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Hydrodynamics near a chiral critical point
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We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to nonequilibrium
dynamics of the long-wavelengtblassical modes of the chiral condensate. We solve the equations of motion
numerically in 3+1 space-time dimensions. Starting the evolution at high temperature in the symmetric phase,
we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its
critical end point. For those cases, we predict the behavior of the azimuthal momentum asymmetry for
high-energy heavy-ion collisions at nonzero impact parameter.
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[. INTRODUCTION first-order phase transitions from the lattice, using 2+1 quark
. . flavors onN;=4 lattices[14] (see also Ref{15]). Those au-
The hydrodynamical model is frequently employed to de'thors locate the critical point ai=160+3.5 MeV andug

S_Cribe multipartiple prolductiop Processes i_n hadroniq COIIi':725135 MeV. Note, however, that a reliable extrapolation
sions[1]. Ip partpular, it predptg charact.erlstlc flow signa- ¢4 the continuum limit and to physical pion mass has not
tures as “fingerprints” for nontrlylal equations of state of hotpygep attempted so far.

and dense matt¢P]. Such equations of state can occur when  There is an ongoing experimental effort to detect that chi-
the effective potential, obtained by integrating out some derg| critical point in heavy-ion collisions at high energies.
grees of freedom, exhibits features characteristic of a phasgote that both, high temperatusnd high baryon density,
transition in thermodynamic3]. are required to have dynamical trajectories in heavy-ion col-

More specifically, if there exist twgor morg collective  lisions pass reasonably close by the critical point. Some dy-
states with the same free energy but separated by a barrigramical computationg16] of the energy deposition and
then behavior characteristic of a first-order phase transitiobaryon stopping process during the initial stage of head-on
may emerge. On the other hand, if no free-energy barriecollisions of large nuclei within semirealistic multifluid dy-
exists, one might expect resemblance to a second-ord@amical models suggest that the required conditions may be
phase transition. This analogy of interacting quantum fieldeached in the central region of collisions &y
theories with thermodynamics is believed to have played ar20-80A GeV on a fixed target, or in the fragmentation re-
important role in the evolution of the early univergg and ~ gions of collisions at higher energies. However, to our
is currently being investigated in accelerator experiments bj{nowledge there has been so far no attempt to describe hy-
colliding beams of protons and heavy iof. Classical en- drodynamical expansion of the hot and dense droplet pro-
ergy flow and hydrodynamic scaling behavior emerge induced initially for dynamical trajectories close to the critical
high-energy inclusive processgs6] and from the real-time  POint. This paper represents an attempt in that direction.
evolution of some quantum field theorigg.

In this paper, we extend the hydrodynamical transport
model such that phase transitions related to the restoration
(or breaking of some global symmetry can be studied dy- In this section we shall present our model for the dynam-
namically. In particular, we focus on chiral symmetry break-ics of a droplet of quarks and antiquarks, starting at high
ing at finite temperaturg8], for which we shall adopt a rela- temperature in a state witfapproximately restored chiral
tively simple and tractable phenomenological model, i.e., thesymmetry, and evolving towards a state where the symmetry
Gell-Mann and Levy mod€]9]. is spontaneously broken. The quarks will be described as a

It has been arguefd 0-13 that the chiral phase transition heat bath in local thermal equilibrium that evolves i B
for two massless quark flavors is second order at baryordimensions according to the conservation laws for energy
chemical potentialug=0, which then becomes a smooth and momentum, i.e., relativistic hydrodynamics. However,
crossover for small quark masses. On the other hand, a firsthe “fluid” of quarks interacts locally with the chiral fields,
order phase transition is predicted for small temperafure that is, they can exchange energy and momentum. In turn,
and largeug. If, indeed, there is a smooth crossover fgy  the (long-wavelength modes of théelds obey the classical
=0 and highT, and a first-order transition for small and  equations of motion which follow from the underlying La-
high ug, then the first-order phase transition line in the grangian in the presence of the quarks and antiquarks. Simi-
(ug,T) plane must end in a second-order critical point. Thislar models for the dynamics of quarks coupled to chiral fields
point was estimated10] to be at T~100 MeV and ug were considered in the past. In R¢L7], a background of
~600 MeV (see also Refs[12,13). More recently, it has freely streaming quarks was assumed, and the classical evo-
been attempted to determine the end point of the line ofution of the chiral fields was discussed. More realistic dy-

II. THE MODEL
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namical descriptions for the quark medium followed shortly,coupling constang, that is, by increasing or decreasing the
treating them as either a relativistic flujidlg], as also envis- vacuum mass of the constituent quarks. As explained in more
aged here, or within classical Vlasov transport theorydetail below, large values fay result in a first-order phase
[19,20. Those studies focused on a second-order chirairansition, while smalg leads to a crossover. For the observ-
phase transition, or, in the presence of explicit Symmetryables discussed in Sec. I, the qualitative difference between
breaking, on a smooth crossover. However, it turns out thahe two realizations of a chiral critical point mentioned above
one can also address first-order chiral phase transitiorghould not matter muchOn the other hand, our simplified
within the very same model, at least in a phenomenologica‘ireatment disables us from studying fluctuations of net
fashion, by choosing larger quark-field coupligg21,29  Paryon chargg26]. _ o
(see below. Integrating out the quarks then leads to an ef- N Sec. Il A we discuss the effective potential “seen” by
fective potential exhibiting two degenerate states arond e 1ong-wavelength modes of the chiral fields in the pres-
Here, we extend the previous work mentioned above, an§Nce of a heat bath of quarks and antiquarks. Then, in Sec.
at the same time shift our focus somewhat. Namely, the earlli) B we present our model for the nonequilibrium dynamical
studies were mainly concerned with the dynamical evolutiorfr€atment of field and fluid evolutions. Some numerical algo-
of the long-wavelength chiral fields, and of classical pionrlthms and details are mentioned bnefly in Sec. I C. In Sec.
production: that is, they mainly addressed issues related ' We present our results and end with a summary and an
the possibility of forming “domains of disoriented chiral OUt0OK in Sec. V.
condensates(DCCy), as suggested by Rajagopal and Wilc-
zek, and otherg23], see also Refs[13,18,19,2]1 Our A. Effective potential
present work puts more emphasis on the dynamics of the ag an effective theory of the chiral symmetry breaking

