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The shell model Monte Carlo(SMMC) approach has been applied to calculate level densities and partition
functions to temperatures up to,1.5–2 MeV, with the maximal temperature limited by the size of the
configuration space. Here we develop an extension of the theory that can be used to higher temperatures, taking
into account the large configuration space that is needed. We first examine the configuration space limitation
using an independent-particle model that includes both bound states and the continuum. The larger configura-
tion space is then combined with the SMMC under the assumption that the effects on the partition function are
factorizable. The method is demonstrated for nuclei in the iron region, extending the calculated partition
functions and level densities up toT,4 MeV. We find that the back-shifted Bethe formula has a much larger
range of validity than was previously believed. The present theory also shows more clearly the effects of the
pairing phase transition on the heat capacity.
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I. INTRODUCTION

Consistent calculations of nuclear partition functions and
level densities are required in nuclear astrophysics. The
nuclear partition functions at a finite temperature are needed
to understand presupernova collapse[1] and for the calcula-
tion of stellar thermal reaction rates[2]. Similarly, level den-
sities determine the statistical neutron and proton capture
cross sections in nucleosynthesis[3].

The Fermi gas formula for the nuclear level density(also
known as the Bethe formula) [4] can be derived from the
partition function of noninteracting nucleons[5]. Correlation
effects, e.g., shell, pairing, and deformation effects, are usu-
ally accounted for through empirical modifications of this
formula. In particular, the back-shifted Bethe formula[6,7] is
found to describe well the experimental data if its
parameters—the single-particle level density parametera
and back-shift parameterD—are fitted for each nucleus[8,9].
However, these phenomenological approaches cannot be re-
liably used in nuclei for which experimental data are not
available, so there is a need for microscopic theories that
include interaction effects. In mean-field theory, pairing can
be treated in the BCS approximation, as was done in Ref.
[10]. However, shape fluctuations are likely to be significant
and they require a theory beyond the mean field, e.g., the
static path approximation[11]. A theory that includes quad-
rupole fluctuations in the static path approximation was pro-
posed in Ref.[12]. Like the mean-field theory, the static path
approximation allows calculations in large spaces. This was
exploited by the authors of Ref.[12] who presented results
for large single-particle spaces, including an approximate
treatment of unbound states. However, as implemented there,
the theory includes neither pairing correlations, which are
certainly of similar importance, nor multipoles of the inter-
action beyond quadrupole.

A more systematic approach to calculate correlation ef-
fects is to use the interacting shell model. In this approach,
we define a many-particle configuration space and treat in

full the effective interaction within that space. Here the shell
model Monte Carlo(SMMC) method has rather favorable
computational properties, scaling with the numberN of
single-particle orbitals asN4, compared with direct diagonal-
ization methods, which scale exponentially.1 Even so, most
applications of the SMMC have so far been limited to a
single major shell. For medium mass nuclei, this restricts the
reliability of the calculated partition functions(and associ-
ated level densities) to temperatures below,1.5–2 MeV
[17–19].

In this work, we will first explore the model space trun-
cations in an independent-particle approximation, extending
the single-particle space to include both the bound states and
the continuum. This was studied within a semiclassical ap-
proximation in Ref.[20]. We will develop the fully quantum-
mechanical theory of the many-particle partition function in-
cluding the continuum in Sec. II. This is done using an
expression for the continuum contribution to the single-
particle level density in terms of the scattering phase shifts.
Such continuum corrections to the single-particle level den-
sity were studied in Ref.[21]. We find that in tightly bound
nuclei the continuum contribution to the many-particle parti-
tion function is negligible even at high temperatures(e.g.,
T,4 MeV for 56Fe), while in weakly bound nuclei the con-
tinuum contribution can become significant already at low
temperatures. In either case the continuum contribution can
be well approximated by considering just the contribution of
the narrow resonances, treated as broadened bound states.

The remaining task is to include interaction effects, as
discussed in Sec. III. It is necessary to distinguish between
the long-range part of the interaction, acting in the valence
orbitals, and the short-range part, involving highly excited

1Another method in the literature is the use of moments of the
Hamiltonian to expand the level density in a sum of partitioned
Gaussians[13–15]. For a similar approach using binomials instead
of Gaussians see Ref.[16].
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configurations. The short-range part is beyond the scope of
the theory, and must be taken into account in defining an
effective long-range interaction, but the latter can be accu-
rately treated within the SMMC approach. At higher tem-
peratures, long-range interaction effects are weak, and cor-
rections to the entropy from the larger model space can be
included in a single-particle approach. We shall see that at
high temperatures, the interaction effects on the partition
function scale as 1/T, and the two temperature regimes can
be joined smoothly. We find that the extended partition func-
tion and its associated level density are well described by the
back-shifted Bethe formula up toT,4 MeV. This value rep-
resents an upper limit to our underlying assumption that the
single-particle potential is fixed and independent of tempera-
ture.

The basic object we study is the canonical partition func-
tion defined by

Zsbd = Tr e−bH, s1d

whereb is the inverse temperature,b=1/T, and the trace
is taken at a fixed particle numbersi.e., fixed number of
protons and neutronsd. We shall find it convenient to mea-
sure the energy with respect to the ground energyE0, de-
fining an excitation partition functionZ8 as

Z8 ; ZebE0. s2d

Thus at zero temperature, the excitation partition function
is equal to the degeneracy of the ground stateNg.s., Z8sT
=0d=Ng.s..

