragmati-
cally rather close to the above meson potentials.

The second kind of potential is represented by the
strongly attractive Moscow potential(MP) with forbidden
states[5–8]. Here, a hard core does not exist; instead, the
wave function nodes appear forS andP partial waves, char-
acterizing their short-range oscillations. Such a short-range
potential is based on the application of 6q symmetries in the
quark models(see below). This contrasts significantly with
the concept of an “effective field theory”[9], where it is
assumed that at the energies below 1 GeV the quark degrees
of freedom can be integrated away so that the nucleon-
nucleon interaction should be analyzed entirely in terms of
meson exchange between nucleons.

The Moscow potential(with the inclusion of an imaginary
part rising with energy) is able to describe theNN-scattering
data (differential cross sections and vector polarizations) in
the laboratory energy range up to 5–6 GeV[6], while bothS
and P phase shifts remain positive throughout this energy
range(say, 3S1 phase shift equals 2p at the zero energy in
accordance with the generalized Levinson theorem). This

property of the MP seems now urgent in connection with
increasing interest in the intermediate energyNN interaction
[10,11].

Microscopically, the MP corresponds to an excited quark
configuration such ass4p2f42gxf42gCS or s4p2f42gxf42gST in
the nucleon-nucleon overlap region(see Refs.[12,13] where
the notations of Young tableaus in different spaces are also
explained). Namely, it was stressed that 6q configuration
s4p2f42gxf23gCf42gCS offers a way to an enhanced virtual de-
cay Ns2SdN→DCs0SdDC accompanied by a very strong at-
traction between the colored dipolesDC and DC, uDCl
=us2pf21gxL=1,f21gCC=1,f3gSTl (the terms s0Sd and s2Sd
symbolize the mutual motion wave functions) [14,15]. The
first preliminary RGM treatment of this kind has been made
recently[16].

Furthermore,s4p2f42gxf42gST configuration may be pre-
dominant if a strong nonperturbative instanton-induced inter-
action between quarks does exist[13].

The excited quark configurations should be seen directly
in a series of high-energy nuclear reactions involving the
investigation of the baryon-baryon(BB) composition of the
deuteron, viz., a quasielastic knockout such as2Hse, e8pdB
[17] with energies of final protons around 2 GeV, the
polarization transfer ind+p exclusive and inclusive high-
energy backward scattering[18], etc. Namely, thes4p2f42gx
configuration of deuteron produces theBB compo-
nents N*s1/2−, 3/2−ds1PdN, N*s1/2−, 3/2−ds0SdN*s1/2−, 3/2−d,
N** s1/2+ds0SdN, etc. with probabilities of the order of 1% in
comparison with that of the predominantns2Sdp channel
[17]. In particular, theN*s1/2−, 3/2−ds1PdN component ap-
pears to be just suitable to explain the cited polarization data
[18].

As regards the short-rangeDD component in the deuteron,
which is also investigated in high- and intermediate-energy
regions[19,20], it can have both a meson-exchange[19,20]
and six-quark[17] origin (s6f6gxf23gST configuration con-*Email address: neudat@tok.sinp.msu.ru
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nected toDD component is also responsible for a repulsive
core in theNN interaction within the framework of the quark
approach[4]). It is interesting that in the most reliable high-
energy experiment[19] this component is not seen.

In the previous papers[15,21–23] we have shown that
there is a rather efficient independent way to determine the
kind of theNN potential(the MEP versus the MP) by means
of the hard bremsstrahlung(HBS) pp→ppg at rather mod-
erate energies of 350–500 MeV. Such an opportunity is
based on the fact that the MEP and MP are not phase-shift
equivalent potentials and this nonequivalence is seen in the-
oretical papers very clearly if the maximally broad energy
range up toElab=5–6 GeVvalues is considered[6]. How-
ever, at moderate energies theS and P phase shifts for the
MP are simply displaced upward at 180° in comparison with
those for the MEP, and it is only HBS that discriminates
between these potentials well in contrast to the nucleon-
nucleon elastic scattering data. Namely, HBS is sensitive to
the shape of the short-range part of a relative motion wave
function (the nodal radial wave function with a well-
developed loop forS and P partial waves versus the short-
range suppression of wave functions).

So, we discuss here a new opportunity, which was not
analyzed in the previous papers on bremsstrahlung[24–28]:
some kinds ofNN potentials, which describe equally well the
elasticNN-scattering data within rather broad energy range
of, say, 800 MeV, may not be phase-shift equivalent(pn
differences for the lowest phase shifts), but this bright non-
equivalence may be efficiently revealed by investigation of
the hard bremsstrahlungpp→ppg. It is well known [24–28]
that various versions of meson-exchange potentials, which
are phase-shift equivalent, practically cannot be distin-
guished by means of bremsstrahlungpp→ppg: their off-
shell difference does not appear to be not essential here.

