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A relativistic model for the quasifree exclusive photoproduction ofh mesons on nuclei is extended to
include both nonlocal and medium effects. The reaction is assumed to proceed via the dominant contribution
of the S11s1535d resonance. The complicated integrals resulting from the nonlocality are simplified using a
modified version of a method given by Cooper and Maxwell. The nonlocality effects are found to affect the
magnitude of the cross section. Some possible effects of the medium on the propagation and properties of the
intermediateS11 resonance are studied. The effects of allowingS11 to interact with the medium via mean field
scalar and vector potentials are considered. Both broadening of width and reduction in mass of the resonance
lead to a suppression of the calculated cross sections.
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I. INTRODUCTION

The photoproduction ofh mesons on nucleons and nuclei
is a subject of current interest. The production on nucleons
provides an opportunity to study nucleon resonances in the
second resonance region. In the past decade there have been
a large number of studies, both theoretical and experimental,
on the reaction on nucleons and deuterons and much has
been learned[1–4].

Photoproduction on nuclei can be valuable in learning
about the changes in hadron properties in the nuclear me-
dium. Inclusive photoproduction cross sections for a number
of nuclei have been measured at MAMI by Roebig-Landau
et al. [5] and recently at INS by Yoritaet al. [6]; data on
coherent reactions are confined to the lightest nuclei. No data
have been reported however on quasifree or incoherent pho-
toproduction. Part of the reason for this is the smallness of
the cross sections for these processes[7,8]. It is therefore
imperative that efforts should continue in the direction of
improving the theoretical calculations, both for their own
sake and for better guidance to experiments.

In an earlier study we presented a relativistic model for
exclusive and inclusive photoproduction ofh mesons on nu-
clei [9,10]. This study was extended to incoherent photopro-
duction in Ref. [11]. The model is based on an effective
Lagrangian to describe the production mechanism[1]. It in-
cludes contributions from nucleon resonances in the second
resonance region, from nucleon pole diagrams, and from
vector meson diagrams. This approach has proved to be suc-
cessful in describing the experimental data for the elemen-
tary reaction. The other key ingredients of the study on nu-
clei are the use of relativistic mean field dynamics to treat the
nucleon motion and to allow for final state interactions of the
outgoing particles with the residual nucleus.

In the earlier studies, two key approximations were ap-
plied to simplify the calculation of the reaction amplitudes.
The first of these was a local approximation for the propaga-
tors. The other approximation was to use a free(undressed)
form for the propagators, in which the interactions of the
propagating particles with the nuclear medium were ignored.

Nonlocality effects in coherent photoproduction of pions
and h mesons on nuclei have been studied, in a relativistic
model, by Peterset al. [8,12]. For the pion production case
these authors also investigated the medium modifications of
the nucleon andD propagators. For the coherent photopro-
duction ofh mesons it was established that nonlocal effects
can lead to enhancement of the contribution of theS11 reso-
nance which appeared to be strongly suppressed in earlier
local calculations[7,13].

The present study is concerned with the investigation of
nonlocal and medium effects in the quasifree photoproduc-
tion of h mesons on nuclei, i.e., reactions of the type
Asg,hpdB. In this sense it complements the work of Peterset
al. on coherent photoproduction. Even though the cross sec-
tion for the quasifree photoproduction reaction is rather
small, it serves as a prototype for studying these effects.
Moreover its amplitude is the main building block, in at least
some models[10,14], for calculating inclusive cross sec-
tions.

Earlier relativistic and nonrelativistic studies of the quasi-
free photoproduction[9,14] show clearly that the reaction is
strongly dominated, at energies not too far from threshold,
by theS11 resonance. We therefore restrict the present study
to the dominantS11 contributions.

In the following section we discuss the formalism for im-
proving our previous model[9] (henceforth referred to as I)
to include both nonlocality and possible medium effects on
the resonance. The results and discussions are given in Sec.
III and the conclusion in Sec. IV.

II. FORMALISM

In I, starting from a relativistic interaction Lagrangian for
a system of photons, nucleons, and mesons, we obtained a
transition amplitude for theAsg,h pdA−1 reaction. To sim-
plify the calculations a local approximation was adopted and
free propagators were used for the intermediate resonances
(see I for details). In the present treatment both approxima-
tions will be dropped. It is assumed here that the production
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of h meson takes place through formation and subsequent
decay of theS11s1535d resonance.

