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I. INTRODUCTION

The anapole moment(AM ) of a quantum system, first
introduced by Zel’dovich[1], involves both the electromag-
netic interaction and parity nonconservation(PNC). It was
not before studies by Flambaum and Khriplovich[2] that the
concept acquired a practical interest. In their work, these
authors especially emphasized that the AM would grow with
the size of the nucleus, making heavy nuclei natural candi-
dates for observation. An anapole measurement is not easy
because it involves the hyperfine structure of an atom; the
first clear evidence came only a few years ago in the133Cs
nucleus[3].

The deuteron AM has also recently received some atten-
tion [4–8]. Though its interest is largely academic(an ex-
periment is not feasible in a near future), it offers the advan-
tage of a laboratory where methods and ingredients can be
studied in detail. These studies have been concerned with the
pion-exchange component of the PNC nucleon-nucleon(NN)
force. Calculations were based on assuming an effective-
field-theory description[4,5], zero-rangeNN strong forces
[7], or more realisticNN strong forces[8]. The use of an
alternative field-theory description was also proposed[6].
The next step concerns the extension of these results to in-
clude the component of the PNC force due to vector-meson
exchange that could contribute as much as, if not more than,
the pion exchange.

Determining the AM requires the calculation of the effec-
tive current that couples to the photon. As it involves parity
nonconservation, the current necessarily has an axial charac-
ter, making the requirement of current conservation non-
trivial. Individual contributions are proportional to the weak
couplingGF, while fulfilling the above property implies that
the effective current contains the factorGFq2, which vanishes
in the limit of a zero momentum transfer. Getting a reason-
able anapole result demands particular care about ensuring
gauge invariance. When dealing with vector mesons, this
task becomes less straightforward. In particular, it has to be

done consistently with the PNC interaction model that is
employed in calculations. Some contributions had been
given in Ref.[9]. In the present work, we intend to complete
this study with the double aim of satisfying gauge invariance
and consistency with the PNC interaction model. The DDH
potential, given by Desplanques, Donoghue, and Holstein,
will be our choice[10]. Some estimates of the vector-meson-
exchange contributions to the deuteron anapole moment will
be presented.

The plan for this paper is as follows. In Sec. II, we first
present the various ingredients pertinent to the interaction:
parity-conserving(PC), parity-nonconserving, and electro-
magnetic(EM) ones. We subsequently provide the expres-
sions for the PNC two-body currents at the lowest 1/mN or-
der and show how the current conservation is fulfilled.
Section III is devoted to the calculation of the deuteron ana-
pole moment. This includes the deuteron description, espe-
cially the determination of the PNC components; the anapole
matrix elements from both the one- and two-body currents;
and a numerical estimate in terms of the PNC meson-nucleon
coupling constants. A discussion of the results is given in
Sec. IV. This is completed by the Appendix that contains
expressions of the two-body currents in configuration space.

II. PNC NN INTERACTION, CURRENTS, AND CURRENT
CONSERVATION

The anapole moment is a special electromagnetic property
of a system in which parity conservation is violated; there-
fore, the first step in the anapole calculation is to determine
the EM current operators. Throughout this work, which con-
cerns low-energy nuclear systems, we assume the validity of
the nonrelativistic(NR) limit and keep only terms of leading
order.

The one-body currentsrs1d, js1d; jspin+jconvd, which is the
sum of the contributions from each nucleon(for the deu-
teron,A=2), takes the form in momentum space as

rs1d = eo
i=1

A
1 + ti

z

2
s2pd3ds3dsk + pi8 − pid, s1d

j spin= eo
i=1

A
mi

2mN
isi 3 spi8 − pids2pd3ds3dsk + pi8 − pid,

s2d
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j conv = eo
i=1

A
1 + ti

z

4mN
spi8 + pids2pd3ds3dsk + pi8 − pid, s3d

where mi is defined assmS+ti
zmVd /2 with mS=0.88 and

mV=4.71; and the vectors k, pi8, and pi denote the
3-momentum of the outgoing photon, outgoingith
nucleon, and incomingith nucleon, respectively. Besides
the one-body current, the canonical meson-exchange pic-
ture of theNN interaction suggests additional nuclear EM
currents due to exchange effects, which are two-body in
character. Thus, in order to reduce theoretical uncertainties
and to reach consistency with the chosenNN potential
model, it is important to construct these two-body currents
which should be constrained by current conservation and
phenomenology.

For the PCNN interaction, we choose the Argonnev18
potential sAv18d [11]. This potential gives good fits to the
scattering data and deuteron properties, but it is not straight-
forward to construct the corresponding exchange currents
(ECs) because the connection with the meson exchange pic-
ture is not clear for some parts of this potential. One tradi-
tional way to construct the ECs for such cases is implement-
ing the NR minimal coupling(MC) to the potential, i.e.,

p → p −
e

2
s1 + tzdA, H → H +

e

2
s1 + tzdA0,

then identifying the EM currents from the interaction
Hamiltonian density,ejmAm. However, this procedure only
constrains the longitudinal components, while giving no
information about the transverse components which are
conserved by themselves. Some uncertainty about these
transverse terms comes from potentials involving qua-
dratic velocity-dependent components as discussed in Ref.
f12g. Moreover, the derivation of exchange currents for a
model like Av18, employed in Ref.f13g for instance, re-
quires further elaboration: the potential contains a Gauss-
ian type component while the above MC prescription is
usually applied to Yukawa potentials. Therefore, we leave
the fully conserved PC EC as an open question for future
work and follow the much-simplified treatment of Ref.f8g
to examine:s1d to what degree current conservation is
broken by the omission of PC ECs, ands2d how much the
inclusion of PC ECs due to the one-pion exchange, which
gives the long-range part in Av18, could restore the con-
servation. By making this exercise, one can get a qualita-
tive handle on this problem. The detail will be discussed
in Sec. IV.