In the present paper we continue our investigation of HBS
pp→ppg passing from the nonrelativistic treatment to a rela-
tivistic one. In this way we eliminate the nonuniqueness of
the nonrelativistic results, depending on the choice of the
center-of-mass(c.m.) system of two protons(initial c.m. sys-
tem or final one). This nonuniqueness(the difference of the
corresponding cross sections) was almost invisible at the
beam energy E0=280 MeV, rather noticeable atE0
=450 MeV and large atE0=500 MeV [23], which demon-
strates the urgency of the relativistic treatment.

Our present analysis shows that relativistic effects are
quite significant even at the lowest inspected energyE0
=208 MeV and are rather large at higher energies. However,
the most important result is that our previous conclusion
about a high sensitivity of HBS to the kind ofNN interaction
remains valid albeit the values of cross sections and their
angular dependencies are changed. It is important to note
that both initial and final statepp interactions have a pro-
found influence here.

II. FORMALISM

Our consideration is based on the relativistic quasipoten-
tial equation[29] (c.m. system):

S pŴ2

m
+ V̂DxsrWd =

M2 − 4m2

4m
xsrWd =

1

2
ElabxsrWd. s1d

Here, V̂ is the nucleon-nucleon potential,M ;MsqWd
=2wsqWd=2Îm2+qW2 is the mass ofNN system;qW relative
momentum,Elab=Îm2+pW1

2−m the kinetic energy of a bom-
barding proton, andpW1 is its momentum.

The quasicoordinate representation[30] corresponds to

the realizationpŴ =−i]/]rW,V̂=V̂srWd and offers an opportunity to
use partly our previous formalism of the nonrelativistic co-
ordinate representation[15,23].

The principal relativistic effects are contained in the op-
erator of electromagnetic current, which will be discussed
below.

The bremsstrahlung amplitudeAif is determined by the
familiar expression[15]

dsEi − Ef − k0dd3sPW i − PW f − kWdAif

=Î2p

k0
E d4xkPfx fu«m

* ĴmsxduPixile−ikx, s2d

where k=sk0, kWd is the 4-momentum of a photon and«
=s«0, «Wd is its polarization 4-vector; the total energy isE

=ÎM2+PW 2 f31g; PW the total 3-momentum of the systemfin
the laboratory system of coordinatesslscd, PW =pW1; and E
=Îm2+pW2

1+mg. We rely upon the point form of relativistic
dynamicsf32–34g, where interaction is only present in the
components of the total 4-momentumP of a two-nucleon
system and is not involved in the generators of boosts and
rotations of this systemf34g.

Equation (1) can be written in terms of the point form
dynamics as

M̂2x = M2x.

It deals with the space of internal variables ofpp system,

and the squared mass operatorM̂2 is defined as

M̂2 = 4spŴ22 + mV+ m2d. s3d

Such structure ofM̂2 causes the dependence of the current

operatorĴsxd on interaction(see below).
The formulas for the matrix elements of the current ap-

pear especially simple in the coordinate frame, where

GW i + GW f = 0, s4d

GW =PW /M. This frame is just suitable for operations with the
solutions of the quasipotential, Eq.s1d, as far as boosts of
the wave function from both the initial and final center-
of-mass frame to the frames4d preserve the equal time
framework t1= t2 sit can be easily seen by the Lorentz
transformation of coordinatesd. Such boosts are necessary
to calculate the matrix elements2d f33,34g. Here appears
an opportunity to separate the c.m. and internal coordi-
nates of the system and to writef34g
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kPfx fuĴmsxduPixil = 2ÎMiMfe
isPf−Pidxkx fu ĵmsxduxil. s5d

As a result, Eq.(2) can be rewritten as

Aif =Î2p

k0
16p3ÎMiMfkx fu«m

* ĵmskWduxil, s6d

with the integration performed only over the internal vari-
ables of thepp system.