A. The nonlocal reaction amplitude

At the tree level theS matrix for theAsg,hpdA−1 reac-
tion, through theS11 resonance, can be cast in the following
form [9]:

Sfi =
e

s2pd17/2

kR
pghNR

M + MR
SM

Ep

1

2vh

1

2vg
D1/2

3 o
JBMB

sJf, JB;Mf, MBuJi, MidfSJiJf
sJBdg1/2

35E d4xd4yd4pc̄sfsydfhsyd
e−ipsy−xd

p” − MR + i
G

2

3g5k”ge”eikgxcBsxd +E d4xd4yd4pc̄sfsydg5k”ge”eikgy

3
e−ipsy−xd

p” − MR + i
G

2

fhsxdcBsxd6 , s2.1d

whereSJiJf
sJBd andsJf ,JB;Mf ,MBuJi ,Mid are spectroscopic

and Clebsh-Gordon coefficients, respectively.M, MR, and
G are the nucleon mass, resonance mass, and width, re-
spectively.EP, vh, andvg are the energies of the outgoing
proton, h meson, and incident photon, respectively.kR

p

and ghNR are the anomalous magnetic moment of the
resonance and the coupling constant of the
h-nucleon-resonance vertex.csfsyd, cBsyd, and fhsyd are
wave functions of the outgoing proton, the boundsinitial
stated proton, and theh meson, respectively. Thec’s are
solutions of Dirac equations with appropriate mean field
potentials andf is a solution of the Klein–Gordon equa-
tion. Instead of the local approximation used in Ifthis
approximation is exact in the limit where bothcsf andfh

are plane wavesg, we perform a complete nonlocal calcu-
lation.

The integrals in Eq.(2.1) can be computed as they stand,
but it is possible to follow a somewhat simpler approach
[15]. We rewrite the two integrals in Eq.(2.1) as,

I = s2pd4E d4yc̄sfsydfhsydWssyd

+ s2pd4E d4yc̄sfsydg5k”ge”eikgyWusyd, s2.2d

where

s2pd4Wssyd =E d4xd4p
e−ipsy−xd

p” − MR + i
G

2

g5k”ge”eikgxcBsxd

s2pd4Wusyd =E d4xd4p
e−ipsy−xd

p” − MR + i
G

2

fhsxdcBsxd, s2.3d

and the superindices refer tos- andu-channel diagrams. If
we act from the left with the operatorp” −MR+ isG /2d and
then carry the integration over momentum, we obtain the
following Dirac-type linear differential equation:

Sp” − MR + i
G

2DWisyd = Visyd, s2.4d

where the source terms fors and u channels are, respec-
tively,

Vssyd = g5k”ge”eikgycBsyd,

s2.5d

Vusyd = fhsydcBsyd.

After taking care of the time dependence, Eq.s2.4d leads
to the following second order differential equation for the
space part of the upper component ofWi fwhich we denote
by Wup

i sr d; note that it continues to be spin dependent, and
similarly for Visr dg. The lower component ofWisr d can be
obtained from its upper componentssee belowd:

− p2Wup
i sr d + abWup

i sr d = bVup
i sr d − s ·pVd

i sr d, s2.6d

where the indices up and d indicate the upper and lower
components of the functionsWi and Vi. The a’s and b’s
are given by

as = Eb + vg − MR + i
G

2
,

bs = Eb + vg + MR − i
G

2
,

s2.7d

au = Eb − vh − MR + i
G

2
,

bu = Eb − vh + MR − i
G

2
,

whereEb is the energy of the bound nucleon. The follow-
ing expansions are used forWup

i sr d and the source part of
Eq. s2.6d swe drop the indexi for nowd:

Wupsr d = o
L,M,J

wLJ
M srd
r

Y
L1

2
J

M sVd,

s2.8d
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Vupsr d − bs ·pVdsr d = o
L,M,J

jLJ
M srd
r

Y
L1

2
J

M sVd.

Substituting the above expansions into Eq.(2.6) leads to
the following second order radial differential equation:

F d2

dr2 −
LsL + 1d

r2 + abGwLJ
M srd = jLJ

M srd. s2.9d

The presence of the resonance’s width in Eq.s2.4d makes
both a andb complex. The equation above, in the limit of
no source, is similar to the Bessel equation with a com-
plex variable. The complexity of the argument requires
care in the choice of boundary conditions to ensure proper
asymptotic behavior. In the presence of sources, the solu-
tions must be matched to the combinations of Bessel- and
Neumann-type functions, which vanish at large distances.
The above equation can be solved by a number of differ-
ent methods. The method which we adopt here is the
Gauss elimination matrixf15g. This method is suitable for
solving the differential Eq.s2.9d with the boundary con-
dition mentioned above.