For the PNCNN interaction, our choice is the potential
based on a one-boson exchange scheme involvingp, r, and
v mesons, suggested by Desplanques, Donoghue, and Hol-
stein(DDH) [10]. Because this potential has a close tie with
the exchange picture, a more field-theoretical formalism, the
so-calledS-matrix approach[14–16,9], is used to construct
all the corresponding ECs. As will be shown later, some
transverse components arise naturally in this derivation.

For clarity, we divide the following discussion into three
parts: first, the model Lagrangian, consistent with the DDH
scheme, is constructed; second, the PNC ECs are derived;

and finally, we show how these exchange currents fulfill the
current conservation condition with the DDH potential.

A. Model Lagrangian

The total Lagrangian density is divided as

L = L0 + LPC+ LPNC+ LEM + dL, s4d

wheredL contains all the terms not relevant for this dis-
cussion. The free Lagrangian density of the nucleonsNd,
pions spd, rho mesonssrd, and omega mesonsvd, is

L0 = N8si]” − mNdN +
1

2
s]mpd · s]mpd −

1

2
mp

2p2

−
1

4
Fmn

srd ·F srdmn +
1

2
mr

2rm · rm −
1

2j
s]mrmd · s]nrnd

−
1

4
Fmn

svdFsvdmn +
1

2
mv

2vmvm −
1

2j
s]mvmds]nvnd, s5d

whereFmn
srd and Fmn

svd are the field tensors ofr and v me-
sons, and theRj gauge-fixing terms for vector mesons are
kept explicit. The PC and PNC meson-nucleon interaction
Lagrangian densities are

LPC = igpNNN8g5t · pN − grNNN8Sgm − i
xV

2mN
smnq

nDt · rmN

− gvNNN8Sgm − i
xS

2mN
smnq

nDvmN, s6d

LPNC= −
hp

1

Î2
N8st 3 pdzN + N8Fhr

0t · rm + hr
1rzm

+
hr

2

2Î6
s3tzrzm − t · rmdGgmg5N + N8shv

0vm

+ hv
1tzvmdgmg5N, s7d

whereqm is the 4-momentum carried by the outgoing bo-
son; the strong couplingsgXNN as well as the weak cou-
plings hX

sid are defined as in DDH’s worksexcept that their
PNC pion coupling,fp, is renamed ashp

1 hered; and the
anomalous strong isoscalar and isovector magnetic mo-
ments of the nucleon,xS and xV, are assumed to be the
same as the EM values, −0.12 and 3.70, byvector meson
dominance.

The EM interactions are obtained by applying the covari-
ant MC,

pm → pm −
e

2
s1 + tzdAm,

and only terms of first-order ine are included inLEM.
From L0, one gets
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LEM
sNNgd = − eN8FSF1

sSdsQ2d
1

2
+ F1

sVdsQ2d
tz

2 Dgm

− i
1

2mN
SF2

sSdsQ2d
1

2
+ F2

VsQ2d
tz

2 Dsmnq
nGNAm,

s8d

LEM
sppgd = − esp 3 ]mpdzAm, s9d

LEM
srrgd = − esrn 3 Fnm

srddzAm −
1

j
esrm 3 ]nrndzAm. s10d

Note that in order to account for the nucleon structure, the
nucleon EM form factors,F1,2

sS,Vd ssuperscript “S” for
isoscalar and “V” for isovector; subscript “1” for Dirac
and “2” for Paulid are added. AtQ2=−q2=0, F1

sSds0d
=F1

sVds0d=1, F2
sSds0d=−0.12, andF2

sVds0d=3.70. Inprinciple,
one should also take into account the meson structure;
however, they are still poorly constrained so we simply
assume the mesons are elementary.

Due to the momentum-dependent coupling of ar meson
to the nucleon anomalous magnetic moment, a Kroll-
Ruderman type contact interaction[17],

LEM
sNNrgd = − e

grNNxV

2mN
N8smnst 3 rndzNAm, s11d

also arises. This leads to a seagull current which is impor-
tant for current conservation, but was ignored in Ref.f9g.

It is worthwhile to point out that the EM interactions ob-
tained above depend on the model Lagrangian one starts
with. For example, compared with the result of QHD II
[18,19] one observes a largerrrg interaction in QHD II by
the amount

DLEM
srrgd = 1

2esrm 3 rndzFsgdmn,

which modifies therrg vertex in an interesting way as we
are going to explain.

By fixing the gauge parameterj=1, i.e., ’t Hooft-
Feynman gauge, we obtained the sameLEM

srrgd as in Ref.[20],
and this gives a vertex factor(see Fig. 1)

e3i jfsq1 − q2dmgab + kagbm − kbgmag, s12d

with k+q1+q2=0. The last two terms together give an am-
plitude conserved by itselfsactually, they correspond to

magnetic dipole couplings which explain the transversal-
ityd. Adding DLEM

srrgd simply doubles the self-conserved
terms so that we have

e3i jfsq1 − q2dmgab + 2kagbm − 2kbgmag, s13d

for the vertex. As ther meson is a spin-one particle, it has
chargescd, magnetic dipolesmd, and charge quadrupole
sQd couplings to the EM field. When assuming that it is an
elementary particle:c=e, m=e/mr, andQ=−e/mr

2, the ver-
tex factor appears to be Eq.s13d f21,22g, which implies
that the MC result underpredicts ther meson magnetic
moment by 2. This factor of 2 difference in self-conserved
terms between MC and chiral Lagrangian approaches has
been pointed out in Refs.f23,16g and was attributed to the
model dependency. However, in order to have a closer
contact with phenomenology, we use Eq.s13d instead as
the rrg vertex.