Using the transverse gauge

« = s0, «Wd, s«WkWd = 0, s7d

we exclude thej0skWd component of the current.
It is shown in the Appendix that the expression for re-

maining 3-currentjWskWd can be written as[we mean the coor-
dinate frame(4)]

jŴshWd = 2iFmeSm

w
fSW 3 hWg +

1

wsw + md
fqW 3 hWgsqW ·SWdD

+ 2ieS Fm

mw
+

Fe

wsw + mdDshW · fqW 3 SWgdqW+
Fee

w
qWfI1shWd

− I2shWdg −
2FeeshW ·qWd

wm
qW+

Mi − Mf

Mi + Mf
2ieSFm

m
+

Fe

w + m
D

3fqW 3 TW g. s8d

Here,SW =sW1+sW2, TW =sW1−sW2 ssW1 andsW2 being the spins of pro-

tond, hW =2sMfMid1/2sMf +Mid−2kW fuhW u!1 for Eg,500 MeV

and Eq.s8d corresponds to the first order onuhW ug. Further,

FeskWd andFmskWd are the electric and magnetic form factors

of the proton, respectively. Finally, the operatorsI jshWd rep-
resent the shifts of momentum,

I jshWdxsqWd =5xsdW1d = xFqW −
2hW

1 − hW2
fwsqWd − hW ·qWgG , j = 1

xsdW2d = xFqW +
2hW

1 − hW2
fwsqWd − hW ·qWgG , j = 2.

s9d

The components of the vector terms in Eq.(8), orthogonal

to kW, are only important since the scalar product«W jŴ with the
condition (7) enters the theory.

In the derivation of Eq.(8), the current conservation equa-

tion is used, and the generators of the Poincaré groupP̂m

enter into consideration(see the Appendix). They include an
interaction between particles, which is concentrated, within

the point form dynamics, in the mass operatorM̂ [see Eq.

(3)], PW =GW M [33,34]. sMi−Mfd/sMi+Mfd factor in Eq.(8) just

represents the result of the operatorM̂ action. So, the current
operator(8) is not merely the sum of the operators of two
independent particles, it also includes the effect of theNN
interaction(which, however, appears to be rather modest; see
the Appendix).

Concerning the manifestation of relativistic effects in our
general formalism, the central role here plays the operation
of boosting from the initial c.m. reference frame and from
the final reference frame to the single reference frame(4).
Indeed, we have seen in Ref.[5] how big can be the differ-
ence of results calculated in two reference frames mentioned
above. Concerning the current operator(8) itself, the main
contribution here gives the terms reflecting the convection

current{,FeqWfI1shWd−I2shWdg}, which appeared to be very en-
hanced in case of MP due to the short-range oscillations of
radial wave functions forS and P waves (and their large

derivatives here) and spin magnetic current(,FmfSW 3hWg).
The relativistic effects in the cross section connected to the
structure of the current(8) originate mainly from the relativ-
istic features of these operators and from the interference
products of their matrix elements and of relativistic compo-
nents of other terms in Eq.(8).

In our previous papers[15,21–23], the nonrelativistic

limit (ukWu!m and uqWu!m) of Eq. (8) was used.
In the coordinate representation, the action of the opera-

tors I jshWd can be expressed as

I jshWdxsrWd = e72isrWhWdÎm2+pŴ2
xsrWdurW=rW, s10d

with pŴ =−i¹, which can be verified by the example of a
plane wave. In fact, the series expansion

I jshWd = e72isrWhWdmF1 + isrWhWd
pŴ2

m
+ ¯G

rW=rW

s11d

is used here.
The matrix element entering Eq.(6) can be transformed,

for convenience, as follows:

kx fu«m
* ĵmshWduxil = kx fu«W* jŴshWduxil

= kx f − f fu«W* jŴshWduxi − fil + kf fu«W* jŴshWduxil

+ kx fu«W* jŴshWdufil. s12d

Here ufil and uf fl are plane wavesfthey are also eigen-

functions of the operatorjŴshWdg representing mutual motion
with the momentaqW i and qW f, respectively. Calculation of

the matrix elements such askf fu«W* jŴshWduxil is comparatively
simple, while the use of thexsrWd−fsrWd combinations
makes it possible to accelerate convergence of the partial
wave expansion.

The action of, e.g., the operatorpŴIishWd [see Eq.(8)] can be
clarified here as

pŴ I ishWduxi − fil = − i¹W fe72isrWhWdÎm2+qŴ i
2−mV̂ẼsrWdxi

− e72isrWhWdÎm2+qŴ i
2
fig, s13d

where Eq.s1d is used. The corresponding radial integrals

are divided into two parts,e
0

R and e
R

` , while R is chosen

to be “minimally large” for the inequalityumVẼsRdu!m2

+qW2 to hold se.g.,R=3 fm for the MPd. For calculating the
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first integral e
0

R , the exponential in the first term of Eq.

s13d is expanded into a series on the powersfqW i
2

−mVẼsRdgn, similar to Eq. s11d. A good convergence is
observed, and it is sufficient to takenø3. A calculation
technique for the other components of current operator is
demonstrated in the Appendix.