Substituting Eq.(2.3) into Eq. (2.1) and using partial
wave expansions of all wave functions[16], the S matrix in
the distorted wave approximation can be written as

Sfi =
e

p

1

s4pd1/2S Ep + M

Epvhvg
D1/2 kR

pghNR

M + MR
dsEB + vg − Ep − vhd

3 o
JBMB

sJf, JB;Mf, MBuJi, MidfSJiJf
sJBdg1/2

3 o
LJM

i−LYL
M−sfsk̂fdsL, 1/2;M − sf, sfuJ, Md

3 H o
Lh,Mh

i− LhfYLh

Mhsk̂hdg*

3E d3yfYL,1/2,J
M sVdg*ffLJsrd is · r̂gLJsrdgvLh

srdYLh

MhsVd

3FWup
s

Wd
s G + o

Lg

F2Lg + 1

4p
G1/2

iLg

3E d3rfYL,1/2,J
M sVdg*ffLJsrd is · r̂gLJsrdg

3 jLgskgrdYLg

0 sVdg0g5k”ge”FWup
u

Wd
u GJ , s2.10d

wherefLJsrd andgLJsrd are the upper and lower component
radial wave functions of the outgoing nucleon, respec-
tively. vlh

srd describes the radial wave function of theh

meson. The expansions of the upper components ofWi are
given in Eq.s2.8d. The lower componentsWd

i are related
to the upper components by

Wd
i sr d =

s ·pWup
i sr d − Vd

i sr d
bi

. s2.11d

B. Inclusion of medium effects

The properties of the resonances are expected to change
in the nuclear medium. The two properties of interest are
mass and width. It is often argued that the mass of the
nucleon is changed in the medium, and in the spirit of the
Walecka model[17], this could be effected by the scalar
field. Thus our first attempt is to let theS11 resonance interact
with the nuclear medium through the nuclear scalar and vec-
tor potentials. The formalism discussed in the preceding sec-
tion can be modified to include these nuclear mean fields in
the resonance propagator. We modify Eq.(2.4) by subtract-
ing the vector potentials from the zeroth component of the
resonance 4-momentum and adding the scalar potentials to
its mass,

Sp” − g0Uvsyd − MR − Ussyd + i
G

2DWisyd = Visyd.

s2.12d

The differential equation obtained from Eq.s2.12d is
somewhat different from Eq.s2.9d; the parametersa andb
are now functions ofr. The equation has the form

F d2

dr2 −
lsl + 1d

r2 + asrdbsrd + fksld + 1g
b8srd
rbsrd

+
b88srd
2bsrd

−
3

4Sb8srd
bsrd D

2GylJ
Msrd

=ÎbsrdtlJ
Msrd + i

b8srd
b3/2srd

zl8J
M srd

− i
1

b1/2srd
zl8J
8Msrd + i

ksl8d + 1

rb1/2srd
zl8J

M srd, s2.13d

wherewlJ
Msrd=ÎbsrdylJ

Msrd and the functionksld is defined
as

ksld = l + 1 for J = l + 1
2 ,

ksld = − l − 1 for J = l − 1
2 , s2.14d

and l8=2J− l.
The inclusion of the interaction with the medium also

necessitates that the expansion of the source functions[Eq.
(2.8)] be done for the upper and lower components sepa-
rately,

Vupsr d = o
l,M,J

tlJ
Msrd
r

Y
l 1
2

J

M sVd,

Vdsr d = o
l,M,J

zlJ
Msrd
r

Y
l 1
2

J

M sVd. s2.15d

The second order radial differential Eq.s2.13d is again
solved using the Gauss elimination matrix method men-
tioned above. The lower components of theWi are ob-
tained from their upper components using Eq.s2.11d. The
rest of the calculations proceed along the same lines as the
nonlocality ones of Sec. II A.
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The influence of the medium may also be formulated in
terms of changes in the resonance properties such as mass
and width. These changes are likely to be density dependent.
When this is the case, these changes can be accommodated
in the calculation of the reaction amplitude in essentially the
same manner as the above treatment of interaction potentials.
The implementation of nondensity-dependent changes is of
course much simpler.