The conversion from the partition function to the level
density is discussed in Sec. IV. While the results of the
theory can be given as numerical tables ofZsTd and the cor-
responding level densityrsEd, it is also useful to express the
results in terms of the parameters of the back-shifted Bethe
formula, which provides a good description at not too low
temperatures. The inclusion of a back shift requires a particu-
lar parametrization ofZ8, as discussed in Sec. III.

II. ORBITAL TRUNCATION EFFECTS IN THE
INDEPENDENT-PARTICLE APPROXIMATION

When the temperature is larger than about a third of the
nucleon separation energy, the unbound nucleon states can
no longer be ignored. To develop a theory that includes the
continuum, we first need to define precisely how we separate
the contributions of the free nucleons and the nucleus to the
partition function. If the system is enclosed in a box, the
logarithm of the free nucleon partition function is propor-
tional to the volume of the box. The contribution of the con-
tinuum to the logarithm of the nuclear partition function is
found by the explicit subtraction of the free-particle contri-
bution, and is independent of the volume of the box, if it is
large compared to the size of the nucleus. The free nucleon

partition function we use here is the one obtained when the
nuclei are ignored entirely.2

In the independent-particle approximation, the single-
particle spectrum is calculated in an external potential well,
representing the nuclear mean-field potential. Assuming the
well to be spherically symmetric, the bound state energies
enlj depend only on the principal quantum numbern, orbital
angular momentuml, and total spinj. For the positive energy
continuum, we need the scattering phase shiftsdljsed wheree
is the (positive) energy of the continuum states. The change
dr in the single-particle continuum level density in the pres-
ence of the potentialV is found by subtracting the free par-
ticle level densityr0 from the total densityr,

drsed = rsed − r0sed = o
lj

s2j + 1d
1

p

ddlj

de
. s3d

We denote the many-body grand canonical partition func-
tion in the independent-particle approximation byZsp

GC,
where the subscript stands for “single-particle.” It is given
by

ln Zsp
GCsb, md = o

nlj
s2j + 1dlnf1 + e−bsenlj−mdg

+E
0

`

dedrsedlnf1 + e−bse−mdg, s4d

wherem is the chemical potential.3 The calculation of Eq.
s4d requires a numerical evaluation of the phase-shift de-
rivatives in Eq. s3d, which is done in Ref.f21g using a
five-point formula. A more convenient form for the parti-
tion function, avoiding the phase-shift derivative, is ob-
tained by integrating the second term in the above equa-
tion by parts and using Levinson’s theorem,dl jse=0d
=nljp, where nlj is the number of boundl j states. The
result is

E
0

`

de
ddl j

de
lnf1 + e−bse−mdg = − nljp lns1 + ebmd

+ bE
0

`

de dl jsedfsed, s5d

where fsed=f1+ebse−mdg−1 is the Fermi-Dirac occupation.
The formula for the partition function can then be rewrit-
ten as

2We also ignore the Coulomb effects on the partition function,
which are small but which immediately introduce the complications
of plasma theory.

3In practice, Eq.(4) includes two separate contributions from pro-
tons and neutrons with different chemical potentialsmp andmn.
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ln Zsp
GCsb, md = o

l j
s2j + 1dHo

n
lnF1 + e−bsenlj−md

1 + ebm G
+

b

p
E

0

`

de dl jsedfsedJ . s6d

This form is easier to use computationally because it
avoids numerical derivatives.

To calculate the partition function of a specific nucleus,
we need to transform the grand-canonical partition to the
canonical partition function at fixed proton and neutron num-
bers. In the saddle-point approximation, the corresponding
correction is estimated from the particle-number fluctuations
in the grand-canonical ensemble, giving for the canonical
Zsbd

Zsbd < f2pksDNd2lg−1/2ZGC e−bmN s7d

or

ln Z8 < ln ZGC + bE0 − bmN − 1
2 ln f2pksDNd2lg. s8d

HereksDNd2l is the variance of the neutron or proton num-

ber andZ8=ZebE0. In Eq. s8d, m is calculated fromkN̂l
=] ln ZGC/]a=N swhere kN̂l is the average particle num-
ber in the grand-canonical ensemble anda=bmd, and the
variance is found fromksDNd2l=]2 ln ZGC/]a2. In the
independent-particle approximation these quantities are

N =
] ln Zsp

GC

] a
= o

l j
s2j + 1dFo

n
fnlj +

1

p
E

0

`

de
ddl j

de
fsedG

s9d

and

ksDNd2l =
]2 ln Zsp

GC

] a2 = o
l j

s2j + 1dFo
n

fnljs1 − fnljd

+
1

p
E

0

`

de
ddl j

de
fs1 − fdG , s10d

where fnlj = fsenljd are the Fermi-Dirac occupation numbers
of the bound levels characterized by quantum numbernlj .
To avoid numerical derivatives, we can again use integra-
tion by parts and rewrite Eqs.s9d and s10d as