The given procedure of numerical realization seems to be
somewhat cumbersome, but it is not more complicated than
that for momentum representation, where, e.g., an unwieldy
technical detail is also present in considering the integration
over the solid angles of both the vectorqW and the vector

qW±2hWwsqWd, which is performed to obtain finally one-
dimensional radial integrals.

In the literature, there are no results based on consider-
ation of someNN potentials within a complete relativistic
formalism[33,34] used in the present paper. However, some
partial relativistic effects were considered[24,28]. In the pa-
per [24], analysis of relativistic spin corrections resulting
from introduction of the Dirac bispinors for free protons(i.e.,
within the impulse approximation for the electromagnetic
current) is given. In our formalism, the above effect corre-
sponds to an anomalous magnetic moment of proton, which
is a long wave limit of its magnetic form factor[see Eq.(8)].
Even for the lowest considered proton beam energyE0
=280 MeV such correction(25% decrease of the cross sec-
tion [24]) is a few times smaller than our figure of the total
relativistic effect(see below).

Concerning the origin of this discrepancy, we can men-
tion, first, that within formalism of Ref.[24] the T matrices
for the initial state and for the final state are calculated in
different reference frames, corresponding to the initial and to
the final center-of-masspp systems, respectively. Such pro-
cedure is not quite consistent; a single coordinate frame
should be used here with the principal role of boosting pro-
cedure(see the discussion of Ref.[8]). Second, the relativis-
tic content of other terms in Eq.(8) besides the spin-
magnetic term is important(see the above discussion).

In Ref. [28], theT-matrix formalism based on the single-
coordinate frame was used with the boost of theT-matrix
from, say, the initial c.m. reference frame to the final refer-
ence frame when calculating the matrix element ofpp
→ppg transition. But the equal time frameworkt1=t2, con-
nected to the use of quasipotential equations in Ref.[28], is
lost after such boost,t18Þt28, and the situation is outside the
quasipotential approximation.

III. RESULTS AND DISCUSSION

The differential cross sections for the bremsstrahlung re-
actionpp→ppg for six chosen values of the beam energyE0
are presented in Figs. 1–6. Everywhere, the geometry of ex-
periment does correspond to the hardest photons(it is just
realized in the experiment of Ref.[35]).

The general features of the results presented in Figs. 1–6
are as follows.

First, relativistic effects are essential even at the beam
energy of 280 MeV, while for higher energies they change
even the general picture, and the cross section becomes a few
times smaller compared with the nonrelativistic treatment.

Second, as in the nonrelativistic case[15,21–23], the
short-range loop of the radialP-wave function(characteris-
tics of the Moscow potential) has a bright manifestation.
Namely, due to the above-mentioned loop the values of the
cross section for the MP are a few times larger than those for
the MEPs. But in the nonrelativistic case this property of aP
wave also gave impressive forward and backward maxima of
their angular difference[15,21–23] for both the MP-92[7]
and MP-97[8]. Now this feature is significantly damped and,
in reality, still remains for the MP-97 only since the ampli-
tude of the above-mentionedP-wave oscillation is especially
large here(see below).

It is interesting to note also that recently proposed poten-
tial of the NN interaction(generalization of the cloudy-bag
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FIG. 1. Differential cross section for app→ppg reaction as a
function of the laboratory photon emission angleng at the proton
beam energyE0=280 MeV and at laboratory proton emission
angles fixed atu1=12.4° andu2=12°. A photon is emitted towards
the side ofu2 angle(coplanar geometry). Nonrelativistic calculation
(here, the results in the initial and final c.m. frames are very close to
each other): the short-dashed thin line, the MP-92; the dot-dashed
thin line, Paris potential. Relativistic calculation: the solid thick
line, the MP-92; the dash-three points thick line, the MP-97; the
long dashed thick line, the Paris potential; the dotted thick line, the
Nijmegen potential.
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FIG. 2. Same as in Fig. 1, but forE0=320 MeV. Nonrelativistic
results: the upper curve of each of the two kinds corresponds to the
final c.m. frame; and the lower curve to the initial c.m. frame.
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model of the nucleon to a two-nucleon system) [36], con-
versely, is characterized by a very shallow loop in theP
wave (keeping, however, the well-pronounced loop inS
wave, which is typical for the Moscow potential), and the
cross section for thepp→ppg reaction for this potential is
practically indistinguishable from that for the MEP(our pre-
vious nonrelativistic results[23] should be corrected at this
point [37]).

Third, the problem of difference between the cross sec-
tions calculated in the initial and in the final c.m. systems,
naturally, disappears.