III. RESULTS AND DISCUSSION

In this section we investigate the impact of nonlocal cal-
culations on the cross section for the quasifree production.
We also consider a number of options that would simulate
the medium effects on the propagatingS11 resonance and
assess how these affect the calculated cross sections.

In I we have investigated the kinematical conditions under
which the calculated cross sections are optimal. It was con-
cluded that a symmetric arrangement for detecting the out-
going proton andh meson at 30° on both sides of the inci-
dent beam led to the maximum cross section on12C at
750 MeV. We shall adopt this geometry in all the calcula-
tions presented here. In addition, the coupling parameters
used are the same as those ofI. The bound state wave func-
tions for the initial state bound proton are calculated using
the mean field Hartree potentials of Horowitz and Serot[18].
In all the calculations presented here the residual nucleus is
left in the ground state. Thus for the reactions on12C the
participating nucleon is in ap3/2 state initially, while for40Ca
it is in a d3/2 state. The distorted wave functions for the
outgoing protons are calculated using global potentials pro-
vided by Cooperet al. [19] and the optical potentials forh
mesons are those of Chianget al. [20] with the real part of
S11 self-energy taken to be proportional to the nuclear den-
sity.

Figure 1 shows the calculated triple differential cross sec-
tion at Eg=750 MeV as a function of the kinetic energy of
the outgoingh meson. As pointed out earlier, a calculation in
which both the proton and theh are taken as plane waves is
by necessity a local calculation. We show this by the dotted
curve. The dashed curve shows the corresponding local dis-
torted wave(DW) calculation. Comparison between these
two curves establishes, as has been learned in many earlier
calculations, the strong suppression of the cross sections due
to final state interactions.

The solid curve in Fig. 1 shows the nonlocal calculations.
Here we find that the nonlocality effects lead to increase in
the cross section, but with only a slight change in shape. The
increase can be as high as 25%. Figure 2 shows a similar
comparison between local(dashed curve) and nonlocal cal-
culations(solid curve) for 40Ca at the same incident energy.
The features are essentially the same as in Fig. 1. Thus the
increase in the cross section due to nonlocality effects ap-
pears to be independent of the target nucleus.

Some theoretical approaches to the calculation of the in-
clusive cross sections start from calculations of the exclusive
cross sections discussed here but with the wave functions of
the outgoing protons taken as plane waves. Thus in these
calculations only theh wave function is distorted due to the

final state interactions. The rationale for this is given, for
example in Ref.[10]. In Fig. 3 we show the effect of nonlo-
cality on this type of calculation. We see again that the net
result is an increase in the cross section in essentially the
same fashion as in the two cases discussed in Figs. 1 and 2.

The increase of the cross section in nonlocal calculations
appears to be a universal feature independent of the energy
of the incident photon(in the region of theS11 dominance). It
is also present at other angular pairs of the outgoing particles
provided these remain in the forward hemisphere, where the
cross section is large. It is of interest to try to understand
why the inclusion of nonlocality leads to an increase in the
cross sections. This feature appears to be closely connected
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FIG. 1. The cross section for the12Csg,hpd11Bg.s. reaction at
photon energy of 750 MeV, plotted as a function of the kinetic
energy of the outgoingh meson. Solid curve: nonlocal DW calcu-
lations [curve labeled DW(NL)]. Dashed curve: local DW calcula-
tions [curve labeled DW(L)]. Dotted curve: local PW calculations
[curve labeled PW(L)]. In this and all the subsequent figuresS11

dominance is assumed.
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FIG. 2. The cross section for the40Casg,hpd39Kg.s. reaction at
750 MeV. Only DW calculations are presented; solid curve, nonlo-
cal DW calculations; dashed curve, local DW calculations.
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to the final state interactions of the outgoing particles with
the residual nucleus, i.e., to the distortion effects. To see this
we first note that plane wave calculations in which these
effects are neglected are strictly local and as seen in Fig. 1
have relatively large cross sections. Local calculations with
distortion effects lead to a noticeable reduction of the cross
section. But the cross section increases as the nonlocality is
taken into consideration.