heat-bath of quarks, rather than on that of the soft modes cﬁynamics we assume the linear model coupled to two
the chiral field. We shall point out qualitative changes in theg 5, ors of ,quarks{g]:

classical energy-momentum flow of the fluid of quarks in the
proximity of a chiral critical point, rather than look for “rare £ =qiykg, - g(o+ ys7 - #)]q + 2(3,00%0 + 3, 70" 7)
phenomena” such as DCC formation.

Moreover, Refs[17—27 all employed the mean-field ap- - U(o, 7). (2.1
proximation for the chiral fields. Field fluctuations at the . . -
phase transition were not considered. As an example, for thy.]e. potential, Wh.'Ch exhibits bo.th spontaneously and ex-
first-order phase transition discussed in R&il] dynamical plicitly broken chiral symmetry, is
bubble nucleation(*boiling”) could not be described, as it A2
requires large coherent thermal field fluctuations from the U(o, 7) = —(0? + 72— v?)?% - hyo = Uo. (2.2
symmetry restored phase, over the barrier and into the sym- 4
metry broken phasésee, e.g., Ref{24] for results of such
dynamical simulations, and Reff22] for a computation of
bubble nucleation rates from the linearmode). Thus, the
main improvement here is that we do include a dynamica
treatment of field fluctuations in the vicinity of a critical
point, and their influence on the dynamical evolution of the
quark fluid.

Here q is the constituent quark field=(u,d). The scalar
field o and the pseudoscalar fiel@d=(y, m,, 73) together
]‘orm a chiral field ¢,=(o, 7). The parameters of the La-
grangian are chosen such that chiral, )® SUx(2) sym-
metry is spontaneously broken in the vacuum. The
vacuum expectation values of the condensates (aje

On the technical side, going beyond the mean-field ap-:f” an_%w)zo,lyvherefﬁ:% Msv ii.the pion Fjegay con-h
proximation requires us to introduce appropriate subtractiongtant' € exp icit S-‘/”:i”_‘e‘(;yt rea 'no? btertrr? IS ltj.e”to the
in all thermodynamical functions, as explained in the Appen10N#€r0 plon mass and 1S determined by the partially con-

dix. Moreover, the coupled system of nonlinear partial dif_servezd axial-vector current relation, which g;"é%
=f.m., where m,=138 MeV. This leads to v°=f

ferential equations has to be solved numerically #13di- = 7, =, o mg
mensions, without imposing any space-time symmetry_mwzl}g' The value ofA°=20 leads to ac massm;
assumptiongwhile Refs.[17-19,21 all simplified the solu- = 2\’f>+M’. approximately equal to 60BleV. In mean-

tion greatly by assuming special symmetries which esserfi€ld theory, the purely bosonic part of this Lagrangian

tially reduced the problem to1 or 1+1 space-time dimen- €Xhibits a second-order phase transitj@i if the explicit

siony. That is because fluctuations break any space-tim&Ymmetry breaking ternh, is dropped. Forh,#0, the

symmetry that may be obeyed by the mean field, as for extransition becomes a smooth crossover from the phase

ample spherical symmetry or symmetry under Lorentz boost¥/ith restored symmetry to that of broken symmetry. The

in a particular direction. normallzatlt_)n constariyy is chosen such tha_t the potential
As mentioned in the Introduction, physically the chiral €n€rgy vanishes in the ground state, that is,

critical point is expected to occur for some specific values of

temperaturé and baryon-chemical potentiak. To simplify 'However, we note that there are indeed differences on the quan-

the problem and its numerical solution, however, here weitative level. For example, for a first-order phase transition in

rather choose to consider only locally baryon symmetricharyon dense matter the isentropic speed of sound does not vanish

matter, i.e., equal numbers of quarks and antiquarks. Insteah, general afT,, [16,25, as it does for zero net baryon charge,

we can “shift” the critical point by varying the quark-field =0.
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For g>0, the finite-temperature one-loop effective poten-
tial also includes a contribution from the quarks. In our phe-
nomenological approach, we shall consider the quarks as & _
heat bath in(local) thermal equilibrium. Thus, it is possible &
to integrate them out to obtain the effective potential for the = 4,
chiral fields in the presence of that bath of quarks. Consider
a system of quarks and antiquarks in thermodynamical equi- .19
librium at temperaturd and in a volumey. The grand ca-
nonical partition function reads 1.2

1T
Z= f DaDqDUD%eXp{f d(lt)f d3>-(> £:| ) (24) 0.0 0.1 0.2 0.3 0.4 gzs/TOAS 06 0.7 0.8 0.9
0 %

FIG. 1. The one-loop finitd-effective potential as a function of
the scalar fieldo at #=0. The quark-field coupling constagtis
being varied. The curves are labeled by the valuegfand by the
temperature in MeV in parentheses. The field self-coupling is cho-
sen to bex?=20.

