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The current normalization of the cross section of inclusive high-pT particle production in deuteron-gold
collisions measured at RHIC relies on Glauber model calculations for the inelasticd-Au cross section. These
calculations should be corrected for diffraction. Moreover, they miss Gribov’s inelastic shadowing which
makes nuclei more transparent(color transparency) and reduces the inelastic cross section. The magnitude of
this effect rises with energy and one may anticipate it to affect dramatically the normalization of the RHIC
data. We evaluate the inelastic shadowing corrections employing the light-cone dipole formalism which effec-
tively sums up multiple interactions in all orders. We found a rather modest correction factor for the current
normalization of data for high-pT hadron production ind-Au collisions. The results of experiments insensitive
to diffraction (PHENIX, PHOBOS) should be renormalized by about 20% down, while those which include
diffraction (STAR), by only 10%. In spite of smallness of the correction it eliminates the Cronin enhancement
in the PHENIX data for pions. The largest theoretical uncertainty comes from the part of inelastic shadowing
which is related to diffractive gluon radiation or gluon shadowing. Our estimate is adjusted to data for the
triple-Pomeron coupling and is small, however, other models do not have such a restriction and predict much
stronger gluon shadowing. Thus, one arrives at quite diverse predictions for the correction factor which may be
even as small asK=0.65. Therefore, one should admit that the current data for high-pT hadron production in
d-Au collisions at RHIC cannot exclude in a model independent way a possibility of initial state suppression
proposed by Kharzeev-Levin-McLerran. To settle this uncertainty one should directly measure the inelastic
d-Au cross sections at RHIC. Also, collisions with a tagged spectator nucleon may serve as a sensitive probe
for nuclear transparency and inelastic shadowing. We found an illuminating quantum-mechanical effect: the
nucleus acts like a lens focusing spectators into a very narrow cone.
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I. INTRODUCTION

Recent data for high-pT hadron production in deuteron-
gold collisions atÎs=200 GeV at RHIC[1–3] demonstrate
importance of these measurements for proper interpretation
of data from heavy ion collisions. The observed nuclear ef-
fects at highpT are pretty weak, the enhancement(Cronin
effect) measured for pions by PHENIX is only about
10–20%, in accordance with expectation of Ref.[4] and
with somewhat larger effect found in Ref.[5], while a sup-
pression, rather than an enhancement was predicted in Ref.
[6]. To discriminate between these predictions the data
should have at least few percent accuracy.

In this paper we draw attention to the fact that only the
shape ofpT distribution was measured experimentally, while
the normalization of the data is based on theoretical calcula-
tions which are not correct. Therefore, the reported results of
deuteron-gold measurements[1–3] may be altered by more
appropriate calculations.

The nucleus to nucleon ratio demonstrating the well
known Cronin effect[7] is defined as

RA/NspTd =
dshA/d2pT

AdshN/d2pT
. s1d

At large pT, of the order of few GeV this ratio exceeds
one, but eventually approaches one at very highpT as is
expected according tokT factorizationsit may even drop
below one due to the European Muon Collaboration

sEMCd effect at large Bjorkenxd.
Absolute values of the high-pT nuclear cross sections are

difficult to measure at RHIC, only the fraction of the total
inelastic cross sectiondNhA/d2pT is known. Then, one has to
normalize it by multiplying the fraction with the total inelas-
tic cross section,

RA/NspTd =
sin

hAdNhA/d2pT

Asin
NNdNhN/d2pT

=
1

Ncoll

dNhA/d2pT

dNhN/d2pT
, s2d

where

Ncoll = A
sin

hN

sin
hA . s3d

In some experiments the denominator in Eq.s1d,
dshN/d2pT, was directly measured or borrowed from other
measurements, otherwise it should be corrected for dif-
fractive dissociation of the colliding protons which pos-
sesses a large rapidity gap and escapes detection. In what
follows we assume that the denominator in Eq.s1d,
dshN/d2pT, was directly measuredssee, however, discus-
sion in Sec. I B 2 and concentrated on nuclear effects, i.e.,
the inelastic nuclear cross sectionsin

NA which was calcu-
lated in Refs.f1–3g in an oversimplified approach.

A. Number of collisions: What is actually colliding?

The Glauber approach is a model for the elastic hadron-
nucleus amplitude. It is demonstrated in Appendix A how to
calculate inelastic and quasielastic cross sections using uni-
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tarity and completeness. The model does not say anything
about exclusive channels of inelastic interaction. One can
formally expand the Glauber exponential, and it looks like a
series corresponding to different numbers of inelastic colli-
sions of the same hadron and with the same inelastic cross
section. However, a high-energy hadron cannot interact in-
elastically many times, since the very first inelastic collision
breaks down coherence between the constituents of the had-
ron. It takes a long time proportional to the energy to pro-
duce a leading hadron in final state.

The cross section of inelastic hadron-nucleus collision,
sin

hA, is related to the probability for the incoming hadron to
get the very first inelastic collision, usually on the nuclear
surface. This is whysin

hA~A2/3. Since the process is fully
inclusive, subsequent final state interactions do not affect the
cross section due to completeness.

Ncoll defined via expansion of the Glauber exponential
term should not be treated as multiple sequential interactions
of the projectile hadron(such as expansion of the exponen-
tial describing the time dependence of particle decay does
not mean that the particle can decay many times). After the
first inelastic interaction the debris of the projectile hadron
keep traveling through the nucleus, but their interactions ap-
parently have little to do with the properties of the incoming
hadron and its inelastic cross section. Formally, one can re-
late Ncoll to the mean number of the Pomerons which un-
dergo unitarity cuts. The Abramovsky-Gribov-Kancheli
(AGK) cutting rules[8], which are not proven in QCD, as-
sume that these cuts have the same eikonal weights as given
by the Glauber model. In this approach multiple interactions
are not sequential(planar), but occur in parallel, i.e., they
allow a simultaneous unitarity cut. In terms of the light-cone
approach multiple interactions correspond to higher Fock
states in the projectile hadron. The constituents of these
states propagate through the nucleus and experience their
first inelastic interaction independent of each other. The
probability of such multiple interactions has little to do with
the properties of the low Fock states which dominate the
hadron-nucleon cross section, therefore it should not be ex-
pressed as a power ofsin

hN. At any rate, whether the AGK
weights are correct or not, it is clear thatNcoll cannot be
treated as sequential interactions of the projectile hadron.

The first inelastic collision of the incoming hadron is a
soft color-exchange interaction. The projectile partons do not
alter either their number(for a given Fock state) or their
longitudinal momenta, but the whole system of partons ac-
quires a color. Therefore, the remnants of the hadron turn out
to be color connected to the remnants of the target. Then new
partons are produced from vacuum(e.g., via the Schwinger
mechanism) aiming to neutralize the color of the projectile
partons. Their momenta are much smaller than those of the
projectile partons. Such an excited and color neutral partonic
system keeps propagating through the medium and experi-
encing new soft color-exchange interactions similar to the
ordinary hadrons. The corresponding cross section is subject
to color screening and is controlled by the transverse, rather
than longitudinal, size of the system.

From the practical point of view, there is nothing wrong in
usingNcoll as a multiplication factor for hard reactions, since

within the Glauber model it is proportional to the nuclear
thickness functionTA

Nsbd, i.e., to the number of opportunities
for a parton to perform a hard process. Indeed, the projectile
high-energy partons participate in hard reactions independent
of the accompanying partons, since color screening plays no
role for a hard interaction. Moreover, naively, one may ex-
pect that this factorTA

Nsbd (TAB in the case ofAB collision) is
all one needs to normalize a hard process, and this normal-
ization is independent of the soft cross sectionsin

hN. However,
Ncoll is defined for events where inelastic collision did hap-
pen. Therefore, it must be properly normalized by the prob-
ability for the incoming hadron to make inelastic interaction
at the given impact parameter:

ncollsbd =
sin

NNTA
Nsbd

1 − expf− sin
NNTA

Nsbdg
. s4d

Averaging this expression over inelastic collisions at dif-
ferent impact parameters one indeed arrives to the expres-
sion s3d.

B. Correcting data for Rd-Au

The current analyses of RHIC data[1–3] calculateNcoll in
the Glauber Monte Carlo model assumingsin

NN=41−42 mb.
In this paper we challenge these calculations and show that
the published results ford-Au collisions are subject to im-
portant corrections and the conclusions are model dependent.

There are two major corrections to be done to the Cronin
ratio, Eq. (2), measured at RHIC. We combine them in a
correction factorK,

RdAspTd = RdA
RHICspTdK, s5d

where
K = KGrKGl. s6d

Here KGr is the correction related to Gribov’s inelastic
shadowing missed in Glauber model calculations. It is in-
troduced in the following section and calculated through-
out the paper.

Even within the Glauber model the calculations per-
formed in Refs.[1–3] should be corrected by a factorKGl. It
originates from a more accurate treatment of the inelasticNN
cross section which should correspond to the class of events
selected for the analysis, as is explained in Sec. I B 2. This
correction is calculated in Sec. II.

There is an additional correction which should be in-
cluded into Eq.(6) if one needs to compare with theoretical
predictions for the Cronin effect forpA collisions. It is re-
lated to the fact that the deuteron is a nucleus and is also
subject to the Cronin effect. Therefore high-pT enhancement
in d−A must be somewhat stronger than inp−A collisions.
This correction is evaluated in Sec. VII and found rather
small.

1. Inelastic shadowing

It is known that Gribov’s inelastic corrections[9] to the
Glauber approximation make nuclear matter more transpar-
ent and reduce the hadron-nucleus cross sections compared
to the Glauber model. This effect steeply rises with energy,
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as one can see from the example depicted in Fig. 1 for the
total neutron-lead cross section measured and calculated in
Ref. [10]. Apparently, the Glauber model overestimates the
cross section, and the deviation rises with energy. Without a
good theoretical input one cannot predict what will happen at
the energy of RHIC, which is 100 times higher than in fixed-
target experiments at Fermilab. This is a serious challenge
for the theory to calculate the inelasticdA cross section at
these energies, and the results apparently will be model de-
pendent. However, it is certain that the sign of the correction
remains negative and it can only rise with energy, i.e., it
cannot be smaller than what is shown in Fig. 1 for low en-
ergies.

Our own estimates summarized in Table I give a moderate
reduction, about 20%. The weakness of the effect is based on
a proper treatment of diffraction and is fixed by data on large
mass diffractive dissociation of protons[11]. At the same
time, many models predict quite a strong gluon shadowing
even at high virtualities. Naturally, this effect should not be
weaker in softNN interactions. Then it may lead to a stron-
ger suppression of the inelasticdA cross section than that we
found, as is discussed in Sec. VI B.

Note that although inelastic shadowing makes nuclear
medium more transparent, the mean number of collisions
increases according to Eq.(3). It sounds counterintuitive that
a hadron experiences more collisions in a less absorptive
medium. Formally it follows from Eq.(3), but can be ex-
plained qualitatively. For instance, if one calculated the mean
number of collisions in a photoabsorption reaction on a
nucleus using the Glauber formula, the result would be very
small, proportional toaem. However, Ncoll is defined for
events when inelastic collision takes place. In this case it
comes from hadronic fluctuations of the photon and is much
larger than the number of collisions given by the Glauber
formulas, Eq.(3). This example explains whyNcoll increases
due to inelastic shadowing.

2. How inelastic is the inelastic cross section?

As far as the need to calculate the deuteron-nucleus in-
elastic cross section is concerned it should be done in corre-
spondence with the class of events selected by the trigger.
The cross section calculated via the Glauber Monte Carlo

generator in all three experiments corresponds to the Glauber
formula derived in Appendix A, Eq.(A14), wheresin

NN is the
total inelasticNN cross section. Then, according to deriva-
tion, Eq.(A14) describes the total inelastic cross section on a
nucleus minus the part related to quasielastic nuclear excita-
tions (with no hadron produced). This is not what was actu-
ally measured in any of the three experiments[1–3]. These
experiments have different event selections and the calcula-
tions should comply with that.

The STAR experiment triggers on forward neutrons from
the gold[2] and detects all inelasticd-Au collisions includ-
ing quasielastic excitation of the gold.1 In this case, accord-
ing to the Glauber formalism presented in Appendix A, one
should rely on Eq.(A10) with stot

NN=51 mb, rather thansin
NN

=42 mb. At the same time, the two other spectrometers,
PHENIX and PHOBOS, seem to be insensitive to large ra-
pidity gap events, i.e., diffractive excitations of the deuteron
and gold[1,3].2 Then Eq.(A14) should be applied with a
replacementsin

NN⇒sin
NN−2ssd

NN−sdd
NN<30 mb, i.e., the single

and the double diffraction must be subtracted(see details in
Sec. II [12,13]. Apparently, it makes difference whether one
performs calculations with input cross section 51 mb, 42 mb,
or 30 mb.

