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We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to nonequilibrium
dynamics of the long-wavelength(classical) modes of the chiral condensate. We solve the equations of motion
numerically in 311 space-time dimensions. Starting the evolution at high temperature in the symmetric phase,
we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its
critical end point. For those cases, we predict the behavior of the azimuthal momentum asymmetry for
high-energy heavy-ion collisions at nonzero impact parameter.
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I. INTRODUCTION

The hydrodynamical model is frequently employed to de-
scribe multiparticle production processes in hadronic colli-
sions[1]. In particular, it predicts characteristic flow signa-
tures as “fingerprints” for nontrivial equations of state of hot
and dense matter[2]. Such equations of state can occur when
the effective potential, obtained by integrating out some de-
grees of freedom, exhibits features characteristic of a phase
transition in thermodynamics[3].

More specifically, if there exist two(or more) collective
states with the same free energy but separated by a barrier,
then behavior characteristic of a first-order phase transition
may emerge. On the other hand, if no free-energy barrier
exists, one might expect resemblance to a second-order
phase transition. This analogy of interacting quantum field
theories with thermodynamics is believed to have played an
important role in the evolution of the early universe[4] and
is currently being investigated in accelerator experiments by
colliding beams of protons and heavy ions[5]. Classical en-
ergy flow and hydrodynamic scaling behavior emerge in
high-energy inclusive processes[1,6] and from the real-time
evolution of some quantum field theories[7].

In this paper, we extend the hydrodynamical transport
model such that phase transitions related to the restoration
(or breaking) of some global symmetry can be studied dy-
namically. In particular, we focus on chiral symmetry break-
ing at finite temperature[8], for which we shall adopt a rela-
tively simple and tractable phenomenological model, i.e., the
Gell-Mann and Levy model[9].

It has been argued[10–13] that the chiral phase transition
for two massless quark flavors is second order at baryon-
chemical potentialmB=0, which then becomes a smooth
crossover for small quark masses. On the other hand, a first-
order phase transition is predicted for small temperatureT
and largemB. If, indeed, there is a smooth crossover formB
=0 and highT, and a first-order transition for smallT and
high mB, then the first-order phase transition line in the
smB,Td plane must end in a second-order critical point. This
point was estimated[10] to be at T,100 MeV and mB
,600 MeV (see also Refs.[12,13]). More recently, it has
been attempted to determine the end point of the line of

first-order phase transitions from the lattice, using 2+1 quark
flavors onNt=4 lattices[14] (see also Ref.[15]). Those au-
thors locate the critical point atT=160±3.5 MeV andmB
=725±35 MeV. Note, however, that a reliable extrapolation
to the continuum limit and to physical pion mass has not
been attempted so far.

There is an ongoing experimental effort to detect that chi-
ral critical point in heavy-ion collisions at high energies.
Note that both, high temperatureand high baryon density,
are required to have dynamical trajectories in heavy-ion col-
lisions pass reasonably close by the critical point. Some dy-
namical computations[16] of the energy deposition and
baryon stopping process during the initial stage of head-on
collisions of large nuclei within semirealistic multifluid dy-
namical models suggest that the required conditions may be
reached in the central region of collisions atElab
.20–80A GeV on a fixed target, or in the fragmentation re-
gions of collisions at higher energies. However, to our
knowledge there has been so far no attempt to describe hy-
drodynamical expansion of the hot and dense droplet pro-
duced initially for dynamical trajectories close to the critical
point. This paper represents an attempt in that direction.

II. THE MODEL

In this section we shall present our model for the dynam-
ics of a droplet of quarks and antiquarks, starting at high
temperature in a state with(approximately) restored chiral
symmetry, and evolving towards a state where the symmetry
is spontaneously broken. The quarks will be described as a
heat bath in local thermal equilibrium that evolves in 311
dimensions according to the conservation laws for energy
and momentum, i.e., relativistic hydrodynamics. However,
the “fluid” of quarks interacts locally with the chiral fields,
that is, they can exchange energy and momentum. In turn,
the (long-wavelength modes of the) fields obey the classical
equations of motion which follow from the underlying La-
grangian in the presence of the quarks and antiquarks. Simi-
lar models for the dynamics of quarks coupled to chiral fields
were considered in the past. In Ref.[17], a background of
freely streaming quarks was assumed, and the classical evo-
lution of the chiral fields was discussed. More realistic dy-
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namical descriptions for the quark medium followed shortly,
treating them as either a relativistic fluid[18], as also envis-
aged here, or within classical Vlasov transport theory
[19,20]. Those studies focused on a second-order chiral
phase transition, or, in the presence of explicit symmetry
breaking, on a smooth crossover. However, it turns out that
one can also address first-order chiral phase transitions
within the very same model, at least in a phenomenological
fashion, by choosing larger quark-field couplingg [21,22]
(see below). Integrating out the quarks then leads to an ef-
fective potential exhibiting two degenerate states aroundTc.

Here, we extend the previous work mentioned above, and
at the same time shift our focus somewhat. Namely, the early
studies were mainly concerned with the dynamical evolution
of the long-wavelength chiral fields, and of classical pion
production; that is, they mainly addressed issues related to
the possibility of forming “domains of disoriented chiral
condensates”(DCCs), as suggested by Rajagopal and Wilc-
zek, and others[23], see also Refs.[13,18,19,21]. Our
present work puts more emphasis on the dynamics of the
heat-bath of quarks, rather than on that of the soft modes of
the chiral field. We shall point out qualitative changes in the
classical energy-momentum flow of the fluid of quarks in the
proximity of a chiral critical point, rather than look for “rare
phenomena” such as DCC formation.