The modification mentioned above is just an example of
model dependency in constructing ECs. Since these purely
transverse terms, often called non-Born(NB) terms, could
not be constrained by current conservation, it is not easy to
set up criteriaa priori to judge which ones should be in-
cluded, unless comparisons are made with experiments[24].
For this derivation, we include therpg andvpg interactions

LEM
srpgd = e

grpg

2 mr

eabgdF
sgdabsrg · ]dpd, s14d

LEM
svpgd = e

gvpg

2 mv

eabgdF
sgdabsvg]dpzd, s15d

where the total antisymmetric tensor is defined ase0123
=−1 f25,15g, because the corresponding meson-nucleon
coupling constants,grpg andgvpg, can be determined from
the decay datasexcept for signsd. We ignore all the
nucleon isobaric excitations because they are not the main
theoretical emphasis of this work. The present work could
easily be extended if necessary.

To sum up, the total EM Lagrangian density we consider
is

LEM = LEM
sNNgd + LEM

sppgd + hLEM
srrgd + 1

2esrm 3 rndzFsgdmnj
+ LEM

srpgd + LEM
svpgd. s16d

B. PNC meson exchange currents

Diagrammatically, the ECs could be classified according
to Fig. 2 as(a) norm-recoil,(b) pair, (c) mesonic,(d) seagull,
(e) isobaric, and(f) NB mesonic types. The division into
norm-recoil and pair terms simply comes from the separation
of positive- and negative-energy components in the covariant
nucleon propagator. Confusion sometimes arises when it
comes to pair and seagull diagrams. If the PCpNN coupling
is formulated as pseudovector, the seagull term isOs1/mNd,
while the pair term is higher order in 1/mN. On the other
hand, if the pseudoscalar coupling is adopted as we do here,
there is no seagull term; however, at the leading order, the
pair term looks exactly as the seagull term in the pseudo-

q q

µ

β
i j

α 1 2

k

FIG. 1. The vertex factor for vector-meson-photon coupling,
where a, b, and g are the Lorentz indexes;i and j are isospin
indexes.
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vector scheme. Therefore, as far as the NR approximation is
valid, these two formalisms are equivalent[26,12]. For the
case of r mesons, both pair and seagull diagrams have
Os1/mNd contributions. As for the NB contributions from(e)
and (f), we only consider the latter as explained above.

Before one applies Feynman rules to evaluate these dia-
grams and extract the corresponding ECs, the gauge param-
eter has to be fixed. Though physical results should be gauge
independent, a proper choice may greatly simplify the calcu-
lation. Here, we adopt the ’t Hooft-Feynman gauge,j=1, for
the following reasons. First, the propagator is simpler,

kAmAnl = Sgmn − s1 − jd
qmqn

q2 − jm2 + ie
D − i

q2 − m2 + ie

=
− igmn

q2 − m2 + ie
sfor j = 1d.

Second, the PNC potential, constructed from a NR reduc-
tion of the one-boson exchange diagrams, corresponds to
the form given by DDH. The last and most important, the
contribution from the norm-recoil diagram represents how
the one-body EM matrix element is modified by the pres-
ence of the NR potentialf16g. This term should not be
double counted if one has already taken care of it by using
the perturbed wave function—the route we will follow.

In momentum space and to the order of 1/mN, the pair and
r-seagull(KR) 3-currents are

jpair
p =

− egpNNhp
1

2Î2mN

st1 · t2 − t1
zt2

zdfs1g
s2pd3ds3ds¯d

q2
2 + mp

2 + s1 ↔ 2d,

s17d

jpair+KR
r =

− egrNN

2mN
HShr

0st1 · t2 + t2
zd +

hr
2

2Î6
s3t1

zt2
z − t1 · t2

+ 2t2
zdDfs1 − s2g+ hr

1s1 + t1
zdft2

zs1 − t1
zs2g + s1

+ xVdShr
0 −

hr
2

2Î6
Dst1 3 t2dzfs1 3 s2gJ

3
s2pd3ds3ds¯d

q2
2 + mr

2 + s1 ↔ 2d, s18d

jpair
v =

− egvNN

2MN
s1 + t1

zdshv
0fs1 − s2g + hv

1ft1
zs1

− t2
zs2gd

s2pd3ds3ds¯d
q2

2 + mv
2 + s1 ↔ 2d, s19d

whereq1,2=p1,28 −p1,2 and thed function imposes the total
3-momentum conservation,k+q1+q2=0. The r-seagull
3-current corresponds to the term involvingxV in Eq. s18d.
All the pair charges are of higher order in 1/mN compared
with the nucleon charge, which isOs1d, so they are ne-
glected. The mesonic 3-currents are

j mesonic
p =

− egpNNhp
1

2Î2mN

st1 · t2 − t1
zt2

zdfq2

− q1gs1 ·q1

s2pd3ds3ds¯d
sq1

2 + mp
2dsq2

2 + mp
2d

+ s1 ↔ 2d,

s20d

γγ

γ

γ

γ

γ

(c)

(f)(d) (e)

(b)(a)

N N

N N N

N N

N

N N

N N

N

N N

N N

N N

N N

N N

N

M

M

M

M

M

M’
N*

N

M

M

FIG. 2. Classification of meson-exchange cur-
rents: (a) norm-recoil, (b) pair, (c) mesonic,(d)
seagull,(e) isobaric, and(f) non-Born mesonic,
whereN andN* denote nucleon and nucleon ex-
cited state;M andM8 denote mesons.
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j mesonic
r =

− egrNN

2mN
Shr

0 −
hr

2

2Î6
Dist1 3 t2dzsfq1 − q2gs2 · fsp28

+ p2d − sp18 + p1d − is1 + xVds1 3 q1g+ 2fsp18 + p1d

+ is1 + xVds1 3 q1gs2 ·k + 2fs2gh2mNk0 − k · fsp18

+ p1d + is1 + xVds1 3 q1gjd
s2pd3ds3ds¯d

sq1
2 + mr

2dsq2
2 + mr

2d

+ s1 ↔ 2d, s21d

j mesonic
rp =

egrNNgrpghp
1

Î2mr

st1 3 t2dzfq1 3 q2g
s2pd3ds3ds¯d

sq1
2 + mr

2dsq2
2 + mp

2d

+ s1 ↔ 2d, s22d

j mesonic
vp < 0, s23d

where k0=E1+E2−E18−E28=Ei −Ef. Specially note that
there is a mesonic contribution to the charge density at the
same order as the nucleon charge:

rmesonic
r = − 2egrNNShr

0 −
hr

2

2Î6
Dist1

3 t2dzs2 ·k
s2pd3ds3ds¯d

sq1
2 + mr

2dsq2
2 + mr

2d
+ s1 ↔ 2d.