Because the cross sections are substantial only when the
pair of outgoing particles is moving in a forward direction it
is possible to argue that the increase is due to a reduction in
the absorption of the outgoing particles in the nonlocal case.
In the plane wave local calculations the pair is produced at
the same point where the formation of theS11 resonance
takes place; subsequently they move freely through the
nuclear medium. In local distorted wave calculations they do
interact with the nucleus and suffer absorption and hence the
cross section is reduced(see dashed curve in Fig. 1). In non-
local calculations, on the other hand, theS11 resonance de-
cays generally at a point different from the point of its for-
mation. Because the motion is largely forward the outgoing
particles travel in the nuclear medium for a shorter distance
and hence suffer less absorption. This leads to some increase
in the cross section. We have tested this interplay between
absorption effects and nonlocal calculations by gradually
scaling the distorting potentials of either particle. We found
clear confirmation of this relationship between the relative
increase in the cross section and the size of the distorting
potentials. Note that the reason for the increase in the present
quasifree reaction is quite different from the case of coherent
photoproduction where the increase in the cross section due
to nonlocality can be understood in terms of the interplay
between the nuclear structure of the target and the spin struc-
ture of the elementary amplitude[12].

We now investigate the influence on the cross section due
to the medium effects on the propagatingS11 resonance. All
the calculations reported below include nonlocal effects as
discussed above. It is generally agreed that the medium is
likely to affect both the mass and the width of the resonance.

We can alternatively look at these effects in a framework
where they are expressed in terms of interactions of the reso-
nance with the surrounding nucleons. In this respect one is
inclined to think of a mean field interaction modeled along
the case of nucleons. It may therefore be a good starting
point to consider such a case. A rough approximation is to
take the interaction to be that experienced by the bound
nucleon that formed the resonance, namely, the scalar and
vector Dirac-Hartree potentials of Ref.[18]. The results are
displayed in Fig. 4. The solid curve(No ME) represents the
case of free propagation, i.e., without interactions with the
medium. If we include only the scalar Hartree potentialSsrd
in the calculations, we are then effectively changing the mass
of the resonance in a radially dependent way. The result of
invoking such an effective mass is shown by the dashed
curve in Fig. 4. There is a large reduction in the cross sec-
tion. We should add however that the Hartree scalar potential
is rather deep(about 600 MeV at the center of the nucleus)
and hence the effect may be somewhat exaggerated. The dot-
ted curve shows the results when both the Hartree vector and
scalar potentials are included. We find, in this case, a much
reduced effect on the cross section; the vector and scalar
potentials have opposing influences. This can be understood
qualitatively in terms of the opposite signs of these potentials
and the structure of the propagator. The vector potential
when added to the energy term tends to offset the increased
gap between the energy and the mass terms resulting from
the reduction in mass due to the scalar potential.

Another possible way of probing the effects of the me-
dium on the propagating resonance is to change the width of
the resonance from its free space value. The calculations
discussed above have all been performed usingG
=150 MeV. In addition to uncertainties surrounding the free
width, it is likely that the width will broaden in the medium;
there are, for example, indications of some broadening in the
region of theDs1232d resonance[21]. To test the effect of
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FIG. 3. Same reaction as Fig. 1. Distorted waves are used for the
h’s but protons are described by plane waves. Solid curve, nonlocal
calculations; dashed curve, local calculations.
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such broadening we carry out calculations using a larger
valueG=208 MeV. This value is obtained by Breit—Wigner
fits to the data of the elementary reaction[22] and is also
close to the upper limit used in the analysis of Ref.[6]. We
also consider the effect of collision broadening of the width
following a suggestion by Lehr and Mosel[23]. These au-
thors considered a model for the broadening of theD13 reso-
nance due to collisions with nucleons, in an attempt to ex-
plain the total photoabsorption cross section on nuclei. They
suggest that to first order in the baryon densityr, the width
may be written as

Gsrd = Gfree+ 50
r

r0 , s3.1d

where Gfree=150 MeV and r0 is the density of infinite
nuclear matterstaken to be0.17 fm−3d.

The results of these calculations are shown in Fig. 5. We
note that increasing the width from 150 to 208 MeV results
in a drastic reduction(about 50% at the peaks) of the cross
section. On the other hand the density-dependent broadening
has only a small effect(around 10%). The weakening of
broadening in the surface region in this case appears to be
responsible for the much reduced effect on the cross section.