Moreover, Refs.[17–21] all employed the mean-field ap-
proximation for the chiral fields. Field fluctuations at the
phase transition were not considered. As an example, for the
first-order phase transition discussed in Ref.[21] dynamical
bubble nucleation(“boiling” ) could not be described, as it
requires large coherent thermal field fluctuations from the
symmetry restored phase, over the barrier and into the sym-
metry broken phase(see, e.g., Ref.[24] for results of such
dynamical simulations, and Ref.[22] for a computation of
bubble nucleation rates from the linears model). Thus, the
main improvement here is that we do include a dynamical
treatment of field fluctuations in the vicinity of a critical
point, and their influence on the dynamical evolution of the
quark fluid.

On the technical side, going beyond the mean-field ap-
proximation requires us to introduce appropriate subtractions
in all thermodynamical functions, as explained in the Appen-
dix. Moreover, the coupled system of nonlinear partial dif-
ferential equations has to be solved numerically in 311 di-
mensions, without imposing any space-time symmetry
assumptions(while Refs.[17–19,21] all simplified the solu-
tion greatly by assuming special symmetries which essen-
tially reduced the problem to 011 or 111 space-time dimen-
sions). That is because fluctuations break any space-time
symmetry that may be obeyed by the mean field, as for ex-
ample spherical symmetry or symmetry under Lorentz boosts
in a particular direction.

As mentioned in the Introduction, physically the chiral
critical point is expected to occur for some specific values of
temperatureT and baryon-chemical potentialmB. To simplify
the problem and its numerical solution, however, here we
rather choose to consider only locally baryon symmetric
matter, i.e., equal numbers of quarks and antiquarks. Instead,
we can “shift” the critical point by varying the quark-field

coupling constantg, that is, by increasing or decreasing the
vacuum mass of the constituent quarks. As explained in more
detail below, large values forg result in a first-order phase
transition, while smallg leads to a crossover. For the observ-
ables discussed in Sec. III, the qualitative difference between
the two realizations of a chiral critical point mentioned above
should not matter much.1 On the other hand, our simplified
treatment disables us from studying fluctuations of net
baryon charge[26].

In Sec. II A we discuss the effective potential “seen” by
the long-wavelength modes of the chiral fields in the pres-
ence of a heat bath of quarks and antiquarks. Then, in Sec.
II B we present our model for the nonequilibrium dynamical
treatment of field and fluid evolutions. Some numerical algo-
rithms and details are mentioned briefly in Sec. II C. In Sec.
III we present our results and end with a summary and an
outlook in Sec. IV.

A. Effective potential

As an effective theory of the chiral symmetry breaking
dynamics, we assume the linears model coupled to two
flavors of quarks[9]:

L = q̄figm]m − gss + g5tW · pW dgq + 1
2s]ms]ms + ]mpW ]mpW d

− Uss, pW d. s2.1d

The potential, which exhibits both spontaneously and ex-
plicitly broken chiral symmetry, is

Uss, pW d =
l2

4
ss2 + p2 − v2d2 − hqs − U0. s2.2d

Here q is the constituent quark fieldq=su,dd. The scalar
field s and the pseudoscalar fieldpW =sp1,p2,p3d together
form a chiral fieldfa=ss ,pW d. The parameters of the La-
grangian are chosen such that chiral SULs2d ^ SURs2d sym-
metry is spontaneously broken in the vacuum. The
vacuum expectation values of the condensates areksl
= fp and kpW l=0, wherefp=93 MeV is the pion decay con-
stant. The explicit symmetry breaking term is due to the
nonzero pion mass and is determined by the partially con-
served axial-vector current relation, which giveshq

= fpmp
2, where mp=138 MeV. This leads to v2= fp

2

−mp
2 /l2. The value of l2=20 leads to as mass ms

2

=2l2fp
2 +mp

2 approximately equal to 600MeV. In mean-
field theory, the purely bosonic part of this Lagrangian
exhibits a second-order phase transitionf8g if the explicit
symmetry breaking termhq is dropped. ForhqÞ0, the
transition becomes a smooth crossover from the phase
with restored symmetry to that of broken symmetry. The
normalization constantU0 is chosen such that the potential
energy vanishes in the ground state, that is,

1However, we note that there are indeed differences on the quan-
titative level. For example, for a first-order phase transition in
baryon dense matter the isentropic speed of sound does not vanish
in general atTc [16,25], as it does for zero net baryon charge,mB

=0.
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U0 =
mp

4

4l2 − fp
2mp

2 . s2.3d

For g.0, the finite-temperature one-loop effective poten-
tial also includes a contribution from the quarks. In our phe-
nomenological approach, we shall consider the quarks as a
heat bath in(local) thermal equilibrium. Thus, it is possible
to integrate them out to obtain the effective potential for the
chiral fields in the presence of that bath of quarks. Consider
a system of quarks and antiquarks in thermodynamical equi-
librium at temperatureT and in a volumeV. The grand ca-
nonical partition function reads

Z =E Dq̄DqDsDpW expFE
0

1/T

dsitdE
V

d3xW LG . s2.4d

sAntidPeriodic boundary conditions for thesfermiond bo-
son fields are implied. In mean-field approximation the
chiral fields in the Lagrangian are replaced by their ex-
pectation values, which we denote bys and pW . Then, up
to an overall normalization factor,

Z = NUE Dq̄ Dq

3expHiE
0

1/T

dtE
V

d3xWq̄figm]m − gss + ig5tW · pW dgqJ
= NU detphfpmgm − gss + ig5tW · pW dg/Tj, s2.5d

where

NU = expS−
VUss, pW d

T
D . s2.6d

Taking the logarithm ofZ, the determinant of the Dirac
operator can be evaluated in the standard fashionf27g, and
we finally obtain the grand canonical potential

−
T

V lnZ = U + ṼqsTd, s2.7d

where

ṼqsTd = − dqE d3pW

s2pd3hE + T lnf1 + e−E/Tgj. s2.8d

Here,dq=24 denotes the color-spin-isospin-baryon charge
degeneracy of the quarks. For our purposes, the zero-

temperature contribution toṼq, i.e., the first term in the
integral in Eq.s2.8d, can be absorbed intoU via a standard
renormalization of the bare parametersl2 and v2. The
logarithmic dependence on the renormalization scale is
ignored in the following.

