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Corrections to the Born approximation in photoinduced strangeness production off a proton are calculated in
a semirealistic microscopic model. The vertex corrections and internal contributions to the amplitude of the
gp→K+L reaction are included on the one-loop level. Different gauge-invariant phenomenological prescrip-
tions for the modification of the Born contribution via the introduction of form factors and contact terms are
discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a
special limit of the more realistic approach.
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I. INTRODUCTION

One of the goals in studies of photoproduction and elec-
troproduction of pions or kaons on the proton is the extrac-
tion of information on baryon resonances[1]. This is usually
done on the basis of models built on effective Lagrangians
[2–5]. A typical amplitude, describing meson photoproduc-
tion, includes the Born contribution as a kind of background
to be added to the resonance contributions. Only at low pho-
ton energies the physics is determined by the Born diagrams.
With increasing photon energy the Born contribution rises to
produce unrealistically large cross sections at energies of in-
terest for strangeness production as noticed by many authors
[6–8]. The popular strategy is to suppress the Born ampli-
tude by including form factors(FF’s) in the strong-
interaction vertices. These FF’s account for physics on the
scales beyond what is considered, i.e., exchanges of heavier
mesons which are truncated from the Lagrangian and(higher
order) loop corrections which are omitted for simplicity.
Closely associated with FF’s are additional terms, called con-
tact terms(sometimes four-point vertices or internal contri-
butions), which restore gauge invariance(GI) usually vio-
lated by the introduction of FF’s. Several different
prescriptions for the FF’s and contact terms are commonly in
use. While at low energies these prescriptions lead to rela-
tively close results, at higher energies the calculated cross
sections may differ drastically. Therefore the information on
the properties of resonances extracted from these processes is
strongly influenced by uncertainties in the treatment of this
problem[4].

In the present work we study two commonly used proce-
dures: Ohta’s minimal-substitution method[9] and the
Davidson-Workman(DW) recipe[8,10]. The most essential
difference in predictions of these two methods for the meson
photoproduction processes, such asgN→pN or gp
→K+LsKSd, is the modification of one particular invariant
amplitudeA2ss,td. This amplitude is related to the electric

part of the amplitude and originates from the convection cur-
rent of the charged particles involved in the reaction. Its
contribution to the matrix element, being proportional to the
momenta of particles, affects the cross section at high ener-
gies. In the approach of OhtaA2ss,td is not altered, due to the
complete cancellation between the effects of FF’s and the
contact terms. In other methods, in particular in the DW
approach[8,10], or Haberzettl’s approach[11,7], the ampli-
tudeA2ss,td changes considerably compared to the Born am-
plitude.

In order to study different phenomenological approaches
we calculate vertex corrections and internal contributions to
the electric amplitude in an effective Lagrangian model. Ir-
reducible one-loop contributions are included for the reaction
gp→K+L. This allows us to extract, within a gauge-invariant
model, both the FF’s(associated with three-point loop cor-
rections) and the contact terms(associated with four-point
loop corrections), and to make a comparison with phenom-
enological approaches. The model is SUs3dflavor symmetrical
and describes the baryon-meson interaction as well as the
meson-meson interaction of the scalar and pseudoscalar me-
sons. In the intermediate states of the diagrams we include
the scalar meson, kaon, proton, andL hyperon. The pion and
S hyperon are not included as yet, and thus the model can be
considered as semirealistic. On the one-loop level there ap-
pear three diagrams for theK+pL vertex and four diagrams
for the internal amplitude. The vertex corrections have the
property that in the limit of large mass of the scalar meson
each of the three vertex-correction diagrams generates FF’s,
which depend exclusively on one of the Mandelstam vari-
abless,u, or t. This in turn leads to an interesting effect of
cancellation between the vertex corrections and the four-
point diagrams in the scalar amplitudeA2ss,td.

We should mention that some loop contributions in the
pion photoproduction on the nucleon were studied in Ref.
[12], where the need for consistent treatment of corrections
to the Born amplitude was stressed.

The paper is organized as follows. In Sec. II A the Born
approximation is briefly discussed and invariant amplitudes
are introduced. The structure ofK+pL vertex is addressed in
Sec. II B. Different recipes for restoring GI are outlined. The
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present model for calculation of the loop corrections and the
parameters is described in Sec. II C. Results of calculations
and a discussion are presented in Sec. III. In Sec. IV we draw
conclusions. Finally, the Appendix contains details of the cal-
culation of the three- and four-point loop integrals.