The theoretical results forE0=280 MeV presented in Fig.
1 seem now to be especially urgent since the existing experi-
mental data[35] in the relativistic treatment become dis-
criminative with respect to the kind of theNN potential.
Namely, the nonrelativistic theoretical curves for the MP-92
and the MEP[15,21–23] are very close to each other here but
the relativistic cross section in the backward hemisphere for
the MP-92, which is much closer to the experiment, is twice
larger than that for the MEP. The relativistic results for the
MP-97, which are also shown in Fig. 1, are important from
the methodological point of view—they do not agree with
the experiment but they demonstrate what a tremendous ef-
fect can be produced by an increase of theP-wave loop
amplitude(an increase in the potential depth) still compatible

with the phase shift analysis data. So, it may be concluded
that a very moderate rearrangement of theP-wave part of the
MP-92 (slight increase of theP-wave loop and amplitude)
will result in a good agreement of the corresponding theoret-
ical curve with the experiment. By comparison, the mesonic
potentials do not possess this feature.

All the aforementioned reasons show that a careful ex-
perimental examination of the theoretical concepts at various
energies should be very urgent—HBSpp→ppg at moderate
beam energies of 300–500 MeV is indeed an efficient tool
for discriminating between the two kinds of the nucleon-
nucleon potentials. The hard bremsstrahlungpp→ppg is
practically insensitive to the node of the radialS-wave func-
tion at R=0.5–0.6 Fm, which is the original property of the
MP along with the node in theP wave. The important ques-
tion concerning the node in theS wave should be clarified
when the nucleon momentum distribution in the deuteron is
extracted from the experiment[38], where the quasielastic
knockout reaction2Hse, e8pdn was investigated at a beam
energy of a few GeV within a broad range of recoil momen-
tum values up to 1 GeV. Theoretical analysis of this experi-
ment should imply a strong final statepn interaction charac-
teristic of the MP. We are planning to accomplish this in the
future.

Another essential experiment2H+g→n+p at moderately
high energies ofEgù2 GeV [39] should also be analyzed
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FIG. 5. Same as in Fig. 2, but forE0=450 MeV.
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FIG. 6. Same as in Fig. 2, but forE0=500 MeV.
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FIG. 3. Same as in Fig. 2, but forE0=350 MeV.
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FIG. 4. Same as in Fig. 2, but forE0=400 MeV.
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because unlike lower energies the meson-exchange currents
are strongly suppressed here(meson electroproduction data
testify that, e.g., the pion cutoff parameterLp is 0.6 GeV
[40,41]). Hence, here the influence of the discussed radial
short-range oscillations inS andP partial waves is expected
to be seen too(the pn final state interaction is important, as
before).
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APPENDIX
Here, the derivation of Eq.(8) is based on the results of

the review Ref.[34] to supplement them. Having in mind the
nucleon with the 4-momentump, let us define the Lorentz
transformation associated with a boostg as p→Lfasgdgp,
where[42]

asgd =
g0 + 1 +sWgW

Î2sg0 + 1d
, sA1d

g giving 4-velocity, ands=ssx, sy, szd, the Pauli matrices.
Introducing, next, thep̆ matrix asp̆=smpm with the inter-
relations

p0 =
1

2
sp̆11 + p̆22d, p1 =

1

2
sp̆12 + p̆21d,

p2 =
1

2i
s− p̆12 + p̆21d, p3 =

1

2
sp̆11 − p̆22d, sA2d

we carry out the matrix transformation

p̆ → asgdp̆asgd+, sA3d

which in combination with the formulassA2d, just de-
scribes the boost operationp→Lfasgdgp.

The Poincare group transformation Usa, ld is characterized
[34] by the 4-shifta and 4-rotationl:

Usa, ldwsgd = expsimg8adDfsW;asgd−1lasg8dgwsg8d.

sA4d

Here,wsgd is a normalized spinor function,sW the spin op-
erator, andg8=Lsldg. In our case of spins=1/2 particles,
we deal with the fundamental representationf42g, i.e.,