Adding theT=0 and the finite-T contributions defines our
effective potentialVeff:

Veffsfa, Td ; Usfad − dqTE d3p

s2pd3lns1 + e−E/Td. s2.9d

Veff depends on the order parameter field through the ef-
fective mass of the quarks,mq=gÎf2;gÎoa fafa, which

enters into the expression for the energy,E=Îp2+g2f2.
In principle, one should also integrate out short-

wavelength fluctuations off, which would lead to an addi-
tional contribution to the effective potential(2.9), see for
example Refs.[13,28]. For the present phenomenological
analysis, however, expression(2.9) is already sufficient in
that it exhibits a critical end point for some particular value
of the coupling constantg. Since we do not expect the simple
model (2.1) to be quantitatively reliable anyway, it is not
unreasonable to employ the effective potential(2.9) for a
study of qualitative effects near a chiral critical point.

We now turn to a discussion of the shape of the effective
potential, cf. Fig. 1. For sufficiently smallg one still finds the
above-mentioned smooth transition between the two phases.
At larger coupling to the quarks, however, the effective po-
tential exhibits a first-order phase transition[21]. Along the
line of first-order transitions, for temperatures near the criti-
cal temperature,Veff displays a local minimums=s1sTd.0
which is separated by a barrier from another local minimum
at s=s2sTd.0. (There is another local minimum for nega-
tive s which is of higher energy and does not concern us.)
These two minima are degenerate atT=Tc. For example,g
=5.5 leads to a critical temperature ofTc.123.3 MeV. Low-
ering the value ofg leads to a smaller barrier between the
two degenerate states. Also,s1 approachess2, i.e., the phase
transition weakens, and moreover the spinodal temperature
approachesTc [22]. At gc.3.7, finally, the barrier disap-
pears, and so the latent heat vanishes. This is the second-
order critical point, where the potential about the minimum
is flat.

A different possibility of making thes meson much
lighter atTc than atT=0 is to reduce the self-coupling of the
chiral fields[29], l2, rather than that to the quarks. For ex-
ample, one may choosel2.2.2 with the pion decay constant
fp and vacuum massmp fixed, such thatv2=0. However,
within the present model this also reducesTc significantly, to
less than 100 MeV[22]. Such lowTc appear to be excluded
by present lattice QCD results[30], and moreover would

FIG. 1. The one-loop finite-T effective potential as a function of
the scalar fields at pW =0. The quark-field coupling constantg is
being varied. The curves are labeled by the value forg and by the
temperature in MeV in parentheses. The field self-coupling is cho-
sen to bel2=20.
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generate too small thermal fluctuations in the heat bath.
Therefore, we keepl2=20 fixed throughout the manuscript.

B. Coupled dynamics of fields and fluid

The classical equations of motion for the chiral fields are

]m]ms +
dU

ds
= − gkq̄ql = − grs,

]m]mpW +
dU

dpW
= − gkq̄g5tWql = − grWps, s2.10d

where

rs = kq̄ql = gsdqE d3p

s2pd3

1

E
fspd,

rWps= kq̄g5tWql = gpW dqE d3p

s2pd3

1

E
fspd s2.11d

are the scalar and pseudoscalar densities generated by the
heat bath of quarks and antiquarks, respectively. The dis-
tribution of the quarks and antiquarks in momentum space
is given by the Fermi-Dirac distribution.

Form (2.10) for the coupling to the heat bath of quarks
can be derived from the Lagrange density(2.1) in mean-field
approximation. The energy density of the quarks is given by

kHql = kq̄i]”ql + gkq̄sql + gkq̄g5tW · pW ql. s2.12d

The finite-T contribution to the equation of motion for the
s, pW fields is obtained from the variation of the effective
potential with respect tos or pW , respectively:

gkq̄ql =
dkHql

ds
=

dkVeff − Ul
ds

,

gkq̄g5tWql =
dkHql

dpW
=

dkVeff − Ul
dpW

. s2.13d

Applying this to the right-hand side of Eq.s2.9d yields the
expressions for the scalar density and the pseudoscalar
density as given in Eq.s2.11d.

As already mentioned above, we shall assume that the
quarks constitute a heat bath in local thermal equilibrium.
Thus, their dynamical evolution is determined by the local
conservation laws for energy and momentum in relativistic
hydrodynamics. For simplicity, we shall further assume that
the stress-energy tensor of the quark fluid is of the “perfect
fluid” form (corrections could in principle be taken into ac-
count in the future along the lines discussed in Ref.[31]),

Tmn = se+ pdumun − pgmn. s2.14d

Here,

um ;
Tmnun

ÎusTsrTraua

s2.15d

is the local four-velocity of the fluid.gmn=diags1,−1,
−1,−1d is our metric tensor, and so the line element is
ds2=dt2−dx 2. The time t is measured in the global rest
frame. Furthermore,

esf, Td = kHql,

psf, Td = − Veffsf, Td + Usfad s2.16d

denote the energy density and the pressure of the quarks at
temperatureT. Note that we do not assume that the chiral
fields are in equilibrium with the heat bath of quarks.
Hence, bothe and p depend explicitly onf=Îs2+p2.
Given an initial condition on some spacelike surface,Tmn

at any other causally connected space-time point is deter-
mined by

]mTmn = Sn. s2.17d

In the absence of interactions between the chiral fields and
the quarks, the source termSn vanishes, and the energy
and the momentum of the quarks,

sE, PW d =E dsmTmn, s2.18d

are conserved:

um]mE = um]mPi = 0. s2.19d

With interactions turned on, this is obviously not true any
longer. Rather, the total energy and momentum of fluid
plus fields is the conserved quantity:

Sn = − ]mTf
mn. s2.20d

The stress-energy tensor for the fields can be computed
from the Lagrange density in the standard fashion. The
effective mass of the quarks,mq=gÎoa fa

2, is already ac-
counted for in the equation of statesEOSd for the quark
fluid, see Eqs.s2.16d. Thus,Tf

mn is the stress-energy tensor
of the chiral fields alone:

Tf
mn = o

a

] kLfl
] s]mfad

]nfa − gmnkLfl,

Lf = o
a

1

2
s]mfads]mfad − U . s2.21d

Its divergence is given by

− ]mTf
mn = − o

a
H]m]mfa +

dU

dfa
J]nfa

= grs]
ns + grWps· ]npW . s2.22d

In the second step we made use of the equations of motion
s2.10d. This is the source term in the continuity equation
s2.17d for the stress-energy tensor of the quark fluid. A
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different derivation based on moments of the classical
Vlasov equation for the quarks was given in Refs.f17,18g,
see also Ref.f19g.

We emphasize again that we employ Eqs.(2.10) not only
to propagate the mean field through the transition but fluc-
tuations as well. The initial condition includes some generic
“primordial” spectrum of fluctuations, see Sec. III A, which
then evolve in the effective potential generated by the matter
fields, i.e., the quarks. Near the critical point, those fluctua-
tions have small effective mass and “spread out” to probe the
flat effective potential. Since all field modes are coupled,
effectively the fluctuations act as a noise term in the equation
of motion for the mean field, similar to the familiar Langevin
dynamics[32]; near the phase transition, however, the noise
is neither Gaussian(the effective potential is not parabolic)
nor Markovian (zero correlation length in time) nor white
(zero correlation length in space). Rather, correlation lengths
and n-point functions of the “noise” are governed by the
dynamics of the fluctuations in the effective potential gener-
ated by the fluid of quarks, including also effects from the
finite size and the relativistic expansion of the system.

C. Numerics and technical details

We briefly describe how we solved the coupled system
(2.10), (2.17) of partial differential equations in 311 space-
time dimensions.

We follow the evolution ont=const hypersurfaces, and in
a fixed spatial cube of volumeL3. We discretize three-space
in that cube by introducing a 1603 grid with a spacing of
Dx=0.2 fm (thus,L=16030.2 fm=32 fm). On that grid, we
solve the hyperbolic continuity equations of fluid dynamics
(2.17) using the so-called phoenicalSHASTA flux-corrected
transport algorithm with simplified source treatment. It is
described and tested in detail in Ref.[33], and we refrain
from a discussion here. The time step was chosen asDt
=0.4Dx, as appropriate for theSHASTA [33,34]. We per-
formed each time step in the standard fashion withSn=0,
then subtracted the sourcesSn from the energy and momen-
tum density in the calculational frame(i.e., the global rest
frame of the fluid). Finally, from T00, T0i, and the EOSp
=pse,fad we solved for the velocity of the local rest frame
(LRF) of each cell, and for the energy densitye of the fluid
in the LRF. Such a treatment of sources in the continuity
equations for energy and momentum proved to work well in
relativistic multifluid dynamics[16,34], where one encoun-
ters a similar equation due to interactions between various
fluids. The boundary conditions at the edge of the computa-
tional grid are such that the fluid simply streams out when
reaching the boundary. This can be monitored by checking
the conservation of the total energy as a function of time.

Regarding the fields, we solve the classical equations of
motion using a staggered leap-frog algorithm with second-
order accuracy in time, see for example Ref.[35]. The non-
linear wave equations(2.10) are split into two coupled first-
order equations(in time) by considering separately the field
fa and its canonically conjugate fielddfa/dt. For this algo-
rithm, the time step for propagation of the fields has to be
chosen smaller than that for propagation of the fluid. In prac-

tice, we found thatDt=0.1Dx gave reasonable accuracy. As
the time step for propagation of the fluid was chosen to be
four times larger, the fields were propagated for four con-
secutive steps, with the fluid kept “frozen,” followed by one
single step for the fluid. Spatial gradients of the fields were
set to zero at the edges of the computational grid, rather than
employing periodic boundary conditions. The spatial deriva-
tives in the equations of motion for fields(2.10) were dis-
cretized to second-order accuracy in the grid spacing to
match the second-order accuracy in time. We employed the
same small grid spacingDx=0.3 fm as for the fluid. Al-
though the mean fields vary on a larger scale, it is important
to allow for nonlinear amplification of harder fluctuations
which can couple to the soft modes and affect the dynamical
relaxation to the vacuum state with broken symmetry, see for
example Refs.[36,37].

For the fluid, one needs to introduce nine 3D spatial
grids,2 for e, p, T0m, anduW . In addition, one needs two more
3D grids for each field component, namely forfa and
dfa/dt. To save computational resources, we have therefore
decided to neglect the pion field altogether, i.e., to set it to
zero everywhere in the forward light cone. Thus, only thes
field is considered in the actual computations described be-
low. However, this represents a minor restriction only, since
we focus here on the bulk evolution of the quark fluid rather
than on fluctuation observables or coherent pion production
from the decay of a classical pion field.(Coherent pion pro-
duction is known to contribute a small fraction of the total
pion yield only[18,19,21,23,38]. Incoherent particle produc-
tion from the decay of the fluid by far dominates, if no ki-
nematic cuts are applied.)

III. RESULTS

Having formulated our model, we now proceed to show
some specific examples of numerical solutions. In particular,
we would like to examine whether the dynamical evolution
changes as one crosses the chiral critical point.