II. FORMALISM

A. Born diagrams

The Born amplitude for the reactiong+p→K++L (see
Fig. 1) can be split in electric and magnetic parts, i.e.,
TB

m=TB,El
m +TB,Mag

m , where

TB,El
m = egūsp8dg5uspdS 2pm

s− MN
2 +

2qm

t − mk
2D ,

TB,Mag
m = egūsp8dg5

3H 1

s− MN
2 Fs1 + kpdgmk”+

kp

MN
sgmk · p − pmk”dG

+
1

u − ML
2 F− kLgmk”+

kL

ML

sgmk · p8 − p8mk”dGJuspd.

s1d

The four-momenta of thesreald photon, proton, kaon, and
L are denoted byk,p,q, and p8 respectively, andMN,mk,
and ML are the masses of the proton, kaon, andL. The
invariants s,t ,u are the Mandelstam variables satisfying
the relation s+ t+u=MN

2 +ML
2 +mk

2. The anomalous mag-
netic moments of the proton andL are denoted bykp and
kL, respectively. Finally,g stands for theK+pL coupling
constant. The spinor of the initial proton isuspd, and the
one of the finalL is ūsp8d where the helicitysspind indices
are suppressed. The amplitudes in Eqs.s1d are gauge in-
variant, i.e.,k·TEl=k·TMag=0.

We will use the formalism[13,14] in which the amplitude
is decomposed through the independent spin tensors

Tm = o
i=1

4

Aiss, tdūsp8dMi
muspd, s2d

with

M1
m = − g5gmk” ,

M2
m = 2g5spmk · p8 − p8mk · pd,

M3
m = g5sgmk · p − pmk”d,

M4
m = g5sgmk · p8 − p8mk”d. s3d

The gauge-invariant basisMi
m is constructed in such a

way that the scalar amplitudesAiss,td are free from kine-
matical singularities and zerosf14g. For the Born dia-
gramsAi take the formswe omit arguments for brevityd

A1
Born = egS 1 + kp

s− MN
2 +

kL

u − ML
2 D ,

A2
Born = eg

2

ss− MN
2dst − mK

2d
,

s4d

A3
Born = eg

kp

MN

1

s− MN
2 ,

A4
Born = eg

kL

ML

1

u − ML
2 .

The magnetic part results in the single-pole amplitudes
A1

Born,A3
Born, and A4

Born, while the electric part contributes
solely to the double-pole amplitudeA2

Born. As was dis-
cussed in Ref.f14g the latter is a peculiar feature of the
amplitude with real photons and the choice of the spin
tensorsMi

m.

B. K1pL vertex and form factors

In a phenomenological description strong FF’s are often
included directly in the Born diagrams. At this point we re-
call the general structure of theK+pL vertex

Gsp8, p;qd = gSg5f1 + g5

p” − MN

MN
f2 +

p”8 − ML

ML

g5f3

+
p”8 − ML

ML

g5

p” − MN

MN
f4D , s5d

wherep8 ,p, andq are theL, proton, and kaon momenta,
respectively, andf i ; f isp82,p2,q2d are scalar functions. If
only one of the hadrons is off its mass shell then Eq.s5d
simplifies. For this situation it is convenient to introduce
the three-point FF’s:

Fssp2d = f1sML
2 , p2, mK

2d,

Fusp82d = f1sp82, MN
2, mK

2d,

Ftsq2d = f1sML
2 , MN

2, q2d, s6d

Gssp2d = f2sML
2 , p2, mK

2d,

Gusp82d = f3sp82, MN
2, mK

2d.

In general the functionsFssp2d ,Fusp82d, and Ftsq2d have
different functional dependencies as indicated by the sub-
script s,u, or t, and are normalized to unity on the mass
shell.

p

γ K +

Λ

FIG. 1. Born diagrams for the reactiong+p→K++L. Solid lines
depict the proton, double-solid lines—theL hyperon, wavy lines—
the photon, and dashed lines—the kaon.

A. YU. KORCHIN AND O. SCHOLTEN PHYSICAL REVIEW C68, 045206(2003)

045206-2



When the vertex in Eq.(5) is included in the tree-level
terms, the magnetic amplitudeTB,Mag

m in Eq. (1) is modified
to TMag

m with the following result for the scalar amplitudes:

A1,Mag = egS 1 + kp

s− MN
2 Fsssd +

kL

u − ML
2 Fusud

+ Gsssd
kp

2MN
2 + Gusud

kL

2ML
2 D ,

A3,Mag = egS kp

MN

1

s− MN
2 Fsssd +

2

MN

1

s− MN
2 GsssdD ,

A4,Mag = eg
kL

ML

1

u − ML
2 Fusud. s7d

The electric amplitude changes to

TEl
m = egūsp8dg5S 2pm

s− MN
2 FFsssd + Gsssd

k”

MN
G

+
2qm

t − mk
2FtstdDuspd. s8d

This term cannot be cast in the form of Eq.s2d since it is
not gauge invariant. Indeed, contraction with the photon
momentum results in

k ·TEl = egūsp8dg5FFsssd + Gsssd
k”

MN
− FtstdGuspd

=eūsp8dfGsp8, p + k;qd − Gsp8, p;q − kdguspd Þ 0.

s9d

In general, it is known that there are other contributions to
the amplitudef15,16,12g which ensure GI of the total am-
plitude. We will denote this additional amplitude byTc

m

and discuss different ways of constructing this amplitude.