The numerator in Eq.(4), sin
NN, is even more sensitive than

the denominator to assumptions where inelastic channels
should be included. However this does not seem to be a
problem, since the cross section of high-pT production inpp
collisions,dspp/d2pT, was directly measured in all the three
experiments,3 and we consider only the nuclear modification
factor, Eq.(5), in what follows.

C. The outline

This paper is organized as follows. We present a brief and
simple derivation of basic formulas of the Glauber model
[16] in Appendix A. In Sec. II we treat the deuteron as a
nucleus and generalize the Glauber model for this case. We
derive formulas for the cross sections of different channels,
perform numerical calculations, and present the results in
Table I. We corrected the input inelasticNN cross section for
diffraction and found a smallersin

dA than in Refs.[1,3], but
larger than in Ref.[2].

Events with a tagged spectator nucleon may serve as a
sensitive probe for nuclear transparency, since the spectator

1I appreciate the very informative communication with Carl
Gagliardi on this issue.

2A part of diffraction might have been included into the trigger
efficiency of the PHENIX spectrometer; namely, double diffraction,
i.e., excitation of nucleons in both the deuteron and the gold can
reach and fire sometimes the closest of the two beam beam counter
(BBC) triggers covering pseudorapidity intervalsh= ±s3−3.9d.
However, the main part of diffraction, single diffractive excitation
of either the deuteron, or gold could hardly reach the opposite hemi-
sphere and fire both the BBC triggers simultaneously, which is the
trigger condition. I am thankful to Barbara Jacak and Sasha Milov
for informative and clarifying discussions on this issue.

3Although it is stated in Ref.[1] that the cross sectiondspp/d2pT

was normalized to 42 mb, it was measured[14,15].

FIG. 1. Data and calculations[10] for the total neutron-lead
cross section as a function of energy. The dashed curve corresponds
to the Glauber model, while the solid curve is corrected for Gri-
bov’s inelastic shadowing.
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must propagate through the nucleus with no interaction. We
calculate the total cross section for this channel and the trans-
verse momentum distribution of the spectators. Contrary to
naive expectation that noninteracting nucleons retain their
primordial Fermi momentum distribution, we found an
amazingly strong focusing effect; namely, the nucleus acts
like a lens focusing the spectators into a narrow cone with
momentum transfer range of the order of the inverse nuclear
radius. The transverse momentum spectrum of the spectators
acquires typical diffraction structure having minima and
maxima.

Inelastic shadowing corrections are introduced in Sec. IV.
First, we use the traditional presentation in terms of inelastic
diffractive excitations in intermediate state of hadron-nucleus
elastic amplitude(Sec. IV A). This approach is quite re-
stricted, being unable to deal with higher order scattering
terms which are especially important at high energies. There-
fore, we switch to the eigenstate representation introduced in
general terms in Sec. IV B. Its realization in QCD is the
light-cone color-dipole approach presented in Sec. V.

The part of the inelastic corrections related to the lowest
hadronic Fock component consisting only of valence quarks
corresponds to diffractive excitation of resonances in usual
terms. This contribution is analyzed and estimated numeri-
cally in Sec. V A. We demonstrate that these corrections
make heavy nuclei much more transparent: instead of expo-
nential attenuation we found a linear dependence on the in-
verse nuclear thickness(Sec. V A 1). Correspondingly, we
derived formulas for cross sections of different channels cor-
rected for inelastic shadowing for hadron-nucleus(Sec.
V A 2), and deuteron-nucleus(Sec. V A) collisions. In Sec.
V C we study the possibility of improving our calculations.
We tested sensitivity of our results to the form of the nucleon
wave function and derived formulae for the case of a realistic
saturated dipole-nucleon cross section.

Gluonic excitations corresponding to Fock states contain-
ing extra gluons are considered in Sec. VI. They correspond
to diffractive excitations of large mass which are known to
have quite a small cross section. This smallness leads to a

prediction of rather weak gluonic shadowing,,20%, and
small contribution to the inelastic corrections. At the same
time other models predict much stronger gluon shadowing
(Sec. VI B) which may substantially change the normaliza-
tion of thed-Au data.

Since nuclear matter becomes more transparent due to
inelastic shadowing, the number of participants changes as
well. In Sec. VI C we found this effect to be sizable.

In Sec. VII we sum up the effects considered so far to see
how much they affect thed-Au data. The results are pre-
sented in Table I. We also corrected the PHENIX data for
high-pT pions to see how important these corrections are
compared to the current error bars. We found a considerable
change: the Cronin effect for high-pT pions had disappeared.

Our observations are summarized in Sec. VIII. The main
conclusion is that the current data for high-pT hadron produc-
tion in deuteron-gold collisions are not decisive, and should
be complemented with direct measurements of the inelastic
d-Au cross section.

II. EXTENDING THE GLAUBER MODEL TO
DEUTERON-NUCLEUS COLLISIONS

The basic formulas of the Glauber model for hadron-
nucleus collisions are presented in Appendix A. If one treats
the deuteron as a hadron, one can calculate thedA total, total
elastic, and inelastic cross section, provided that the elastic
dN amplitude is known. The latter can be calculated employ-
ing the Glauber model, too. This is done in Appendix A.

One can do calculations differently, treating the deuteron
as a system of two nucleons interacting with the nucleus. In
this case one can consider more reaction channels as deu-
teron excitation, etc., which have been missed in the previ-
ous approach.

A. The total cross section

We generalize Eq.(A5) from Appendix A for a deuteron
beam as follows:

TABLE I. Results for different cross sections and numbers of collisions calculated using Glauber approxi-
mation (Sec. II), corrected for inelastic shadowing related to valence quark fluctuations(Sec. V A), and for
gluon shadowing(Sec. VI). The results including the ultimate renormalization factorK depend on the
experimental setup and are different for the STAR and PHENIX experiments.

Observable Glauber Valence quark Plus gluonic Correction
model fluctuations excitations factor

stot
d-Ausmbd 4110.1 3701.0 3466.2

STAR sin
d-Ausmbd 2422.7 2226.6s2335.8d 2118.3s2228.3d

FactorK in Eqs.(5) and (6) KGL=1.04 KGr=0.87s0.92d K=0.91s0.96d
Ncoll

in (minimum bias) 6.9 7.5 7.9

sin
d-Austaggdsmbd 458.4 544.9s511.5d 551.8s520.1d
Ncoll

in staggd 2.9 4.4 5.0
PHENIX snondif f

d-Au smbd 2146.0 1998.3s2100.1d 1930.3s2033.7d
FactorK KGl=0.92 KGr=0.9s0.95d K=0.83s0.87d

Ncoll
nondif f (minimum bias) 5.5 5.9 6.1

snondif f
d-Au staggdsmbd 324.3 480.2s451.5d 498.4(470.6)
Ncoll

nondif fstaggd 2.3 2.9 3.2
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stot
dA = 2 ReE d2rTuCdsrTdu2k0u1 − p

k=1

A

f1 − GpNsbW − rWT/2 − sWkdgf1 − GnNsbW + rWT/2 − sWkdgu0l

= 2E d2bE d2rTuCdsrTdu2X1 − expH−
1

2
stot

NNFTA
NSbW +

1

2
rWTD + TA

NSbW −
1

2
rWTDG+ sel

NNTA
NsbdexpS−

rT
2

4BNN
DJC , s7d

where rWT is the transverse nucleon separation in the deu-
teron anduCdsrTdu2 is the deuteron light-cone wave func-
tion squared and integrated over relative sharing by the
nucleons of the deuteron longitudinal momentum. It is
presented in Appendix B. The effective nuclear thickness
function TA

Nsbd convoluted with theNN elastic amplitude
is introduced in Eq.sA6d.

We did calculations with nuclear density in the Woods-
Saxon form

rAsrd =
3A

4pRA
3s1 + p2a2/RA

2d
1

1 + expS r − RA

a
D , s8d

with RA=6.38 fm anda=0.54 fm, same as in Ref.f1g for
easier comparison. The result for the total cross section
stot

d-Au is shown in Table I.
Equation(7) is easy to interpret. The first two terms in the

exponent correspond to independent interaction of two
nucleons separated by transverse distancerWT. Of course, the

smallerrT is, the stronger nucleons shadow each other, and
this is accounted for by the third term.

One can see the difference between this expression and
Eq. (A5) (for h;d). In the latter case the averaging overrWT is
put up into the exponent, while in the former case, Eq.(7),
the whole exponential is averaged. We will see in Sec. IV B
that this difference is a part of Gribov’s inelastic corrections,
so Eq.(7) takes the first step beyond the Glauber approxima-
tion.

Note that the last term in the exponent in Eq.(7) is quite
small. Besides smallness ofsel

NN/stot
NN, the exponential factor

is rather small. The mean value of the exponent is
krT

2l/4BNN<5. This term reduces the totald-Au cross section
by 1.3% only.

B. The cross section of elasticdA scattering and deuteron
breakup dA\pnA

According to Eq.(A9) in order to find elasticdA cross
section one should square the partial elastic amplitude and
integrate overb:

sel
dA =E d2bUE d2rTuCdsrTdu2X1 − expH−

1

2
stot

NNFTA
NSbW +

1

2
rWTD + TA

NSbW −
1

2
rWTDG+ sel

NNTA
NsbdexpS−

rT
2

4BNN
DJCU2

. s9d

This is the square of the average of the elastic amplitude over deuteron configurations. If, however, we take average of the
amplitude squared, the result will include also dissociationd→pn, i.e.,

sel
dAsdA→ dAd + sdiss

dA sdA→ npAd =E d2bE d2rTuCdsrTdu2

3U1 − expH−
1

2
stot

NNFTA
NSbW +

1

2
rWTD + TA

NSbW −
1

2
rWTDG + sel

NNTA
NsbdexpS−

rT
2

4BNN
DJU2

.

s10d

C. The total inelastic cross section

Subtracting from the total cross section the elastic part one gets the cross section of all inelastic channels indA. We,
however, prefer to subtract the deuteron quasielastic breakup too, since it is not detected by any of the RHIC experiments.
Then we have

sin
dA = stot

dA − sel
dA − sdiss

dA sdA→ npAd

=E d2bE d2rTuCdsrTdu2 3 X1 − expH− stot
NNFTA

NSbW +
1

2
rWTD + TA

NSbW −
1

2
rWTDG+ 2sel

NNTA
NsbdexpS−

rT
2

4BNN
DJC . s11d
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The result of numerical calculation for this cross section
is exposed in Table I. This cross section covers dif-
fractive excitations as well, therefore we place the result
in the upper part of the table which is supposed
to be related to experiments sensitive to diffraction
sSTARd.

The impact parameter distribution of the inelastic cross
section is plotted by a dashed curve in Fig. 2 and the inte-
grated cross section is shown in Table I.

D. The cross section of nondiffractive channels

In experiments insensitive to large rapidity gap event one
should employ the inelastic cross section with all diffractive
contributions removed; that is one should also subtract the
cross sections of quasielastic excitation of the nucleus,A
→A*, and diffractive excitation of colliding nucleons.

The cross section of singlesdA→dA*d and doublesdA
→pdA*d quasielastic and quasidiffractive nuclear excitation
reads[compare with Eq.(A13)]

sqel
dAsdA→ dA*d + sqsd

dA sdA→ pnA*d

=E d2rTuCdsrTdu2 3 Hk0uU1 − p
k=1

A

f1 − GpNsbW − rWT/2 − sWkdgf1 − GnNsbW + rWT/2 − sWkdgU2

u0l

− k0u1 − p
k=1

A

f1 − GpNsbW − rWT/2 − sWkdgf1 − GnNsbW + rWT/2 − sWkdgu0l2J
=E d2bE d2rTuCdsrTdu2XexpH− sin

NNFTA
NSbW +

1

2
rWTD + TA

NSbW −
1

2
rWTDG+ 4sel

NNTNsbdgsrTdexpS−
rT

2

4BNN
DJ

−expH− stot
NNFTA

NSbW +
1

2
rWTD + TA

NSbW −
1

2
rWTDG + sel

NNTNsbdexpS−
rT

2

4BNN
DJC , s12d

where

gsrd = 1 −
8

3

sel
NN

stot
NNexpS−

rT
2

8BNN
D + 8Ssel

NN

stot
NND2

expS−
rT

2

4BNN
C

s13d

is a correction factor hardly different from 1. In what
follows we do not keep the small terms in Eq.s13d. Note
that the form of Eq.s12d is analogous to that of Eq.sA13d.

For experiments insensitive to diffraction the quasielastic
cross section, Eq.(12), should be subtracted from Eq.(11)
and the result would be similar to Eq.(A14). However, we
still miss the contribution of diffractive channels related to
diffractive excitations of nucleons in the deuteron and
nucleus. It is impossible to introduce consistently diffraction
in the framework of the Glauber model which is a single-
channel approximation. Diffraction naturally emerges in the
multiple coupled channel approach or in the eigenstate
method introduced below. Meanwhile, one can use the fol-
lowing prescription.