-0.6

4.1 (132.7)

3.7 (138.6)

(Anti)Periodic boundary conditions for théermion) bo-
son fields are implied. In mean-field approximation the
chiral fields in the Lagrangian are replaced by their ex-
pectation values, which we denote byand 7. Then, up

to an overall normalization factor,

~ . enters into the expression for the enery\p°+g>4>.
Z=Ny | PqDq In principle, one should also integrate out short-
T wavelength fluctuations op, which would lead to an addi-
; ; Cos o tional contribution to the effective potenti#2.9), see for
X 3 -go+ :
exp{lfo dtfv SEC b C bty Tr)]q} example Refs[13,28. For the present phenomenological
analysis, however, expressi@.9) is already sufficient in

=Ny detilp.y* —glo+iyst- T}, (2.9 that it exhibits a critical end point for some particular value
where of the coupling constarg. Since we do not expect the simple
model (2.1) to be quantitatively reliable anyway, it is not
I —ex;{— W(o, 7?)) 2.6 unreasonable to employ the effective potent@l9) for a
u— T : : study of qualitative effects near a chiral critical point.

) ) ) . We now turn to a discussion of the shape of the effective
Taking the logarithm ofZ, the determinant of the Dirac potential, cf. Fig. 1. For sufficiently smadlone still finds the
operator can be evaluated in the standard fasf2dh and  apove-mentioned smooth transition between the two phases.

we finally obtain the grand canonical potential At larger coupling to the quarks, however, the effective po-
T _ tential exhibits a first-order phase transitif#i]. Along the

- =INZ=U+V,(T), (2.7 line of first-order transitions, for temperatures near the criti-
1% cal temperatureyy displays a local minimunor=0(T)=0

which is separated by a barrier from another local minimum

at 0=05(T)>0. (There is another local minimum for nega-
— d’p - tive o which is of higher energy and does not concern us.
Vq(T) = _qu W{E*'T In[1+e™"]}.  (2.8)  These two minima are degenerateTatT,. For exampleg

=5.5 leads to a critical temperature [f=123.3 MeV. Low-
Here,d,=24 denotes the color-spin-isospin-baryon chargeering the value ofy leads to a smaller barrier between the
degeneracy of the quarks. For our purposes, the zerawo degenerate states. Alsg, approaches, i.e., the phase
temperature contribution t’qu, i.e., the first term in the transition weakens, and moreover the spinodal temperature

integral in Eq.(2.8), can be absorbed intd via a standard ~ @PproachesT, [22]. At g.=3.7, finally, the barrier disap-

where

ignored in the following. Is flat. L .
Adding theT=0 and the finiteF contributions defines our A different possibility of making theo meson much
effective potentialy: lighter atT, than atT=0 is to reduce the self-coupling of the

; chiral fields[29], A2, rather than that to the quarks. For ex-

B d°p BT ample, one may choo9€=2.2 with the pion decay constant
Ver(ba, T) = Ula) _quf (27.,)3"1(1 *€). (2.9t and vacuum masm, fixed, such thaw?=0. However,
_ within the present model this also redudgssignificantly, to

Vet depends on the order parameter field through the eftess than 100 Me\22]. Such lowT, appear to be excluded
fective mass of the quarkmq:g\s“cﬁzzg\s’za ¢aa, Which by present lattice QCD resulf80], and moreover would
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generate too small thermal fluctuations in the heat bath. T#u,
Therefore, we keep?=20 fixed throughout the manuscript. ut = TR (2.19
VUg paua
B. Coupled dynamics of fields and fluid is the local four-velocity of the fluid.g*’=diag1,-1,

. . . N -1,-1) is our metric tensor, and so the line element is
The classical equations of motion for the chiral fields areye—-y2_qx 2. The timet is measured in the global rest

frame. Furthermore,

U
T Tt g = 7900 =~ Gps & ) = (Hy),
sU P(, T) = = Verr(é, T) + U(ba) (2.16
07 + o = - 9{Ays7) = ~ Ihps, (2.10 denote the energy density and the pressure of the quarks at
temperaturel. Note that we do not assume that the chiral
where fields are in equilibrium with the heat bath of quarks.
Hence, bothe and p depend explicitly ong=yo?+ 7.
3p 1 Given an initial condition on some spacelike surfate’;
ps=(Am) =gody | 5—=3=f(p), at any other causally connected space-time point is deter-
) (2m)3E .
mined by
e = g dp 1 )11 9,TH'=8" (2.17)
Pps= (Ays70) = g77dy (2m)%E P (213 In the absence of interactions between the chiral fields and

the quarks, the source ter8f vanishes, and the energy

are the scalar and pseudoscalar densities generated by thed the momentum of the quarks,
heat bath of quarks and antiquarks, respectively. The dis-
tribution of the quarks and antiquarks in momentum space (E, 5) =J do T4, (2.18
is given by the Fermi-Dirac distribution. "

Form (2.10 for the coupling to the heat bath of quarks
can be derived from the Lagrange dengiyl) in mean-field
approximation. The energy density of the quarks is given by u,*E= uﬂaﬂpi =0. (2.19

are conserved:

(Hy =(@dqQ) +9@oq) +g@ys7- 79). (2.1  With interactions turned on, this is obviously not true any
a longer. Rather, the total energy and momentum of fluid

The finite-T contribution to the equation of motion for the Plus fields is the conserved quantity:
o, 7 fields is obtained from the variation of the effective =g T (2.20
potential with respect ter or 7, respectively: T Teles '

The stress-energy tensor for the fields can be computed

KHy &KVer—U) from the Lagrange density in the standard fashion. The
o(de) = — - = . i
oo oo ' effective mass of the quarkey,=g\=, ¢;, is already ac-

counted for in the equation of stateO9 for the quark
fluid, see Eqs(2.16). Thus,T4" is the stress-energy tensor

