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Nuclear level statistics: Extending shell model theory to higher temperatures
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The shell model Monte Carl(EMMC) approach has been applied to calculate level densities and partition
functions to temperatures up tel.5-2 MeV, with the maximal temperature limited by the size of the
configuration space. Here we develop an extension of the theory that can be used to higher temperatures, taking
into account the large configuration space that is needed. We first examine the configuration space limitation
using an independent-particle model that includes both bound states and the continuum. The larger configura-
tion space is then combined with the SMMC under the assumption that the effects on the partition function are
factorizable. The method is demonstrated for nuclei in the iron region, extending the calculated partition
functions and level densities up To~4 MeV. We find that the back-shifted Bethe formula has a much larger
range of validity than was previously believed. The present theory also shows more clearly the effects of the
pairing phase transition on the heat capacity.
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I. INTRODUCTION full the effective interaction within that space. Here the shell

. . o . Gmodel Monte Carlo(SMMC) method has rather favorable
Consistent calculations of nuclear partition functions an . . . .
computational properties, scaling with the numberof

level densn!gs are r(_aquwed n nuclear astrophysics. Th%ingle—particle orbitals aN*, compared with direct diagonal-
nuclear partition functions at a finite temperature are neede

ization methods, which scale exponentidilgven so, most
to understand presupernova collap$kand for the calcula- o o
) . - applications of the SMMC have so far been limited to a
tion of stellar thermal reaction rat§®]. Similarly, level den-

o . L single major shell. For medium mass nuclei, this restricts the
sities determine the statistical neutron and proton capture .= . " ) .

. : reliability of the calculated partition function@nd associ-
cross sections in nucleosynthef.

The Fermi gas formula for the nuclear level densitiso ated level densitigsto temperatures below-1.5-2 MeV

known as the Bethe formulg4] can be derived from the [17-19.

. . . . . In this work, we will first explore the model space trun-
partition function of noninteracting nucleof]. Correlation . . ) . N .
S . cations in an independent-particle approximation, extending
effects, e.g., shell, pairing, and deformation effects, are us

. e Sthe single-particle space to include both the bound states and
ally accounted for through empirical modifications of this . . : . : :
the continuum. This was studied within a semiclassical ap-

formula. In partlcglar, the back-shifted Bethe form{8&7] S proximation in Ref[20]. We will develop the fully quantum-
found to describe well the experimental data if its : : o o
. : : mechanical theory of the many-particle partition function in-
parameters—the single-particle level density paramater : . . L )
cluding the continuum in Sec. Il. This is done using an

and back-shift parametér—are fitted for each nucleys,J. expression for the continuum contribution to the single-

However, these phenomenological approaches cannot be re-" . o : .
liably used in nuclei for which experimental data are notpart|cle level density in terms of the scattering phase shifts.

available, so there is a need for microscopic theories tha?UCh continuum corrections to the single-particle level den-

include interaction effects. In mean-field theory, pairing can>'ty Were studied in Ref.21]. We find that in tightly bound

be treated in the BCS approximation, as was done in Refiuclei the continuum contribution to the many-particle parti-
[10]. However, shape fluctuations are likely to be significantion function 'S negligible even at high temperaturesy.,
and they require a theory beyond the mean field, e.g., thé~4 MeV for >*Fe), while in weakly bound nuclei the con-
static path approximatiofL1]. A theory that includes quad- tinuum contribution can become significant already at low

rupole fluctuations in the static path approximation was prof€mperatures. In either case the continuum contribution can
posed in Ref[12]. Like the mean-field theory, the static path be well approximated by considering just the contribution of
approximation allows calculations in large spaces. This wad1€ narrow resonances, treated as broadened bound states.
exploited by the authors of Ref12] who presented results _ 1h€ remaining task is to include interaction effects, as
for large single-particle spaces, including an approximaté“SCUSSEd in Sec. lll. Itis necessary to dl_stln_gwsh between
treatment of unbound states. However, as implemented ther!® long-range part of the interaction, acting in the valence
the theory includes neither pairing correlations, which arePrbitals, and the short-range part, involving highly excited
certainly of similar importance, nor multipoles of the inter-
action beyond quadrupole. *Another method in the literature is the use of moments of the
A more systematic approach to calculate correlation efHamiltonian to expand the level density in a sum of partitioned
fects is to use the interacting shell model. In this approachGaussiang13-15. For a similar approach using binomials instead
we define a many-particle configuration space and treat inf Gaussians see RdfL6].
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configurations. The short-range part is beyond the scope gfartition function we use here is the one obtained when the
the theory, and must be taken into account in defining amuclei are ignored entirefy.