s24d

C. PNC NN interaction and current conservation

The DDH potential in momentum space could be ex-
pressed as

VPNC
p =

gpNNhp
1

2Î2mN

ist1 3 t2dzss1 + s2d ·up, s25d

VPNC
r =

− grNN

mN
FShr

0t1 · t2 +
hr

1

2
st1

z + t2
zd +

hr
2

2Î6
s3t1

zt2
z

− t1 · t2dDfis1 + xVdss1 3 s2d ·ur + ss1 − s2d ·vrg

−
hr

1

2
st1

z − t2
zdss1 + s2d ·vrG , s26d

VPNC
v =

− gvNN

mN
FShv

0 +
hv

1

2
st1

z + t2
zdDfis1 + xSdss1 3 s2d ·uv

+ ss1 − s2d ·vvg+
hv

1

2
st1

z − t2
zdss1 + s2d ·vvG , s27d

where

uX =
q

q2 + mX
2 , vX =

sp18 + p1d − sp28 + p2d
2sq2 + mX

2d
,

and q denotes the meson 3-momentum.

To prove the conservation of these PNC currents at the
operator level, we showed explicitly the following matrix
element identities(with bra kp18,p28u and ketup1,p2l):

kfrs1d, VPNC
p gl = k · kjpair

p + jmesonic
p l, s28d

kfrs1d, VPNC
r gl = k · kjpair+KR

r + jmesonic
rsId l, s29d

kfrs1d, VPNC
v gl = k · kjpair

v l, s30d

kfrmesonic
r , Hgl = k · kjmesonic

rsII d l, s31d

0 = k · kjmesonic
rp + jmesonic

vp l, s32d

whereH is the total Hamiltonian, which is the sum of the
kinetic energysTd and both the PC and PNC potentials
sVPC and VPNCd; and ther mesonic current, Eq.s21d, is
separated into two parts:sId is proportional to the vector
sq1−q2d, andsII d contains the rest. The continuity equation
Eq. s31d indicates thatsrmesonic

r , jmesonic
rsII d d forms a conserved

current not constrained by the DDH potential, which re-
sults from the self-conservedrrg vertex mentioned above.
The last equality, Eq.s32d, shows the transversality of NB
currents. Obviously, the total PNC ECsrPNC

s2d , jPNC
s2d d, the

sum of Eqs.s17d–s24d, satisfies the total current conser-
vation condition

frs1d + rPNC
s2d , T + VPC+ VPNCg = k · sj s1d + jPC

s2d + jPNC
s2d d,

as long as the two-body PC EC,srPC
s2d , jPC

s2dd, is conserved,
i.e.,

frs1d, VPCg = k · jPC
s2d

srPC
s2d is higher order in 1/mNd. Therefore, at least for the

PNC part, we have every conservation condition met.
For the AM calculation, we have to use both the DDH

potential and current operators in coordinate space. These
expressions could be found in the Appendix.

III. DEUTERON ANAPOLE MOMENT

A. Determination of the deuteron wave function

Due to the PNCNN interaction, the deuteron wave func-
tion, mainly a3S1 state with some fraction of3D1 component,

could have parity admixtures in3P̃1 and 1P̃1 channels. The
former channel, induced by the isovector part of the DDH
potential, is dominated by thep exchange, while the latter
one, resulting from the isoscalar interaction, only arises from
the heavy-meson exchange. Therefore, we express the full
parity-admixed deuteron wave function as
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Csrd =
1

Î4pr
FSusrd +

S12sr̂d
Î8

wsrdDz00− iÎ3

8
ss1

+ s2d · r̂ ṽ3p1srd z10 + i
Î3

2
ss1

− s2d · r̂ ṽ1p1srd z00Gx1Jz
, s33d

whereS12sr̂d;3s1·r̂ s2·r̂ −s1·s2, and x and z represent
spinor and isospinor wave functions, respectively.

The Schrödinger equation in the center of mass frame is

H Csrd = F−
1

mN
S1

r

]2

] r2 r −
lsl + 1d

r2 D + VCsrd + VTsrd S12sr̂d

+ VPNCsrdG Csrd = E Csrd, s34d

whereVCsrd and VTsrd are the central and tensor parts of
the strong potential, respectively, andVPNCsrd is the sum
of the PNC potentials, Eqs.s25d, s26d, and s27d, given
above. Up to the first order in the PNCNN interaction,
radial wave functions satisfy the following differential equa-
tions

u9srd + mN fE − VCsrdgusrd = Î8mNVTsrdwsrd, s35d

w9srd −
6

r2wsrd + mNfE − VCsrd + 2VTsrdgwsrd

= Î8mNVTsrdusrd, s36d

ṽ3p19 srd −
2

r2ṽ3p1srd + mNfE − VCsrd − 2VTsrdgṽ3p1srd

=
2

Î3
FSusrd +

1

Î2
wsrdD ]

] r
fFp

1srd

+ Î2Fr
1srd − Î2Fv

1srdg+ 2Î2fFr
1srd − Fv

1srdg

3
]

] r Susrd +
1

Î2
wsrdD

−
2Î2

r
fFr

1srd − Fv
1srdgfusrd − Î2wsrdgG , s37d

ṽ1p19 −
2

r2ṽ1p1srd + mNfE − VCsrdgṽ1p1srd

=
2

Î3
Ffusrd − Î2wsrdg

]

] r
f3xVFr

0srd − xSFv
0srdg

− 2f3Fr
0srd − Fv

0srdg
]

] r
fusrd − Î2wsrdg

+
2

r
f3Fr

0srd − Fv
0srdgfusrd + 2Î2wsrdgG , s38d

where Fp
1srd;gpNNhp

1 fpsrd, Fr
0srd;grNNhr

0frsrd, Fr
1srd

;grNNhr
1frsrd, Fv

0srd;gvNNhv
0 fvsrd, and Fv

1srd
;gvNNhv

1 fvsrd. In our numerical calculations,gpNN
=13.45,grNN=2.79, gvNN=8.37, as well as DDHbest val-
ues sin units of 10−7d hp

1 =4.6, hr
0=−11.4, hr

1=−0.2, hr
2

=−9.5, hv
0 =−1.9, andhv

1 =−1.1, areassumed.