The next step in looking at medium effects is to recon-
sider the changes in the mass of the resonance in the medium
together with the change in width. Figure 6 shows compari-
sons involving the use of an expression for the mass bor-
rowed from the work of Saito and Thomas[24] on the me-
dium effects on baryon masses. One of the relations used by
these authors for the change in the nucleon mass within the
medium is of the form

Msrd = Mfree− 0.14
r

r0Mfree. s3.2d

We adopt this same expression for the mass ofS11. This
provides a somewhat different form for the change in

mass from that used in the calculations of Fig. 4sdue to
the scalar part of the Hartree potentiald. The cross section
calculated with forms3.2d for the mass is shown by the
dashed curve in Fig. 6. The solid curve is the result of
calculations that include the above mass change as well as
a change in width according to the form given in Eq.s3.1d.
The mass dependence on the density reduces the cross
section by an amount which, though substantial, is much
less than what was obtained using the deep Hartree poten-
tial sFig. 4d. The addition of density-dependent width
broadening reduces the cross section further, similar to
what was noted in Fig. 5.

Finally, we discuss the medium effects for the calculations
shown in Fig. 3, where only the final state interactions ofh
are taken into account. The comparisons shown in Fig. 7 are
for the density-dependent mass and width changes discussed
above. We see that the mass effect is larger than the width
effect and that the two together lead to the smallest cross
section. It is therefore likely that the net effect of the medium
on inclusive reaction will be to reduce the cross sections.
Detailed calculations of this are underway.

We have carried out similar calculations atEg

=900 MeV. The general features observed in the above fig-
ures are found to hold at this higher energy.

IV. CONCLUSION

Our earlier work on the exclusive quasifree photoproduc-
tion of h mesons on nuclei involved two approximations in
the calculations of the production amplitude. The first was a
local approximation in which the absorption of the photon
and the production ofh were assumed to occur at the same
point. The second approximation was to assume free propa-
gation of the intermediate resonances; no interaction or
change of properties took place in the medium. In this paper,
adopting anS11 resonance model, we have carried out non-
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local calculations in order to correct for the first approxima-
tion. We have also investigated the role of medium interac-
tions or alternatively changes in mass and width of the
resonance on the calculated cross sections.

We find that the nonlocal effects are important for the
cross section calculations. Typically these effects lead to a
moderate increase in the cross sections. This feature appears
to apply regardless of the target nucleus or whether the final
state interactions of the proton are taken into account.

In our investigation of the influence of possible medium
effects on the propagation of theS11 resonance we consid-
ered various possibilities. If one assumes that the resonance
experiences a mean field similar to that of the nucleon then
the scalar part of the mean field would act as ade facto
reduction in the mass of the resonances. We find that this
term alone would lead to large suppression in the cross sec-
tion if its strength is maintained at that used for nucleon
binding in a Dirac-Hartree model. This suppression is found

to moderate if the vector component of the interaction is
added. Note however that the Hartree potentials are known
to be rather deep.

The cross sections are no doubt sensitive to the mass of
the resonance. In fact we found that if the mass of the reso-
nance is reduced by 30%, the cross section is drastically
reduced. A more realistic change in the mass is that of Ref.
[24], based on the quark meson coupling model. In this in-
stance also the mass is dependent on the nuclear density but
in a much weaker fashion compared to that affected by the
Hartree scalar potential. The cross section is reduced due to
the reduction in mass; the moderate density dependence
leads to a moderation in the suppression of the cross section.
Increasing the width of the resonance also leads to a reduc-
tion in the cross section. If the width broadening is density
dependent the suppression of the cross section is reduced.

The effects noted above carry over to the case where only
the final state interactions of theh meson are taken into
account. This latter case is relevant to the calculation of the
inclusive cross sections on nuclei.

In conclusion, we have shown the importance of includ-
ing nonlocal effects in the relativistic calculations of the
cross section for quasifree exclusive photoproduction ofh
mesons on nuclei. In this framework this allowed us to probe
the dependence of the cross section on interactions with the
medium or alternatively on changes in the mass and width of
the S11 resonance. This may open the way to using our
present model to investigate these medium effects in relation
to data on the inclusive reaction on nuclei(note that the cross
sections for the exclusive reaction are rather small). Cur-
rently data that extend over a useful photon energy range
exist only for the12C nucleus. We are in the process of ana-
lyzing these data. However it is desirable that the range of
energies for existing data on other nuclei be extended to
allow their inclusion in such analyses.

ACKNOWLEDGMENTS

Two of the authors(M.H. and S.B.) wish to acknowledge
the support of the Faculty of Science, Tehran University.
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

[1] M. Benmerrouche, Nimai C. Mukhopadhyay, and J. F. Zhang,
Phys. Rev. D51, 3237(1995).