Let us expand the exponentials in Eq.(12) in small ex-
pansion parametersel

NN TAsbd up to the first order,

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

b(fm)

dσ
in
 (

b)
 / 

d2  b

FIG. 2. The impact parameter distribution of inelastic deuteron-
gold collisions(three upper curves) including diffractive excitations

(STAR trigger). Impact parameterbW corresponds to the center of
gravity of the deuteron. The dashed curve corresponds to the
Glauber approximation, Eq.(10). The thin solid curve includes in-
elastic shadowing related to excitation of the valence quark skel-
eton, Eq.(45). The thick solid curve is final, it includes gluon shad-
owing as well. The bottom solid thick curve shows the difference
between the Glauber and final curves. The dotted curve shows the
range of model uncertainty and corresponds to gluon shadowing
with RG=03 (see Sec. VI B). All curves are calculated with total
cross sections̃tot

NN=51 mb.
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sqel
dA <E d2bE d2rTuCdsrTdu2expH− stot

NNFTA
NSbW +

1

2
rWTD

+ TA
NSbW −

1

2
rWTDGJsel

NNFTA
NSbW +

1

2
rWTD

+ TA
NSbW −

1

2
rWTDG + . . . . s14d

In order to include the possibility of diffractive excitation
of nucleons in the colliding nuclei, one should replace in Eq.
(14),

sel
NN ⇒ s̃el

NN = sel
NN + 2ssd

NN + sdd
NN s15d

in all orders ofsel
NN TAsbd. This is a substantial correction

since at RHIC energysel
NN=9 mb, andsel

NN+2ssd
NN+sdd

NN

=21 mb.
The final Glauber model expression for the nondiffractive

inelasticdA cross section reads

snondif f
dA =E d2bE d2rTuCdsrTdu2

3X1 − expH− s̃in
NNFTA

NSbW +
1

2
rWTD

+ TA
NSbW −

1

2
rWTDG+ 4s̃el

NNTA
NNsbdexpS−

rT
2

4BNN
DJC ,

s16d

where

s̃in
NN = stot

NN − s̃el
NN. s17d

We calculated the nondiffractive part, Eq.(16), of the in-
elasticd-Au cross section and the result is shown in Table I.
The corresponding number of collisions also presented in the
table is rather small compared to the one quoted in Ref.[1].
This is mainly due to a smaller inelastic cross sections̃in

NN we
use.

III. QUANTUM MECHANICS AT WORK: ILLUMINATING
FOCUSING EFFECT FOR SPECTATORS

Assume that only the proton in the deuteron interacts in-
elastically with the nucleus, while the neutron is a spectator
(of course, all the following results are symmetric relative to
interchangep↔n). This is a very interesting process of si-
multaneous interaction and no interaction. It provides direct
information about nuclear transparency. Apparently, this pro-
cess pushes the neutron to the ultraperiphery of the nucleus
where its survival probability is high, while the proton pre-
fers to hit the dense area of the nucleus and interact.

Naively, the survived spectator neutrons should maintain
their primordial transverse momentum distribution controlled
by the deuteron size. This is assumed in the Glauber Monte
Carlo. However, quantum mechanics is at work, and the
nucleus acts like a lens focusing spectator neutrons. The sur-
vival probability modifies the shape of the wave packet of
the spectators in the impact parameter plane. Correspond-

ingly, their pT distribution changes. This is how elastic scat-
tering on an absorptive target happens: it is not due to trans-
parency of the target, but is caused by absorption. In the limit
of a completely transparent target, the incoming plane wave
is not disturbed and no scattering occurs. Absorption makes a
hole in the plane wave, and one can think about the outside
area of the incoming wave which undergoes elastic scatter-
ing. On the other hand, one can subtract the incoming plane
wave whose Fourier transform is just ad function(zero angle
scattering) and the rest is a wave packet with a transverse
area of the target size. A Fourier transform of this wave
packet gives the elastic amplitude[compare with Eq.(A9)].

Thus, the spectator neutrons experience elastic scattering
on the target, rather than simply propagating with the undis-
turbed primordial transverse Fermi momentum. Below, we
derive formulas which show how elastic scattering of the
spectator neutrons happens and perform numerical evalua-
tion of the effect.

We start with the cross section of this process which can
be written as

stagg
dA sdA→ nXd = ReE d2rTuCdsrTdu2

3k0up
k=1

A

f1 − GnNsbW − rWT − sWkdg2

3 H1 − p
k=1

A

f1 − 2GpNsbW − sWkdgJu0l,

s18d

where bW is the impact parameter of the proton. The first
factor here would be the elastic neutron-nucleus cross sec-
tion, if it were not weighted by the second term which is
the inelastic proton-nucleus cross section, i.e., the differ-
ence between the total and elastic and quasielastic cross
sectionsssee Appendix Ad.

After integration over the coordinates of bound nucleons
we get

snondif f
tagg sdA→ nXd =E d2bE d2rTuCdsrTdu2

3expf− stot
NNTA

NbW − rWTd

3 H1 − expF− s̃in
NNTA

Nsbd + 4sel
NNTN

3 sbW − rWT/2dgsrTdexpS−
rT

2

4BNN
DGJ .

s19d

Here we made a correction for diffractive channels replac-
ing sin

NN⇒ s̃in
NN andsel

NN⇒ s̃el
NN, valid only for those experi-

ments which are not sensitive to diffractionsPHENIX,
PHOBOSd. Correspondingly, the numerical result for
snondif f

tagg sdA→nXd is placed at the bottom part of the table.
The results at the upper part of the table use the total
elastic and total cross sections instead ofs̃el

NN and s̃in
NN as
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an input for calculations. Indeed, since the STAR experi-
ment is sensitive to quasielastic nuclear excitation as well,
it should be included, and one has to rely on Eq.sA13d.
We also demonstrate the impact parameter dependence of
sin

taggsdA→nXd in Fig. 3. Interestingly, the interacting pro-
tons in taggeddA collisions strongly pick at the very edge
of the nucleus in spite of the large radius of the deuteron.
This is not a trivial observation and can be probably in-
terpreted as follows. The spectator neutron must be mostly
outside of the nucleus. Then, for protons which are close
to the edge of the nucleus the interval of azimuthal angle
between the proton and the neutron is larger than for a
proton deep inside the nuclear area. This phase space fac-
tor enhances the contribution of peripheral protons.

To see how the spectator neutrons are distributed one can

use the same equation(19) with the replacementbW ⇒bW+rWT.
The result of calculations is depicted in Fig. 4. This plot
demonstrates that the spectators have a more peripheral im-
pact parameter distribution than the interacting protons, but
they are amazingly close.

We also calculated the number of collisions of the proton
which underwent interaction in events with a tagged specta-
tor neutron,

Ncoll
tagg=

s̃in
NN

stagg
dA E d2bE d2rTuCdsrTdu2TA

NsbW + rWT/2d

3expf− stot
NNTA

NsbW − rWT/2dg. s20d

The results forNcoll
tagg for events which include diffraction

or not are shown at the upper and bottom parts of Table I
respectively. The mean value ofNcoll for tagged events
turns out to be nearly a half of the minimal bias value, Eq.
s3d, which is for two nucleons in the deuteron. This con-
tradicts the intuitive expectation that tagged events are

much more peripheral than minimum bias inelastic colli-
sions and the proton should have a much smaller number
of collisions.

To get the transverse momentum distribution of spectator
neutrons, one should Fourier transform the elastic neutron
amplitude before squaring it:

dstaggsdA→ nXd
d2qT

=
1

s2pd2 E d2bh1 − expf− s̃in
NNTA

Nsbdgj

3E d2r1d
2r2 3 expfiqWTsrW1 − rW2dg

3expH−
1

2
stot

NNfTA
NsbW − rW1d + TA

NsbW − rW2dgJ
3E

−`

`

drLFu*srL, r1dusrL, r2d + w*srL, r1dwsrL, r2d
ÎsrL

2 + r1
2dsrL

2 + r2
2d G .

s21d

It is important that the proton inelastic interaction is inco-
herent, therefore we should first sum up coherently all
amplitudes of neutron elastic scattering for the fixed im-
pact parameter of the proton, then Fourier transform it,
square and after all integrate over the proton impact pa-
rameter. This is explicitly done in Eq.s21d. Apparently,
integration overqWT in Eq. s21d leads to the expression in
Eq. s19d. The S and D wave functions are presented in
Appendix B.

In Fig. 5 we compare the normalized differential cross
section, Eq.(21),
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FIG. 3. The impact parameter distribution of interacting protons
in tagged deuteron-gold collisions with spectator neutrons. The cal-
culation includes diffractive excitations(STAR trigger). Impact pa-

rameterbW corresponds to the proton. The dashed curve represents
the Glauber approximation, Eq.(10). The thin solid curve includes
inelastic shadowing related to excitation of the valence quark skel-
eton, Eq.(45). The thick solid curve includes gluon shadowing as
well. All curves are calculated with total cross sections̃tot

NN

=51 mb.
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FIG. 4. The impact parameter distribution of spectator neutrons
in tagged deuteron-gold collisions with interacting protons. The cal-
culation includes diffractive excitations(STAR trigger). Impact pa-

rameterbW corresponds to the proton. The dashed curve represents
the Glauber approximation, Eq.(10). The thin solid curve includes
inelastic shadowing related to excitation of the valence quark skel-
eton, Eq.(45). The thick solid curve includes gluon shadowing as
well. All curves are calculated with total cross sections̃tot

NN

=51 mb.
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RtaggsqTd =
1

sin
tagg

dstagg
dA

d2qT
, s22d

with the undisturbed primordial distribution of the neutron
in the incoming deuteron, also normalized to 1,

dNn
d

d2q
=

1

s2pd2 E d2r1d
2r2expfiqWTsrW1 − rW2dg

3 E
−`

`

drLFu*srL, r1dusrL, r2d + w*srL, r1dwsrL, r2d
ÎsrL

2 + r1
2dsrL

2 + r2
2d G ,

s23d

The surprising observation is that the spectator neutrons
have a much narrowerqT distribution than the Fermi motion
in the deuteron. This is opposite to the usualqT broadening
(Cronin effect) for particles propagating though a matter
[17]. In the present case the nucleus acts like a lens focusing
neutrons. Figure 5 also exposes quite a different shape of the
qT distribution of spectators having diffractionlike minima
and maxima.

Comparing the mean values ofqT
2 of spectator neutrons

with the primordial value in the deuteron, the difference is
tremendous, about factor of 20,

kqT
2lspect= 0.00038 GeV2, s24d

kqT
2ldeuteron= 0.0065 GeV2. s25d

This focusing effect is a beautiful manifestation of quan-
tum mechanics. The intuitive interpretation is rather straight-
forward. The condition that the neutron in the deuteron re-
mains intact while the proton must interact means that the
neutron tries to pass the nucleus through the diluted periph-
ery while the proton prefers the collision to be central. These
conflicting conditions cause a strong suppression of small-
size deuteron fluctuations, while large separations in the deu-

teron are enhanced. Apparently, such large-size configura-
tions are related to a smaller Fermi momentum and this
simple observation explains the focusing effect.

This explanation offers a possibility to study the correla-
tion of the focusing effect with centrality of collision.4 Sup-
pressingb integration in Eq.(21) one can trace theb depen-
dence of the focusing effect. In Fig. 6 the same comparison
of two qT distributions is shown for central collisionb=0
(impact parameter of the interacting proton). The interpreta-
tion of central collisions is especially clear. Once the proton
hits the center of the nucleus, the spectator neutron must be
located along a rage ring outside the nucleus with a radius
larger than the nucleus. Correspondingly, theqT distribution
has the typical diffractive shape and a small widthDqT
&1/RA.

Contrary to our expectations, the distributions are quite
similar. The mean value ofkqT

2l=0.00032 GeV2 is close to
our result, Eq.(24), for the minimal bias sample.

One may wonder why the minima on theqT distribution,
Fig. 6, are deeper than for the minimal bias sample, Fig. 5. In
fact, for central collisions the minima go down to zero, since
we neglect the real part of the elastic amplitude and the Fou-
rier transform oscillates changing sign. However, the posi-
tion of the minima(slightly) depends on the impact param-
eter of the collision. Therefore, when one sums upqT
distributions with different minimum positions, the resulting
distribution will have minima which are partially filled up.

One should be cautious when comparing these predictions
with data which might be contaminated by nonspectator neu-
trons. First, the neutron calorimeters used at RHIC have a
rather large acceptance which covers transverse momenta up
to ,300 MeV. Therefore, most of the neutrons which expe-
rienced quasielastic scattering contribute as well(except
STAR). Besides, the range of longitudinal momenta is rather
large and events with diffractive excitation on nucleons in
the gold should contribute, too. All such neutrons are not
spectators and have much widerqT distribution.

4I am thankful to Alexei Denisov for this suggestion.
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FIG. 5. Transverse momentum distribution of spectator neutrons
in the tagged reactiond+Au→n+X (solid curve), and in the pro-
jectile deuteron(dashed curve). The inelastic reactionp+Au→X is
assumed to include diffraction(STAR experiment). The calculations
are performed in the Glauber approximation, Eq.(21).
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Second, selecting central collisions in accordance with
higher multiplicity, one should remember that central colli-
sions are suppressed(see Fig. 3) and one should not mix
them up with the fluctuations of multiplicity.