B. Anapole moment: Expressions for matrix elements

The anapole operator we use takes the form

a ;
2p

3
E dx x 3 sx 3 jsxdd, s39d

where jsxd contains all the one-body and PNC exchange
currents discussed in Sec. II. Note that this form is equiva-
lent to what has been recommended in Refs.f27,9g, which
is a result from implementing the extended Siegert’s theo-
rem f28g.

With the deuteron wave function, Eq.(33), we obtain the
anapole moment from the spin term,

aspin= −
p

Î6 mN
FmVE dr rfusrd − Î2wsrdgṽ3p1srd

− Î2 mSE dr r Susrd +
1

Î2
wsrdDṽ1p1srdG e I ,

s40d

where I ; 1/2x1Jz

† ss1+s2dx1Jz
is the intrinsic spin taken

in the spinor basis, and we note that this is equivalent to
the total angular momentum taken in the total angular
momentum basis, i.e.,I =kJ=1,JzuJuJ=1,Jzl f29g.

The matrix element of the convection current is written as

jconvsxd = jconv
+ sxd + jconv

− sxd,

jconv
+ sxd ;

e

4mN
E dr1dr2

1

Î4pr
x1Jz

† Susrd +
S12sr̂d
Î8

wsrd

− i
Î3

2
ss1 − s2d · r̂ṽ1p1srdDsp1, p2d+Susrd

+
S12sr̂d
Î8

wsrd + i
Î3

2
ss1 − s2d · r̂ṽ1p1srdD 1

Î4pr
x1Jz

,

s41d

jconv
− sxd ;

e

4mN
E dr1dr2

1

Î4pr
x1Jz

† FSusrd +
S12sr̂d
Î8

wsrdD
3sp1, p2d−S− iÎ3

8
Dss1 + s2d · r̂ṽ3p1srd

+ iÎ3

8
ss1 + s2d · r̂ṽ3p1srdsp1, p2d−Susrd

+
S12sr̂d
Î8

wsrdDG 1

Î4pr
x1Jz

, s42d

where
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sp1, p2d± ; hp1, d3sx − r1dj ± hp2, d3sx − r2dj. s43d

It can be shown that the matrix element of the operator
sp1,p2d+ is proportional to

− 2iR + RsR ·Pd + rsR ·p + 1
4r ·Pd − sR2 + 1

4r2dP − 2R · rp,

whereR=sr1+r2d /2 is the coordinate of the center of mass
andP=p1+p2 is the conjugate momentum. In the center of
mass frame where only the relative coordinate and mo-
mentum are relevant, the terms proportional toR or P can
be discarded. Therefore, the “true” internal convection
current is determined solely by Eq.s42d. Using the result
in Ref. f8g,

2p

3
E dxx 3 fx 3 jconv

− sxdg =K− i
pe

12mN
fl2, rgL , s44d

wherel =r 3p f30g, the anapole moment from the convec-
tion term then reads

aconv =
1

3

p

Î6 mN
E dr r susrd − Î2wsrddṽ3p1srde I .

s45d

Contributions from the PNC exchange currents are evalu-
ated with the parity-even channels(3S1 and3D1) in the initial
and final states. Because these channels are spin triplet(S
=1) and isospin singletsT=0d, the spin and isospin selection
rules

kS= 1uuss1 − s2duuS= 1l = kS= 1uuss1 3 s2duuS= 1l = 0,

s46d

kT = 0uust1 3 t2dziT = 0l = 0, s47d

where the double baruu means the reduced matrix element
greatly simplifies the calculations: the matrix elements of

jpair+KR
r±

, jmesonic
r±

, jmesonic
rp , and the parts proportional tos1

−s2 in jpair
r0

and jpair
v all vanish. Only thep pair, p mesonic

terms, and the parts proportional tos1+s2 in r0 pair and
v pair ones have to be considered. Pair and mesonic pion
contributions had already been calculated inf8g

apair
p = −

Î2pgpNN

9mN
E dr r2 fpsrd Susrd +

1

Î2
wsrdDfusrd

− Î2wsrdge I hp
1 , s48d

amesonic
p =

Î2pgpNN

3mNmp
E dr r f psrdSusrd +

1

Î2
wsrdDFusrdS1

−
1

3
mprD −

1

Î2
wsrdS1 +

1

3
mprDGe I hp

1 , s49d

and the heavy-meson contributions are now found to be

apair
r0

= −
2p grNN

9 mN
E dr r2 frsrd Susrd +

1

Î2
wsrdDfusrd

− Î2wsrdge I hr
1, s50d

apair
v =

2p gvNN

9 mN
E dr r2 fvsrd Susrd +

1

Î2
wsrdDfusrd

− Î2wsrdge Ihv
1 . s51d

C. Numerical results for the Argonne v18 NN interaction
model

Using the Av18 model, the numerical results(in units of
fm2) are

aspin= − 0.547hp
1 e I + s− 3.7 hr

1 + 10.8hv
1 + 7.3 hr

0

+ 3.7 hv
0d 3 10−3 e I , s52d

aconv = 0.039hp
1 e I + s2.7 hr

1 − 7.6 hv
1d 3 10−4 e I ,

s53d

aex
p = apair

p + amesonic
p = s− 0.027 + 0.028d hp

1 e I , s54d

aex
r = apair

r0
= − 0.73 10−4 hr

1 e I , s55d

aex
v = apair

v = 1.83 10−4 hv
1 e I . s56d

Nevertheless, in order to complete the calculation of the
deuteron AM, we have to estimate the contributions from
nucleonic AM and PC ECs.