effective long-range interaction, but the latter can be accu- In the independent-particle approximation, the single-
rately treated within the SMMC approach. At higher tem-particle spectrum is calculated in an external potential well,
peratures, long-range interaction effects are weak, and corepresenting the nuclear mean-field potential. Assuming the
rections to the entropy from the larger model space can bwell to be spherically symmetric, the bound state energies
included in a single-particle approach. We shall see that a¢,; depend only on the principal quantum numbeorbital
high temperatures, the interaction effects on the partitiorangular momenturh and total spirj. For the positive energy
function scale as I/ and the two temperature regimes cancontinuum, we need the scattering phase sldjfte) wheree

be joined smoothly. We find that the extended partition funcds the (positive) energy of the continuum states. The change
tion and its associated level density are well described by thép in the single-particle continuum level density in the pres-
back-shifted Bethe formula up ~4 MeV. This value rep- ence of the potentiaV is found by subtracting the free par-
resents an upper limit to our underlying assumption that theicle level densityp, from the total density,

single-particle potential is fixed and independent of tempera-

ture.
The basic object we study is the canonical partition func- _ 1dg;
tion defined by dp(€) = p(€) = pole€) = % (2)+ 1);—1- ©)
Z(B) =Tre ™, (&N We denote the many-body grand canonical partition func-

tion in the independent-particle approximation &g,

where g is the inverse temperaturg=1/T, and the trace where the subscript stands for “single-particle.” It is given

is taken at a fixed particle numbér.e., fixed number of by
protons and neutronsWe shall find it convenient to mea-
sure the energy with respect to the ground endtgyde- ce _ . Blei—p)
fining an excitation partition functio@’ as In Z5y(B, w) = nzu (2] + D)In[1 +e 7]
7' =Zzef, 2 + fo desp(e)In[1+e<H],  (4)

Thus at zero temperature, the excitation partition functior\NhereM is the chemical potentidl The calculation of Eq.

is equal to the degeneracy of the ground stdfe, Z'(T  (4) requires a numerical evaluation of the phase-shift de-

=0)=Ngs. _ » ) rivatives in Eq.(3), which is done in Ref[21] using a
The conversion from the partition function to the level fiye_point formula. A more convenient form for the parti-

density is discussed in Sec. IV. While the results of theijon function, avoiding the phase-shift derivative, is ob-

theory can be given as numerical tablesZ6f) and the cor-  tained by integrating the second term in the above equa-

responding level density(E), it is also useful to express the jgn by parts and using Levinson's theoren;(e=0)
results in terms of the parameters of the back-shifted Bethgn” m, wheren; is the number of bound; states. The

formula, which provides a good description at not too lowagit is
temperatures. The inclusion of a back shift requires a particu-
lar parametrization oZ’, as discussed in Sec. Il
f de? In[1 +e P ] = —n;ar In(1 +ePH)
Il. ORBITAL TRUNCATION EFFECTS IN THE 0 €
INDEPENDENT-PARTICLE APPROXIMATION “
+8[ desate, ®
When the temperature is larger than about a third of the 0
nucleon separation energy, the unbound nucleon states can
no longer be ignored. To develop a theory that includes the (-1 o )
continuum, we first need to define precisely how we separat&here f(e)=[1+e”H] is the Fermi-Dirac occupation.
the contributions of the free nucleons and the nucleus to théNne formula for the partition function can then be rewrit-
partition function. If the system is enclosed in a box, thet€n as
logarithm of the free nucleon partition function is propor-
tional to the V0|ume Of the bOX. The Contribution Of the con- ZWe also ignore the Coulomb effects on the partition fl_”'](:tior]l
tinuum to the logarithm of the nuclear partition function is which are small but which immediately introduce the complications
found by the explicit subtraction of the free-particle contri- of plasma theory.
bution, and is independent of the volume of the box, if it is 3in practice, Eq(4) includes two separate contributions from pro-
large compared to the size of the nucleus. The free nucleotns and neutrons with different chemical potentiajsand ..
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1 + g Blenj=1)
1+ePr

In 2558, =3 2+ 1){2 ln[
j n

+ éf de dj(e)f(e)}. (6)
mJo

This form is easier to use computationally because it
avoids numerical derivatives.