A. Initial condition

As an example, we employ the following initial condi-
tions for the results described below. Of course, one could
employ more refined initial conditions and “tune” them such
as to reproduce various aspects of the final state, which in
principle could be compared to experimental data. At
present, our more modest goal is to illustrate qualitative ef-
fects originating from the phase transition. The initial condi-
tions are meant to provide a semirealistic parametrization of
the hot fireball created in a high-energy heavy-ion collision.

At time t=0, the distribution of energy density for the
quarks is taken to be uniform in thez direction (with length
2lz=12 fm) and ellipsoidal in thex-y plane:

2At finite baryon density, one would need another grid forrB.
Also, inverting the Lorentz transformation to obtain the LRF den-
sitiese andrB from T00, T0i and the net baryon currentJB

m;rBum in
each time step would require a three-dimensional root search for the
function p=pse,rB,fd.
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est = 0,xWd = Heeq:x
2b2 + y2a2 , sabd2 ∧ z, lz

0:x2b2 + y2a2 . sabd2 ∨ z. lz,
s3.1d

whereeeq denotes the equilibrium value of the energy den-
sity taken at a temperature ofTi <160 MeV. In ourcalcu-

lation we choosea=rA− b̃/2 and b=ÎrA
2 − b̃2/4, where b̃

denotes the impact parameter of two nuclei with radiusrA

sbelow, we chooserA=6.5 fm andb̃=6 fmd. Thus, the el-
lipsoidal shape resembles the almond shaped overlap of
two colliding nuclei. TheQ-function distribution of the
initial energy density is evidently somewhat unrealistic; a
smoother distribution with nonzero surface thickness
would be more realistic and perhaps affect the results
somewhat. However, as already mentioned above, here we
do not aim at quantitative fits to experimental data but at
illustrating qualitative effects related to the shape of the
effective potential in the transition region.

The collective longitudinal velocity of the fluid of quarks
is assumed to rise linearly withz: vzst=0,xWd~sz/ lzdvmax,
wherevmax=0.2. The transverse components ofvW are set to
zero att=0.

Our initial conditions for the chiral fields are

sst = 0,xWd = dssxWd + fp + s− fp + seqd

3F1 + expS r̃ − R̃

ã
DG−1F1 + expS uzu− lz

ã
DG−1

,

pW st = 0,xWd = dpW sxWd, s3.2d

where r̃ =Îx2+y2,

R̃= 5 abr̃

Îb2x2 + a2y2
:r̃ Þ 0

a:r̃ = 0,

s3.3d

and ã=0.3 fm is the surface thickness of this Woods-
Saxon-like distribution. Hereseq<0 is the value of thes
field corresponding toeeq. Thus, the chiral condensate
nearly vanishes at the center, where the energy density of
the quarks is large, and then quickly interpolates tofp

where the matter density is low.
dssxWd and dpW sxWd represent the initial random fluctuations

of the fields. Our focus at this stage is on how those primor-
dial fluctuations evolve through the phase transition(or
crossover) and how they affect the hydrodynamic expansion
of the thermalized matter fields(the fluid). Thus, for a first
qualitative analysis we do not rely on additional physics
input3 for the primordial fluctuations but rather choose a ge-
neric Gaussian distribution,

Pfdfag ~ exps− dfa
2/2kdfa

2ld, s3.4d

with the variancekdfa
2l left as a free parameter.fHere, no

summation over the indexa sinternal spaced is carried
out.g We performed simulations withÎkdf0

2l;Îkds2l
=v /3. Such fluctuations are large enough to probe the
barrier of the effective potential in case of a first-order
transition, or the flat region close to the critical end point
sFig. 1d. On the other hand, they are sufficiently small to
allow for a one-loop subtraction of their contribution to
the effective potential, as described in the Appendix.

The time derivatives of the fields were set to zero att=0,
with no fluctuations. As already mentioned in Sec. II C, the
actual numerical computations described below were per-
formed withdpW ;0, i.e., kdf1,2,3

2 l=0.
One must further take into account that the field fluctua-

tions are correlated over some spacelike distancej.1 fm.
This is a physical scale which is present in the initial condi-
tions; if one simply picks random fluctuations at each point
of the grid, the correlation length will instead be given by the
artificial numerical discretization scaleDx.

In practice, a useful and simple procedure to implement
physical correlations in the initial condition is as follows.
First, at each point of the grid one samples distribution(3.4)
at random. Then, one smoothly sweeps a “sliding window”
of linear sizej=nDx over the grid and averages the fields:

fasxWd =
1

n3 o
i,j ,k=0,. . .,n−1

fasxW + iDxeW1 + jDxeW2 + kDxeW3d.

s3.5d

Here,eW1, eW2, eW3 define a global Cartesian orthonormal ba-
sis, andxW =1eW1+1eW2+1eW3, 1eW1+1eW2+2eW3,…, is the sequence
of grid points. Clearly, the above averaging procedure
“cools” the fluctuations, in thatkdfa8

2lÞ kdfa
2l. In particu-

lar, in the continuum limitDx→0 with j=nDx held con-
stant, one of course finds thatkdfa8

2l→0 for distribution
s3.4d. Therefore, in a final sweep over the grid one has to
rescale the fields at each grid point by

fa9sxWd = fa8sxWdÎ kdfa
2l

kdfa8
2l

. s3.6d

This procedure leads to an initial field configuration that
exhibits both the proper physical correlation length and
the desired fluctuations. Moreover, it prevents the initial
energy density from field gradients to grow like 1/Dx 2.

B. Numerical solution

In the following we consider both a first-order phase tran-
sition corresponding tog=5.5, as well as the critical point at
g=3.7.

Figures 2 and 3 depict the time evolution of thes field
along thex axis and they axis, respectively. Att=0 the field
within the hot region has small amplitude, corresponding to
the chiral symmetry restored phase. That region is sur-
rounded by the physical vacuum withksl= fp=93 MeV.