1. Minimal-substitution method of Ohta [9]

In the original formulation of Ohta[9] the electromag-
netic interaction(EM) was included directly in the three-
point pNN vertex using the minimal-substitution method.
This allowed for construction ofTc

m in terms of the FF’s. It
may be instructive to derive the same result(for the pK+L
vertex) using a simpler, though less rigorous, method which
was applied in Ref.[17]. The GI requirement for the total
amplitudeTMag+TEl+Tc, with the help of Eq.(9) and defini-
tions s−MN

2 =2k·p, t−mk
2=−2k·q, can be written as

k ·Tc = − k ·TEl

= egkmūsp8dg5S2pm
1 − Fsssd
s− MN

2

+ 2qm
1 − Ftstd
t − mK

2 − Gsssd
gm

MN
Duspd, s10d

from which Tc
m is obtained as the term multiplyingkm. We

now find fusing Eq.s8dg

TEl
m + Tc

m = egūsp8dg5F 2pm

s− MN
2 +

2qm

t − mK
2

+ Gsssd
1

MN
S pm

k · p
k” − gmDGuspd s11d

up to the transverse terms which are not constrained by
the condition of GI. The amplitude in Eq.s11d is appar-
ently gauge invariant and yields two scalar amplitudes

A2,El = eg
2

ss− MN
2dst − mK

2d
,

A3,El = − eg
1

MN

2

s− MN
2 Gsssd. s12d

It is seen that, first,A3,El cancels the term inA3,Mag pro-
portional to Gsssd, and second, the amplitudeA2,El coin-
cides with the Born amplitudeA2

Born in Eq. s4d. The main
result is thus that the scalar amplitudeA2 is not modified
in the presence of strong FF’s, as noticed earlier in Ref.
f6g.

2. Approach of Davidson and Workman [8]

In order to change the electric contribution in a phenom-
enological approach some authors introduced FF’s directly in
the amplitudeA2 in Eq. (2). As was pointed out in Refs.
[8,10], care should be taken with the structure of these FF’s
in order to avoid spurious pole contributions as generated
with the original introduction of these FF’s in Refs.[11,7].
The procedure in Refs.[8,10], in which the FF’s modify the
total amplitudeA2, will be referred to as the DW approach.

In the DW approach the amplitudeA2 is modified to

A2 = A2
BornF̂ = A2

Born + eg
2

ss− MN
2dst − mK

2d
sF̂ − 1d

;A2
Born + DA2

DW, s13d

where the factorF̂ for the reactiongp→K+L is chosen to
be

F̂ = Fsssd + Ftstd − FsssdFtstd, s14d

to ensure that the correction to the Born contribution is
free from poles ats=MN

2 and t=mK
2. The functionsFsssd

and Ftstd are normalized to unity on shell and are usually
parametrized in the monopole or dipole form but are not
necessarily related to the FF’s introduced in Sec. II B.

C. Loop contributions

In a microscopic model for the reaction mechanism there
are various loop corrections to the Born diagrams. The sim-
plest loop corrections are self-energy insertions in the propa-
gators. These corrections are partially compensated by the
three-point loop corrections to the EM verticesgpp and
gKK. The net result is that only the magnetic contribution is
affected, however the convection current, which is of our
main concern, remains unchanged. For this reason these loop
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contributions will not be included. We will come back to this
issue in the end of Sec. III B. The second type of loop dia-
grams are corrections to theK+pL vertex shown in Fig. 2(a).
These are ordered in a particular way to allow for an inter-
pretation in terms of the three-point FF’s introduced in Sec.
II B. In this section we will explicitly calculate the three-
point loop corrections,Lf3g

m , to the electric amplitude. As dis-
cussed in Sec. II B, GI of the full amplitude is restored after
inclusion of the four-point diagrams(internal amplitude) de-
picted in Fig. 2(b). These diagrams can be obtained by at-
taching the photon to the lines of charged intermediate par-
ticles in the three-point loops and will be referred to asLf4g

m .
The amplitudeLf4g

m cannot be expanded in the basis, Eq.
(2), since only the sumLf3g

m +Lf4g
m is gauge invariant. To ex-

tract the amplitudeA2 we express the loop corrections in
terms of the Lorentz structures appearing in Eq.(2):
g5p

m,g5q
m,g5g

m,g5p
mk” ,g5q

mk” ,g5g
mk”, where it can be noted

thatM2
m=2g5sqmk·p−pmk·qd andM4

m=M3
m+g5sqmk”−gmk·qd.

SinceM2
m is expressed solely in terms ofg5p

m andg5q
m, it

will be sufficient to retain only these terms from the loop
corrections and write

Lf3g
m = 2egūsp8dg5Spm

Fsssd − 1

s− MN
2 + qm

Ftstd − 1

t − mk
2 Duspd + ¯ ,

s15d

Lf4g
m = 2egūsp8dg5fpmHsss, td+ qmHtss, tdguspd + ¯ ,

s16d

where the ellipses mean the omitted terms containing the
Lorentz tensorsM1

m ,M3
m, andM4

m appearing in the mag-
netic terms. It should be noted that the functionsFtstd and
Fsssd in the loop correctionLf3g

m , Eq. s15d, coincide with
the phenomenological FF’s appearing in Eq.s8d. The con-
dition of GI, k·sLf3g+Lf4gd=0, imposes the relation