-\ 5<Hq> _ KVeit = U) of the chiral fields alone:
oaysma) = P (2.13

AL .
Applying this to the right-hand side of EqR.9) yields the s = > I $a= g Ly),
. . a (3,00
expressions for the scalar density and the pseudoscalar
density as given in Eq(2.11). 1
As already mentioned above, we shall assume that the L. = (9 b)) —U . 292
quarks constitute a heat bath in local thermal equilibrium. ¢ 2 2( w7l (2.2
Thus, their dynamical evolution is determined by the local . o
conservation laws for energy and momentum in relativistidtS divergence is given by
hydrodynamics. For simplicity, we shall further assume that sU
the stress-energy tensor of the quark fluid is of the “perfect -9,Th'= -> A ot —— (P da
fluid” form (corrections could in principle be taken into ac- a 6a
count in the future along the lines discussed in R&t)), = Qps’ 0+ Qs "7 (2.22

T = (e+ p)uru” - pg™”. (2.149 Inthe second step we made use of the equations of motion
(2.10. This is the source term in the continuity equation
Here, (2.17 for the stress-energy tensor of the quark fluid. A
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different derivation based on moments of the classicatice, we found thatAt=0.1Ax gave reasonable accuracy. As
Vlasov equation for the quarks was given in Réfs/,18,  the time step for propagation of the fluid was chosen to be
see also Ref{19]. four times larger, the fields were propagated for four con-
We emphasize again that we employ E@10 not only  secutive steps, with the fluid kept “frozen,” followed by one
to propagate the mean field through the transition but flucsingle step for the fluid. Spatial gradients of the fields were
tuations as well. The initial condition includes some genericset to zero at the edges of the computational grid, rather than
“primordial” spectrum of fluctuations, see Sec. Ill A, which employing periodic boundary conditions. The spatial deriva-
then evolve in the effective potential generated by the mattetives in the equations of motion for field2.10 were dis-
fields, i.e., the quarks. Near the critical point, those fluctuacretized to second-order accuracy in the grid spacing to
tions have small effective mass and “spread out” to probe thenatch the second-order accuracy in time. We employed the
flat effective potential. Since all field modes are coupledssame small grid spacindx=0.3 fm as for the fluid. Al-
effectively the fluctuations act as a noise term in the equatiothough the mean fields vary on a larger scale, it is important
of motion for the mean field, similar to the familiar Langevin to allow for nonlinear amplification of harder fluctuations
dynamics[32]; near the phase transition, however, the noisewvhich can couple to the soft modes and affect the dynamical
is neither Gaussiarthe effective potential is not parabolic relaxation to the vacuum state with broken symmetry, see for
nor Markovian(zero correlation length in timenor white  example Refs[36,37.
(zero correlation length in spacdrather, correlation lengths For the fluid, one needs to introduce nine 3D spatial
and n-point functions of the “noise” are governed by the grids,2 for e, p, T%, andd . In addition, one needs two more
dynamics of the fluctuations in the effective potential gener-3D grids for each field component, namely fgy, and
ated by the fluid of quarks, including also effects from thedg,/dt. To save computational resources, we have therefore
finite size and the relativistic expansion of the system. decided to neglect the pion field altogether, i.e., to set it to
zero everywhere in the forward light cone. Thus, only ¢he
field is considered in the actual computations described be-
C. Numerics and technical details low. However, this represents a minor restriction only, since

We briefly describe how we solved the coupled systemV® focus here on the bulk evolution of the quark fluid rather

(2.10), (2.17) of partial differential equations in-81 space- than on fluctuation observables or coherent pion production
time éimensions. from the decay of a classical pion fieldCoherent pion pro-

We follow the evolution ort=const hypersurfaces, and in d_uction is known to contribute a small fractiop of the total
a fixed spatial cube of volumi®. We discretize three-space Pion yield only[18,19,21,23,3B Incoherent particle produc-
in that cube by introducing a 18Grid with a spacing of tion fr(_)m the decay o_f the fluid by far dominates, if no ki-
Ax=0.2 fm (thus,L=160X 0.2 fm=32 fm). On that grid, we N€mMatic cuts are applied.
solve the hyperbolic continuity equations of fluid dynamics

(2.17) using the so-called phoenicaHASTA flux-corrected . RESULTS
transport algorithm with simplified source treatment. It is ]
described and tested in detail in R¢B3], and we refrain Having formulated our model, we now proceed to show

from a discussion here. The time step was chosemtas Some specific examples of numerical solutions. In particular,
=0.4AX, as appropriate for thesHASTA [33,34. We per- We would like to examine whether the dynamical evolution
formed each time step in the standard fashion v@tk0,  changes as one crosses the chiral critical point.
then subtracted the sourc8sfrom the energy and momen-
tum density in the calculational framee., the global rest A. Initial condition
frame of the fluid. Finally, from T%, T% and the EO o _
=p(e, ¢,) we solved for the velocity of the local rest frame _ AS an example, we employ the following initial condi-
(LRF) of each cell, and for the energy densityf the fluid tions for the res_ults c.le_s.crlbed pt_alow. Of course, one could
in the LRF. Such a treatment of sources in the continuity®MPIloy more refined initial conditions and “tune” them such
equations for energy and momentum proved to work well ir@S t0 reproduce various aspects of the fmal state, which in
relativistic multifluid dynamicg16,34, where one encoun- Principle could be compared to experimental data. At
ters a similar equation due to interactions between variouBrésent, our more modest goal is to illustrate qualitative ef-
fluids. The boundary conditions at the edge of the computal€Cts originating from the phase transition. The initial condi-
tional grid are such that the fluid simply streams out wherflONS aré meant to provide a semirealistic parametrization of
reaching the boundary. This can be monitored by checking® ot fireball created in a high-energy heavy-ion collision.
the conservation of the total energy as a function of time. At time t=0, the distribution of energy density for the
Regarding the fields, we solve the classical equations ofiu@rks is taken to be uniform in tiredirection (with length
motion using a staggered leap-frog algorithm with second?z=12 fm) and ellipsoidal in thec-y plane:
order accuracy in time, see for example H86]. The non-
linear wave equation€.10) are split into two coupled first-  2at finite baryon density, one would need another grid fgr
order equationgin time) by considering separately the field Also, inverting the Lorentz transformation to obtain the LRF den-
¢, and its canonically conjugate fietitp,/dt. For this algo-  sitiese andpg from T%, T% and the net baryon curredf=pgu* in
rithm, the time step for propagation of the fields has to beeach time step would require a three-dimensional root search for the
chosen smaller than that for propagation of the fluid. In pracfunction p=p(e, pg, ®).
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BegX°b% +y%a? < (ab)?0z<|,
0:x%b? +y?a® > (ab)?0z> |,