For the first-order phase transitionsg=5.5d a barrier sepa-
rates the two degenerate minima of the effective potential

3For example, one might assume thermalized primordial fluctua-
tions, in which case their distribution depends on the effective po-
tential at the temperatureTi. We have checked, however, that at high
temperatureVeffsf,Tid looks rather similar for all values ofg con-
sidered here, regardless of whether later on the evolution proceeds
through the crossover, the critical end point, or the first-order phase
transition regimes.
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(Fig. 1) at Tc. Figures 2 and 3 show that this barrier leads to
a rather well-defined surface in coordinate space, separating
the vacuum from the symmetric phase. For the above-
mentioned initial conditions, the fluctuations are not strong
enough for the field to easily overcome the barrier. Never-
theless, one can observe dynamical fluctuations into the bro-
ken symmetry state, e.g., atx.1 fm andt.2–4 fm/c, which
however collapse again. Our dynamical results agree with
previous arguments that nucleation is a slow process on the
time scale of heavy-ion collisions, and so the Gibbs phase
equilibrium is not established dynamically[21,22,24,39]. At
time t.9 fm the phase transition occurs spontaneously “in
an instant,” that is, on a spacelike surface which can clearly

be seen in Figs. 2 and 3. A “bubble” of the symmetric phase
survives atx.3 fm for a long time.

The picture is rather different for the transition at the criti-
cal point, i.e.,g=3.7. Here, the barrier between the degener-
ate minima vanishes and the potential is flat. As is evident,
there are no clear surfaces separating either the vacuum from
the center or high-density bubbles(or “droplets”) from their
surrounding. Due to the flatness of the potential, near the
center the field performs large-amplitude oscillations(from
s,0 to s. fp) for a long time; they extend in space over
distances<1–3 fm (e.g., att<9, 12, and 14 fm/c in Fig. 2),
which is not much less than the initial size of the hot region.
Figure 4 shows a histogram of the field distribution at the
centersÎx2+y2+z2,2 fmd. One observes that the distribution
broadens fromt=4 fm to t=10 fm, and then narrows again at
later times after the transition to the broken phase occurred.
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FIG. 2. (Color online) Space-time evolution of the chiral field
along thex axis aty=z=0. Dark regions correspond to small field
amplitudes(symmetric phase), light regions to large amplitudes
(broken phase). The scale on the right specifies the field amplitude
in MeV.
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FIG. 3. (Color online) Space-time evolution of the chiral field
along they axis atx=z=0.
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Also, notice that the distributions att=4 fm andt=14 fm are
well described by Gaussians, i.e., the effective potential is
essentially parabolic, while fort=10 fm there are visible de-
viations from a simple Gaussian.

The time evolution of the local rest-frame energy density
e of the quarks is shown in Figs. 5 and 6. Again we see
large-scale structures for the first-order phase transitionsg
=5.5d, while the energy density is rather homogeneous on
large time and distance scales if the expansion trajectory
goes through the critical end point. For the first-order transi-
tion, quarks can be “trapped” in droplets withs,0 (the
minimum of the effective potential where the symmetry is
restored) because the mass barrier can keep them from es-
caping. The droplet of high-density matter atx.3 fm andt
.12–16 fm/c can easily be associated with the region of
nearly vanishing chiral scalar field from Fig. 2. Eventually,
that region must perform the transition to the symmetry bro-
ken state, either by a strong thermal fluctuation or when
reaching the spinodal point. At the spinodal, the system is as
far from local thermal equilibrium as it can get, and the
“roll-down” of the order parameter field to the global mini-
mum of the potential can influence the collective expansion
of the quark fluid.

Note that the energy density at the center drops more
rapidly for the first-order transition than near the critical end
point. This has consequences for the buildup of azimuthally
asymmetric flow, as we shall discuss below.

Figure 7 depicts the time evolution of the azimuthal mo-
mentum anisotropy[40]

ep =
kTxx − Tyyl
kTxx + Tyyl

, s3.7d

where the averages of the stress-energy tensor of the fluid
are taken at fixed time:

kTijlstd ; E d3x Tijst, xWd. s3.8d

Also, we average over a few initial field configurations,
which gave similar results forepstd, though.

For the above-mentioned initial conditions the energy-
momentum tensor is symmetric, and soep=0 at t=0 (this
might be different in more realistic treatments[41]). Pressure
gradients inx and y directions are different, though. There-
fore, the acceleration of the fluid is stronger in the reaction
sx-zd plane than out of plane, leading to a nonzero azimuthal
asymmetryep.0 at timest.0. The asymmetry first grows
nearly linearly with time but saturates when the asymmetry
of the energy density and of the pressure gradients becomes
small. As explained above(Figs. 5 and 6), this happens ear-

FIG. 4. (Color online) Histogram of the field distribution at the
center for three different times. Lines represent Gaussian fits with
standard deviations 25 MeVst=4 fmd, 53 MeV st=10 fmd, and
43 MeV st=14 fmd.
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FIG. 5. (Color online) Space-time evolution of the fluid energy
density along thex axis aty=z=0. The scale on the right specifies
the energy density in units of nuclear matter densitye0

<150 MeV/fm3.
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lier for a first-order transition than for trajectories near the
chiral critical end point. This is then reflected in the final
value of ep. We stress that the more rapid saturation of the
azimuthal asymmetry in case of a first-order transition is not
in contradiction to the fact that hot(high-energy density)
droplets survive for rather long times, as seen in the figures.
Rather, such droplets typically turn out to be more or less
rotationally symmetric, or at least exhibit deformations
which are uncorrelated to the reaction plane(thex-z plane in
our case). Thus, they tend to reduce the average azimuthal
asymmetry of the energy-momentum tensor.