ss− MN
2dHsss, td − st − mK

2dHtss, td = Ftstd − Fsssd. s17d

The correction to the Born amplitudeA2
Born can now be

expressed as

DA2 = eg
2

s− MN
2 SFtstd − 1

t − mK
2 + Htss, tdD

=eg
2

t − mK
2 SFsssd − 1

s− MN
2 + Hsss, tdD . s18d

To find the total correction to the Born amplitude one thus
needs the coefficients multiplyingqm in Lf3g

m fsees15dg and
in Lf4g

m fsee Eq.s16dg falternativelyDA2 can be expressed
through Fsssd and Hsss,tdg. It should be noted thatDA2
cannot have poles, and the condition

lim
s→MN

2
Htss, td =

1 − Ftstd
t − mK

2 s19d

should hold ats=MN
2, which is the unphysical point for the

s channel.

To calculate loop corrections we use an effective-
Lagrangian model which is SUs3dflavor symmetrical and in-
cludes as degrees of freedom the baryon octet matrixB, the
scalar sJP=1+d meson nonetFs, and the pseudoscalarsJP

=1−d meson nonetFps. The corresponding Lagrangian is

L = L0 + DstrsFshB, B̄jd + FstrsFsfB, B̄gd

+ DpstrsFpshB, B̄jd + FpstrsFpsfB, B̄gd + LF, s20d

whereL0 is the free part,B̄=B†g0,fB,B̄gshB,B̄jd stands for
commutatorsanticommutatord, Ds andFs sDps andFpsd are
the baryon-meson coupling constants for scalarsspseudo-
scalarsd f18g, andLF is the Lagrangian describing meson-
meson interaction. The latter is chosen in the Us3d
3Us3d linears modelf19g sthe explicit form ofLF can be
found, e.g., in Ref.f20gd. For the purpose of our paper it is
essential thatLF describes thesK+K− and f0K

+K− cou-
plings, where s; f0s400–1200d and f0; f0s980d for
f0s1370dg represent the scalar mesonsf21g.

In the calculation of loops we do not include thep meson
and theS hyperon in the intermediate states. This restricts
the one-loop diagrams to those shown in Fig. 2. Calculation
of the corresponding integrals is tedious and we refer to the
Appendix for details.

The coupling constants of the SU(3) singletf0 and octet
f8 states to proton andL follow from Eq. (20). To get cou-
plings of the physical mesons,s and f0, one needs in addi-
tion the mixing angle for the scalar mesons. All parameters
are given in the Nijmegen baryon-baryon one-boson-
exchange model of Ref.[18],

gspp = 16.90,gsLL = 9.84,

gK+pL = − 14.113,gf0pp = − 2.97, s21d

gf0LL = − 9.10,

and massesms=0.76 GeV, mf0
=0.993 GeV. Thecorre-

sponding vertex is −igsBBs−igf0BBd. The sK+K− vertex is
−igsK+K−, with the coupling constantf20g gsK+K−=Î3sms

2

−mK
2d / s2fKdsinsa−Dad, where fK=113 MeV is the kaon

weak-decay constant,a=arcsins1/Î3d<35.26° is the
“ideal” mixing angle, andDa is a correction, usually of
the order of 3° –10°. Likewise, thef0K

+K− vertex is
−igf0K+K− with gf0K+K−=Î3smf0

2 −mK
2d / s2fKdcossa−Dad.

a
1 2 3

b

1 21 22 3

FIG. 2. One-loop corrections in the present model:K+pL vertex
(a), four-point contributionLf4g

m (b). Dotted lines correspond to the
s meson, other notations are the same as in Fig. 1.
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III. RESULTS OF CALCULATION AND DISCUSSION

A. Form factors and amplitude A2„s,t…

In Fig. 3 we show the FF’s as extracted from the loop
corrections in thet and s channels for two masses of thes
meson, 0.76 GeV and 1.0 GeV. For comparison the phenom-
enological FF’s used in most analyses are also plotted. These
have the typical bell-shape form(see, for example, Ref.[8])

Fs
sphdssd =

L4

ss− MN
2d2 + L4 ,

Ft
sphdstd =

L4

st − mK
2d2 + L4 s22d

with a cutoff massL of about 1GeV. All FF’s are nor-
malized to unity at the corresponding on-shell points. We
do not present FF in theu channel as it is not relevant for
the discussion of the electric amplitude.

As it is seen from Fig. 3,Ftstd for ms=0.76 GeV is, in the
physical region of the reactiongp→K+L, rather close to the
phenomenological FF down to −1.5 GeV2. At positive t the
FF calculated in the present model keeps increasing and at

t=smK+msd2 develops a cusp(not shown explicitly). The lat-
ter corresponds to the physical state of a kaon and as in the

t channel spL̄→K+d. The differences betweenFtstd and
Ft

sphdstd at t.0 may not be considered very important, be-
cause this kinematical region is never reached in thegp
→K+L reaction.