N = o
l j

s2j + 1dFo
n

ffnlj − fs0dg +
b

p
E

0

`

de dl jsedfs1 − fdG
s11d

and

ksDNd2l = o
l j

s2j + 1dHo
n

hfnljs1 − fnljd − fs0df1 − fs0dgj

+
b

p
E

0

`

dedl jsedfs1 − fds1 − 2fdJ . s12d

To illustrate the method, we apply it to nuclei in the iron
region. For the mean-field potential we use a Woods-Saxon
well Vsrd plus a spin-orbit interaction

Vsrd + llssl ·sdr0
21

r

dV

dr
, s13d

where Vsrd=V0f1+expsr −R0d/ag−1 with R0=r0A
1/3. We

choose the parametrization of Ref.f5g, where V0=−51
+33sN−Zd/A MeV, a=0.67 fm, r0=1.32 fm, and l,s=
−0.44. We have calculated the single-particle spectrum
and scattering phase shifts in this potential well, and used
them to compute the canonical partition function from
Eqs. s6d, s8d, and s12d. The solid line in Fig. 1 shows the
logarithm of the canonical excitation partition function
lnZsp8 for the nucleus56Fe when the full single-particle
spacesbound states plus continuumd is taken into account.
In the continuum contribution we have included phase
shifts up tolmax=7 sfor T&4 MeV, convergence is already
achieved for this value oflmaxd.

We next investigate various truncations within the
independent-particle model. Of particular interest is the trun-
cation to the same model space that is used in the SMMC
approach. Most of the SMMC calculations so far have been
restricted to the bound states in a single major shell. For
example, calculations in the iron region were restricted to the
completefpg9/2 major shell[17,18], which includes the ac-
tive orbitalsf7/2, p3/2, p1/2, f5/2, andg9/2. The orbital ener-
gies [determined in a Woods-Saxon well with spin-orbit in-
teraction(13)] are given in Table I.

The partition function calculated in this truncated space
(in the independent-particle approximation) is compared
with the full space calculation[Eqs.(6) and(8) and(12)] in
Fig. 1. One sees that the truncation to a single major shell
becomes problematic at temperatures above,1.5 MeV.

FIG. 1. The logarithm of the canonical excitation partition func-
tion Zsp8 (where the energy is measured with respect to the ground-
state energy), calculated for56Fe is shown for the following single-
particle spaces: all bound states plus continuum as described by
Eqs. (6), (8), and (12) (solid line); bound states and the narrow
resonances listed in Table I(dashed-dotted line); and bound states
only (dotted line). The corresponding calculation with the space
truncated to thefpg9/2 major shell is shown as the dashed line. The
intercept atT=0 is ln Ng.s., whereNg.s.=168 is the number of states
in the sf7/2

p d−2sp3/2
n d2 shell configuration.
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To assess the importance of the continuum, we also show
in Fig. 1 the result of the calculation keeping all bound states
but neglecting the continuum integral(dotted line). One sees
that the continuum contribution is not very significant for a
tightly bound nucleus such as56Fe.

However, this situation changes in a nucleus with a small
neutron separation energy. In Fig. 2 we compare the calcu-
lations in the full single-particle space(solid line) and in the
truncated space that includes all bound states(dotted line) for
the nucleus66Cr. Here the separation energy of the highest
occupied orbital is 1.7 MeV. One sees that the continuum
effects become significant forT*1 MeV.

Rather than ignoring the continuum completely, one could
also consider the approximation of including only narrow
resonances, treating them as broadened discrete states. In-
deed, the derivative of the scattering phase shiftdlj in the
vicinity of a narrow resonance follows a Lorentzian

ddl j

de
<

Gl j
r /2

se − el j
r d2 + sGl j

r /2d2 , s14d

whereel j
r andGl j

r are the centroid and width of a resonance
with quantum numbersl j . If the resonance widthGl j

r is
much smaller thanT, the integral in Eq.s4d can be evalu-
ated to give a contribution to lnZsp

GC as though the reso-
nance were a discrete state with energyel j

r .

We identify the resonances from the energy dependence
of the phase shiftsdlj in different channelslj , and take their
energies where the phase shifts ascend throughp/2 (to
within an integral multiple ofp). The channels with reso-
nances and their energies are given in Table I. The partition
function calculated using bound states and narrow reso-
nances is shown as the dashed-dotted line in Fig. 2. We see
that the resonance approximation is good at least up toT
,3.5 MeV.

We now summarize the validity of the various approxima-
tions, requiring that the theory be accurate up to tempera-
tures ofT,4 MeV. For nuclei along the stability line, it is
only necessary to include bound states. For nuclei that have
much lower separation energies, the continuum contribution
can be significant but the resonance approximation is likely
to be adequate. It should be emphasized that throughout this
section we have assumed a fixed mean-field potential. Above
T,4 MeV, that approximation becomes unreliable.

III. INTERACTION EFFECTS

We next discuss interaction effects on the partition func-
tion. The ground-state binding energy is of course very sen-
sitive to the interaction, but this will not be immediately
visible in the excitation partition function. Let us denote by
Zv,tr8 the partition function calculated with interactions but in
a truncated single-particle space. We argue that the correc-
tion due to a larger model space will be largely additive in
the logarithm of the partition function. Therefore the way to
combine a small-space calculation of interaction effects with
a large-space calculation of the independent-particle partition
Zsp8 is with the formula

ln Zv8 = ln Zv,tr8 + ln Zsp8 − ln Zsp,tr8 , s15d

whereZsp,tr8 is the excitation partition functionsin the ab-
sence of interactionsd in the same truncated single-particle
space in whichZv,tr8 is calculated.