IV. INELASTIC SHADOWING CORRECTIONS

A. Intermediate state diffractive excitations

The Glauber model is a single-channel approximation, it
misses the possibility of diffractive excitation of the projec-
tile in the intermediate state illustrated in Fig. 7. These cor-
rections, called inelastic shadowing, were introduced by Gri-
bov back in 1969 [9]. The formula for the inelastic
corrections to the total hadron-nucleus cross section was sug-
gested in Ref.[18],

Dstot
hA = − 4pE d2b expF−

1

2
stot

hNTAsbdG
3E

Mmin
2

dM2U dssd
hN

dM2dpT
2U

pT=0
E

−`

`

dz1rAsb, z1d

3E
z1

`

dz2rAsb, z1deiqLsz2−z1d, s26d

wheressd
hN is the cross section of single diffractive disso-

ciation hN→XN with longitudinal momentum transfer

qL =
M2 − mh

2

2Eh
. s27d

This correction makes nuclei more transparent[19]. One
can also see from Fig. 1 that Eq.(26) does a good job de-
scribing data at low energies[10,20], since it takes care of
the onset of inelastic shadowing via phase shifts controlled
by qL. Higher order off-diagonal transitions are neglected.
Diagonal transitions(or absorption of the excited state) are
important, but unknown. Indeed, the intermediate stateX has
definite massM, but no definite size, or cross section. It isad
hoc fixed in Eq. (26) at stot

hN. It has been a long standing
problem of how to deal simultaneously with phase shifts
which are controlled by the mass and with the cross section
which depends on the size. This problem was eventually
solved in Refs.[21,22] within the light-cone Green function
approach(see Sec. VI).

The situation changes at the high energies of RHIC and
LHC, all multiple interactions become important, but phase
shifts vanish, substantially simplifying calculations. No ex-
perimental information, however, is available for off-

diagonal diffractive amplitudes for excited state transitions
X1→X2. A solution proposed in Ref.[23] is presented in the
following section.

There is, however, one exclusion which is free from these
problems, hadron-deuteron collisions. In this case no inter-
action in the intermediate state is possible and knowledge of
diffractive cross sectionNN→NX is sufficient to calculate
the inelastic correction with no further assumptions. In this
case Eq.(26) takes the simple form[9,24], analogous to Eq.
(A17),

Dstot
hd = − 2E dM2E dpT

2 dssd
hN

dM2dpT
2Fdstd. s28d

We calculate this correction forpd collisions following
Ref. [25] at Îs=200 GeV using the slopeBNN

sd =10 GeV−2

which is reduced by the proton vertex contribution 4 GeV−2

compared toBNN
el =14 GeV−2. The upper cutoff imposed by

the deuteron form factor on integration overM2 is quite high
at this energy and we can use the free-diffraction cross sec-
tion ssd

NN=4 mb [12]. Then we findDstot
hd=−1.75 mb.

B. Eigenstate method

If a hadron were an eigenstate of interaction, i.e., could
undergo only elastic scattering(as a shadow of inelastic
channels) and no diffractive excitation was possible, the
Glauber formula would be exact and no inelastic shadowing
corrections would be needed. This simple observation gives
a hint that one should switch from the basis of physical had-
ronic states to a new one consisting of a complete set of
mutually orthogonal states, which are eigenstates of the scat-
tering amplitude operator. This was the driving idea of de-
scription of diffraction in terms of elastic amplitudes[26,27],
and becomes a powerful tool for calculation of inelastic
shadowing corrections in all orders of multiple interactions
[23]. Hadronic states(including leptons and photons) can be
decomposed into a complete set of such eigenstatesukl,

uhl = o
k

Ck
hukl, s29d

whereCk
h are hadronic wave functions in the form of Fock

state decomposition. They obey the orthogonality condi-
tions

o
k

sCk
h8d†Ck

h = dhh8,

o
h

sCl
hd†Ck

h = dlk. s30d

We denote byfel
kN=i stot

kN/2 the eigenvalues of the elastic

amplitude operatorf̂ neglecting its real part. We assume that
the amplitude is integrated over impact parameter, i.e., the
forward elastic amplitude is normalized asufel

kNu2
=4 p dsel

kN/dtut=0. We can then express the elasticfelshhd and
off-diagonal diffractivefsdshh8d amplitudes as

fel
hN = 2io

k
uCk

hu2stot
kN ; 2iksl; s31d

AA

h h

FIG. 7. Diagonal and off-diagonal diffractive multiple interac-
tions of the projectile hadron in intermediate state.
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fsd
hNsh → h8d = 2io

k
sCk

h8d†Ck
hstot

kN. s32d

Note that if all the eigenamplitudes were equal, the dif-
fractive amplitudes32d would vanish due to the orthogo-
nality relation, Eq.s30d. The physical reason is obvious. If
all the fel

kN are equal, the interaction does not affect the
coherence between the different eigencomponentsukl of
the projectile hadronuhl. Therefore, off-diagonal transi-
tions are possible only due to differences between the ei-
genamplitudes.

If one sums up all final states in the diffractive cross sec-
tion, one can use the completeness condition(30). Then, ex-
cluding the elastic channels one gets[23,28,29]

16pUdssd
hN

dt
U

t=0

= o
i

uCi
hu2sstot

iN d2 − So
i

uCi
hu2stot

iND2

; kstot
2 l − kstotl2. s33d

As long as the main problem of the Glauber approxima-
tion is the need to include off-diagonal transitions, one
should switch to an eigenstate basis. Then each of the eigen-
states can experience only elastic diffractive scatterings and
the Glauber eikonal approximation becomes exact. Thus, all
the expressions for cross sections of different channels de-
rived in the Glauber approximation in Appendix A are exact
for any of the eigenstates. Then, the corresponding cross sec-
tions for hadron-nucleus collisions are obtained via a proper
averaging of those in Appendix A[23,29],

stot
hA = 2E d2bh1 − kexpf− 1

2stotTA
hsbdglj, s34d

sel
hA =E d2bu1 − kexpf− 1

2stotTA
hsbdglu2, s35d

sin
hA =E d2bh1 − kexpf− sinTA

hsbdglj. s36d

It is interesting that the last expression forsin
hA is already

free from diffraction contribution. Although only elastic and
quasielastic cross sections were subtracted fromstot

hA in
Glauber model in Appendix A, after averaging over eigen-
states it turns out that diffraction is subtracted as well. In-
deed, direct averaging of the elastic cross section, Eq.(A9),
is different from Eq.(35) and includes coherent diffraction,
hA→XA, in which cross section reads[23,29]

ssd
hAshA→ XAd =E d2bhkexpf− stotTA

hsbdgl

− kexpf− 1
2stotTA

hsbdgl2j. s37d

Averaging of the quasielastic cross section, Eq.sA13d,
leads to inclusion of diffractive excitation of the hadron
h→X besides excitation of the nucleus,A→Y.

Thus, Eq.(36), resulting from a direct averaging of the
single-channel inelastic cross section Eq.(A14), corresponds
to that part of the totalhA cross section which does not
contain elastic scattering,hA→hA, coherent diffraction,hA

→XA, quasielastic,hA→hY, and double diffraction,hA
→XY. This part of the cross section is what is measured as
the inelastic cross section in heavy ion andpsddA collisions
at SPS and RHIC, and what we are going to calculate below.

One may wonder, what is the difference between the cross
sections in Eqs.(34) and(36) and those in Glauber approxi-
mation, Eqs.(A5), (A9), and(A14)? The difference is obvi-
ous, in the former set of equations the exponentials are av-
eraged, while the Glauber approximation contains
exponentials of averaged values. For instance, the total cross
section in the Glauber approximation reads

ustot
hAuGl = 2E d2bh1 − expf− 1

2kstot
i lTA

hsbdgj, s38d

where kstotl=stot
hN. If we subtract this from Eq.s34d, the

rest is Gribov’s inelastic correction calculated in all or-
ders. Indeed, we can compare it with expressions34d ex-
panding the exponentials in Eqs.s34d and s38d in multi-
plicity of interactions up to the lowest order. Employing
Eq. s33d we find

ustot
hA − stot

hAuGl =E d2b
1

4
fkstot

i l2 − ksstot
i d2lgTA

hsbd2

= − 4pE d2bTA
hsbd2E dM2U dssd

h

dM2dt
U

t=0

.

s39d

This result is identical to Eq.s26d, if we neglect there the
phase shift vanishing at high energies and also expand the
exponential.

Note that since the inelastic nuclear cross section in the
form of Eq. (A14) is correct for eigenstates, one may think
that averaging this expression would give the correct answer.
However, such a procedure includes a possibility of excita-
tion of the projectile and disintegration of the nucleus to
nucleons, but misses the possibility of diffractive excitation
of bound nucleons which is not a small correction. We intro-
duce a corresponding correction in the following section.

V. LIGHT-CONE DIPOLES AND INELASTIC
SHADOWING

A. Excitation of the valence quark skeleton

The light-cone dipole representation in QCD was intro-
duced in Ref.[29] where it was realized that color dipoles
are the eigenstates of interaction and can be an effective tool
for calculation of diffraction and nuclear shadowing. It was
concluded that the key quantity of the approach, the cross
section of the dipole-nucleon,sqq

N srTd, is a universal and fla-
vor independent function which depends only on transverse
separationrT and energy. Of course the energy must be suf-
ficiently high to freeze variations of the dipole size during
interaction, otherwise one should rely on the Green function
approach[30,21,22] (see Sec. VI).

This representation suggests an effective way to sum up
all multistep inelastic corrections in all orders[29]. Since
dipoles are eigenstates of interaction in QCD, they are not

TRANSPARENT NUCLEI AND DEUTERON-GOLD… PHYSICAL REVIEW C 68, 044906(2003)

044906-11



subject to any diffractive excitation, and the eikonal approxi-
mation becomes exact. Therefore, if energy is high enough to
keep the transverse size of a dipole “frozen” by Lorentz time
dilation during propagation through the nucleus, one can
write the cross sections in the form of Eqs.(34)–(36). The
averaging in this case means summing up different Fock
components of the hadron consisting of different numbers of
quarks and gluons, and for each of them integration is over
rT (intrinsic separations), weighted with the square of the
hadron light-cone wave functionuChsrTdu2. We assume that
the hadron does not have a “molecular” structure, i.e., is not
like a deuteron consisting of two colorless clusters. There-
fore all the following expressions apply only to elementary
hadrons. To simplify calculations, in what follows, we rely
on the quark-diquark model of the proton, neglecting the
diquark size. The total cross section is basically insensitive to
the diquark size, besides, there are many evidences that this
size is indeed small[31,32].

1. Nuclear transparency

According to the Glauber model hadrons attenuate expo-
nentially in nuclear matter,

Tr = exps− stot
hNTAd, s40d

where Tr, called nuclear transparency, is the survival
probability of a hadron propagating through a nuclear
matter of thicknessTA. However, we know that the hadron
fluctuates and can be viewed as a combination of Fock
states of different content and size. Some of them having
a small transverse size can easily penetrate the medium
and do not attenuate as fast as in Eq.s40d.

Assuming that the hadronic wave function has a Gaussian
form and the dipole cross sectionssrTd~rT

2 (this small-rT
behavior does a good job describing hierarchy of hadronic
cross sections and their sizes[33]) we can perform averaging
in Eq. (34) and arrive at a rather simple expression[29]

kexpf− ssrdTAgl =
1

1 + stot
hNTA

. s41d

This explicitly demonstrates how Gribov’s corrections
make nuclei more transparent. Since exponential attenua-
tion is much stronger than a power, for largeTA scentral
collisions with heavy nucleid the difference might be tre-
mendous.

2. Cross sections

The total cross section. The total hadron-nucleus cross
section is modified according to Eq.(41) as

stot
hA =E d2b

stot
hNTA

hsbd
1 + 1

2stot
hNTA

hsbd
. s42d

Although Gribov’s corrections(color transparency) make
nuclei much more transparent, the modified total cross sec-
tion, Eq. (42), is not much smaller than the result of the
Glauber approximation, Eq.(A5). This is because the central
area of a heavy nucleus is “black,” i.e., fully absorptive, in
both cases, and the cross section is mainly related to the

geometry of the nucleus. In other words, the exponential
term in Eq.(A5) is very small for central collisions, and the
total cross section is rather insensitive to even dramatic
variations of its magnitude.