The s-channel FF is plotted in Fig. 3 up tos<5 GeV2

corresponding to photon lab energiesklab of about 2 GeV.
Also here there is a sharp cusp ats=sMN+msd2 that comes
from the intermediate proton-s state depicted in diagrams 2
and 3 in Fig. 2(a). However, contrary to thet channel, the
difference betweenFsssd and the phenomenological FFFs

sphd

3ssd shows up in the physical region atsùsML+mKd2. For
example, ats=3 GeV2, corresponding toklab<1.1 GeV, the
FF Fsssd is larger thanFs

sphdssd by a factor 30. This calculation
shows that in microscopic models the FF’s have much richer
structure than the commonly used phenomenological param-
etrizations.

Figure 4 shows the correction to the Born amplitude cal-
culated in the present model, and in the DW approach, Eq.
(14), with FF’s from Eq.(22). Ohta’s recipe givesDA2=0. It
is seen that loop corrections increase the Born amplitude
A2

Born, in contrast with the DW prediction. This result de-
pends on thes mass; the calculation is performed withms

=0.76 GeV and for the larger mass,ms=1 GeV, the correc-
tion is less.

-2 -1 0 1 2
0

1

2

3

t [GeV
2
]

phenomenological
m = 1.0 GeV
present model: m = 0.76 GeV

0 1 2 3 4 5
0

2

4

6

8

s [GeV
2
]

F t
(t

)
R

eF
s(

s)

FIG. 3. Form factors in thet channel(upper panel) ands chan-
nel (lower panel). Solid and dashed lines present model withms

=0.76 GeV and 1.0 GeV, respectively; dotted lines present phe-
nomenological form factors from Eqs.(22).

FIG. 4. Invariant amplitudeA2ss,td (real part) as function of
scattering angle at fixed photon lab energy(top), and as function of
energy at fixed angle(bottom). The calculation is performed with
ms=0.76 GeV.
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B. Cancellation of loop corrections at largems

With increasings-meson mass an interesting effect oc-
curs: the total correctionDA2 tends to zero in the loop cal-
culation, implying a cancellation between the vertex correc-
tions Lf3g

m and the four-point loop diagramsLf4g
m . This

cancellation becomes more complete ifms@MN and A2

→A2
Born. In other words, Ohta’s prescription discussed in Sec.

II B is reproduced.
There are two ways to understand this effect. One is by

realizing that in general loop corrections to a strong vertex
depend on the four-momenta of all particles involved. Mini-
mal substitution in such a complicated function introduces
many ambiguities as, for example, was discussed in Ref.
[22]. In general, gauge-invariant tensor structures beyond the
minimal substitution can be constructed through a combina-
tion of at least two four-vectors. For these four-vectors one
may take the momenta of any particle involved and/org
matrices when dealing with fermions. The resulting terms
may contribute to any of the tensorsMi

m with i=1,2,3,4.
Therefore the minimal substitution in the most generalK+pL
vertex does not lead to unique results, even forA2ss,td.

If the vertex, however, depends on a single momentum
pm, then the procedure of minimal substitution gives unam-
biguous result for the electric amplitude. Possible terms be-
yond minimal substitution in such a vertex are expressed via
pm and gm solely. Any gauge-invariant structures built on
these two four-vectors will not contribute toM2

m, which the
present discussion is focused on, because the latter tensor
involves two independent momentapm andp8m [see Eq.(3)].
In this case any procedure to restore GI should thus yield
identical results for theA2ss,td amplitude.

The diagrams drawn in Fig. 5, which correspond to those
of Fig. 2 in the limitms→`, help to understand the situation.
In this limit the propagator of thes meson becomes
momentum-independent and “shrinks” to a pointlike interac-
tion, resulting in effective four-point vertices
LLK+K−,ppK+K−, and ppLL. Simple analysis shows that,
for example, diagram 1 in Fig. 5(a) depends exclusively on
the nucleon momentump and does not depend on the kaon
sqd andLsp8d momenta. Therefore this diagram can generate
FF’s depending ons only, and cannot lead to anyu or t
dependencies. Similar arguments apply to other diagrams in
Fig. 5(a). Any GI restoring procedure therefore gives result
that coincides with that of Ohta[9], leading to complete
cancellation between the vertex corrections and the contact

terms. Of course this conclusion is valid only for the convec-
tion current related toA2 and different procedures may give
different results for the magnetic contributions associated
with A1, A3, andA4.

Another way to see the cancellation between the two con-
tributions is to phrase the problem in terms of self-energy

corrections. In the limitms→` the vertex correctionG̃1 de-
pends ons=p2 andp” only and can be rewritten in terms of an
irreducible vertex(which is pointlike in this limit) and a

self-energy correction, G̃1=sg/2fKdÎ3 sinsa−Dadg5SNspd
<sg/2fKdg5SNspd. Since the vertex is normalized at the on-
shell pointp2=MN

2, the correction vanishes there, which im-
plies that the self-energy also vanishes on shell, i.e.,
SNspduspd=0. The four-point term, shown in diagram 1 in

Fig. 5(b), is proportional toG̃msp+k,pd, which corresponds to

a photon coupling to the vertex correctionG̃1. It can be
shown algebraically that

kmG̃msp + k, pduspd = fSNspd − SNsp + kdguspd

=− SNsp + kduspd. s23d

One may also argue that since the photon is coupled to all
charged particles in the loop the vertex should obey the
Ward-Takahashi identityf23g which reduces to Eq.s23d
for the vertex correction.