DfsW;asgd−1lasg8dg = asgd−1lasg8d. sA5d

The operatorl will be specified for our two-particle sys-
tem. Here,pi =migi si =1, 2d and the center-of-mass veloc-
ity is G. In the center-of-mass coordinate frame the mo-
menta of particles are expressedf34g as

qi = LfasGdg−1migi, qW1 = qW = − qW2. sA6d

Bearing in mind our nuclear reactionpp→ppg and choos-
ing the coordinate frames3d, we can specify the general
expression for the current operator in the system of the
non interacting particles, which corresponds to the point
form dynamicsf34g

jnshWd = o
i=1,2

LSLfasfdg
qi

mi
, Lfasf8dg

di

mi
D

n

m

DfsWk;asqk/mkd−1asfd−1asf8dasdki/mkdg

3 DfsWi ;asqi/mid−1asfd−1asLfasfdgqi/mi, Lfasf8dgdi/midasf idg j i
nshWd

3 DfsWi ;asf i8d
−1asLfasfdgqi/mi, Lfasf8dgdi/midasf8dasdi/midg

miwisqW id

wisdW id
SMsdW id

MsqWd
D3/2

I ishWd. sA7d

Here,k=2 if i =1, and, conversely,k=1 if i =2. Next,

f = LsG, G8d−1G, f8 = LsG, G8d−1G8 sA8d

represent the 4-velocities of the two-nucleon c.m. in the
initial and final states, respectively, meaning the coordi-
nate frames3d. The following formal aspects should be

mentioned here: f2= f82=1, fW+ fW8=0, f0= f08=s1+ fW2d1/2;
LsG, G8d=LfasG, G8dg, asG, G8d=afsG+G8d/uG+G8ug; d1

=fw1sdW1d, dW1g, d2=fw2sdW2d, dW2g, d12=Lfasf8d−1asfdgq2

=fw2sdW1d, −dW1g, d21=Lfasf8d−1asfdgq1=fw1sdW2d, dW2g; and the

3-vectorsdW1 and dW2 are given by Eq.s8d. Finally, j i
nshWd is

4-current of the particlei,
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j i
0shWd = eFeS−

4m2hW i
2

Î1 − hW i
2D ,

jWishWd = −
ie

Î1 − hW i
2
FmS−

4m2hW i
2

Î1 − hW i
2DshW i 3 sWid, sA9d

where the vectorshW i are defined below.
The photon energiesEg,500 MeV considered in our pa-

per correspond to the inequalityuhWu!1. In such first-order

approximationFeshWd<Fes0d=1, FmshWd<Fms0d=2.793, and,

further (hW is directed along the z axis): d1=sw
−2hqz, qx, qy, qz−2hwd, d2=sw+2hqz, −qx, −qy, −qz−2hwd, and
d12=sw−2hqz, −qx, −qy, −qz+2hwd, d21=sw+2hqz, qx, qy, qz
+2hwd,

1

wsdW1d
SMsdW1d

MsqWd
D3/2

=
w − hqz

w2 ,

1

wsdW2d
SMsdW2d

MsqWd
D3/2

=
w + hqz

w2 ,

h1 = h2 = f1 = f2 = S1, −
2hqzqx

msw + md
,

−
2hqzqy

msw + md
, −

2hfmsw + md + qx
2 + qy

2g
msw + md D ,

f18 = f28 = S1,
2hqzqx

msw + md
,

2hqzqy

msw + md
,

−
2hfmsw + md + qx

2 + qy
2g

msw + md D ,

Lfasf8dg
q1

m
= m−1sw − 3hqz, qx, qy, qz − 3hwd, sA10d

Lfasfdg
q1

m
= m−1sw + hqz, qx, qy, qz + hwd.

Introducing 4-vectors

z1 =

Lfasfdg
q1

m
+ Lfasf8dg

d1

m

ULfasfdg
q1

m
+ Lfasf8dg

d1

m
U

= m−1sw − hqz, qx, qy, qz − hwd sA11d

and z2, where qW is replaced by −qW, we can write the
4-vector

LSLfasfdg
qi

m1
, Lfasf8dg

di

m1
D j ishid

; Lszid j ishid

. FFee

m
fw 7 shW ·qWdg ±

4iFme

m2 wshW · fqW 3 sWigd,

±
Fee

m
sqW 7 whWd + 4iFmeSfsWi 3 hWg +

shW · fqW 3 sWigdq
m2

+
sqW ·sWidfqW 3 hWg

msw + md
DG , sA12d

where the 4-vectors di were presented as di

.fw72shWqWd, ±qW −2whWg.
Finally, following the realization(A5), we obtain

DfsWk;asqk/mkd−1asfd−1asf8dasdki/mkdg

. 1 ±
i

w + m
shW · fsW k 3 qWgd, sA13d

DfsWi ;asqi/mid−1asfd−1ahLfasfdgqi/mi, Lfasf8dgdi/mijasf idg

. DfsWi ;asf i
’d−1ahLfasfdgqi/mi, Lfasf8dgdi/mij

3 asf8dasdi/midg

. 1 ±
ism+ 2wd
2msw + md

shW · fsW i 3 qWgd. sA14d

Substituting all these intermediate results into Eq.(A7),
we arrive at the expression(not interacting particles, first

order approximation with respect touhWu)

j0shWd = 2iSFm

m
−

Fe

w + m
DeshW · fqW 3 TW gd + 2Fee, sA15d

jWshWd = 2iFmeSm

w
fSW 3 hWg +

1

wsw + md
fqW 3 hWgsqW ·SWdD

+ 2ieS Fm

mw
+

Fe

wsw + mdDshW · fqW 3 SWgdqW

+
Fee

w
qWfI1shWd − I2shWdg −

2FeeshW ·qWd
wm

qW − 2FeehW .