Because the deuteron is isosinglet, the nucleonic contri-
bution to the deuteron AM,aN, only arises from the isoscalar
component, i.e.,

aN = kdu o
i=1

2

saS
s1d + aV

s1dti
zd si udl = 2aS

s1d S1 −
3

2
PDDI ,

s57d

where aS,V
s1d denote the isoscalar and isovector nucleonic

AMs, and PD is the deuteronD-state probability. Several
theoretical estimates for the nucleonic AM exist
f27,31–35g, and here we use the result of Ref.f35g be-
cause it is the most recent one which includes the full
DDH interaction at the nucleon level.

For the pion sector, Ref.[35] gave

aS
ps1d = −

gAhp
1

12Î2fpmp

Lx
2

mN
2 S1 −

6

p

mp

mN
ln

Lx

mp
D ,

where Lx is the chiral symmetry breaking scalesthe au-
thors chose it to be 4pfpd f40g. When settingLx=mN, the
leading term is equivalent to what has been used in Refs.
f4,5,8g for the deuteron AM calculations, while the full
result is the same as Ref.f7g. By including the heavy
mesons, the numerical result isf35g

aS
s1d = − 0.274hp

1 − 0.419hr
1 − 0.129hv

0 , s58d

and this leads to the nucleonic contribution

aN = s− 0.250hp
1 − 0.383hr

1 − 0.118hv
0d e I . s59d
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As for the PC ECs, we try to approximate them by the
ECs originated from one-pion exchange diagrams(corre-
sponding currents in the configuration space are given in the
Appendix). These PC EC contributions of pair and mesonic
types are

apair
PC =

1

3Î6
SgpNN

2mN
D2E dr e−mprs1 + mprd ṽ3p1srdfusrd

− Î2wsrdg e I , s60d

amesonic
PC = −

1

3Î6
SgpNN

2mN
D2E dr e−mpr ṽ3p1srdF3usrd

− mp rSusrd +
1

Î2
wsrdDGe I . s61d

Numerically we obtain

aex
PC= apair

PC + amesonic
PC

= − s7.8 hp
1 + 0.4 hr

1 − 1.1hv
1d 3 10−4 e I . s62d

In the following section, we will discuss if this is a rea-
sonable approximation and to what extent the current con-
servation is broken for not being fully consistent with
Av18.

Finally, the full deuteron AM could be expressed as

ad = aspin+ aconv + aex
PNC+ aN + aex

PC= s− 0.756hp
1 − 0.387hr

1

+ 0.010hv
1 + 0.007hr

0 − 0.114hv
0deI . s63d

IV. DISCUSSIONS

The contributions of the heavy mesons to the nuclear part
(spin, convection, PNC EC, and PC EC) are smaller than
those of the pion by two or three orders of magnitude. This
suppression can be understood by investigating the PNC pair
terms ofp, r, andv mesons, which correspond to Eqs.(48),
(50), and (51), respectively. Aside from the weak coupling
constants, they differ only by the Yukawa functionfpsrd or
fr,vsrd in the integrand. At smallr, the deuteron wave func-
tion is proportional tor (for simplicity, we neglect the
D-state component) and increases very fast up tor,2 fm
where the maximum is reached. Afterwards, the wave func-
tion decreases very slowly and converges to zero. The factor
r2 multiplied by u2srd gives rise to the suppression at short
range. The top panel of Fig. 3 shows this behavior. One can
expect that thisr4 behavior at short distances makes the con-
tribution from rø1 fm quite small. On the other hand, the
Yukawa function which behaves like 1/r at smallr is short-
range peaked and its curvature in the intermediate range de-
pends strongly on the mass of the meson. A comparison of
fpsrd and frsrd is given in the central panel of Fig. 3. The
quantity frsrd is not negligible forrø0.5 fm but the remain-
ing part of the integrand, approximatelyr2 u2srd, is small in
this region. Consequently, the heavy-meson contribution will
be suppressed substantially compared to that of the pions.
The bottom panel of Fig. 3 shows the behavior of the total
integrands in Eqs.(48) and(50). If we approximate the inte-

grand as r3 exps−mXrd, the maximum of the integrand
reaches atr,3/mX. Even though the approximation is crude
for the pion, this can provide a semiquantitative explanation
for the suppression of the heavy-meson contributions. At the
maximum, the integrand has a value proportional to 1/mX

3. If
comparison is made forp andr mesons, the maximum value
for the latter is smaller than for the former by a factor of
1/200, which can partially account for the suppression of
two orders of magnitude in the heavy-meson contributions.

To a lesser extent, a similar argument can be applied to
the qualitative understanding of the heavy-meson suppres-
sion of spin and convection terms. The right hand sides of
Eqs.(37) and (38), which are the sources of parity admixed
P states, also contain the Yukawa functions. When the equa-
tions are solved, i.e., integrated with respect tor, one can
expect some amount of suppression for the heavy mesons as
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FIG. 3. The top panel shows the behavior ofr2fusrd+wsrd/Î2g
3fusrd−Î2wsrdg. The central panel compares the Yukawa functions
of the pion(solid line) andr meson(dotted line). The bottom panel
shows the behaviors of the integrands for thep- andr-pair terms in
Eq. (48) and (50), respectively.
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was discussed in the analysis of pair ECs. In Table I, we
summarize the ratio of the heavy meson contribution to the
pion one with the weak coupling constants given by DDH
best values. The magnitudes of the heavy-meson terms are
suppressed by two orders of magnitude compared to the pion
terms in common. Thus, as far as the nuclear part is con-
cerned, thep contribution is the most dominant one. If the
contribution of the nuclear part can be disentangled from the
total deuteron anapole moment, this information helps to de-
termine the magnitude ofhp

1 with high accuracy. As a side
remark, it is noticed that the combination of the isovector
couplings,hp

1, hr
1, andhv

1, entering the spin and convection
contributions is close to the one that determines low-energy
PNC nucleon-nucleon scattering, roughly 3hp

1 +0.02hr
1

−0.06hv
1 [37]. This lets us think that Danilov’s approach

[38], whose application for the deuteron anapole moment
was proposed later on by Savage[6], should provide a rea-
sonable estimate for this contribution.