The total correction to the Born amplitude can be written
as

eg

2fK
ūsp8dg5fSNsp + kdS0sp + kdgm + G̃msp + k, pdguspd

;
eg

2fK
ūsp8dg5J

muspd, s24d

where S0sp+kd=sp” +k”−MNd−1 is the free proton propaga-
tor. It is now straightforward to show that the current
Jmuspd is sad purely transverse,kmJmuspd=0, andsbd inde-
pendent of the momentap8 of the L and q of the kaon.
The first condition implies that the matrix element in Eq.
s24d can be expressed in terms of the four Lorentz spin
tensorsMi

m, and the second implies that onlyi =1,3 are
allowed. The contribution to the convection current there-
fore vanishes, i.e.,DA2=0.

This result is general, although the arguments for the dif-
ferent diagrams in Fig. 5 differ in detail. Diagram 2 in Fig.

5(a), for example, describes the vertex correctionG̃2. This
correction is proportional to an effective self-energySL of
the L. Since the finalL is on its mass shell this self-energy

vanishes. The corresponding amplitude, proportional toG̃2,
vanishes as well. The four-point terms are given by the dia-
grams 21 and 22 in Fig. 5(b). Each of them is not zero,
however they have opposite signs and cancel each other in
A2 whenms→`. More formally, this result follows from the

fact that diagrams 21 and 22 describe a correctionG̃msp8,p8
−kd to the EM vertex of the neutralL hyperon, which is

transverse,km·G̃msp8,p8−kd=0, and independent of the mo-

a

1 2 3

b

1 21 22 3

FIG. 5. Diagrams describing loop corrections to the three-point
vertex (a) and four-point vertex(b), in which thes propagator has
been contracted to a point. Notations are the same as in Figs. 1 and
2.
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mentap of the proton andq of the kaon. Therefore these
diagrams contribute to the tensorsMi

m with i=1,4 only, and
DA2=0.

The situation with the corrections described by diagrams
3 in Fig. 5 is basically similar to diagrams 1. We only have to
take into account that, since the couplingsgspp andgsLL are
independent ofms, both three- and four-point corrections
diminish if ms→`. In order to observe effect of the cancel-
lation, the diagrams have to be kept finite. One can assume,
somewhat artificially, that the productgsppgsLL rises linearly
with ms. A reasoning similar to that given above leads to the
conclusion thatDA2=0. Moreover, because the kaon is a
spinless particle, the loop corrections do not contribute to the
amplitudesA1,A3, andA4 as well.

The above considerations are supported by numerical cal-
culations(see Fig. 6). It is seen from the upper part of Fig. 6
that, when only the diagrams 1 in Fig. 2 are included, the FF
Fsssd differs considerably from unity. This means that the
correction to the three-point vertex does not vanish in the
limit ms→` and yields thes dependence of the vertex. In
this limit the diagram should not contribute to thet-channel
FF and indeed one finds thatFtstd<1 (not shown). At the
same time the amplitudeA2 approaches the Born term at
larges mass indicating the cancellation of all corrections as
discussed above. It appears also that the corrections are small
even at moderatems. This is just a consequence of the fact
that the coupling constants which enter this diagram are
small.

If only the diagrams 3 in Fig. 2 are switched on, thet
dependence of theK+pL vertex is generated at all values of
ms (see the lower part of Fig. 6). Nonetheless the correction
to the Born amplitude decreases fast and is practically neg-
ligible atms about 3–4 GeV. It is also interesting to note that
at ms<1 GeV the total correction is maximal. This reflects
nonregular behavior of the four-point loop diagram as a
function of invariant energy(cusp structure due to nucleon-s
intermediate state).

The arguments presented above also justify our neglect of
the proper self-energy insertions and corrections to the elec-
tromagnetic vertices, mentioned in the beginning of Sec.
II C, in the calculation of the electric amplitudeA2.

We can conclude that in a microscopic model, where the
three-point vertex has a particular structure which generates
off-shell dependence only on a single momentum(corre-
sponding to the limit where one of the particles in the loops
is very heavy), different corrections to the Born amplitude
cancel and the procedure of Ohta[9] is justified.

In more realistic models, in which light mesons are
present in the loops, the corrections do not cancel and the
DW procedure may be more appropriate. To test this as-
sumption we calculatedDA2

DW in Eq. (14) with the micro-
scopic FF’s shown in Fig. 3, instead of phenomenological
FF’s used in the original formulation(one may argue how-
ever that only the phenomenological FF’s are to be used in
the DW approach). It turns out that at smallms the correction
DA2

DW is of the same sign and similar magnitude asDA2
loops,

however results disagree in the conditions where one is close
to a threshold for the production of the physical particles
included in the loop diagrams. WhileDA2

loops is a flat and
smooth background(see, for example, the dashed curve in
Fig. 4, the DW calculation shows an irregular behavior re-
flecting the cusps inFsssd.