PLSb.] o< expl— 82 2(6¢2)), (3.4
with the variance(&;bg) left as a free parametdiere, no

wheree,, denotes the equilibrium value of the energy den-Summation over the inder (internal spacgis carried

. . . ’*_ J—
sity taken at a temperature @~ 160 MeV. In ourcalcu- ~ Out] We performed simulations withy(¢5)= (0%

. ~ 5 =~ ~ =v/3. Such fluctuations are large enough to probe the
 _ 2 72 : : arg' J
lation we choosea=r,—b/2 and b=\r,—-b"/4, whereb ;00 of the effective potential in case of a first-order

denotes the impact parameter of two nuclei with radiys transition, or the flat region close to the critical end point

(below, we choose,=6.5 fm andb=6 fm). Thus, the el- (Fig. 1). On the other hand, they are sufficiently small to
lipsoidal shape resembles the almond shaped overlap @filow for a one-loop subtraction of their contribution to
two colliding nuclei. The®-function distribution of the the effective potential, as described in the Appendix.
initial energy density is evidently somewhat unrealistic; a The time derivatives of the fields were set to zerd=a,
smoother distribution with nonzero surface thicknesswith no fluctuations. As already mentioned in Sec. Il C, the
would be more realistic and perhaps affect the resultsictual numerical computations described below were per-
somewhat. However, as already mentioned above, here Wgrmed with 57=0, i.e.,(&ﬁf »3=0.
do not aim at quantitative fits to experimental data but at One must further take into account that the field fluctua-
illustrating qualitative effects related to the shape of thetions are correlated over some spacelike distagred fm.
effective potential in the transition region. This is a physical scale which is present in the initial condi-
~ The collective longitudinal velocity of the fluid of quarks tions; if one simply picks random fluctuations at each point
is assumed to rise linearly witz: v,(t=0,X)(2/l)umay  of the grid, the correlation length will instead be given by the
wherevm,=0.2. The transverse componentsioéire set to  artificial numerical discretization scalx.
zero att_=_0_- - o In practice, a useful and simple procedure to implement
Our initial conditions for the chiral fields are physical correlations in the initial condition is as follows.
P . First, at each point of the grid one samples distributi®d)
o(t=0,% = 60(X) +f,+ (-, + oeg) at random. Then, one smoothly sweeps a “sliding window”

¥ -R -1 IZ-1 -1 of linear sizeé=nAx over the grid and averages the fields:
x| 1+exd — 1+ex ?Z :

po 1 _ _
PN== X Pa(X+1AXE, + JAXE, + KAXE;) .
N i k=0,...n-1
(t=0,%) = s7(X), (3.2 (3.5

e(t:O,i):{ (3.1

whereT=\x2+y?, Here, &, 6,, & define a global Cartesian orthonormal ba-
_ sis, andX=16; +16,+16;, 16, +16,+26,,..., is the sequence
abr TL0 of grid points. Clearly, the above averaging procedure
R={ 0%+ a%y? (3.3)  “cools” the fluctuations, in thats¢.2) # (542). In particu-
lar, in the continuum limitAx— 0 with £&=nAx held con-
stant, one of course finds thaﬁ¢;2>—>0 for distribution
and a=0.3 fm is the surface thickness of this Woods-(3.4). Therefore, in a final sweep over the grid one has to
Saxon-like distribution. Here,~0 is the value of ther ~ rescale the fields at each grid point by
field corresponding toe,, Thus, the chiral condensate 5
nearly vanishes at the center, where the energy density of #(%) = BL(X) (63
the quarks is large, and then quickly interpolatesfo a a <5¢;2> '
where the matter density is low. . T ' .
so(%) and 67(X) represent the initial random fluctuations 1 NiS Procedure leads to an initial field configuration that
of the fields. Our focus at this stage is on how those primor€XNibits both the proper physical correlation length and
the desired fluctuations. Moreover, it prevents the initial

dial fluctuations evolve through the phase transitian ) . . . 5
crossover and how they affect the hydrodynamic expansion€N€rgy density from field gradients to grow like Ax “.

of the thermalized matter fieldshe fluid). Thus, for a first _ _
qualitative analysis we do not rely on additional physics B. Numerical solution
input’ for the primordial fluctuations but rather choose a ge- I the following we consider both a first-order phase tran-
neric Gaussian distribution, sition corresponding tg=5.5, as well as the critical point at
g=3.7.