The elastic cross section. The partial elastic cross section
is given by the square of the averaged value of the elastic
amplitude. We get

sel
hA =

1

4
E d2b

fstot
hNTA

hsbdg2

f1 + 1
2stot

hNTA
hsbdg2 . s43d

Correspondingly, the differential elastic cross section
reads

dsel
hA

dqT
2 =

1

16p
UE d2b

stot
hNTA

hsbd
1 + 1

2stot
hNTA

hsbd
expsiqW ·bWdU2

. s44d

The total inelastic cross section. The cross section of all
inelastic channels is given by the difference

sin
hA = stot

hA − sel
hA =E d2b

stot
hNTA

hsbdf1 + 1
4stot

hNTA
hsbdg

f1 + 1
2stot

hNTA
hsbdg2 .

s45d

This cross section approaches the unitarity limit for

stot
hN TA

hsbd@1 at the nuclear center, but is proportional to
TA

hsbd at the nuclear periphery.
Diffractive excitation of the hadron. The combined cross

section of elastic scattering and diffraction when the hadron
may be either excited or not, but the nucleus remains intact,
is given by the average of thedA elastic partial amplitude
squared:

ssd+el
hA shA→ XAd =

1

2
E d2b

fstot
hNTA

hsbdg2

f1 + stot
hNTA

hsbdgf1 + 1
2stot

hNTA
hsbdg

.

s46d

Here we first averaged over the quark coordinates in the
nucleons, second, squared the result, and third, subtracted
the elasticdA cross sectionfcompare with Eq.s37dg.

Diffractive excitation of the nucleus. The cross section of
the reaction where the nucleus is diffractively excited, and
the hadron either remains intact or is excited, too, reads

sqel
hAshA→ XA*d =E d2b

2s̃el
hNTA

hsbd
f1 + stot

hNTA
hsbdg3 , s47d

where

s̃el
hN = sel

hN + ssd
hNshN→ XNd + ssd

hNshN→ hYd

+ sdd
hNshN→ XYd, s48d

and ssd
hN is a cross section of single diffractive excitation

of either the beam or the target; the double diffractive
cross sectionsdd

hN corresponds to diffractive excitation of
both.

Deriving Eq. (47) we made use of the smallness of the
elastic cross section and expanded the exponential. Higher
orders ofsel

hN are neglected, but the corrections are easy to
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calculate. We also neglected the small variation of the elastic
slope of the dipole-nucleon cross section withrT.

Equation(47), as one can see from Eq.(48), takes into
account the possibility of diffractive excitation of the projec-
tile. This is a direct consequence of the eigenstate approach.
In addition, we also included the possibility of diffractive
excitation of bound nucleons in the target. These excitations
are not shadowed by multiple interactions in the nucleus,
since all extra particles produced in this way stay in the
nuclear fragmentation region and do not break down the
large rapidity gap structure of the event. Therefore, they may
be incorporated intos̃el

hN adding the last two terms. AtÎs
=200 GeV single and double diffraction cross sections are
about equal,ssd

NN<sdd
NN<4 mb [12,13], sel

NN<9 mb, sos̃el
NN

<21 mb.
Diffractive reactions, Eqs.(47) and (48), do not produce

any particles at central rapidities. Therefore, if one wants to
calculate the part of the total hadron-nucleus cross section
detected experimentally, one should subtract these diffractive
contributions,

s̃in
hA = stot

hA − ssd+el
hA shA→ XAd − sqel

hAshA→ XA*d

=E d2b
stot

hNTA
hsbd

1 + stot
hNTA

hsbdH1 −
2s̃el

hN/stot
hN

f1 + stot
hNTA

hsbdg2J . s49d

Sincepp cross section is used as a baseline for compari-
son, the same subtraction should be done in this case, too,

s̃in
pp = stot

NN − s̃el
NN, s50d

which comes to abouts̃in
pp=30 mb atÎs=200 GeV.

Then, the number of collisions at a given impact param-
eter corrected for inelastic shadowing reads

Ncollsbd =
s̃in

NN

stot
NNf1 + stot

NNTA
hsbdgH1 −

s̃el
NN/stot

NN

f1 + stot
NNTA

hsbdg2J−1

.

s51d

B. Deuteron-nucleus collisions

So far we considered the case of colorless hadrons, but
colored constituents. The specifics of a deuteron is that it
contains two colorless clusters, nucleons. Therefore, one of
the inelastic corrections which we already took into account
in Eq. (7) is related to fluctuations of the deuteron size. The
next step is to average over the fluctuations of the sizes of the
nucleons.

The total deuteron-nucleus cross section. Now we should
averagestot

dA over the internucleon separation, as well as over
the nucleon sizesrW1 and rW2,

stot
dA = 2E d2bE d2rTuCdsrTdu2kfdAsbW, rWTdlr1,r2

, s52d

where

kfdAsbW, rWTdlr1,r2
= 1 −

1

f1 + 1
2stot

NNTA
NsbW + 1

2rWTdgf1 + 1
2stot

NNTA
NsbW − 1

2rWTdg
−

sel
NNTA

NsbdexpS−
rT

2

4BNN
D

f1 + 1
2stot

NNTA
NsbW + 1

2rWTdg2f1 + 1
2stot

NNTA
NsbW − 1

2rWTdg2
. s53d

The result of calculation exposed in Table I is smaller than the Glauber model value. The difference comes from inelastic
shadowing related to diffractive excitations of the colorless clusters in the deuteron, each consisting of three valence quarks.

Elastic and diffractive scattering of deuterons. Correspondingly, the total cross section of elastic scattering and diffractive
excitation of the deuteron has the form

sel
dA + ssd

dAsdA→ XAd =E d2bE d2rTuCdsrTdu2kgdAsbW, rWTdlr1,r2
, s54d

where

kgdAsbW, rWTdlr1,r2
= 1 −

2

f1 + 1
2stot

NNTA
NsbW + 1

2rWTdf1 + 1
2stot

NNTA
NsbW − 1

2rWTdg
+

2sel
NNTA

NsbdexpS−
rT

2

4BNN
D

f1 + stot
NNTA

NsbW + rWTdg2f1 + stot
NNTA

NsbW − 1
2rWTdg2

+
1

f1 + stot
NNTA

NsbW + rWTdgf1 + 1
2stot

NNTA
NsbW − 1

2rWTdg
−

2sel
NNTA

NsbdexpS−
rT

2

4BNN
D

f1 + stot
NNTA

NsbW + 1
2rWTdg2f1 + stot

NNTA
NsbW − 1

2rWTdg2
. s55d

Inelastic deuteron-nucleus collisions. If we subtract the elastic and diffractive cross section, Eq.(54), from Eq.(52) the rest
will be the inelastic cross section which covers all diffractive excitations of the nucleus, but not gold. This is what is measured
in the STAR experiment. To comply with the condition of experiments insensitive to diffraction one should also subtract the
cross section of diffractive excitation of the nucleus. The results read[compare with Eq.(49)]
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s̃in
dA = stot

dA − sel
dA − ssd

dAsdA→ XAd − ssd
dAsdA→ dYd − sdd

dAsdA→ XYd =E d2bE d2rTuCdsrTdu2khdAsbW, rWTdlr1,r2
, s56d

where

khdAsbW, rWTdlr1,r2
= 51 −

1

f1 + stot
NNTA

NsbW + 1
2rWTdgf1 + stot

NNTA
NsbW − 1

2rWTdg
−

2s̃el
NNTA

NsbW + 1
2rWTd

f1 + stot
NNTA

NsbW + 1
2rWTdg3f1 + stot

NNTA
NsbW − 1

2rWTdg

−
2s̃el

NNTA
NsbW − 1

2rWTd

f1 + stot
NNTA

NsbW + 1
2rWTdgf1 + stot

NNTA
NsbW − 1

2rWTdg3
−

2sel
NNTA

Nsbdexps−
rT

2

4BNN
d

f1 + stot
NNTA

NsbW + 1
2rWTdg2f1 + stot

NNTA
NsbW − 1

2rWTdg26 . s57d

The results of calculations of both inelastic cross sections
with and without nuclear diffraction, as well as the corre-
sponding numbers of collisions which are rather small com-
pared to what was calculated in Ref.[1], are presented in
Table I. As expected, the cross sections are smaller than pre-
dicted by the Glauber model, while the numbers of collisions
are larger. We also plottedb dependence ofsin

dA in Fig. 2 (thin
solid curve). Comparing with the Glauber curve we see that
this class of the inelastic shadowing corrections leave the
mid of nucleus black, but make it rather transparent on the
periphery.

Production of spectator nucleons. Similarly, one derives
an equation for the cross section of a channel with tagged
spectator nucleons corrected for inelastic shadowing,

stagg
d-Au =E d2bE d2rT

uCdsrTdu2

1 + stot
NNTA

NsbW + 1
2rWTd

3H1 −
1

1 + stot
NNTA

NsbW − 1
2rWTd

−
2s̃el

NNTA
NsbW − 1

2rWTd + 2sel
NNTA

Nsbdexpf− rT
2/4BNNg

f1 + stot
NNTA

NsbW + 1
2rWTdg3 J .

s58d

Events with tagged nucleons are especially sensitive to
the transparency of the nucleus. We calculated the cross sec-
tion, Eq. (58), and the results of these as well as those of
corresponding numbers of collisions are shown in Table I.
The effect of inelastic corrections on the impact parameter
distribution of interacting protons in tagged events with a
spectator neutron is demonstrated in Fig. 3. Calculation was
done for inelastic proton interaction including diffractive ex-
citations (STAR). As one could anticipate, the nucleus be-
comes much more transparent in the center. Indeed, for a
nearly black nucleus inelastic corrections keep it black since
transparency or the exponential term is so small that even if
it is modified by a large factor, the final change is very small.
However, tagged event is a direct measure of transparency,

and the inelastic corrections are maximal in this case. It is
not surprising thatNcoll is quite large(considering that only
one nucleon interacts).

C. Towards realistic calculations

1. Three valence quarks

For the sake of simplicity we used so far the approxima-
tion of a quark-diquark structure of the proton and neglected
the diquark size. Indeed, as long as the diquark is as small as
0.2–0.3 fm[31,32], this approximation is rather precise even
for heavy nuclei which can hardly resolve such a small size.
However, the mean size of the isoscalar diquark is still a
debatable issue; besides, an isovector diquark is probably a
big object. Then, one may expect nuclear matter to be more
opaque for a high-energy nucleon compared to what was
found above.

We evaluate nuclear transparency for another extreme,
i.e., for the case of a proton wave function symmetric in all
quark coordinates, with a mean size of any diquark of the
order of 0.7 fm:

uCNsrW1, rW2, rW3du2 =
3

sprN
2d2expS−

r1
2 + r2

2 + r3
2

rN
2 DdsrW1 + rW2 + rW3d.

s59d

To perform the averaging of the eikonal exponentials in
Eqs.(34)–(36) we need to know the three-body dipole cross
section, which we express via the conventionalqq one as

s3qsrW1, rW2, rW3d = 1
2fsqqsr1d + sqqsr2d + sqqsr3dg. s60d

It satisfies the limiting conditions, that is, it turns into
sqqsrd if one of the three separations is zero. Assuming
that sqqsrd=Cr2, this cross section averaged with the wave
function squared, Eq.s59d, givesstot

NN=CrN
2 /2.

Now we can calculate the nuclear transparency averaging
the eikonal exponential
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kexpf− s3qsr idTAsbdgl =E p
i

3

d2r iuCNsrW1, rW2, rW3du2

3expf− s3qsrW1, rW2, rW3dTAsbdg

=
1

f1 + 1
2stot

NNTAsbdg2 s61d

We see that nuclear transparency in this case is a qua-
dratic, rather than a linear function of the inverse nuclear
thickness. For smallstot

NN TAsbd!1 it coincides with the
result of the quark-diquark model, Eq.s41d, however it
falls steeper at largeTAsbd. This is not surprising; in order
to make use of color transparency the whole proton has to
fluctuate into a small transverse area, and it is more prob-
able for a two-body system than for a three-body system.

One can consider these results as a lower[Eq. (61)] and
an upper[Eq. (41)] bound for nuclear transparency. We cal-
culated different cross sections using the average of the ei-
konal exponential in the form of Eq.(61) instead of Eq.(41),
and the results are shown in Table I in parenthesis. Unfortu-
nately, we still do not know the proton wave function suffi-
ciently well to fix this uncertainty for nuclear transparency.
Nevertheless, the difference is not large for real nuclei. For
instance, the inelastic nondiffractived-Au cross section pre-
sented in Table I increases by about 6%.

2. Realistic dipole cross section

The dipole cross sectionsqq
N ~rT

2 used above is justified
only for smallrT, while it is expected to level off at largeqq
separations. More reliable calculations can be done using a
realistic phenomenological cross section. A quite popular pa-
rametrization was proposed in Ref.[34] and fitted to HERA
data for F2sx,Q2d. However, it should not be used for our
purpose, since it is unable to provide the correct energy de-
pendence of hadronic cross sections; namely, the pion-proton
cross section cannot exceed 23 mb.5

A parametrization more appropriate for soft hadronic
physics was proposed in Ref.[11]:

sqqsrT, sd = s0ssdF1 − expS−
rT

2

R0
2ssdDG , s62d

whereR0ssd=0.88 fmss0/sd0.14 ands0=1000 GeV2. In con-
trast to Ref.f34g all values depend on energysas it is
supposed to be for soft interactionsd rather than onx, and
the energy dependent parameters0ssd is defined as

s0ssd = stot
ppssdS1 +

3r0
2ssd

8krch
2 lp

D . s63d

Here krch
2 lp=0.44±0.01 fm2 f35g is the mean square of the

pion charge radius. Cross sections62d averaged with the

pion wave function squared automatically reproduces the
pion-proton cross section. Thepp total cross section is
also well reproduced using the quark-diquark approxima-
tion for the proton wave function. The parameters are ad-
justed to HERA data for the proton structure function.
Agreement is quite good up to at leastQ2,10 GeV2 suf-
ficient for our purposes.