Contrary to the nuclear part, the nucleonic one has sizable
contributions from the heavy mesons. According to the
nucleonic anapole moment estimated in Ref.[35], the ratio
of the heavy-meson contribution to the pion one is about
26%. However, we should also note that these authors con-
sidered non-DDH type couplings such as non-Yukawa type
pNN couplings and the inclusion of hyperons as well. So far,
no detailed knowledge about these exotic couplings exists,
and the theoretical uncertainty could be huge. Study of these
terms and their implication for two-body nuclear contribu-
tions will be an interesting topic for further exploration.

Another issue that should be addressed is the gauge in-
variance of the results. We showed in Sec. II that the PNC
ECs satisfy gauge invariance with the DDH potential. How-
ever, with the phenomenological strong interaction models
like the one adopted in this work, gauge invariance may not
be satisfied if the ECs are not consistent with the phenom-
enological potentials. The Av18 model has 18 types of opera-
tors, but since we took into account the dominant ECs only,
it is natural to expect the breakdown of gauge invariance.
Investigating the extent to which gauge invariance is broken
provides an estimate of the error.

Most phenomenological potentials are very complicated
and the analytic analysis of gauge invariance is a formidable
task. However, as suggested in Refs.[39,8], one can estimate
the amount of gauge-invariance breaking by comparing the
results obtained with two different formulations of the ana-
pole operator: Eq.(39), which we use for Sec. III, and an
alternative one

a = − pE dx x2jsxd, s64d

which can be obtained from Eq.s39d with the assumption

¹ · jsxd = 0. s65d

In Ref. f8g, it has been shown that the inclusion of the PC
ECs related to thep meson removes almost all the incon-
sistency. In this work, we follow the same procedure.

The spin current obviously satisfies Eq.(65), so both ana-
pole operators give the same result. For the convection, pair,
and mesonic contributions, the alternative anapole operator,
Eq. (64), gives

aconv
CC =

p

2Î6 mN
E dr r2 FusrdSṽ83p1srd + 2

ṽ3p1srd
r

D
+

wsrd
Î2

Sṽ83p1srd −
ṽ3p1srd

r
DG e I , s66d

apair
p,CC = −

p gp NN

2Î2 mN
E dr r2 fpsrdSu2srd −

w2srd
2 D hp

1 e I ,

s67d

amesonic
p,CC =

gpNN

24Î2 mN mp

E dr e−mprFSu2srd −
w2srd

2 Dsmpr

+ 4d −
1

3Susrd +
wsrd
Î2

D2

mprsmpr + 3dGhp
1 e I ,

s68d

apair
r0,CC = −

p gr NN

2 mN
E dr r2 frsrdSu2srd −

w2srd
2 Dhr

1 e I ,

s69d

apair
v,CC =

p gv NN

2 mN
E dr r2 fvsrdSu2srd −

w2srd
2 Dhv

1 e I ,

s70d

apair
PC,CC =

1

Î6
S gpNN

2 mN
D2E dr e−mprs1 + mprdṽ3p1srdSusrd

−
1

Î8
wsrdD e I , s71d

amesonic
PC,CC = −

1

12Î6
S gpNN

2 mN
D2E dr e−mpr ṽ3p1srdFusrds18

+ 2mpr − mp
2r2d −

wsrd
Î2

mpr s4 + mprdG e I ,

s72d

where the superscriptCC denotes the quantity calculated
with Eq. s64d. Numerical results are summarized in
Table II.

The “Total” column in Table II shows that the two defi-
nitions of the anapole operator differ in results only by 3%,
6%, and 4% for thep, r, andv contributions, respectively;
this means that our results satisfy current conservation very

TABLE I. Comparison of the heavy meson with the pion con-
tribution to the deuteron anapole moment, term by term. The ratios
are given in %.

Term Spin Conv. PNC EC PC EC Nucleonic Total

sr+vd/p 4.0 0.6 −2.0 −3.1 −26.2 −5.9

DEUTERON ANAPOLE MOMENT WITH HEAVY MESONS PHYSICAL REVIEW C68, 045501(2003)

045501-9



well. This is quite surprising because only the PC one-pion
exchange current—not fully consistent with the adopted
strong potential, Av18—is included in our calculation. The
reason can be found in that the AM is ar2 weighted moment
and that the deuteron wave function peaks around 2 fm with
a long tail; therefore the long-range physics, which is domi-
nated by the one-pion exchange included in the case of Av18,
becomes much more important. This can also explain par-
tially why our observation about the role of ECs differs from
the one found in Ref.[13] where undetermined ECs have
large effects. Their observation was concerning a different
operator(E1 transition) which has a relatively shorter range
than the anapole operator considered in this work.

Furthermore, one can observe that for the contributions
from exchange currents, Eq.(39) always gives smaller values
than Eq.(64). This implies that the calculation using Eq.(39)
suffers less from the incomplete knowledge or uncertainty of
exchange currents which causes the breaking of current con-
servation. For example, if the PC pion ECs are left out in our
calculation, by comparing the “Total” and “Total w/o PC”
columns in Table II, the error is 2%, 25%, and 23% forp, r,
andv components, respectively, when Eq.(39) is used; how-
ever, the error becomes −46%, −94%, and −90%, for Eq.
(64). The reason for the small contribution of ECs in the
former case may be looked for in the proportionality of the
dominant ECs to the position vectorx, which readily gives
zero when inserted into the corresponding anapole operator,
Eq. (39). Therefore the use of Eq.(39) is preferred at least
for the deuteron case.