Equation(15) cannot be justified rigorously, but we can
motivate it in several ways. It is certainly true that the inter-
action corrections approach zero at high temperature. From
finite-temperature many-body perturbation theory, it is seen
that the leading corrections to the independent-particle
HamiltonianH0 are additive in the logarithm of the partition
function, as is assumed in Eq.(15). The explicit formula is

ln Tr exps− bKd − ln Tr exps− bK0d

= −E
0

b

dtkVIstdl +
1

2
E

0

b

dt1

3E
0

b

dt2kTtVIst1dVIst2dlconn+ ¯ , s16d

whereK=H−mN̂ sH is the full Hamiltonian of the interact-

ing systemd, K0=H0−mN̂, VI is the two-body interaction in
the interaction pictureswith respect toK0d, Tt denotes time
ordering andk¯l denotes a thermal average with respect to
K0. Each integration in Eq.s16d gives a factor of 1/T. In
cases where analytic expressions can be derivedse.g., hard

TABLE I. Neutron orbital energies and resonance energies(in
MeV) in 56Fe and66Cr, calculated with the Woods-Saxon potential
of Ref. [5].

Orbital type l, j e s56Fed e s66Crd

Bound f7/2 −12.68 −10.2
p3/2 −8.65 −6.7
p1/2 −6.56 −5.1
f5/2 −6.34 −5.2
g9/2 −3.13 −1.7
d5/2 −0.41
s1/2 −0.26

Resonance d5/2 0.35
g7/2 4.95 4.67
h11/2 6.22 6.62

FIG. 2. Similar to Fig. 1 but for the nucleus66Cr.
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core gas and Coulomb gasd, it can be verified that the inter-
action correction falls off asT−1 or faster at highT. At low
temperatures, the extended space is not thermally occupied
and only plays an indirect role, renormalizing the interac-
tions in the smaller space. Since the SMMC is applied with
renormalized interactions that are appropriate for the smaller
space, there is no additional correction when the larger space
is considered explicitly. With the correct limiting behavior at
both low and high temperatures, we have a better theory for
the complete temperature dependence.

We now briefly summarize the SMMC calculations to be
used forZ8v,tr in Eq. (15). The interaction is taken to be the
same as in Ref.[17]. It is separable and surface-peaked, act-
ing between orbitals of a major shell(here thefpg9/2 orbit-
als). The strength of the surface-peaked interaction is deter-
mined self-consistently and renormalized appropriately for
each multipole. In addition, there is a monopole pairing in-
teraction, whose strength is determined from odd-even mass
differences. The single-particle Hamiltonian is the same as in
Sec. II. The outputs of the SMMC computation are canonical
expectation values of various observables. For our purposes
here, the most important quantity is the canonical thermal
energy Esbd, calculated as the expectation of the Hamil-
tonian with number-projected SMMC densities. The partition
function is then found by integration

ln Zsbd = ln Zs0d −E
0

b

db8Esb8d. s17d

HereZs0d is the partition function atT→` and is equal to
the total number of many-particle states in the model
space. In addition, we need to determine the ground-state
energyE0 in order to find the excitation partition function,
Eq. s2d. This is done by extrapolating the calculatedEsbd
to largeb.

The SMMC results for the nucleus56Fe are shown in Fig.
3, with ln Z8v,tr plotted as a function ofT (squares). The

curve starts out flat, changing to a linear increase over some
range ofT, and reaching a plateau beyond the highest tem-
perature plotted. The initial flat behavior is associated with
the gap in the energy spectrum between the ground state and
the first excited state, while the linear regime corresponds to
the Bethe formula. The saturation is due to the truncation of
the space, and its onset marks the limit of validity of the
truncated SMMC calculation. We next repeat the SMMC cal-
culation with the two-body interaction turned off. The results
are shown by the circles in Fig. 3. Notice that the difference
between the two partition functions becomes small as the
temperature increases, confirming the analysis in an earlier
part of this section[see in particular Eq.(16)].

Before calculating the partition function in the extended
model space, we also compare in Fig. 3 two ways of calcu-
lating the noninteracting partition function, from Eq.(8)
(dashed line) or from the SMMC with the interaction turned
off (squares). In the latter method, particle-number projec-
tion is carried out exactly, while in Eq.(8) this is done in the
saddle point approximation. One can see that the differences
are insignificant for our purposes.

We now combine the various terms in Eq.(15) to get the
extended-range partition function. ForZsp8 , we use Eq.(8)
where the independent-particle partition functionZsp

GC is cal-
culated in the full space(i.e., all bound states plus con-
tinuum). The result is shown in Fig. 4 by the solid squares.
For comparison, the SMMC result(open squares) and the
full space independent-particle model result(dashed line) are
shown as well. Remarkably, the extended lnZ8 is seen to be
close to a linear function ofT over most of the range, unlike
either of its constituents in Eq.(15). In the saddle point ap-
proximation, the dominating term in lnZ8 is linear inT and
its slope is the parametera in the level density formula.
However, to compare with the back-shifted Bethe formula
[see Eq.(27) in Sec. IV], more care is needed in treating the
sublinear terms. Starting from the Darwin-Fowler expression
for the partition function of noninteracting fermions[see Eq.