With such a dipole cross section one can perform analytic
calculations expanding the Glauber exponentials in Eq.(34)
and (37). Then the total cross section gets the form

stot
hA = 2E d2bH1 − expF−

1

2
s0ssdTA

hsbdGo
n=0

` fs0ssdTA
hsbdgn

2nn ! s1 + nddJ .

s64d

Correspondingly, the sum of elastic and diffractive deu-
teron scattering on the nucleus reads

ssd+el
hA shA→ XAd =E d2bH1 + expF−

1

2
s0ssdTA

hsbdG
3 o

n=0

` fs0ssdTA
hsbdgn

n ! s1 + ndd

3S1 − 21−nexpF−
1

2
s0ssdTA

hsbdGDJ .

s65d

The cross section of quasielastic excitation of the nucleus
with simultaneous possibility to excite the deuteron is given
by

sqel
hAshA→ XA*d =E d2b expF−

1

2
s0ssdTA

hsbdG
3 o

n=0

` fs0ssdTA
hsbdgn

n!

3
2d2

f1 + ndgf1 + sn + 1ddgf1 + sn + 2ddg
.

s66d

In all these equations

d =
8krp

2l
3R0

2ssd
. s67d

Now one can calculates̃in
hA subtracting Eqs.(65) and(66)

from Eq. (64). However, in this paper we restrict ourselves
by calculations performed above and leave this more com-
plicated computation for further study.

VI. GLUON SHADOWING AND THE TRIPLE-POMERON
DIFFRACTION

First of all, to avoid confusion it should be emphasized
that we are not talking about gluon shadowing in high-pT
hadron production atxF=0 in d-Au collisions. This process
exploits Bjorkenx.0.01 which is too large for gluon shad-

5According to Ref[35] this dipole cross section reproduced well
the energy dependence of the photoabsorption cross sectionstot

gpssd.
This happens only due to the singularity in the light-cone wave
function of the photon at smallrT. This is a specific property of the
transverse photon wave function and is not applicable to hadrons.
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owing [4,11]. On the contrary, we consider gluon shadowing
in the soft inelasticd-Au collisions which is the main con-
tributor to the total cross section. This process is related to
much smallerx,10−5.

Gluon shadowing is an important source of inelastic cor-
rections at very high energies. It is pretty clear if one em-
ploys Eq.(26). The part of the diffraction which corresponds
to the triple-Regge graphPPR, or the lowest order Fock
component consisting only of valence quarks, has a steepM
dependence,dssd

hN/dM2~1/M3. Therefore the integral over
M2 in Eq. (26) well converges, the minimal momentum
transferqL vanishes at high energies, and this part of inelastic
corrections saturates.

The triple-PomeronsPPPd part of diffraction which cor-
responds to the Fock state containing at least one gluon is
divergent at large masses,dssd

hN/dM2~1/M2, since the gluon
is a vector particle. The cut off is imposed by the nuclear
form factor in Eq.(26), i.e., the conditionqL&1/RA. As a
result of the divergence, this part of the inelastic corrections
rises as lnss/s0d and reaches a substantial value at the energy
of RHIC.

Eikonalization of the lowest Fock stateu3ql of the proton
done in Eqs.(34)–(36) corresponds to the Bethe-Heitler re-
gime of gluon radiation. Indeed, gluon bremsstrahlung is re-
sponsible for the rising energy dependence of the phenom-
enological cross section(62), and in the eikonal form
(34)–(36) one assumes that the whole spectrum of gluons is
multiply radiated. However, the Landau-Pomeranchuk-
Migdal (LPM) effect [37,38] is known to suppress radiation
in multiple interactions. Since the main part of the inelastic
cross section at high energies is related to gluon radiation,
the LPM effect becomes a suppression of the cross section.
This is a quantum-mechanical interference phenomenon and
is a part of the suppression called Gribov’s inelastic shadow-
ing. The way it is taken into account in the QCD dipole
picture is inclusion of higher Fock states,u3qGl, etc. Each of
these dipoles is of course colorless and its elastic amplitude
on a nucleon is subject to eikonalization.

As already mentioned, Eq.(26) should not be used at high
energies as it misses all higher order multiple off-diagonal
transitions, and incorrectly(ad hoc) calculates diagonal ones.
On the other hand, the eigenstate expressions, Eqs.
(34)–(36), are not safe to use either. Indeed, the significant
part of the integral overM2 in Eq. (26), next to the upper
cutoff, corresponds to a finiteqL. In other words, the fluctua-
tion valence quarks1 gluonsis not frozen by Lorentz time
dilation during propagation through the nucleus.

A. The Green function for glue-glue dipoles

A proper treatment of a quark-gluon fluctuation “breath-
ing” during propagation through a nucleus is offered by the
light-cone Green function formalism. In this approach the
absorption cross section as well as the phase shifts are func-
tions of longitudinal coordinate. This is also a parameter-free
description, all the unknowns are fixed by comparison with
other data. We employ this approach and calculate gluon
shadowing following Ref.[11].

The key point which affects further calculations is the
nonperturbative light-cone wave function of the quark-gluon
Fock state,

CqGsrWd =
2

p
Îas

3

eW · rW

r2 expS−
r2

2r0
2D . s68d

Here we assumesas usuald that the gluon is carrying a
negligible fraction,aG!1, of the quark momentum. This
wave function is quite different from the perturbative one
which is the same as in light-cone description of the Drell-
Yan processf39,11g. The latter, employed for calculation
of diffractive gluon radiationsthe triple-Pomeron termd,
results in overestimation of data for large mass diffraction
by more than an order of magnitude. This problem has
been known since 1970s as the puzzle of smallness of the
triple-Pomeron coupling. The way out is to make a natural
assumption that the parent light-front quark and gluon ex-
perience a nonperturbative interaction which squeezes that
quark-gluon wave packet and therefore reduces the dipole
cross section. The parameterr0 in Eq. s68d controls the
strength of the real part of the light-cone potential which
is chosen in a Gaussian form. Fit to diffractive datapp
→pX leads to the value of the mean transverseq−G sepa-
ration Îkr2l; r0=0.3 fm. This conclusion goes along with
the results of nonperturbative models, such as the instan-
ton vacuum modelf40g and lattice calculationsf41g,
which found a similar small size for gluonic fluctuations.
Such a semihard scale 1/r0 also leads to quite a steep
energy behavior of the radiation cross section and well
explains data for the total and differential elastic cross
sections ofpp scatteringf42g.

Apparently, smallness ofr0 leads to quite a weak shadow-
ing for Fock states containing gluons. As a consequence, we
expect rather weak gluon shadowing, which is not a surprise
in view of the close connection between diffraction and
shadowing. As long as the gluon clouds around valence
quarks are small, Gribov’s corrections are suppressed. Be-
sides, the fluctuations containing gluons become heavy and
the onset of gluon saturation takes place at much smallerx
than usually expected.

The mean quark-gluon separationr0<0.3 fm is much
smaller than the quark separation in light hadrons. For this
reason one can neglect the interferences between the ampli-
tudes of gluon radiation by different valence quarks. Since
the gluon contribution to the cross section corresponds to the
difference between the amplitudes ofuqqqGl and uqqql com-
ponents, the spectator quarks cancel out. Then the radiation
cross section is controlled by the quark-gluon wave function
and the color octetsGGd dipole cross section.

Thus, the contribution to the total hadron-nucleus cross
section which comes from gluon radiation has the form

sG
hA =E

x

1 daG

aG
E d2bPsaG, bWd, s69d

whereaG is the fraction of the quark momentum carried
by the gluon,
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PsaG, bWd = TAsbd E d2r uCqGsrW, aGdu2sGGsr, sd

−
1

2
ReE

−`

`

dz1dz2Qsz2 − z1drAsb, z1drAsb, z2d

3E d2r1d
2r2CqG

* srW2, aGdsGGsr2, sd

3GGGsrW2, z2;rW1, z1dsGGsr1, sdCqGsrW1, aGd.

s70d

Here the energy and Bjorkenx are related ass=2mNEq

=4/xr0
2.

The second term in Eq.(70) corresponds to the triple-
Pomeron part of the inelastic correction, Eq.(26), written in
impact parameter representation. The amplitude of diffrac-
tive gluon radiation qN→GqN is proportional to
CqGsrW,aGdsGGsrd. A glue-glue dipole emerges in this expres-
sion because this is not elastic scattering but a production
process. Its amplitude comes from the difference of the scat-
tering amplitudes of different Fock components of the quark
[39], uql and uqGl, which is a dipole cross section of a color
octet-octet dipole,qq−G. Since the size of theqq pair is
irrelevant for gluon shadowing, we neglect it and replace the
qq by a gluon(see in Refs.[43,11]). Therefore the second
term in Eq.(70) can be interpreted as production of aqG pair
at the pointz1 and then as propagation of this pair with
varying transverse separation up to pointz2 where it converts
back to the quark.

Propagation of the dipoles of varying sizes through the
absorptive medium between pointsz1 andz2 is described by
the Green functionGGGsrW2,z2;rW1,z1d. It satisfies the two-
dimensional Schrödinger equation

i
d

dz2
GGGsrW2, z2;rW1, z1d = F−

DsrW2d
2EqaGs1 − aGd

+ VsrW2, z2dGGGGsrW2, z2;rW1, z1d,

s71d

where imaginary part of the light-cone potential is related
to absorption in the medium,

ImVsrW, zd = − 1
2sGGsrWdrAsb, zd. s72d

For further calculations we assume that the quark energy
is Eq=s/6mN, but the results are hardly sensitive to this
approximation.

Perturbative calculations treating a quark-gluon fluctua-
tion as free particles overestimates the cross section of dif-
fractive gluon radiation(or the triple-Pomeron coupling) by
more than an order of magnitude. The only way to suppress
this cross section is to reduce the mean transverse size of the
fluctuation. This is done in Ref.[11] via introduction of a
real part of the light-cone potential in Eq.(71),

Re VsrW, zd =
r2

2Eqr0
4aGs1 − aGd

, s73d

where parameterr0 was fitted to data for single diffraction
pp→pX.

The gluonic dipole cross sectionsGGsr ,sd is assumed to
be different from theqq one, Eq.(62), only by the Casimir
factor 9/4. To simplify calculations we rely on the small-r
approximation, sGGsr ,sd<CGGssdr2, where CGGssd
=d sGGsr ,sd/d rr=0

2 . This approximation for the dipole cross
section is justified by the small value ofr0

2<0.1 fm2.
In the case of a constant nuclear density,rAsrd=rA QsRA

−rd, the solution of Eq.(71) has the form

GGGsrW2, z2;rW1, z1d =
A

2p sinhsVDzd

3 expH−
A

2Fsr1
2 + r2

2dcothsVDzd

−
2rW1 · rW2

sinhsVDzdGJ , s74d

where

A =
1

r0
2
Î1 − iaGs1 − aGdEqCGGrAr0

4

V =
iA

aGs1 − aGdEq
,

Dz= z2 − z1. s75d

Integrations in Eq.(70) can be performed analytically,

PsaG, bWd =
4aG

3p
Re lnsWd, s76d

where

W= coshsVLd +
A2r0

2 + 1

2A
sinhsVLd, s77d

L = 2ÎRA
2 − b2. s78d

The first term in Eq.(70) is a part of the nuclear cross
section calculated in the Bethe-Heitler limit, i.e., without
gluonic inelastic shadowing. Therefore it is included in the
nuclear cross sections calculated so far. The new inelastic
shadowing correction comes from the second term in Eq.
(70). Its fraction of the totalpA cross section is depicted in
Fig. 8. The onset of shadowing is delayed up toÎs
,20 GeV. We believe that this result is trustable since the
Green function approach treats phase shifts and attenuation
in nuclear matter consistently. Nevertheless, in order to get
an idea about the scale of theoretical uncertainty we also
evaluated the magnitude of gluon shadowing using the
known values of the triple-Pomeron coupling and Eq.(26).
The results are quite similar, in both cases the gluon shad-
owing correction is pretty small[11], ,20% at the energy of
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RHIC. Such a weak shadowing is a direct result of smallness
of the parameterr0=0.3 fm which we use. This seems to be
the only way to suppress diffractive gluon radiation corre-
sponding to the triple-Pomeron contribution and to reach
agreement with data on diffractive dissociationpp→pX. For
this reason, all effects related to gluons, including saturation,
or color-glass condensate, are quite suppressed.