The above observations may support the picture in which
the DW approach is applicable in the regime where loop
corrections arise due to the light intermediate particles, while
the method of Ohta is applicable in the other extreme.

The precise magnitude of the loop corrections depends of
course on the detailed structure of the model. In the present
semirealistic calculation, where pions andS hyperons are not
taken into account, the corrections tend to enhance the Born
amplitude. This situation may however be reversed if all pos-
sible intermediate states are included.

Finally we should mention that the diagrams similar to
those in Fig. 2, wheref0 meson replaces thes, have also
been included in the calculation. The effect of these turns out
to be very small and can be discarded.

IV. CONCLUSIONS

In the present work we have explicitly calculated loop
corrections to the strongK+pL vertex and the additional
four-point amplitude in an effective-Lagrangian model for
photoinducedK+L production off the proton. The main focus
has been on the scalar amplitudeA2ss,td, associated with the
electric contribution in a gauge-invariant approach.

The calculation shows that there is a strong cancellation
in the amplitudeA2ss,td between three-point loop correc-

FIG. 6. RatioA2/A2
Born and form factors in thes and t channels

as functions ofs-meson mass. Upper panel, calculation including
only diagrams 1 in Fig. 2; lower panel, calculation including only
diagrams 3 in Fig. 2. For diagrams 3 the couplinggsppgsLL is
multiplied by ms/0.76 GeV. The invariant energy and momentum
transfer corresponding to this kinematics ares0=4.26 GeV2 and t0
=−1.05 GeV2, respectively.
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tions, often parametrized via form factors in a phenomeno-
logical approach, and four-point loop corrections, often writ-
ten as contact terms restoring gauge invariance. This
cancellation becomes complete if one of the intermediate
particles in the diagrams becomes infinitely heavy. This
shows that the result of the minimal-substitution method of
Ohta [9] can be understood in the microscopic picture as a
particular limiting case.

In a more realistic case the cancellation is not complete.
Only part of the loop corrections can be absorbed in an ap-
propriately chosen form factors and contact terms, con-
structed using the minimal substitution. The remaining part
can be accounted through four-point contact terms which are
gauge invariant and free of the poles, as was done in the
work of DW [8,10].

The calculation also indicates that the form factors, usu-
ally taken in phenomenological approaches, may not be re-
alistic. In a microscopic model the form factors are necessar-
ily complex, with cusp structures in the real part reflecting
the possibility that the intermediate states become physical
particles for certain kinematical conditions. Even though we
have focused our attention in this calculation on the electric
current, we expect that the conclusion about the complex
structure of the form factors is more general and applies to
any vertex, which accounts for loop corrections not explicitly
included in the present model. Nontrivial structures of the
form factors extracted from a microscopic calculation were
also observed in Ref.[5]. However the cancellation of dif-
ferent contributions which was observed in the calculation of
the A2 term may, due to the current conservation, be a pecu-
liarity of the electric amplitude.

In the present calculation only the scalar mesons, proton,
kaon, andL hyperon have been included in the loop dia-
grams. In particular contributions involving theS baryon and
the pion have not been considered. Qualitatively one expects
these particles to give similar contribution(in absolute mag-
nitude and structure, but sign may be different) to what has
been calculated in this work. Clearly a more complete calcu-
lation, where all possible intermediate states are taken into
account, is needed to adequately describe the nonresonant
part of thegp→K+L amplitude. The knowledge of the latter
is imperative to separate the resonances from the background
contribution in strangeness photoproduction.
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APPENDIX: EVALUATION OF LOOP INTEGRALS FOR
THE pK1L VERTEX AND gp\K1L AMPLITUDE

The one-loop vertex corrections corresponding to the dia-
grams in Fig. 2(a) can be written as

G̃1 = ggsLLgsK+K−
i

s2pd4

3E g5s2ML + L” dd4L

fsp8 − Ld2 − ML
2 dfsL + qd2 − mK

2gsL2 − ms
2d

,

G̃2 = ggsppgsK+K−
i

s2pd4

3E g5sMN + p” − L” dd4Ls2pd−4

fsp − Ld2 − MN
2dfsL − qd2 − mK

2gsL2 − ms
2d

,

G̃3 = ggsppgsLL

i

s2pd4

3E g5s2ML + L” dsMN + p” − L” dd4Ls2pd−4

fsp − Ld2 − MN
2dfsp8 − Ld2 − ML

2 gsL2 − ms
2d

,

sA1d

where we explicitly used Dirac equation for the finalL, how-
ever did not assume the initial proton and the kaon to be on
their the mass shells, i.e.,p2=sÞMN