For comparison, in Fig. 7 we also show the result for an
equilibrium first-order phase transition. Here, the equations
of motion for the chiral fields, Eqs.(2.10) are not solved but
rather thes field is required to populate the(global) mini-
mum of the effective potential,

dVeff

ds
= 0, s3.9d

d2Veff

ds2 . 0. s3.10d

That is, the chiral field is in equilibrium with the quark-
antiquark fluid and does not exhibit any explicit space-
time dependence. AtTc, where two degenerate minima
exist, one performs the usual Maxwell-Gibbs construction
to determine the fractions of the total volume occupied by
matter in the symmetric and the broken symmetry phases,
respectively. Evidently, for the above-mentioned initial
conditions the equilibrium phase transition leads to nearly
the same azimuthal asymmetry ofTij as for the crossover.
Therefore, it is indeed the nonequilibrium real-time dy-
namics sfield fluctuations over the free-energy barrierd
that is responsible for the observed reduction ofep in the
regime of first-order chiral phase transitions.

IV. SUMMARY AND OUTLOOK

In summary, we have introduced a simple phenomeno-
logical description of the nonequilibrium real-time dynamics
of the chiral phase transition in an expanding(relativistic)
fluid of quarks. More precisely, we coupled the linears
model, which describes the dynamics of the long-wavelength
modes of the chiral order parameter field, to the hydrody-
namical evolution of a system of quarks. The chiral field(s)
evolves according to the finite-temperature effective poten-
tial that is generated by integrating out the quarks from the
Lagrangian; in turn, the field(s) determines the effective
quark mass(i.e., the equation of state of the quark fluid)
dynamically.

The above model exhibits a first-order phase transition for
largeg, which is the quark-field coupling constant. The line
of first-order transitions ends in a critical point wheng is
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FIG. 6. (Color online) Space-time evolution of the energy den-
sity along they-axis atx=z=0.

FIG. 7. (Color online) Time evolution of the momentum aniso-
tropy for a crossoversg=3.3d, a second-order phase transition at the
critical point sg=3.7d, and a first-order phase transitionsg=5.5d in
or out of equilibrium.
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lowered, i.e., the transition turns into a crossover for smaller
couplings. Thus, by varyingg one can qualitatively compare
the hydrodynamic expansion pattern of the quark fluid for
dynamical trajectories that cross the line of first-order tran-
sitions to that obtained in the crossover regime.

We have obtained numerical solutions in 311 space-time
dimensions, using simple initial conditions that might be ap-
propriate for relativistic heavy-ion collisions. The hydrody-
namical expansion pattern clearly depends on the structure of
the effective potential. For trajectories in the crossover re-
gime or near the critical end point the overall bulk dynamics
is found to be rather “smooth,” in that the space-time distri-
bution of the energy density of the fluid is not affected very
much by the fluctuations of the order parameter field. In the
absence of a latent heat, the energy density cannot jump
much between regions where the field amplitude is different.

In contrast, if the effective potential exhibits a barrier be-
tween the symmetry restored and broken phases, respec-
tively, we do see that large-scale structures are formed dy-
namically, e.g., droplets of the symmetric phase may survive
for rather long times before becoming mechanically unstable
(at the spinodal). In that sense, the overall time scale is
longer for trajectories crossing the line of first-order transi-
tions. Nevertheless, typically such structures are not corre-
lated to the reaction plane; thus, the direct correspondence of
spatial anisotropies in the initial condition to momentum-
space anisotropies in the final state predicted byequilibrium
hydrodynamics(that is, when the phase transition is not
treated dynamically but modeled by a Maxwell-Gibbs con-
struction) is weakened. For example, we find much smaller
momentum-space anisotropy for a dynamical first-order tran-
sition than for a trajectory through the chiral critical end
point (for the same initial condition). This could be a very
useful prediction with regard to the experimental search for
the chiral critical end point of QCD in heavy-ion collisions at
the BNL-AGS, the CERN-SPS, and the envisaged new GSI
heavy-ion accelerator. Until now, experiments focused on
fluctuation observables, but inclusive observables usually are
much easier to analyze accurately.

In the future, we intend to scrutinize other inclusive ob-
servables as to their sensitivity to nonequilibrium effects
from phase transitions. Of course, there is also plenty of
room to improve on the model in order to obtain more quan-
titative predictions. The present paper represents a first step
towards an actual real-time description of the chiral phase
transition on either side of the critical end point in expanding
relativistic fluids with realistic(311)D geometries.

Note added.After this manuscript was submitted for pub-
lication the NA49 Collaboration published the elliptic flow at
Elab=40A GeV [42]. From Fig. 24 of that publication, the
dependence ofv2 on lnÎs is approximately linear. However,
the “natural” scale forv2 is set bykptl, not lnÎs, as pointed
out by Snellings[43]. Indeed, at high energies the differential
v2sptd of charged hadrons is approximately proportional topt,
such that the averagedv2~kptl. In fact, for midcentral colli-
sions v2 increases from<3% at top SPS energysÎs
=18A GeVd to <4.5% at RHIC energysÎs=130A GeVd.
When scaled by the average transverse momentum, though,

the elliptic flow in that energy regime is nearly constant[43].
To scrutinze deviations from the natural scalingv2~kptl, we
plot the excitation function ofv2/kptl in Fig. 8.

One observes that, as already mentioned above, the data
are compatible with no energy(or kptl) dependence above
top SPS energy. Clearly, there is a systematic drop ofv2
relative tokptl towards lower energies. For instance, atElab
=40A GeV corresponding tokptl<350 MeV,v2/kptl is lower
by about two standard deviations than at higher energies.
Qualitatively, this interesting behavior is similar to the reduc-
tion of the azimuthal momentum asymmetry, predicted
above, caused by crossing the second-order critical point into
the regime of first-order phase transitions. Additional studies
of “conventional” nonequilibrium effects unrelated to a
phase transition are certainly required, however, before firm
conclusions can be drawn.
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APPENDIX: SUBTRACTING INITIAL FLUCTUATIONS
In Sec. II A we discussed our phenomenological ansatz

for the effective potential for the long-wavelength modes of
the chiral fields, as generated by the heat bath of quarks.
Formally, it is obtained from the Lagrangian by integrating
out the quarks to one loop.