Naturally, the inelastic correction in Eqs.(70) and (77)
varies with impact parameter vanishing on the very periph-
ery and reaching a maximum at central collisions. At small
TAsbd the inelastic correction is proportional toTA

2sbd while
the partial amplitude is proportional toTAsbd. Therefore, the
ratio linearly rises withTAsbd (see in Refs.[44,45]) with a
coefficient approximately equal to 0.2 fm2. For very large
TA

2sbd the correction may even exceed the rest of the cross
section, then apparently higher order corrections must be
added to stop this growth. Such a saturation is not important
for real nuclei, therefore we use the linear parametrization
RGsbd=1−Din

Gsbd=1−0.2TAsbd for further calculations.
The valence quark part of the inelastic shadowing correc-

tions makes the nucleus more transparent, i.e., it reduces the
elastic scattering amplitude as one can explicitly see compar-
ing the corrected amplitude, Eq.(42), with the Glauber form,
Eq. (A5). However, both approach the black disk limit for
largeTAsbdstot

NN@1. An important question is whether this is
still true after inclusion of gluonic corrections.

Equation(70) has the typical form of a nonlinear equation
such as Glibov-Levin-Ryskin(GLR) evolutions equation
[45], or in the dipole form Balitsky-Kovchegov(BK) equa-
tion [46]. The second term on the right-hand side of Eq.(70)
corresponds to glue-glue fusion in GLR equation or the mul-
tiple interaction in the nucleus in BK equations. We calcu-
lated the correction in the lowest order using the uncorrected
dipole cross sectionsGGsrd, i.e., the undisturbed free gluon
density. Next iterations would be to implement the corrected
gluon density(at largerx, however), or sGGsrd, into the sec-
ond term in Eq.(70). This procedure leads to the BK equa-
tion whose solution is still a challenge. However, due to
smallness of the correction, 20%, we do not expect large
higher order corrections and the saturated solution should not
be very different from our result which we employ in further
applications.

On the other hand, if gluon shadowing emerging from the
first order iteration is very strong, as it was found in Refs.
[48–50], it should be substantially reduced by next iterations
which effectively play the role of self-screening; namely, as
long as the gluon density is reduced at smallx, one cannot
use in Eq.(26) the cross section of diffractive dissociation on
a free nucleon target. It is suppressed by the same gluon
shadowing,(at largerx though). The stronger is the gluon
shadowing the more important is this self-screening effect. It
was missed in calculations[48–50] which grossly overpre-
dicted the strength of gluon shadowing.

Now we are in a position to correct our previous calcula-
tions for the gluonic part of inelastic shadowing which we fix
at 20%. We do it replacingsqqsrTd⇒RGsbdsqqsrTd, where
RGsbd=1−Dinsbd is the suppression factor related to gluon
shadowing. This simple prescription is based on the intuitive
expectation that a dipole interacts with a lesser number of
gluons in the nucleus than the eikonal model assumes. In-
deed, for small separationsrT, the dipole cross section reads
[51] sqqsrTd=sp2/3dasrT

2 Gsx,rTd, i.e., it is indeed propor-
tional to the gluon density which is reduced in nuclei. More
motivations for this procedure can be found in Refs.[44,45].

The results for nuclear cross sections corrected for gluon
shadowing are shown in Table I and depicted in Figs. 2–4 by
thick solid curves.

B. More models for gluon shadowing

Although we predict quite a modest qluon shadowing ef-
fect and therefore a rather small inelastic shadowing correc-
tion, many models predict much stronger effects. One can
call it theoretical uncertainty if one treats all models equally
(though some of them are probably more equal than others
[52]).

For instance, the popular event generator HIJING con-
tains aQ2-independent gluon shadowing[53] which is a fac-
tor of 0.3 atx,10−5. With such a dramatic gluon shadowing
we get the impact parameter dependence of the inelastic
cross section depicted by dotted curve in Fig. 2. The corre-
sponding correction factorK=0.65 for the PHENIX data.

If we treat shadowing in terms of the dipole approach, it is
clear that shadowing is a monotonic function ofQ2, since the
size of the dipole can only rise towards the soft limit. This is
confirmed by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution of nuclear shadowing in the perturbative
domain. Therefore, one can use gluon shadowing predicted
by different models at the starting scaleQ0 of the order of
1–2 GeV2 as a bottom bound for the shadowing correction
expected in the soft limit. We calculate Bjorkenx for the
RHIC energyÎs=200 GeV andQ2=1 GeV2.

A strong gluon shadowing was predicted in Refs.[48,49],
RG=0.3–0.4. HERA data for diffractiong*p→Xp were used
as an input in Eq.(26) modified forg*A collisions. The sta-
tistics of these data are much lower than in proton diffraction
pp→pX and not sufficient for reliable determination of the
triple-Pomeron coupling. Different solutions for this cou-
pling fitted to deep-inelastic scattering(DIS) diffractive data
vary dramatically[54]. Besides, as is mentioned above, the
gluon self-screening missed in Refs.[48,49] should signifi-
cantly reduce the effect of gluon shadowing.

FIG. 8. Ratio of the gluonic inelastic shadowing correction
(minimal bias) to the total nuclear cross section as function of cen-
ter of mass energyÎs.
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Explicit calculations of gluon shadowing via gluon di-
poles were performed in Ref.[50]. The gluon shadowing
corresponding to the RHIC energies was found atRG<0.6
which leads to correction factorK=0.78 for the PHENIX
ratio RdA. This calculation also, however, does not include
the gluon self-screening and is based on the assumption that
gluon and quark dipoles have identical distribution functions.

A strong gluon suppression was also found in a model
with an early onset of strong saturation[55] whose charac-
teristic scale is a steep function of energy,Qs

2~s1/xd0.252. It
was assumed in the Kharzeev-Levin-McLerran approach[6]
that for Q2øQS

2 gluon densityxGAsx,Q2d is proportional to
Q2RA

2 with a factor which was taken from the McLerran-
Venugopalan model[56] at x=10−1. Such an oversimplified
picture exhibits a strong gluon shadowing. If we compare the
xGAsx,Q2d with the Gluck-Reya-Vogt(GRV) parametrization
[57] at x,10−4 it turns out to be strongly suppressed by
factorRG=0.42. In this case the correction factor in Eq.(5) is
K=0.72.

Such a diversity of model predictions suggests a conclu-
sion that the current data for deuteron-gold collisions[1–3]
cannot resolve in a model independent way the dilemma
whether final state interaction or initial conditions is the main
source of hadron suppression in heavy ion collisions. Indeed,
if the latter were true, it would unavoidably lead to a sub-
stantial reduction ofsin

NA and the ratio, Eq.(5) (compared to
the Glauber model).

C. Number of participants

Although the concept of number of participants originates
from a naive treatment of multiparticle production called
wounded nucleon model, it is a widely used characteristic of
centrality of collisions. We are not going to dispute here its
meaning, but just to see how it is affected by the inelastic
corrections6 relying on its formal definition,

UdNpss, bd
d2b

U
Gl

= TAssW − bWdh1 − expf− sin
NNTBsbdgj

+ TBssdf1 − exph− sin
NNTAssW − bWdgj,

s79d

where sW is the parameter of collision of nucleiA,B. We
use subscriptGl to emphasize that it corresponds to this
model which is inspired by the Glauber modelsalthough
they have nothing in commond.

Apparently, inelastic shadowing corrections should reduce
Np since nuclear matter becomes more transparent. The cor-
rected expression forNp reads

dNpss, bd
d2b

= sin
NNTAssW − bWdTBsbd 3H RGsbd

1 + RGsbdsin
NNTBsbd

+
RGssW − bWd

1 + RGssW − bWdsin
NNTAssW − bWd

J . s80d

Here the gluon shadowing factorRG is a function of im-

pact parameter according to calculations in Refs.
f11,44,45g and the parametrization used above. We
present the correction to the “Glauber” expression defined
as

dshadsbd =
RGsbdsin

NNTBsbd
1 + RGsbdsin

NNTBsbdYh1 − expf− sin
NNTBsbdgj

s81d

in Fig. 9 depicted by solid curve. As one could expect, the
correction factor peaks at the nuclear periphery and ap-
proaches one at large impact parameters.

If we compare with Glauber calculations employing the
incorrect inelastic cross sectionsin

NN=42 mb, the correction is
even larger, as is demonstrated by dashed curve in Fig. 9.

VII. CRONIN EFFECT: RENORMALIZING
THE DATA

Cronin effect for high-pT pions atÎs=200 GeV was pre-
dicted in Ref.[4] to be a rather small enhancement, about
10% at the maximum. The smallness of the effect is due to
the change of the mechanism of high-pT particle production
which takes place at the RHIC energies. At lower energies
(SPS, CERN) different bound nucleons contribute to this
hard process incoherently. The nuclear enhancement is due
to initial/final state pT broadening of partons propagating
through the nucleus. This broadening should not be trans-
lated into a modification of the parton distribution in the
nucleus sincekT factorization is broken[58]. At high energy
an incoming light-cone fluctuation which contains a high-pT
parton is freed via coherent interaction with many nucleons
in the target. It turns out that such a coherent mechanism
leads to a weaker Cronin enhancement than the incoherent
one. This is why calculations[59,60] missing this effect of
coherence predict a stronger Cronin effect.

The PHENIX data for neutral pions[1] are depicted in
Fig. 10 by full points in comparison with the predicted ratio
[4]. However, as it was stressed above, the normalization of
the data is based on Glauber model calculations which are
subject to different corrections, all of which have negative
sign. As a result, the data should be renormalized according

6I am thankful to Larry McLerrran, who suggested to look at this
parameter

FIG. 9. Solid line is the correction factor, Eq.(81), for inelastic
shadowing to the number of participants inp-Au collisions as a
function of impact parameter. Dashed curve also includes a correc-
tion to sin

NN (see text).
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to Table I by multiplying the experimental values by coeffi-
cientK=0.83. The corrected data are shown by open circles.

Cronin effect on a deuteron. Theoretical predictions have
been done so far forpA collisions. In order to compare mod-
els with dA data one should make sure that the Cronin en-
hancement on the deuteron itself is a small correction. We
evaluate the ratio

RpdspTd =
dspd/d2pT

2dspp/d2pT
, s82d

in the limit of short coherence length which gives an up-
per estimate for the effect. Following Ref.f4g the pd cross
section at highpT is given by the following convolution:

spdspTd = o
i,j ,k,l

F̃i/p ^ Fj /d ^ ŝi j→kl ^ Dh/k, s83d

whereFi/p and Fj /d are the distributions of parton species
i , j dependent on Bjorkenx1,2 and transverse momenta of
partons in the colliding proton and deuteron, respectively.

The beam parton distributionF̃i
p is modified by the trans-

verse momentum broadening of the projectile parton due
to interaction with another nucleon in the deuteron. The
broadening of the mean transverse momentum squared
readsf61,17g

DkkT
2l = 2UdsqqsrTd

drT
2 U

rT=0

kTl, s84d

where kTl is the mean nuclearsdeuterond thickness cov-
ered by the projectile parton before or after the hard col-
lision,

kTl =
2

stot
hNE d2s Re GhNssduCdssdu2 < uCds0du2, s85d

where we neglected the elastic slopeBNN compared to the
nuclear radius squared. For the parton distribution func-
tions in a nucleon we use the leading order GRV param-
etrizationf57g.

We calculated this ratio using the computer code for the
Cronin effect developed in Ref.[4],7 and the deuteron wave
function CdsrWTd described in B.

The results forRd/pspTd are depicted in Fig. 11. Indeed, the
Cronin enhancement is only 2%, and can be neglected com-
paringd-Au data with predictions done forp−Au.

VIII. SUMMARY AND CONCLUSIONS

The main observations and results of this paper are as
follows.

(1) The current normalization of inclusive high-pT cross
section in deuteron-gold collisions measured at RHIC is
based on Glauber model calculations of the inelasticd-Au
cross section which is subject to Gribov’s inelastic shadow-
ing corrections. Importance of these corrections is not debat-
able, they have solid theoretical ground and are confirmed by
precise measurements[1,20] (see Fig. 1). These corrections,
Eq. (26), have negative sign, i.e., make nuclear medium
more transparent, and they rise with energy.

(2) First of all, the Glauber calculations must be im-
proved. The inelasticNN cross section used as an input
should be corrected for diffraction. For experiments insensi-
tive to diffraction (PHENIX, PHOBOS), the cross section
should be reduced fromsin

NN=42 mb down tos̃in
NN<30 mb.

On the contrary, if an experimental trigger detects diffraction
(STAR), this cross section should be increased up tostot

NN

=51 mb. This modification results in a correction factorKGl
presented in Table I.

(3) There are two types of inelastic shadowing correc-
tions. One corresponds to diffractive excitation of the va-
lence quark skeleton, or nucleonic resonances, and is related
to thePPR triple-Regge graph. We calculated this correction,

7I am thankful to Jan Nemchik who performed this calculation for
pd collisions.
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FIG. 10. The Cronin ratioRAu/dspTd for pions. Open circles show
the results of PHENIX with normalization base upon Glauber
model calculations of the inelasticd-Au cross section usingsin

NN

=42 mb[1]. Full points show the same data corrected for a proper
value of inelasticNN cross section and Gribov’s inelastic shadow-
ing. The error bars include statistic and systematic uncertainties.
The curve is the prediction from Ref.[4].