FIG. 3. The excitation partition function of56Fe using the
SMMC method in the truncated spacesfpg9/2d. The SMMC parti-
tion function Z8v,tr in the presence of the residual interaction
(squares) is compared to the SMMC partition functionZ8sp,tr in the
absence of interactions(circles). The dashed line is the partition
function of the independent-particle model calculated in the saddle
point approximation using Eqs.(6), (8), and(12).

FIG. 4. Extended partition function for56Fe, calculated from Eq.
(15), shown as solid squares. The solid line is a fit to Eq.(19) with
a=5.87 MeV−1 and D=1.03 MeV. Shown for comparison are the
SMMC (open squares) and the full space single-particle(dashed
line) results.
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(2B-9) in Ref. [5]], and including the proton and neutron
number fluctuation terms from Eq.(8), one can derive the
following expression forZ8,

ln Z8 < aT− lns6aT/pd , s18d

where a=p2g/3 and g is either the proton or neutron
single-particle level density at the Fermi energysassumed
to be equald. Within the saddle-point approximation, Eq.
s18d is equivalent to the simple Bethe formula for the
level densityssee Sec. IVd. As mentioned in the introduc-
tion, a better phenomenological description of the mea-
sured level density is often obtained by shifting the
ground-state energy by an amountD in the Bethe formula.
We show in Appendix A that the corresponding modifica-
tion of the partition function is to introduce a third term in
Eq. s18d,

ln Z8 < aT− lns6aT/pd − D/T. s19d

The solid line in Fig. 4 is a fit of Eq.s19d to ln Z8 for
1&T&4 MeV with a=5.87 MeV−1 scorresponding to the
expressiona=A/K with K=9.5 MeVd and D=1.03 MeV.
The fit describes remarkably well theT dependence of
ln Z8 for temperatures betweenT,1 MeV and T
,4 MeV sthe rms of the deviation from the calculated
ln Z8 is 0.05d. The functional forms19d of ln Z8 is the
essence of thesback-shiftedd Bethe level density formula;
the result observed here implies that this formula is useful
to considerably higher temperatures than was apparent
from earlier calculations. At high temperatures, the domi-
nant term in Eq.s19d is linear in T. However, the other
two terms are necessary to obtain a value ofa that is
comparable to the value extracted directly from the level
density, which will be the subject of Sec. IV.

In the independent-particle model, lnZ8 is approximately
linear in T only for T*2 MeV with a slope of a
<5.25 MeV−1, i.e.,K<10.7. This value ofK is smaller than
the Fermi gas value[5] K<15 but still larger than the value
we found sK=9.5d above when correlations are taken into
account.

The canonical entropy can be calculated fromS=−]F/]T
where F=−Tln Z8 is the canonical free energy. Using the
empirical formula(19), this entropy is given by

S< 2aT− lns6aT/pd − 1, s20d

and is independent of the back-shift parameterD. Thus the
parametera can be determined by a single parameter fit of
the extended entropy to Eq.s20d. The leading order term
in the entropy is linear inT and the last two terms in Eq.
s20d originate in the particle number fluctuations. The mi-
croscopic calculation of the extended entropy can be done
without taking numerical derivate with respect toT, as is
explained in Sec. IV. Figure 5 shows a fit of the empirical
formula s20d ssolid lined to the extended entropy in the
range T,1–4 MeV ssolid squaresd with a=5.82 MeV−1

sthe rms deviation is<0.3d. This value ofa is in agree-
ment with the value found from lnZ8. The fit is good, and
only at T,4 MeV do we start to observe a small devia-
tion.

We have demonstrated our method for an even-even
nucleus56Fe, but it should be equally applicable to odd-even
and odd-odd nuclei. As an example, Fig. 6 shows the loga-
rithm of the excitation partition function for57Fe. The solid
line is a fit to Eq. (19) with a=6.04 MeV−1 and D
=−1.29 MeV in the range 1&T&4 MeV (the rms deviation
is <0.08). A qualitative difference is that unlike the case of
56Fe, lnZ8 does not approach zero at low temperatures. This
is due to the spin degeneracy of the ground state of an even-
odd nucleus and the much smaller energy gap to the first
excited state.

IV. LEVEL DENSITIES

We now determine the level densities associated with the
extended partition function of the preceding section. The
level densities are calculated from the partition function as in
Refs.[17] and [18] using the saddle-point formula

rsEd = s2pb−2Cd−1/2eS, s21d

where S=ln Z+bE=ln Z8+bsE−E0d is the canonical en-
tropy and C=−b−2dE/db is the canonical heat capacity.

0 2 4
T(MeV)

0

20

40

S

0
0

20

40

FIG. 5. The extended entropy of56Fe (solid squares). The solid
line is a fit to Eq.(20) with a=5.82 MeV−1. The open squares de-
scribe the SMMC entropy.