2 and q2=tÞmK
2. Using

the Feynman parametrization and integrating over the loop
momentumL we obtain

G̃1 = 2gC1g5E
0

1

dxE
0

x

dy
MLs2 − xd − p” sx − yd

D1sx, yd
,

G̃2 = 2gC2g5E
0

1

dxE
0

x

dy
MN − MLsx − yd + p” s1 − xd

D2sx, yd
,

G̃3 = 2gC3g5E
0

1

dxE
0

x

dyH2Ne − 1 − 2 ln D3sx, yd

+ hMNMLs2 − x + yd + ML
2 s2 − xdsx − yd+ mK

2ysx − yd

+ sys1 − xd + p” fMLs2 − x − yd+ MNygj
1

D3sx, ydJ ,

sA2d

with C1=gsLLgsK+K−/32p2, C2=gsppgsK+K−/32p2, C3
=gsLLgspp/32p2, and

D1sx, yd = ML
2 xy− sysx − yd

+ fmK
2 − ts1 − xdgsx − yd + ms

2s1 − xd − i0,

D2sx, yd = yfMN
2 − ss1 − xdg − ML

2 ysx − yd

+ fmK
2 − ts1 − xdgsx − yd + ms

2s1 − xd − i0,

D3sx, yd = yfMN
2 − ss1 − xdg

+ ML
2 xsx − yd− tysx − yd + ms

2s1 − xd − i0.

sA3d

While G̃1 andG̃2 are convergent,G̃3 has a divergent piece
which in the dimensional-regularization method is expressed
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via the constantNe=2/e−gE+ln 4p, wheree;4−D andD is
the space-time dimension. In order to normalize the vertex
we add a counterterm of the formdg g5 to the loop correc-
tions. The coefficientdg can be fixed by requiringg to be the
physical coupling constantgK+pL. This condition automati-
cally makes the vertex finite and properly normalized togg5

for on-mass-shell particles. Subsequently the off-shell vertex
is calculated from

ūsp8dGsp8, p;qd = ūsp8dfgg5 + Ḡ1 + G̃2 + G̃3

− sG̃1 + G̃2 + G̃3dp2=MN
2,q2=mK

2g. sA4d

All FF’s defined in Eqs.s5d and s6d of Sec. II B can be
obtained from Eq.sA4d. In particular, thes- and t-channel
FF’s are normalized as follows:

FssMN
2d = FtsmK

2d = 1. sA5d

There is an essential difference between thes and t chan-
nels. In the physical region of thegp→K+L reaction,
where t,0, the functionFtstd is real. In this case the
dominators in Eqs.sA2d do not vanish and the calculation
of the twofold integrals is straightforward. In thes chan-
nel however the FF has an imaginary part which develops
at sù sML+mKd2 for the first diagram in Fig. 2sad and at
sù sMN+msd2 for the second and third diagrams. Calcula-
tion of the corresponding integrals requires care and we
apply the methods developed by ’t Hooft and Veltman in
Ref. f24g. In particular, one integration in Eqs.sA2d can
be performed which ensures that the remaining integrals
are numerically stable.

The four-point loop contributions are shown in Fig. 2(b).
We introduce the notationLf4g

m =Lf4g,1
m +Lf4g,21

m +Lf4g,22
m +Lf4g,3

m

for the four diagrams in Fig. 2(b). For example, forLf4g,1
m we

have

Lf4g,1
m = eggsLLgsK+K−

i

s2pd4 E g5s2ML + L” df2sLm + qmd − kmgd4L

fsp8 − Ld2 − ML
2 gfsL + qd2 − mK

2gfsL + k − qd2 − mK
2gsL2 − ms

2d
, sA6d

and similarly for Lf4g,21
m ,Lf4g,22

m , and Lf4g,3
m sthe baryon

spinors are omitted for brevityd. One can explicitly check
that these amplitudes satisfy the relation

k · sLf4g1 + Lf4g21 + Lf4g22 + Lf4g,3d

= − k ·TEl

= − eūsp8dfGsp8, p + k;qd − Gsp8, p;q − kdguspd,

sA7d

which guarantees GI of the total amplitude.
We perform integration overL, as well as over one of the

Feynman parameters. In order to obtain contribution of these
loops to the coefficientHtss,td in Eq. (14) one has to project
the tensor structureūsp8dg5q

muspd out of the final result. Any
of the four-point integrals is proportional to the tensors:
g5g

m,g5g
mk” ,g5p

mk” ,g5q
mk” ,g5p

m, and g5q
m, and of course

terms~g5k
m,g5k

mk” can be dropped. It suffices for our pur-
poses to select only those proportional tog5q

m. In this way
we arrive at the integrals with the following generic struc-
ture:

Htss, td = const1E
0

1

dxE
0

x

ydy
h1,x, x2, y, y2, xyj

AsA + Byd

+ const2E
0

1

dx ln
ML

2 s1 − xd + MN
2x − txs1 − xd

ML
2 s1 − xd + MN

2x − mK
2xs1 − xd

,

sA8d

with the polynomials

A = ax2 + by2 + cxy+ dx+ ey+ f − i0,

B = hx+ jy + k. sA9d

The coefficientsa,b,c,d,e, f ,h, j ,k depend on a particular
diagram and are expressed in terms of the masses of ex-
ternal and internal particles, and the Mandelstam variables
s,u, andt. The second integral in Eq.sA8d appears only in
Lf4g,3

m . One integration can further be done using the meth-
ods of Ref.f24g. The obtained coefficientsHtss,td for the
diagrams in Fig. 2sbd are calculated numerically. In the
numerical calculation double precision and a large number
of mesh points are used to get accurate results.
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