To calculate the partition function of a specific nucleus,
we need to transform the grand-canonical partition to the
canonical partition function at fixed proton and neutron num-
bers. In the saddle-point approximation, the corresponding
correction is estimated from the particle-number fluctuations
in the grand-canonical ensemble, giving for the canonical
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T(MeV)

Z(B)
Z(B) = [2m{((AN)?)] Y/2ZCC g hrN 0
or
InZ' =~ In Z6C+ BEy- BuN -1 In [2m((AN)?)].  (8)

Here{(AN)?) is the variance of the neutron or proton num-
ber andz’=z€e’%. In Eq. (8), u is calculated from(N)

=0 In Z6%9a=N (where(N) is the average particle num-
ber in the grand-canonical ensemble andBw), and the
variance is found from{(AN)®= In Z¢%9a?. In the
independent-particle approximation these quantities are

9 InZEe

sp : ) 1 - daIj
IR 1)[@ s = | aeglice
9

and
# In 28¢
(AN)?) = % => (2)+ 1)[2 Frij(1 =)
a lj n
17 4%, _
+7Tf0 de e f(1 f)], (10

wheref,;=f(ey;) are the Fermi-Dirac occupation numbers
of the bound levels characterized by quantum nuntbgr

FIG. 1. The logarithm of the canonical excitation partition func-
tion ng (where the energy is measured with respect to the ground-
state energy calculated foP® e is shown for the following single-
particle spaces: all bound states plus continuum as described by
Egs. (6), (8), and (12) (solid line); bound states and the narrow
resonances listed in Table(dashed-dotted lineand bound states
only (dotted ling. The corresponding calculation with the space
truncated to thépgg,, major shell is shown as the dashed line. The
intercept afT=0 is In Ny s, whereNy s =168 is the number of states

in the (f2,,)2(p3,,)? shell configuration.

To illustrate the method, we apply it to nuclei in the iron
region. For the mean-field potential we use a Woods-Saxon
well V(r) plus a spin-orbit interaction

V(r) + Nl - 9) 210V (13)

r Is sr0|r ar

where V(r)=Vy[1+exgr-Ry)/al™ with Ry=r A3, We
choose the parametrization of Rdb], where Vy=-51
+33(N-2)/A MeV, a=0.67 fm, ry=1.32 fm, and \,=
—-0.44. We have calculated the single-particle spectrum
and scattering phase shifts in this potential well, and used
them to compute the canonical partition function from
Egs.(6), (8), and(12). The solid line in Fig. 1 shows the
logarithm of the canonical excitation partition function
|nz;p for the nucleus®Fe when the full single-particle
space(bound states plus continuyns taken into account.

In the continuum contribution we have included phase
shifts up tol,,,=7 (for T=<4 MeV, convergence is already
achieved for this value off,,,).

To avoid numerical derivatives, we can again use integra- We next investigate various truncations within the

tion by parts and rewrite Eq$9) and (10) as

N=2> (2 + l)[E [f; — (O] + EJ de §;(e)f(1 -f)}
lj n m™Jo
(11)

and
(AN)?) = |2 (2j + 1){2 {frj(L—foy) - F(O[L-T(O]}
i n

+EJoc deéu(e)f(l—f)(l—Zf)}. (12
T

0

independent-particle model. Of particular interest is the trun-
cation to the same model space that is used in the SMMC
approach. Most of the SMMC calculations so far have been
restricted to the bound states in a single major shell. For
example, calculations in the iron region were restricted to the
completefpgy,, major shell[17,18, which includes the ac-
tive orbitalsf;s, Pz, P12 50, @aNddgp. The orbital ener-
gies[determined in a Woods-Saxon well with spin-orbit in-
teraction(13)] are given in Table I.

The partition function calculated in this truncated space
(in the independent-particle approximatjors compared
with the full space calculatiofEgs.(6) and(8) and(12)] in
Fig. 1. One sees that the truncation to a single major shell
becomes problematic at temperatures abede5 MeV.
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TABLE |. Neutron orbital energies and resonance energies We identify the resonances from the energy dependence
MeV) in 56Fe and®Cr, calculated with the Woods-Saxon potential of the phase shifts; in different channeldj, and take their
of Ref. [5]. energies where the phase shifts ascend throatfh (to
within an integral multiple ofmr). The channels with reso-
Orbital type ] € (*Fo) € (°Cn nances and their energies are given in Table I. The partition
Bound fio -12.68 -10.2 function. calculated using bound states_ an_d narrow reso-
D3/2 -8.65 6.7 nances is shown as the da;hed_—dot_ted line in Fig. 2. We see
_ _ that the resonance approximation is good at least up to
P12 6.56 5.1 —~3.5 MeV
fsr2 634 2 We now summarize the validity of the various a ima-
o2 -3.13 -1.7 . e y pproxima
q —0.41 tions, requiring that the theo.ry be accurate up to tempera-
52 : tures of T~4 MeV. For nuclei along the stability line, it is
S12 026 only necessary to include bound states. For nuclei that have
Resonance A2 0.35 much lower separation energies, the continuum contribution
Y12 4.95 4.67 can be significant but the resonance approximation is likely
hy1 6.22 6.62

to be adequate. It should be emphasized that throughout this
section we have assumed a fixed mean-field potential. Above