[2] L. Tiator, D. Drechsel, G. Knöchlein, and C. Bennhold, Phys.
Rev. C 60, 035210(1990).

[3] A. Fix and H. Arenhövel, Nucl. Phys.A620, 457 (1997).
[4] B. Kruscheet al., Phys. Lett. B358, 40 (1995).
[5] M. Roebig-Landauet al., Phys. Lett. B373, 45 (1996).
[6] T. Yorita et al., Phys. Lett. B476, 226 (2000).
[7] A. Fix and H. Arenhövel, Phys. Lett. B492, 32 (2000).
[8] W. Peters, H. Lenske, and U. Mosel, Nucl. Phys.A640, 89

(1998).
[9] M. Hedayati-Poor and H. S. Sherif, Phys. Rev. C56, 1557

(1997).
[10] M. Hedayati-Poor and H. S. Sherif, Phys. Rev. C58, 326

(1998).
[11] I. R. Blokland and H. S. Sherif, Nucl. Phys.A694, 337(2001).
[12] W. Peters, H. Lenske, and U. Mosel, Nucl. Phys.A642, 506

(1998).
[13] J. Piekarewicz, A. J. Sarty, and M. Benmerrouche, Phys. Rev.

C 55, 2571 (1997); L. J. Abu-Raddad, J. Piekarewicz, A. J.
Sarty, and M. Benmerrouche,ibid. 57, 2053(1998).

[14] F. X. Lee, L. E. Wright, C. Bennhold, and L. Tiator, Nucl.
Phys. A603, 345 (1996).

[15] E. D. Cooper and O. V. Maxwell, Nucl. Phys.A493, 486
(1989).

[16] J. I. Johansson and H. S. Sherif, Nucl. Phys.A575, 477
(1994).

[17] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys.16, 1 (1986).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140  160  180

dσ
3 /d

Ω
ηd

Ω
pd

T
η 

( 
µb

/s
r2 M

eV
 )

 Tη ( MeV )

12C  Eγ = 750 MeV 

η DW

No ME 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140  160  180

dσ
3 /d

Ω
ηd

Ω
pd

T
η 

( 
µb

/s
r2 M

eV
 )

 Tη ( MeV )

12C  Eγ = 750 MeV 

η DW

No ME 
M(ρB)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140  160  180

dσ
3 /d

Ω
ηd

Ω
pd

T
η 

( 
µb

/s
r2 M

eV
 )

 Tη ( MeV )

12C  Eγ = 750 MeV 

η DW

No ME 
M(ρB)
Γ(ρB)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  20  40  60  80  100  120  140  160  180

dσ
3 /d

Ω
ηd

Ω
pd

T
η 

( 
µb

/s
r2 M

eV
 )

 Tη ( MeV )

12C  Eγ = 750 MeV 

η DW

No ME 
M(ρB)
Γ(ρB)

M(ΓB) +Γ(ρB) 

FIG. 7. Same reaction as Fig. 3. Dotted curve: calculations using
a free propagator forS11. Long-dashed curve: calculations with
density-dependent mass forS11. Short-dashed curve: calculations
with density dependent width forS11. Solid curve: calculations in-
clude density dependence for both mass and width ofS11.

NONLOCALITY AND MEDIUM EFFECTS IN THE… PHYSICAL REVIEW C 68, 045205(2003)

045205-7



[18] C. J. Horowitz and B. D. Serot, Nucl. Phys.A368, 503(1986).
[19] E. D. Cooper, S. Hama, B. C. Clark, and R. L. Mercer, Phys.

Rev. C 47, 297 (1993).
[20] H. C. Chiang, E. Oset and L. C. Liu, Phys. Rev. C44, 738

(1991).
[21] M. Effenberger and U. Mosel, inProceedings of the Confer-

ernce on Perspectives in Hadron Physics, edited by S. Boffi
and C. Ciofi degli Atti(ICTP, Trieste, 1997), p. 124.

[22] B. Kruscheet al., Phys. Rev. Lett.74, 3736(1995).
[23] J. Lehr and U. Mosel, Phys. Rev. C64, 042202(2001).
[24] K. Saito and A. W. Thomas, Phys. Rev. C51, 2757(1995).

M. HEDAYATI-POOR, S. BAYEGAN, AND H. S. SHERIF PHYSICAL REVIEW C68, 045205(2003)

045205-8