FIG. 6. The extended partition function(solid squares) for the
odd-even nucleus57Fe is compared with the SMMC partition func-
tion (open squares). The solid line is a fit to the back-shift formula
(19) with a=6.04 MeV−1 andD=−1.29 MeV.
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The thermal energy in Eq.s21d is a function of b that
satisfies

E − E0 = −
] ln Z8

] b
. s22d

Using expressions15d for the extended partition function
and Eq.s22d, we have

E − E0 = sEv,tr − Ev,tr
0 d + fEsp− sEsp,tr + Ecore

0 dg, s23d

whereEcore
0 =Esp

0 −Esp,tr
0 is theT=0 energy of the coresi.e.,

the shells below the valence shelld. The notation used here
for the various energies follows the same notation used for
the partition functions in Eq.s15d, and the subscript or
superscript “0” denotes the ground state in the corre-
sponding model space.

Similarly, we find for the extended entropy and heat ca-
pacity

S= Sv,tr + Ssp− Ssp,tr ,

C = Cv,tr + Csp− Csp,tr . s24d

Equation(23) determines the relation between the excita-
tion energy andb in the calculation of the extended level
density. When the SMMC approach is used to calculate in-
teraction effects in the truncated space,Ev,tr is calculated
directly from the expectation value of the Hamiltonian and
Ev,tr

0 is found by extrapolation tob→`. The partitionZv,tr
(and therefore the entropySv,tr) is found by integration using
Eq. (17), while the heat capacityCv,tr is found by a numerical
derivative of the energy.

It remains to determine the respective quantities in the
independent-particle model(both in the full and truncated
spaces). Here there is a technical complication in that the
needed quantities are canonical. For example, we need to
calculate the canonical energiesEsp and Esp,tr. In principle,
one can use Eq.(22), where Z8 is calculated in the
independent-particle model. However, sinceZ8 is a canonical
partition function, the partial derivative with respect tob
must be evaluated at constant particle numberN rather than
at constanta sa=bmd. The explicit expressions forEsp and
Csp in terms of logarithmic derivatives of the grand-
canonical partition function are derived in Appendix B. In
Appendix C we express these logarithmic derivatives in
terms of the corresponding single-particle spectrum and scat-
tering phase shifts.

The extended level density of56Fe is shown in Fig. 7
(solid squares) as a function of excitation energy,Ex=E−E0.
For comparison, the SMMC level density calculated in the
truncated space(i.e., fpg9/2 shell) is shown by open squares,
while the level density calculated in the independent-particle
model (no truncation) is shown by the dashed line.

To derive the back-shifted Bethe formula for the level
density, we evaluate the inverse Laplace transform ofZ8 in
Eq. (19) in the saddle point approximation(separating out
the particle number fluctuation term as a pre-exponential fac-
tor). We find

r < s2pd−1/2S−
] E

] b
D−1/2S p

6aT
DeaT−D/T+bsE−E0d

=
Îp

12
a−3/2T−5/2e2aT, s25d

where the temperature is determined by the excitation en-
ergy Ex=E−E0 through

Ex < aT2 + D. s26d

Relation s26d generalizes the usual Bethe relationEx
=aT2 to include an empirical offsetD to the ground-state
energy. This offset originates in correlation effects.

When expressed in terms of the excitation energy, Eq.
(25) is just the back-shifted Bethe formula

rsExd =
Îp

12
a−1/4sEx − Dd−5/4expf2ÎasEx − Ddg. s27d

This formula has two fit parameters, the single-particle
level density parametera and the back-shift parameterD.
Fitting Eq. s27d to the calculated extended level density in
the range 5&Ex&60 MeV, we find a=5.9 MeV−1 and
D=1.35 MeV swith a x2 per degree of freedom below 1d,
in overall agreement with the values found in Sec. III by
fitting Eq. s19d to ln Z8. These values ofa andD are also
in close agreement with the earlier values found by fitting
to the SMMC level density in the energy range 5&Ex
&16 MeV, a=5.85 MeV−1 and D=1.37 MeV. However,
now the back-shifted Bethe formulas27d describes the ex-
tended level density up to much higher values ofEx
s,90 MeVd.4 Thus the validity of this formula is now ex-

4A temperature of T=4 MeV for 56Fe corresponds toEx

<86 MeV.
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FIG. 7. Level density of56Fe, calculated with the extended par-
tition function (solid squares). The solid line is a fit to the back-
shifted Bethe formula(27) and describes well the extended level
density in the full excitation energy range shown in the figure. The
SMMC level density in the truncatedfpg9/2 shell is shown by open
squares and the independent-particle model level density is shown
by the dashed line.
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tended to significantly higher excitation energies than pre-
viously thought. Furthermore, the specific values of the
parametersa andD found in previous SMMC calculations
f18g are approximately valid in this extended energy
range.

Figure 8 shows the level density of the odd-A nucleus
57Fe, where we find in the extended rangea=6.05 MeV−1

andD=−1.3 MeV. These values are comparable to the values
determined from lnZ8 in Sec. III.

The good fits we find to the back-shifted formulas(19)
and (27) for the logarithm of the partition function and the
level density, respectively, imply that the excitation energy
can be approximated by the quadratic expression(26) for
temperatures that are not too low.