FIG. 8. Excitation function ofv2/kptl of negatively charged par-
ticles in midcentral collisions from top AGS to RHIC energy. Data
for v2 are taken from Fig. 24 in Ref.[42] and kptl from Refs.
[44–47].

K. PAECH, H. STÖCKER, AND A. DUMITRU PHYSICAL REVIEW C68, 044907(2003)

044907-10



Our main objective here is to study dynamically fluctua-
tions of the chiral order parameter(or effects generated by
those fluctuations) in the vicinity of the chiral critical point
as the system makes the transition to broken chiral symmetry
at low temperature. Thus, we have to allow for primordial
fluctuations of the chiral fields, also. However, those fluctua-
tions of the fields at timet=0 will of course also contribute to
the effective potential and “distort” its shape. In order to
restore our original choice forVeff from Eq. (2.9), and thus
ensure the correct dynamics for the long-wavelength modes,
we have to introduce appropriate subtractions.

The procedure is as follows. The scalar and pseudoscalar
densities are given by Eqs.(2.11). They depend explicitly on
the value of the fieldsfa, which we formally separate into
short and long wavelengths:

fasxd = kfal + dfasxd. sA1d

Here, k·l denotes a spatial average over a volume large
enough for the fluctuations to average out:

kdfal = 0. sA2d

The linear dimension of that volume will be given by the
wavelength of the soft modes of interest.

We now substitute Eq.(A1) into Eqs.(2.11) and perform
an expansion up to second order indfasxd. We then perform
the averaging over the fluctuations with distribution(3.4) and
obtain

krsl = rsskfld +
1

2
gsdqE d3k

s2pd3Ho
a

kdfa
2l

3F−
g2fskd
E2T ST

E
+ fskdeE/TD +

g4fa
2

E3T2 fskd

3S2f2skde2E/T − fskdeE/T + 3
T

E
fskdeE/T + 3

T2

E2DG
− 2kds2l

g2fskd
E2T ST

E
+ fskdeE/TDJ . sA3d

Here, kdf2l; oa kdfadfal is the variance of the fluctua-
tions in the initial condition, i.e., at the initial timet=0,
summed over internal quantum numbers. We made use of
the fact that fluctuationss3.4d are diagonal in internal
space, i.e.,kdfadfbl=0 if aÞb. The second term is the
additional contribution seen by the long-wavelength
modeskfal, which is due to the fluctuations. To restore
the original effective potential, we have to subtract that
term, i.e., redefine the scalar density as

rssf, Td = gsdqE d3k

s2pd3

1

E
fskd −

1

2
gsdqE d3k

s2pd3

3 Ho
a

kdfa
2lF−

g2fskd
E2T ST

E
+ fskdeE/TDg4fa

2

E3T2 fskd

3S2f2skde2E/T − fskdeE/T + 3
T

E
fskdeE/T + 3

T2

E2DG
− 2kds2l

g2fskd
E2T ST

E
+ fskdeE/TDJ . sA4d

This expression has to be substituted forrs on the right-
hand side of the equation of motions2.10d. The subtracted

term cancels the “distortion” of the scalar density caused
by using the local valuesssxd, pW sxd for the fields, rather
than their long-wavelength componentskssxdl, kpW sxdl.

Along the same lines one derives the following expres-
sions for the fluctuation-subtracted pseudoscalar density, and
for the pressure of the quarks:

rWpssf, Td = gpW dqE d3k

s2pd3

1

E
fskd −

1

2
gpW dqE d3k

s2pd3

3 Ho
a

kdfa
2lF−

g2fskd
E2T ST

E
+ fskdeE/TD

+
g4fa

2

E3T2 fskdS2f2skde2E/T − fskdeE/T + 3
T

E
fskdeE/T

+ 3
T2

E2DG − 2kdp2l
g2fskd
E2T ST

E
+ fskdeE/TDJ ,

sA5d

psf, Td = dqE d3k

s2pd3T lns1 + e−E/Td −
1

2o
a

kdfa
2l

3H−
g2fskd

E
+

g4fa
2

E3T
fskdfT + E − EfskdgJ .

One can verify that the identitiesgrs=−dp/ds and grps
=−dp/dpW are satisfied, as it should be.

At fixed values for the fields, the energy density of the
quarks at a temperatureT is given by

esf, Td = T
] psf, Td

] T
− psf, Td. sA6d

Using the expression for the fluctuation-subtracted pres-
sure given above one obtains

esf, Td = dqE d3k

s2pd3Efskd −
1

2o
a

kdfa
2lHg2fskd

ET
fT

− EfskdeE/Tg −
g4fa

2

E3T
fskdfT + E − Efskdg

+
g4fa

2

ET2 f2skdeE/TtanhS E

2T
DJ . sA7d

The source term(2.20) changes due to the fluctuations
and one has to use the modified scalar(A4) and pseudoscalar
(A5) densities, respectively.

To second order in the fluctuations, the self-interaction of
the chiral fields is renormalized as

Usfad =
l2

4
ss2 + p2 − v2d2 − hqs − U0

−
1

2o
a

kdfa
2ll2s2fa

2 + s2 + p2 − v2d. sA8d

The above expressions forUsfad, rs, rWps, e, and p are
to be used in the equations of motion for the chiral
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fields s2.10d, in the stress-energy tensor of the quark
fluid s2.14d, and in the source term for its divergence
Sn fEqs. s2.20d and s2.22d. We point out that we
subtract those quantities for the contribution from

initial fluctuations of f only up to second order
in df. We can therefore not employ initial conditions
with very large local fluctuations about the mean
field.
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