To assess the importance of the continuum, we also sh0\1—1~4 MeV, that approximation becomes unreliable.
in Fig. 1 the result of the calculation keeping all bound states
but neglecting the continuum integr@lotted ling. One sees Il INTERACTION EFFECTS
that the continuum contribution is not very significant for a
tightly bound nucleus such &&Fe.

However, this situation changes in a nucleus with a smal
neutron separation energy. In Fig. 2 we compare the calcy;
lations in the full single-particle spagsolid line) and in the

We next discuss interaction effects on the partition func-
ion. The ground-state binding energy is of course very sen-
itive to the interaction, but this will not be immediately
isible in the excitation partition function. Let us denote by

truncated space that includes all bound stedested ling for Z,  the partition function calculated with interactions but in

; ) a truncated single-particle space. We argue that the correc-
the nucleus™Cr. Here the separation energy of the h'.gheSttion due to a larger model space will be largely additive in

Mhe logarithm of the partition function. Therefore the way to
ombine a small-space calculation of interaction effects with
large-space calculation of the independent-particle partition
Fr%f-’ is with the formula

effects become significant far=1 MeV.

Rather than ignoring the continuum completely, one coul
also consider the approximation of including only narrow
resonances, treating them as broadened discrete states.
deed, the derivative of the scattering phase sfjfin the InZ/=Inz,, +In Zép— In Zéptr: (15)

vicinity of a narrow resonance follows a Lorentzian
; whereZ, .. is the excitation partition functiofin the ab-
dg; I'j/2 sence of interactionsn the same truncated single-particle
- = ; (14 N ‘
de (€= ¢)*+(I}/2)? space in whichz;  is calculated.

Equation(15) cannot be justified rigorously, but we can
motivate it in several ways. It is certainly true that the inter-
action corrections approach zero at high temperature. From
finite-temperature many-body perturbation theory, it is seen
that the leading corrections to the independent-particle
HamiltonianH, are additive in the logarithm of the partition
function, as is assumed in E(L5). The explicit formula is

wheree; andT; are the centroid and width of a resonance
with quantum numbersj. If the resonance widtH? is
much smaller thar, the integral in Eq(4) can be evalu-
ated to give a contribution to IASS as though the reso-
nance were a discrete state with eneegy

30 T T T

In Tr exp(— BK) = In Tr exp(— BKp)

fﬁ d¢<V()>+1de
=- T, = T
0 ! 20 !

InZ'

B
Xf dT2<TTVI(71)VI(72)>conn+ Ty (16)
0

i J whereKzH—,uN (H is the full Hamiltonian of the interact-
ing system, Ko=Hy—uN, V, is the two-body interaction in

0% ! é ! ! the interaction picturéwith respect toK;), T, denotes time
T(MeV) ordering and---) denotes a thermal average with respect to
Ko. Each integration in Eq(16) gives a factor of 0. In
FIG. 2. Similar to Fig. 1 but for the nucleCr. cases where analytic expressions can be derieegl, hard
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FIG. 3. The excitation partition function of%Fe using the FIG. 4. Extended partition function f8PFe, calculated from Eq.

SMMC method in the truncated spat@®g,,). The SMMC parti- (15), shown als solid squares. The solid line is a fit to_ B9) with
tion function ', in the presence of the residual interaction 8=5.87 MeV™ and A=1.03 MeV. Shown for comparison are the

(squaregis compared to the SMMC partition functicty, in the ~ SMMC (open squargsand the full space single-partictelashed

absence of interactiongircles. The dashed line is the partition line) results.

function of the independent-particle model calculated in the saddle

point approximation using Eqg6), (8), and(12). curve starts out flat, changing to a linear increase over some