Experimentally, the statistical properties of nuclei at
higher temperatures have been deduced from heavy ion re-
actions. If the nuclei are equilibrated when they decay, there
is a direct relation between the kinetic energy distributions of
the decay products and the temperature of the daughter
nucleus. Experimental results have been reported indicating
that the quadratic dependence ofEx on temperature needed to
be modified at high temperature[22]. However, in other ex-
periments only a slight deviation was found[23]. These latter
experiments concluded a weak decrease ofa with tempera-
ture and even a constanta could not be excluded, in agree-
ment with our results.

We close this section with a few remarks on the experi-
mental determination of the statistical properties of nuclei at
high temperature. To best achieve the equilibrium condition
(for which the statistical theory applies), experimentalists use
heavy ion fusion reactions to produce the nuclei, and the
nuclei studied have been mostly in the heavier mass region.
For deformed nuclei, one expects an enhancement of the
level density at low excitation energies, and indeed studies of
nuclei aroundA,160 [22] found a significant decrease in
the level density parameterae=Ex/T

2 at high temperatures.
For spherical nuclei, which are more relevant to our study,
there have been a number of experiments in various mass
regions ranging fromA,40 [24] to midmass nuclei[25,26]
and up toA,200 [27,23]. Reference[24] found a<A/8 in

theA,40 region, while experiments in heavier spherical nu-
clei found a smallera. For example, in midmass nuclei, Ref.
[25] found that a<A/s9±1d, while Ref. [26] found a
<A/s10−11d. In both of these experimentsa was found to be
constant through the measured temperature range. For the
heavier nucleiA,200, the two experiments in Refs.[27] and
[23] came to different conclusions. Reference[27] found that
a temperature-dependenta is needed to fit the data, while
Ref. [23] found only a weak temperature dependence ofa
and its data are compatible with a constanta<A/12. It would
clearly be interesting to apply the methods developed here to
heavier nuclei, and in particular to deformed nuclei for
which deformation effects on the level density can be stud-
ied.

V. HEAT CAPACITY AND THE PAIRING PHASE
TRANSITION

The back-shifted parametrization(19) works well for tem-
peraturesT*1 MeV, but not at lower temperatures. The de-
viations can be clearly seen in the canonical heat capacity as
a function of the temperature. There can be a peak in this
function that is associated with the pairing phase transition,
but the back-shifted parametrization permits only a mono-
tonic function rising linearly with temperature. Recently, ex-
periments in rare-earth nuclei have been reported in which
effects of pair breaking can be seen in the canonical heat
capacity [28,29]. The authors measured the level density,
constructed a canonical partition function from their data,
and used it to deduce the heat capacity as a function of tem-
perature.

Such low temperature characteristics, especially those re-
quiring numerical derivatives, are nontrivial to calculate in
the SMMC, but in Ref.[30] a method was found to accu-
rately calculate the heat capacity in the temperature range of
interest. An enhancement over the Fermi gas heat capacity
was found in even iron nuclei aroundT,0.8 MeV. This en-
hancement is more pronounced for the neutron-rich iron iso-
topes and is correlated with the reduction in the number of
J=0 neutron pairs with temperature. However, because the
calculation was restricted to a finite space(fpg9/2 shell), the
calculated heat capacity reached a maximum around tem-
peratures of,1.5 MeV and the effect of the pairing phase
transition was less pronounced.

Here we use the extended theory to display the heat ca-
pacity in a much broader temperature range(i.e., up to
,4 MeV), where deviations from the noninteracting heat ca-
pacity become obvious. The effect of the pairing transition
on the heat capacity is now clearly observed even in the iron
isotopes with a smaller number of neutrons in which the
effect was not noticeable before, e.g.,56Fe. Figure 9 shows
the extended heat capacity of56Fe calculated from(24) and
(B4) (solid squares) in comparison with the independent-
particle heat capacity calculated in the full space(dashed
line). Contrary to the SMMC heat capacity, the extended heat
capacity continued to increase monotonically with tempera-
ture, as doesCsp. However, it also exhibits a “shoulder” at
low temperatures, which is a clear signature of the pairing
phase transition and is qualitatively similar to the measured
heat capacity in even-even rare-earth nuclei[29].
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FIG. 8. Extended level density(solid squares) in comparison
with the SMMC level density(open squares) for 57Fe. The solid line
is a fit to the back-shifted Bethe formula(27).
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VI. CONCLUSION

In this work we have combined the partition function of
the independent-particle model in the full space with the par-
tition function of the interacting shell model calculated in a
small space by the SMMC method. This enables us to extend
the SMMC calculations of partition functions and level den-
sities up to significantly higher temperatures. The results for
iron nuclei suggest that the back-shifted Bethe formula(27)
(with temperature-independent parameters) is valid over a
wide range of temperatures extending fromT,1 MeV to T
,4 MeV. The two parameters of the formula, the single-
particle level density parametera and the back shiftD, agree
well with the empirical values. A corresponding empirical
formula (19) that accommodates correlation effects describes
well the logarithm of the excitation partition function.