FIG. 11. Cronin ratioRpdspTd calculated atÎs=200 GeV using
the formalism developed in Ref.[4].
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Eqs. (42), (61), and (64), using the light-cone dipole repre-
sentation which effectively sums up all orders of multiple
interactions.

(4) Another type of inelastic shadowing is related to dif-
fractive gluon bremsstrahlung or to the soft limit of gluon
shadowing in nuclei related to thePPP triple-Pomeron dif-
fraction. We performed calculations in Sec. VI using the so-
lution for the Green function, Eq.(74), describing propaga-
tion of a glue-glue dipole through nuclear medium and found
a rather weak gluon shadowing for gold, about 20%. At the
same time, other models predict much stronger gluon shad-
owing ranging up to corrections of 70%(Sec. VI B).

(5) Altogether, we expect a reduction of inelasticd-Au
cross section compared to what was used for normalization
of high-pT data at RHIC. We conclude that the published data
should be corrected by factorK which is about 0.8 for
PHENIX and about 0.9 for STAR(see Table I). The renor-
malized data for pions do not possess any more the Cronin
enhancement. This correction factor might be even smaller,
down to 0.65, if we use a stronger gluon shadowing pre-
dicted by other models.

(6) One should admit that current data for high-pT hadron
production ind-Au collisions at RHIC cannot exclude in a
model independent way the possibility of initial state sup-
pression suggested in Ref.[6], although that would contra-
dict the author’s personal viewpoints.

(7) Probably the only way to settle this uncertainty is a
direct measurement of either the cross section of high-pT
pion production ind-Au collisions or the inelasticd-Au cross
sections at RHIC.

(8) A very sensitive test of models for inelastic shadowing
offer tagged events with a spectator nucleon. In the situation
where direct measurement ofd-Au inelastic cross section is
difficult, this might be a way to restrict models and narrow
the band of theoretical uncertainty. The relative fraction of
these events 20% measured in Ref.[2] create apparent prob-
lems for models with strong gluon shadowing which predict
a much larger fraction. Even with our weak shadowing this
fraction ranges between 23% and 26%. However, one should
make sure that the detected neutrons are really spectators,
which is not the case currently(see discussion in Sec. III).

(9) We found a beautiful quantum-mechanical effect: the
nucleus acts like a lens focusing spectators. In spite of the
naive anticipation that nucleons which escaped interaction
retain their primordial Fermi momentum distribution, there is
a strong narrowing effect substantially reducing the trans-
verse momenta of the spectators. Besides, the distribution
acquires the typical diffractive maxima and minima(see
Figs. 5 and 6).
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APPENDIX A: GLAUBER MODEL GLOSSARY
The hA elastic amplitude at impact parameterb has the

eikonal form

GhAsbW ;hsW j, zjjd = 1 −p
k=1

A

f1 − GhNsbW − sWkdg, sA1d

wherehsW j ,zjj denote the coordinates of the target nucleon
Nj. iGhN is the elastic scattering amplitude on a nucleon
normalized as

stot
hN = 2E d2b Re GhNsbd,

sel
hN =E d2buGhNsbdu2. sA2d

1. Heavy nuclei

In the approximation of single-particle nuclear density
one can calculate a matrix element between the nuclear
ground states:

k0uGhAsbW ;hsW j, zjjdu0l = 1 −F1 −
1

A
E d2sGhNssd

3E
−`

`

dzrAsbW − sW, zdGA

, sA3d

where

rAsbW1, z1d =E p
i=2

A

d3r iuCAshrW jjdu2 sA4d

is the nuclear single particle density.
Total cross section. The result, Eq.(A3), is related via

unitarity to the totalhA cross section

stot
hA = 2 ReE d2bH1 −F1 −

1

A
E d2sGhNssdTAsbW − sWdGAJ

< 2E d2bH1 − expF−
1

2
stot

hNs1 − irppdTA
hsbdGJ , sA5d

whererpp is the ratio of the real to imaginary parts of the
forward pp elastic amplitude

TA
hsbd =

2

stot
hNE d2s Re GhNssdTAsbW − sWd sA6d

and
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TAsbd =E
−`

`

dzrAsb, zd sA7d

is the nuclear thickness function. We use exponential form
of GhNssd throughout the paper,

Re GhNssd =
stot

hN

4pBhN
expS − s2

2BhN
D , sA8d

whereBhN is the slope of the differentialhN elastic cross
section. Note that the accuracy of the optical approxima-
tion in Eq. sA5d is quite high for gold,,10−3, so we use it
throughout the paper. We also neglect the real part of the
elastic amplitude in what follows, since it gives a vanish-
ing correction,rpp

2 /A2/3.
Elastic cross section. As long as the partial elastic ampli-

tude is known, the elastic cross section reads

sel
hA =E d2bU1 − expF−

1

2
stot

hNTA
hsbdGU2

. sA9d

Total inelastic cross section. Apparently it is given by the
difference between the total and elastic cross sections,

sin
hA = stot

hA − sel
hA =E d2bh1 − expf− stot

hNTA
hsbdgj. sA10d

This includes all inelastic channels when either the hadron
or the nucleussor bothd are broken up.

Quasielastic cross section. As a result of the collision the
nucleus can be excited to a stateuFl. Summing over final
states of the nucleus and applying the condition of complete-
ness, one gets the quasielastic cross section

sqel
hA = o

F
E d2bfk0uGhAsbduFl†kFuGhAsbdu0l − uk0uGhAsbdu0lu2g

=E d2bfk0uuGhAsbdu2u0l − uk0uGhAsbdu0lu2g. sA11d

Here we extracted the cross section of elastic scattering
when the nucleus remains intact.

Then in the first term of this expression we make use of
the relation

ReE d2s
TA

hsbW − sWd
A

h1 − 2GhNssd + fGhNssdg2j

< 1 −
1

A
TA

hsbdsstot
hN − sel

hNd, sA12d

and arrive at

sqel
hA =E d2bhexpf− sin

hNTA
hsbdg − expf− stot

hNTA
hsbdg.

sA13d

Inelastic nondiffractive cross section. If one is interested
in the fraction of the total inelastic cross section(A10) which
covers only reactions with production of new particles, one
should exclude the nucleus breakup to nucleons and nuclear

fragments; that is, the quasielastic cross section, Eq.(A13),

sprod
hA =E d2bh1 − expf− sin

hNTA
hsbdgj. sA14d

This additional subtraction makes sense only for experi-
ments which miss the nonproduction breakup of the
nucleus. If, however, all inelastic events are detected, in-
cluding diffractive sproduction and nonproduction chan-
nelsd excitations of the nucleusscheck with Ref.f2gd one
should rely on Eq.sA10d for the inelastic nuclear cross
section.

Diffractive cross section. One needs to know this cross
section in order to subtract it also from the inelastic cross
section, since diffractive events escape registration atpsddA
collisions at SPS and RHIC. The Glauber approximation is
valid only for a single-channel problem. One can extend it to
include diffraction properly introducing phase shifts due to
longitudinal momentum transfer. However, one needs to
know the cross section of interaction of the produced diffrac-
tive excitation with nucleons. This goes beyond the reach of
the Glauber model, and instead of further ad hoc develop-
ment of the model we solve this problem within the eigen-
state method in Sec. IV B.

2. Proton-deuteron collisions

Apparently, Eq.(A5) should not be applied to light nuclei,
in particular, to a deuteron. Instead one should use

stot
pd = 2stot

NN + Dstot
pd, sA15d

where

Dstot
pd = − 2E d2bE d2rTuCdsrTdu2GhNsbW + rWT/2dGhNsbW − rWT/2d.

sA16d

One can switch via Fourier transform to momentum rep-
resentation in each of these three factors and perform in-

tegration overrWT and bW. The result has a form of a one-
dimensional integralf16g,

Dstot
pd = −

2

p
E d2qTFds4qT

2d
dsel

NN

dqT
2 , sA17d

whereFdsq2d is the charge form factor of the deuteron. We
neglected the correction,10−3 due to the nonzero real
part of the forwardNN amplitude. Note thatsW in Eq. sA17d
is the deuteron diameter, rather than the radius. This is
why the form factor argument is 4qT

2.
We use parametrization of the deuteron form factor from

Ref. [25],

FdsqT
2d = 0.55e−aqT

2
+ 0.45e−bqT

2
, sA18d

and a=19.66 GeV−2,b=4.67 GeV−2.
Using stot

NN=51 mb atÎs=200 GeV and the elastic slope
BNN=14 GeV−2, we found the totalpd cross sectionstot

pd

=97 mb with Glauber correctionDGl
pd=−5 mb. Since at this

point a correct proton-deuteron cross section is needed, we
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have to go beyond the Glauber approximation and add the
inelastic correction considered in Sec. IV. We show that it is
equivalent to adding the differential cross section of single
diffraction, pN→XN, to the elastic one in Eq.(A17). This
increases the value of the shadowing correction by 1.75 mb.
Finally, we arrive at the cross sections

stot
pd = 95.15 mb,

sin
pd = stot

pd −
sstot

pdd2

16pBpd
= 84.9 mb. sA19d

Interestingly, the inelastic cross section is not affected by
the Glauber correction, it is slightly larger than the sum of
two inelasticNN cross sections. The slope from the dif-
ferential elasticpd cross section was measured and fitted
in Ref. f62g,

dsel
pd

dt
=

sstot
pdd2

16p
eBpdt+Cpdt

2
, sA20d

where

Bpd = b0 + b1ln spd, sA21d

with parameters b0=32.8±0.6sGeV2d and b1
=1.01±0.09sGeV2d. Parameter Cpd=54.0±0.9sGeV−2d
was found to be energy independent. At the energy of
RHIC Bpd=44.1 GeV−2, and we use this value in Eq.
sA19d.

The inelastic cross section, Eq.(A19), contains inelastic
diffractive channels such as quasielastic breakup of the deu-
teron,pd→ppn, and excitation of the nucleonspd→Xd, pd
→pY, and pd→XY. For the experiments insensitive to dif-
fraction (PHENIX, PHOBOS) these channels must be sub-
tracted.

APPENDIX B: DEUTERON WAVE FUNCTION AT REST
AND LORENTZ BOOSTED

To perform calculations for interaction of a high-energy
deuteron, one should not use the three-dimensional deuteron
wave function, but needs to know the light-cone deuteron
wave function expressed in Lorentz invariant variables, the
transversen-p separationrWT and the light-cone fractiona
=pn

+/pd
+ of the deuteron momentum carried by a nucleon. One

cannot get this wave function by a simple Lorentz boost
from the rest frame of the deuteron, where the three-
dimensional wave function is supposed to be known, to the
infinite momentum frame. Deuteron is not a classical system,
under a Lorentz boost it acquires new constituents which are
quantum fluctuations. These constituents buildup higher
Fock components. This makes the procedure of Lorentz
boost extremely complicated. There is, however, a practical

recipe suggested in Ref.[63] and is widely accepted. To the
best of my knowledge, it works rather well for nonrelativistic
systems(nuclei [64], heavy quarkonia[65], etc.)

The idea is straightforward to express the deuteron wave
function in momentum representation,

cdsqWd =
1

s2pd3 E d3reiqW·rWcdsrWd, sB1d

via the light-cone variables in the rest frame of the deu-
teron. To do it one should connect the three-dimensional
momentum squared with the effective mass of thecc pair,
q2=M2/4−mN

2, expressed in terms of light-cone variables

M2sa, qTd =
qT

2 + mN
2

as1 − ad
. sB2d

In order to change integration variableqL to the light-cone
a one uses their relation,qL=sa−1/2dMsqT,ad, and gets a
Jacobian which can be attributed to the definition of the
light-cone wave function

csqWd ⇒ Î2
sq2 + mN

2d3/4

sqT
2 + mN

2d1/2 · csa, qWTd ; Csa, qWTd. sB3d

Applying this procedure to theS- andD-wave radial wave
functions one gets

usrWd
r

⇒ UsrWT, ad,

wsrWd
r

⇒ WsrWT, ad. sB4d

This dependence ona is important for exclusive final
states, for instance, deuteron dissociation to nucleons with
definite longitudinal momenta. However, for most applica-
tions in this paper we need to know therT retribution inte-
grated overa,

uCdsrTdu2 =E
0

1

dafU2srT, ad + W2srT, adg, sB5d

The result of this is identical to the simple integration over
longitudinal variable in the rest frame of the nucleus,

uCdsrTdu2 =E
−`

`

drL

u2srd + w2srd
r2 . sB6d

We use the contemporary deuteron wave functions which
employ the Nijmegen-93 potential[66].8

8I am grateful to Miklos Gyulassy for suggesting this and provid-
ing relevant data.
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