Now, we should take into account the current conserva-
tion equation

Ĵmsxd
] xm = 0. sA16d

Using also the 4-shift

Ĵmsxd = expsiP̂xdĴms0dexps− iP̂xd, sA17d

we obtain an important relation

fP̂m, Ĵms0dg = 0. sA18d
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In terms of the internal variables ofpp system, Eq.(A18)
can be reduced to the matrix element

kx fufM̂, G0 ĵ0shWd − GW jŴshWdguxil = 0, sA19d

which can be rewritten in the form

kx fushW · jŴshWdduxil =
Mi − Mf

Mi + Mf
kx fu ĵ0shWduxil, sA20d

as far asGW i =hW, GW f =−hW, PW i =MihW, PW f =−MfhW, M̂uxil=Miuxil,
and M̂ux fl=Mfux fl. The current operatorsA15d does not
satisfy Eq.sA20d and needs some modification. To dis-
cuss the problem we decompose the current operator for a
system of two noninteracting particles into three different
componentsf33,34g:

jWshWd = jWs0d +
hW

uhW u
jWishWd + jW'shWd,

wherehW jW'shWd=0.
When the interaction between particles is included, the

current operator changesjWshWd→ jŴshWd, jWs0d→ jŴs0d, jWishWd→ jŴishWd,
and jW'shWd→ jŴ'shWd.

The structure of Eq.(A20) shows that thejŴ'shWd compo-
nent is not influenced by the current conservation, so it is
natural to take it from Eq.(A15) [33,34]. To get out of this
simplest method here it would be necessary to use explicitly
the microscopic picture of interaction[43] and the diagrams
describing the interaction current(see, e.g., Ref.[44] for
such description of meson-exchange currents). Our phenom-
enological quark-induced quasipotential model offers no
such microscopic picture of interaction albeit some system-
atical work is in progress here[13,16,45]. So, there is still no
basis for building up of the transverse component of the
interaction current[by the way, the contribution of the inter-

action current to thejŴs0d component can be reconstructed by
means of the current conservation Eq.(A20) and its role
appears to be rather modest—see below].

Nevertheless, our model has a very interesting property,
reflecting the effect of the deep attractive MoscowNN po-
tential with forbidden states—it shows the very increased

role of ¹W operator(i.e., qW in momentum representation) in
Eq. (A20) in comparison to MEPs due to the short range
oscillations of radial wave functions forSandP waves of the
pp scattering. This fact is just responsible for the few times
increase of cross section of hard bremsstrahlung processpp
→ppg for the case of MP in comparison to that of MEPs
(see the main text). The radiation of soft photonssk!q2/md
is not suitable for discriminating the above potentials as far
as the reaction amplitude is described here[46] in terms of
partial amplitudesTl of elasticpp scattering and theirE de-
rivatives which at proton beam energies of a few hundreds
MeV are practically indistinguishable if the potentials of the
above two kinds are compared—see the Introduction. But at
higher energies of 2–3 GeV some sensitivity of the soft
bremsstrahlung to the kind ofNN potential can appear.

Further, it is seen from Eqs.(6) and (7) that the jŴishWd
component of the current plays no role in our electromag-

netic process[this is because the term −2FeehW in Eqs.(A15)

and (A21) is omitted in Eq.(8)]. But the jŴs0d part of the
current both contributes to the amplitude of the reaction(8)
and is influenced by the current conservation condition
(A20). It appears as the necessary two-body modification of
jWs0d component of the single-particle current(A15) to satisfy
Eq. (A20):

jŴs0d = jWs0d +
Mi − Mf

Mi + Mf
2ieSFm

m
−

Fe

m+ w
DfqW 3 TW g,

while ĵ0shWd= j0shWd. The real contribution of the above two-
body term to the cross section of hard bremsstrahlung
pp→ppg reaction within the kinematics of Figs. 1–6 is
rather modest, about 5–10 %.

So, the modified expression(A15) for the current, which
contains the terms of the zero- and first-order magnitude with

respect touhWu including the(partial) contribution of two-body
current, can be written as

ĵ0shWd = j0shWd, sA21d

jŴshWd = jWshWd +
Mi − Mf

Mi + Mf
2ieSFm

m
−

Fe

m+ w
DfqW 3 TW g.