In conclusion, we have constructed the PNC ECs due to
one p, r, and v exchanges, and showed that they satisfy
current conservation—so the consistency with the adopted
DDH PNC potential is checked. An application was made to
the calculation of the deuteron anapole moment. We ob-
served that, for the nuclear part, the contribution of heavy
mesons is suppressed by two orders of magnitude compared
to the pion one, a result consistent with the similar work by
Blunden[40]. Consistency with Av18 was also checked. We
found that the approximation of using only the PC one-pion
exchange current is reasonable—the breaking of current con-
servation only amounts to a few percent and this is supposed
to be fixed by using the PC exchange current fully consistent
with Av18. Therefore, the contribution from the nuclear part

to the deuteron anapole moment can be determined with an
error less than 5%, while the major uncertainty should come
from the nucleonic anapole moment instead.
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APPENDIX: PNC NN POTENTIAL AND EXCHANGE
CURRENTS IN COORDINATE SPACE

The DDH potential in coordinate space could easily be
obtained by applying the following transformation rules to
Eqs.[25–27]:

uX → uXsrd = fp, fXsrdg,

vX → vXsrd = hp, fXsrdj,

where r ; r1−r2; r = ur u; p;sp1−p2d /2=−i=r; and the
Yukawa functionsfXsrd are defined as

fXsrd =
e−mXr

4pr
.

For the PNC ECs, we list all the leading-order,Os1/mNd,
3-currents, which are relevant for the AM calculation:

jpair
p sx;r1, r2d = −

e gpNN hp
1

2 Î2 mN

st1 · t2 − t1
z t2

zd fpsrd

3o
i=1

2

ds3dsx − r id si , sA1d

jmesonic
p sx;r1, r2d = −

e gpNN hp
1

2 Î2 mN

st1 · t2 − t1
z t2

zds=1 − =2d

3fss1 · =1 − s2 · =2d, fpsrx1d fpsrx2dg,

sA2d

TABLE II. Coefficients of the weak coupling constants for given terms with different definitions of the anapole operator, Eq.(39) and
(64).

Eq. (39) Eq. (64)
hp

1 hr
1 hv

1 hp
1 hr

1 hv
1

Conv. 0.03925 0.00027 −0.00076 0.05348 0.00024 −0.00066
PNC p pair −0.02668 −0.07895

PNC p mesonic 0.02830 0.04706
PNC r pair −0.00007 −0.00023
PNC v pair 0.00018 0.00061
PC p pair 0.01400 0.00013 −0.00038 0.06325 0.00062 −0.00177

PC p mesonic −0.01478 −0.00017 0.00049 −0.04366 −0.00047 0.00133
Total w/o PC 0.04087 0.00020 −0.00058 0.02159 0.00001 −0.00005

Total 0.04010 0.00016 −0.00047 0.04117 0.00017 −0.00049
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j pair+KR
r±

sx;r1, r2d = −
e grNN

2 mN
frsrdShr

0 −
1

2Î6
hr

2DSst1 · t2

− t1
zt2

zd ss1 − s2dfds3dsx − r1d − ds3dsx

− r2dg+ s1 + xVd st1 3 t2dz ss1

3 s2d o
i

ds3dsx − rdiD , sA3d

jpair
r0

sx;r1, r2d = −
e grNN

2 mN
frsrdt1

z t2
zFShr

0 +
1

2
hr

1 st1
z + t2

zd

+
1

Î6
hr

2D ss1 − s2d +
1

2
hr

1 st1
z − t2

zd ss1

+ s2dGss1 + t1
zdds3dsx − r1d − s1 + t2

zd

3ds3dsx − r2dd , sA4d

jmesonic
r±

sx;r1, r2d = −
e grNN

2 mN
Shr

0 −
1

2Î6
hr

2D st1 3 t2dzhs=1 − =2d s− iss1 − s2d · hs=1 − =2d, frsrx1d frsrx2dj

+ s1 + xVd ss1 3 s2d · fs=1 − =2d, frsrx1d frsrx2dgd + 2 ¹x
a si h¹1

a s2 − ¹2
a s1 + s1

a =2

− s2
a =1, frsrx1d frsrx2dj − s1 + xVd fss1 3 ¹1das2 − ss2 3 ¹2da s1+ s1

a s2 3 =2 − s2
as1

3 =1, frsrx1dfrsrx2dgd+ 4 i mN ss1 + s2dfH, frsrx1d frsrx2dgj , sA5d

jpair
v sx;r1, r2d = −

e gvNN

2 mN
fvsrdFShv

0 +
1

2
hv

1 st1
z + t2

zdDss1

− s2d +
1

2
hv

1 st1
z − t2

zd ss1 + s2dGfs1

+ t1
zdds3dsx − r1d − s1 + t2

zdds3dsx − r2dg,

sA6d

jmesonic
rp sx;r1, r2d = −

e grNNgrpg hp
1

Î2 mr

st1 3 t2dzs=1 3 =2d

3ffrsrx1d fpsrx2d + fpsrx1d frsrx2dg, sA7d

whererxi;ux−r iu; =i and=x act on the source pointr i and
the field pointx, respectively; and the superscripta is the

index to be summed from 1 to 3. Note that we separate
charged and neutralr mesons according to their isospin
structure; and the last term of Eq.sA5d should be com-
bined with a charge density corresponding to Eq.s24d in
order to ensure the current conservation.

PC one-pion ECs of the pair and mesonic types that con-
tribute to the AM are

jpair
PC sx;r1, r2d = SgpNN

2mN
D2

st1 3 t2dzfs2ds3dsx − r2ds1 · ¹

+ s1ds3dsx − r1ds2 · ¹gfpsrd, sA8d

jmesonic
PC sx;r1, r2d = − SgpNN

2mN
D2

st1 3 t2dzss1 ·¹1dss2 ·¹2ds¹1

− ¹2dfpsrx1dfpsrx2d. sA9d
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