3For example, one might assume thermalized primordial fluctua- Figures 2 and 3 depict the time evolution of thefield
tions, in which case their distribution depends on the effective po@long thex axis and they axis, respectively. At=0 the field
tential at the temperatuf®. We have checked, however, that at high Within the hot region has small amplitude, corresponding to
temperature/eq(¢, T;) looks rather similar for all values af con-  the chiral symmetry restored phase. That region is sur-
sidered here, regardless of whether later on the evolution proceedgunded by the physical vacuum wi¢h)=f_ =93 MeV.
through the crossover, the critical end point, or the first-order phase For the first-order phase transitiog=>5.5) a barrier sepa-
transition regimes. rates the two degenerate minima of the effective potential

ar=0,

(3.6
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FIG. 3. (Color onling Space-time evolution of the chiral field
FIG. 2. (Color onling Space-time evolution of the chiral field along they axis atx=z=0.
along thex axis aty=z=0. Dark regions correspond to small field

amplitudes(symmetric phase Iigh_t regions_ _to Iarge_ amplitudes be seen in Figs. 2 and 3. A “bubble” of the symmetric phase
(broken phase The scale on the right specifies the field amplitude survives atx=3 fm for a long time.

in Mev. The picture is rather different for the transition at the criti-

(Fig. 1) at T,. Figures 2 and 3 show that this barrier leads tocal point, i.e.,g=3.7. Here, the barrier between the degener-
a rather well-defined surface in coordinate space, separatir@gje minima vanishes and the potential is flat. As is evident,
the vacuum from the symmetric phase. For the abovethere are no clear surfaces separating either the vacuum from
mentioned initial conditions, the fluctuations are not stronghe center or high-density bubblésr “droplets’) from their
enough for the field to easily overcome the barrier. Neversurrounding. Due to the flatness of the potential, near the
theless, one can observe dynamical fluctuations into the breenter the field performs large-amplitude oscillatigfrom

ken symmetry state, e.g., =1 fm andt=2-4 fm/c, which ~ 0~0 to o>f,) for a long time; they extend in space over
however collapse again. Our dynamical results agree witldistances=1-3 fm(e.g., at~9, 12, and 14 fm¢ in Fig. 2),
previous arguments that nucleation is a slow process on th&hich is not much less than the initial size of the hot region.
time scale of heavy-ion collisions, and so the Gibbs phas€&igure 4 shows a histogram of the field distribution at the
equilibrium is not established dynamicall§1,22,24,3 At center(\x?+y?+2z2<2 fm). One observes that the distribution
time t=9 fm the phase transition occurs spontaneously “inbroadens front=4 fm tot=10 fm, and then narrows again at
an instant,” that is, on a spacelike surface which can clearlfater times after the transition to the broken phase occurred.
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e t=4fm |
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FIG. 4. (Color onling Histogram of the field distribution at the
center for three different times. Lines represent Gaussian fits with | g =5.5
standard deviations 25 Melf=4 fm), 53 MeV (t=10 fm), and
43 MeV (t=14 fm).

Also, notice that the distributions &4 fm andt=14 fm are
well described by Gaussians, i.e., the effective potential is
essentially parabolic, while fd=10 fm there are visible de-
viations from a simple Gaussian.
The time evolution of the local rest-frame energy density
e of the quarks is shown in Figs. 5 and 6. Again we see
large-scale structures for the first-order phase transitipn
=5.5), while the energy density is rather homogeneous on
large time and distance scales if the expansion trajectory
goes through the critical end point. For the first-order transi-
tion, quarks can be “trapped” in droplets with~0 (the
minimum of the effective potential where the symmetry is
restoreql because the mass barrier can keep them from es- -
caping. The droplet of high-density mattenat 3 fm andt 0 1 2 3 4
=12-16 fmk can easily be associated with the region of x [fm]
nearly vanishing chiral scalar field from Fig. 2. Eventually,
that region must perform the transition to the symmetry bro- FIG. 5. (Color onling Space-time evolution of the fluid energy
ken state, either by a strong thermal fluctuation or wherflénsity along thecaxis aty=z=0. The scale on the right specifies
reaching the spinodal point. At the spinodal, the system is a&'¢_energy density in units of nuclear matter densiy
far from local thermal equilibrium as it can get, and the ~150 MeV/fir.
“roll-down” of the order parameter field to the global mini-
g}ut?eocl; Jgskrf)&ti?f“al can influence the collective expansion (Tt = f o T (t, %). (3.9)
Note that the energy density at the center drops more o . .
rapidly for the first-order transition than near the critical endAlS.o’ We average over a few initial field configurations,
point. This has consequences for the buildup of azimuthall))"’h'Ch gave similar res_ults fogp(t), though:
asymmetric flow, as we shall discuss below. For the above-mentloned mltlal conditions the energy-
Figure 7 depicts the time evolution of the azimuthal mo-MOmentum tensor is symmetric, and gg=0 att=0 (this
mentum anisotropy4q] m|gh_t be d_n‘ferent in more realistic t(eatmelﬁ&]). Pressure
gradients inx andy directions are different, though. There-
fore, the acceleration of the fluid is stronger in the reaction
€ = D= Ty , (3.7  (x-2) plane than out of plane, leading to a nonzero azimuthal
P (Tt Tyy asymmetrye,>0 at timest>0. The asymmetry first grows
nearly linearly with time but saturates when the asymmetry
where the averages of the stress-energy tensor of the fluiof the energy density and of the pressure gradients becomes
are taken at fixed time: small. As explained abov@-igs. 5 and § this happens ear-

t [fm/c]

5 6 7
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g=37 0.25
16

UL

0 2 4 6 8 10 12 14 16
t [fm]

FIG. 7. (Color onling Time evolution of the momentum aniso-
tropy for a crossovefg=3.3), a second-order phase transition at the

f
Y [fm] critical point (g=3.7), and a first-order phase transitigg=5.5) in
g=55 or out of equilibrium.