So, we come to Eq.s8d of the main text.
The nonrelativistic limitsuqWu/m!1d of Eq. (A21) looks

like

jŴnrshWd = 2ieFmfSW 3 hWg

+
eFe

m
qWfI1shWd − I2shWdg +

ie

m
uhW us2Fm − FedfqW 3 TW g,

sA22d

while IshWd.exps±ikWrW/2d here fcoordinate representation,
see Eq.s10dg.

In particular, the contribution of two-body current corre-
sponds to the third term in r.h.s. of Eq.(A22).

Comparing Eq.(A22) to that used in our nonrelativistic
treatment[Eqs. (3)–(6) and (A2) of Ref. [15], coordinate
representation] we see that the amplitude(6) of Ref. [15] is

really of second order in magnitude with respect toukWu/m (it
gives a small contribution) and the term of such content in
Eq. (A22) is absent. Further, the term corresponding to Eq.
(5) of Ref. [15] is evidently the first term in the rhs of Eq.
(A22). As a next step, we will show now that the term
equivalent to Eq.(4) of Ref. [15] is the second term in the
rhs of Eq.(A22). Indeed, the matrix element corresponding
to this term in Eq.(A22) should be written within a constant
factor as

E d3rw f¹
W fexps− ikWrW/2d − expsikWrW/2dgwi . sA23d

Using the important property that for the wave packets,
we havef47g
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E d3rw fs¹W wid =E d3rs¹W w fdwi ,

and that the vector amplitudes parallel tokW can be omitted,
we just obtain from Eq.s4d of Ref. f15g our above expres-
sion sA23dd.

Finally, it should be noted that the real contribution of the
two-body term in Eq.(A22) is small, it accounts for approxi-
mately 5% of the cross section. This figure is just compa-
rable with the measure of accuracy of all our formal proce-
dure. So nonrelativistic results of Figs. 1–6 are practically
the same as these of Ref.[15], where this term was not taken
into account.

The current operator(A21) is meant to calculate the ma-

trix elementskxfujŴshWduxil.
Now, by a few examples, we illustrate the calculation

technique for the matrix elements of various components of
the relativistic current operator

s¹W ·SWd¹m = −
1

Î3
†f¹W s1d 3 ¹W s1dgs0d 3 SW s1d

‡m
s1d

−
Î5

Î3
†f¹W s1d 3 ¹W s1dgs2d 3 SW s1d

‡m
s1d, sA24d

shW · f¹W 3 SWgd¹m = − i
Î6

3
SÎ15

2
f†f¹W s1d 3 ¹W s1dgs2d 3 SW s1d

‡

s2d

3 hW s1dgm
s1d + f†f¹W s1d 3 ¹W s1dgs0d 3 SW s1d

‡

s1d

3 hW s1dgm
s1d−

Î5

2
+ f†f¹W s1d 3 ¹W s1dgs2d

3 SW s1d
‡

s1d 3 hW s1dgm
s1dD , sA25d

kLf, Sf = 1;JfMfuf†f¹W s1d 3 ¹W s1dgskd 3 SW s1d
‡

s1dgm
sndfsrduLi, Si

= 1;JiMil = CJiMinm
JfMf 5Lf 1 Jf

Li 1 Ji

k 1 n
6Î6s2Ji + 1ds2n + 1d

3kLfuuf¹W s1d 3 ¹W s1dgskdfsrduuLil, sA26d

kLfuuf¹W s1d 3 ¹W s1dgs2d fsrd
r

uuLil

=
Î2Lf + 1

Î6CLi020
Lf0

1

r
FdLiLf

S− 1 +
3s2Li

2 + 2Li − 1dÎ2s2Li + 1d
s2Li − 1ds2Li + 1ds2Li + 3d D

3 S d2

dr2 −
LisLi + 1d

r2 D fsrd

+ dLiLf−2

3sLi + 1dsLi + 2dÎ2s2Li + 1d
s2Li + 1ds2Li + 3ds2Li + 5d

3 S d2

dr2 −
s2Li + 3d

r

d

dr
+

sLi + 3dsLi + 1d
r2 D fsrd

+ dLiLf+2

3LisLi − 1dÎ2s2Li + 1d
s2Li + 1ds2Li − 3ds2Li − 1d

3S d2

dr2 −
s2Li − 1d

r

d

dr
+

LisLi − 2d
r2 D fsrdG . sA27d

In these expressions, the upper index in brackets, e.g., Eq.
s2d, means the tensor rank of the operator.
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