Expressed in the forma=A/K, the theoretical value for
56Fe is K=9.5 MeV. This is considerably smaller than the
Fermi-gas value ofK<15 MeV. It is also smaller than the
value K<10.7 MeV extracted from the high temperature
slope of the logarithm of the independent-particle partition
function, indicating the importance of correlation effects. In
the literature, effective values of the parametera are often
defined from relations that are valid in the Fermi gas limit
(and that ignore corrections due to particle-number fluctua-
tions); e.g.,Ex=aT2, S=2aT, andS2=4aEx

2. In the presence of
shell and correlation effects, these effective values ofa usu-
ally differ from each other and exhibit a temperature depen-
dence even at lower temperatures. Using the empirical rela-
tion (19) for the partition function, we find a constant value
of a that is similar to the value extracted from the level
density itself.

The effects of interactions and unbound states were also
taken into account in Ref.[12]. The authors parametrized
their results with a temperature-dependentK, and found it to
vary significantly, unlike ourK. However, their work only
included part of the interaction, omitting in particular the
pairing interaction(which is largely responsible for the back

shift).5 The variation they observe at low temperaturesT
,1−2 MeV is at least partly due to definitions ofK that are
based on the Fermi gas limit.

For temperatures below,1 MeV, the pairing effects are
strong and beyond the range of applicability of simple pa-
rametrizations. This can be seen in the canonical heat capac-
ity if it is displayed over a large temperature range, as we did
using our extended theory.
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APPENDIX A
In this appendix we derive the empirical back-shifted for-

mula (19) for the excitation partition function. The partition
function is obtained from the level density by a Laplace
transform

Z8sbd =E
0

`

rsExde−bExdEx. sA1d

Substituting the back-shifted Bethe formulas27d for rsExd
in Eq. sA1d, and definingx=Ex−D, we have

Z8 =
Îp

12
a−1/4e−bDE`

x−5/4e2Îax−bx. sA2d

We evaluate the integral in Eq.sA2d in the saddle point
approximation. The saddle point is given byx0=aT2, and
we find

Z8 <
p

6aT
eaT−D/T. sA3d

APPENDIX B
In this appendix we obtain explicit expressions for the

canonical energy and heat capacity in the independent-
particle approximation in terms of logarithmic derivatives of
the grand-canonical partition function.

We introduce the following notation for the logarithmic
derivatives of the grand-canonical partition function in the
independent-particle model

Za,b ;
]a+bln ZGC

] aa ] bb . sB1d

Relations9d determinesa=asb, Nd. Consideringa a func-
tion of b and N in relation s9d, we find from dN/db=0,

5Also note that in Ref.[12] Coulomb effects were included and
different parameters of the Woods-Saxon potential were used.
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FIG. 9. The extended heat capacity of56Fe vs temperature(solid
squares), showing a bump around the pairing transition temperature.
The SMMC heat capacity is shown by the open squares. The dashed
line is the heat capacity obtained from the independent-particle
model (bound states plus continuum).
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da

db
= −

Z1,1

Z2,0
. sB2d

We can now use Eqs.s8d and s22d to obtain

Esp= − Z0,1+
Z2,1

2Z2,0
−

Z3,0Z1,1

2Z2,0
2 . sB3d

Similarly, the canonical heat capacity in the independent-
particle model is given by

Csp= − b2S− Z0,2+
2Z1,1

2 + Z2,2

2Z2,0

−
Z2,1

2 + 2Z3,1Z1,1+ Z3,0Z1,2

2Z2,0
2

+
4Z3,0Z2,1Z1,1+ Z4,0Z1,1

2

2Z2,0
3 −

Z3,0
2 Z1,1

2

Z2,0
4 D . sB4d

Equations(B3) and(B4) are used to calculate the canoni-
cal thermal energies and heat capacities in the independent-
particle model in both the full and truncated spaces.

APPENDIX C
In this appendix we derive explicit expressions for the

partial derivativesZa,b of the grand-canonical partition func-
tion (see Appendix B) in terms of the single-particle spec-
trum and scattering phase shifts.

Using Eq.(4), we find

Za,b = o
l j

s2j + 1dFo
n

s− enljdbga+bsa − benljd

+
1

p
E

0

`

de
ddl j

de
s− edbga+bsa − bedG , sC1d

where we have defined

gsxd = lns1 + exd, ga ;
dag

dxa . sC2d

Note thatg1sxd=1/s1+exd= f, where f is the Fermi-Dirac
occupation number forx=a−be. We also have

g2 = f1 = fs1 − fd,

g3 = f2 = fs1 − fds1 − 2fd,

g4 = f3 = fs1 − fds1 − 6f + 6f2d, sC3d

g5 = f4 = fs1 − fds1 − 14f + 36f2 − 24f3d.

To avoid the numerical derivative of the phase shift, we
can integrate Eq.(C1) by parts to obtain

Za,b=s− 1dbo
l j

s2j + 1dHo
n

enlj
b ga+bsa − benljd

−
b

p
E

0

`

de dl jsedeb−1ga+bsa − bed

+
b

p
E

0

`

dedl jsedebga+b+1sa − bedJ sC4d

for b.0 and

Za,0 = o
l j

s2j + 1dHo
n

fgasa − benljd − gasadg

+
b

p
E

0

`

de dl jsedga+1sa − bedJ sC5d

for b=0.
We note that Eqs.(11) and (12) can be rewritten as

N = Z0,1, ksDNd2l = Z0,2, sC6d

whereZ0,1 andZ0,2 are given as special cases of Eq.sC4d.
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