Nest
— =0, 3.9
e (3.9

v
> 0. 3.10
S0 (3.10

That is, the chiral field is in equilibrium with the quark-
antiquark fluid and does not exhibit any explicit space-
time dependence. AT, where two degenerate minima
exist, one performs the usual Maxwell-Gibbs construction
to determine the fractions of the total volume occupied by
matter in the symmetric and the broken symmetry phases,
respectively. Evidently, for the above-mentioned initial
conditions the equilibrium phase transition leads to nearly
the same azimuthal asymmetry Bf as for the crossover.
Therefore, it is indeed the nonequilibrium real-time dy-
namics (field fluctuations over the free-energy barpier
that is responsible for the observed reductionepfn the
regime of first-order chiral phase transitions.

t [fm/c]

FIG. 6. (Color onling Space-time evolution of the energy den-
sity along they-axis atx=z=0.

. . . . . IV. SUMMARY AND OUTLOOK
lier for a first-order transition than for trajectories near the

chiral critical end point. This is then reflected in the final In summary, we have introduced a simple phenomeno-
value of ,. We stress that the more rapid saturation of thelogical description of the nonequilibrium real-time dynamics
azimuthal asymmetry in case of a first-order transition is noof the chiral phase transition in an expandifrglativistic)
in contradiction to the fact that hahigh-energy densily fluid of quarks. More precisely, we coupled the linear
droplets survive for rather long times, as seen in the figuresnodel, which describes the dynamics of the long-wavelength
Rather, such droplets typically turn out to be more or lessnodes of the chiral order parameter field, to the hydrody-
rotationally symmetric, or at least exhibit deformationsnamical evolution of a system of quarks. The chiral figld
which are uncorrelated to the reaction pldtie x-z plane in  evolves according to the finite-temperature effective poten-
our case Thus, they tend to reduce the average azimuthalial that is generated by integrating out the quarks from the
asymmetry of the energy-momentum tensor. Lagrangian; in turn, the fie(d) determines the effective
For comparison, in Fig. 7 we also show the result for anquark masgi.e., the equation of state of the quark fluid
equilibrium first-order phase transition. Here, the equationslynamically.
of motion for the chiral fields, Eqg2.10 are not solved but The above model exhibits a first-order phase transition for
rather theo field is required to populate th@lobal) mini-  largeg, which is the quark-field coupling constant. The line
mum of the effective potential, of first-order transitions ends in a critical point whgnis
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lowered, i.e., the transition turns into a crossover for smaller 0.09

couplings. Thus, by varying one can qualitatively compare

the hydrodynamic expansion pattern of the quark fluid for 008 s -+ ----------------- o
dynamical trajectories that cross the line of first-order tran- 008k

sitions to that obtained in the crossover regime.

We have obtained numerical solutions it B space-time
dimensions, using simple initial conditions that might be ap-
propriate for relativistic heavy-ion collisions. The hydrody-
namical expansion pattern clearly depends on the structure of
the effective potential. For trajectories in the crossover re-
gime or near the critical end point the overall bulk dynamics 0.06 i
is found to be rather “smooth,” in that the space-time distri-
bution of the energy density of the fluid is not affected very
much by the fluctuations of the order parameter field. In the 0.05 . . - L
. . 300 350 400 450 500
absence of a Iate_nt heat, the energy den_5|ty c_ann_ot jump <pe> IMeV]
much between regions where the field amplitude is different.

In contrast, if the effective potential exhibits a barrier be-  FIG. 8. Excitation function of,/(p, of negatively charged par-
tween the symmetry restored and broken phases, respeteles in midcentral collisions from top AGS to RHIC energy. Data
tively, we do see that large-scale structures are formed dyfer v, are taken from Fig. 24 in Refl42] and (p) from Refs.
namically, e.g., droplets of the symmetric phase may survivé44—41.
for rather long times before becoming mechanically unstable
(at the spinodal In that sense, the overall time scale is the elliptic flow in that energy regime is nearly constp8].
longer for trajectories crossing the line of first-order transi-To scrutinze deviations from the natural scaling:{p;), we
tions. Nevertheless, typically such structures are not correplot the excitation function of,/(p,) in Fig. 8.
lated to the reaction plane; thus, the direct correspondence of One observes that, as already mentioned above, the data
spatial anisotropies in the initial condition to momentum-are compatible with no energior {p;)) dependence above
space anisotropies in the final state predictecdyilibrium  top SPS energy. Clearly, there is a systematic drop.of
hydrodynamics(that is, when the phase transition is not relative to(p,) towards lower energies. For instance Ea},
treated dynamically but modeled by a Maxwell-Gibbs con-=40A GeV corresponding t¢p,) =350 MeV,v,/{p,) is lower
struction is weakened. For example, we find much smallerby about two standard deviations than at higher energies.
momentum-space anisotropy for a dynamical first-order tranQualitatively, this interesting behavior is similar to the reduc-
sition than for a trajectory through the chiral critical endtion of the azimuthal momentum asymmetry, predicted
point (for the same initial conditiop This could be a very above, caused by crossing the second-order critical point into
useful prediction with regard to the experimental search fothe regime of first-order phase transitions. Additional studies
the chiral critical end point of QCD in heavy-ion collisions at of “conventional” nonequilibrium effects unrelated to a
the BNL-AGS, the CERN-SPS, and the envisaged new GSphase transition are certainly required, however, before firm
heavy-ion accelerator. Until now, experiments focused orconclusions can be drawn.
fluctuation observables, but inclusive observables usually are
much easier to analyze accurately.

In the future, we intend to scrutinize other inclusive ob- ACKNOWLEDGEMENTS
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dependence af, on Inys is approximately linear. However,
the “natural” scale fow, is set by(p,), not In/s, as pointed
out by Snellingg43]. Indeed, at high energies the differential  APPENDIX: SUBTRACTING INITIAL FLUCTUATIONS

vo(py) of charged hadrons is approximately proportiongsto In Sec. Il A we discussed our phenomenological ansatz
such that the averageg>(py. In fact, for midcentral colli-  for the effective potential for the long-wavelength modes of
sions v, increases from=3% at top SES energy(\s  the chiral fields, as generated by the heat bath of quarks.
=18A GeV) to =4.9% at RHIC energy(Vs=130A GeV). Formally, it is obtained from the Lagrangian by integrating
When scaled by the average transverse momentum, thougbut the quarks to one loop.

0.075 F

0.07 f

0.065

V,/<pe> [1/GeV]

0.055
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Our main objective here is to study dynamically fluctua-term cancels the “distortion” of the scalar density caused
tions of the chiral order parametéor effects generated by by using the local values(x), 7(x) for the fields, rather
those fluctuationsin the vicinity of the chiral critical point than their long-wavelength componeris(x)), (m(x)).
as the system makes the transition to broken chiral symmetry Along the same lines one derives the following expres-
at low temperature. Thus, we have to allow for primordialsions for the fluctuation-subtracted pseudoscalar density, and
fluctuations of the chiral fields, also. However, those fluctuafor the pressure of the quarks:
tions of the fields at timé&=0 will of course also contribute to & 3
the effective potential and “distort” its shape. In order to - f k 1 1 f d°k

ps(¢’ T = g77d g7Td -3
restore our original choice fov.; from Eq. (2.9), and thus (2m) 2 (2m)
ensure the correct dynamics for the long-wavelength modes,
we have to introduce appropriate subtractions. X 2 (52| - 2( )< +f(K) ET)

The procedure is as follows. The scalar and pseudoscalar @ ET
densities are given by Eg&.11). They depend explicitly on

the value of the fieldsp,, which we formally separate into g d’a (k)<2f2(k)e2E/T f(k)eFT + 3= f(k)eE/T
short and long wavelengths: E
d’a(x) = <¢a> + 5¢a(x)- (A1) T2 2f k)
. +35 P e 5 + f(k)eFT
Here, (-) denotes a spatial average over a volume large E E°T
enough for the fluctuations to average out: (A5)
(8¢pp) =0. (A2)
The linear dimension of that volume will be given by the d3k e 1 5
wavelength of the soft modes of interest. (¢, T) :qu Wﬂ”(l +te) - 52 (63,
We now substitute EqA1) into Egs.(2.11) and perform @
an expansion up to second orderdih,(x). We then perform g’f(k 4¢a
f)hbet;\r:eraging over the fluctuations with distributi{@&») and X1~ E EST fIT+E-EfK)] (.
i
1 d3k One can verify that the identitiegps=—3dp/ do and gp,s
{po) = ps(()) + ‘Q‘quf (277)3{2 (642 =-8pl 57 are satisfied, as it should be.
@ 4.2 At fixed values for the fields, the energy density of the
l_ (k)< + (k) En) + g ¢af(k) quarks at a temperatufieis given by
E’T E3T?
T T? (=T 2ED g, (A6)
X | 2f2(K) e T - f(k)e®T+ 3Ef(k)eE’T +35 aT
Using the expression for the fluctuation-subtracted pres-
g?f(k
- 2<502> 2( )< f(k)eE/T> _ (A3)  sure given above one obtains
ET \E 7
Here,_<§¢2>%2a.<5¢aé¢a?.is the variance of the fluctua- e(¢, T)=d f 5 3Ef(k —-2 <5¢a>{ f(k)[
tions in the initial condition, i.e., at the initial time=0, (2m)
summed over internal quantum numbers. We made use of 4¢
the fact that fluctuationg3.4) are diagonal in internal - Ef(k)e¥T] - af(k)[T+E Ef(k)]
space, i.e.{6¢,6¢,)=0 if a#bh. The second term is the
additional contribution seen by the long-wavelength 4¢a E
modes(¢,), which is due to the fluctuations. To restore 2(k)eE/Ttan|'< > (A7)
the original effective potential, we have to subtract that
term, i.e., redefine the scalar density as The source term(2.20) changes due to the fluctuations
d3k and one has to use the modified scg&kd) and pseudoscalar
ps(#, T) =90dqf (2—77)3—f(k) = 5900, 23 (A5) densities, respectively.
To second order in the fluctuations, the self-interaction of
x{S <5¢§>{ 9 2( )< f(k)eET)g3¢§f(k) the chiral fields is renormalized as
E°T E°T
a
210\ 2E/T T, ol BT, ol o+ -
x| 2f2(k) 2T - f(k)e +3-f(e™T+35 U(¢a) ——( + = v%)?—hgo = Ug
P10 T fggeer Lg s 2o )
- 2<502> oo | gt ie (A4) - 52 (8PIN2(2¢% + 0%+ - v?).  (A8)
a

This expression has to be substituted fgron the right- The above expressions fdd(¢,), ps pps € andp are
hand side of the equation of motid@.10). The subtracted to be used in the equations of motion for the chiral
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fields (2.10, in the stress-energy tensor of the quarkinitial fluctuations of ¢ only up to second order
fluid (2.14), and in the source term for its divergencein 5¢. We can therefore not employ initial conditions
S” [Egs. (2.20 and (2.22. We point out that we with very large local fluctuations about the mean
subtract those quantities for the contribution fromfield.
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