. . . range ofT, and reaching a plateau beyond the highest tem-

;?:':i?) r?iiﬁggngﬁl;gg%f?i\?fgrags\g'g?dmthg tg? II(?\}ver_ perature plotted. The initial flat behavior is associated with
gn'. tﬁe gap in the energy spectrum between the ground state and

temperatures, the extended space is not thermally OCCUPISRG first excited state, while the linear regime corresponds to

and only plays an indirect role, renormalizing the interac- L .
tions in the smaller space. Since the SMMC is applied Withthe Bethe formula. The saturation is due to the truncation of

renormalized interactions that are appropriate for the smallgf’€ SPace, and its onset marks the limit of validity of the
space, there is no additional correction when the larger spadé?ncated SMMC calculation. We next repeat the SMMC cal-
is considered explicitly. With the correct limiting behavior at culation with the two-body interaction turned off. The results
both low and high temperatures, we have a better theory foRre shown by the circles in Fig. 3. Notice that the difference
the complete temperature dependence. between the two partition functions becomes small as the
We now briefly summarize the SMMC calculations to betemperature increases, confirming the analysis in an earlier
used forZ',, in Eq. (15). The interaction is taken to be the part of this sectiorjsee in particular Eq.16)].
same as in Ref.17]. It is separable and surface-peaked, act- Before calculating the partition function in the extended
ing between orbitals of a major shéhere thefpgy, orbit-  model space, we also compare in Fig. 3 two ways of calcu-
alg). The strength of the surface-peaked interaction is detefating the noninteracting partition function, from E¢B)
mined self-consistently and renormalized appropriately fordashed lingor from the SMMC with the interaction turned
each multipole. In addition, there is a monopole pairing in-off (squareg In the latter method, particle-number projec-
teraction, whose strength is determined from odd-even masgon is carried out exactly, while in E8) this is done in the
differences. The single-particle Hamiltonian is the same as iBaddle point approximation. One can see that the differences
Sec. Il. The outputs of the SMMC computation are canonicahye insignificant for our purposes.
expectation values of various observables. For our purposes e now combine the various terms in Bg5) to get the

here, the most important quantity is the' canonical thermaéxtended-range partition function. Fzgp, we use Eq(8)
energy E(B), calculateq as the expectatlc_)n of the Ha.m”'where the independent-particle partition funct is cal-
tonian with number-projected SMMC densities. The part|t|0nCulateol in the full spacei.e., all bound states plus con-

function is then found by integration tinuum). The result is shown in Fig. 4 by the solid squares.
B For comparison, the SMMC resulbpen squargsand the
In Z(B) =1In Z(0) ‘f dB'E(B'). (17) full space independent-particle model regdished lingare
0 shown as well. Remarkably, the extendedInis seen to be
HereZ(0) is the partition function al —« and is equal to close to a linear function of over most of the range, unlike
the total number of many-particle states in the modeleither of its constituents in Eq15). In the saddle point ap-
space. In addition, we need to determine the ground-stateroximation, the dominating term in I’ is linear inT and
energykE, in order to find the excitation partition function, its slope is the parametex in the level density formula.
Eq. (2). This is done by extrapolating the calculategs) However, to compare with the back-shifted Bethe formula
to largeB. [see Eq(27) in Sec. V], more care is needed in treating the
The SMMC results for the nucle§Fe are shown in Fig. sublinear terms. Starting from the Darwin-Fowler expression
3, with InZ’ . plotted as a function off (squares The for the partition function of noninteracting fermiofsee Eq.
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(2B-9) in Ref. [5]], and including the proton and neutron ' '
number fluctuation terms from E@8), one can derive the
following expression foZ',

InZ' =aT-In(6aT/m) , (18)

where a=72g/3 and g is either the proton or neutron

single-particle level density at the Fermi ener@gsumed

to be equal Within the saddle-point approximation, Eq.

(18) is equivalent to the simple Bethe formula for the

level density(see Sec. IY. As mentioned in the introduc-

tion, a better phenomenological description of the mea-

sured level density is often obtained by shifting the

ground-state energy by an amounin the Bethe formula.

We show in Appendix A that the corresponding modifica- T(MeV)

tion of the partition function is to introduce a third term in

Eq. (18), FIG. 5. The extended entropy 8fFe (solid squares The solid
line is a fit to EqQ.(20) with a=5.82 MeV'L. The open squares de-

In Z' = aT-In(6aT/7) — A/T. (19 scribe the SMMC entropy.

The solid line in Fig. 4 is a fit of Eq(19) to InZ’ for We have demonstrated our method'for an even-even

1=T=4 MeV with a=5.87 MeV'! (corresponding to the nucleus®®Fe, but it s_hould be equally ap_pllcable to odd-even

expressiona=A/K with K=9.5 MeV) and A=1.03 MeV. and odd-odd nuclei. As an example, Fig. 6 shows the loga-

The fit describes remarkably well th& dependence of [ithm of the excitation partition function fot’Fe. The solid

InZ' for temperatures betweerT~1MeV and T line is a fit to Eq. (19 with a=6.04 MeV*' and A

~4 MeV (the rms of the deviation from the calculated =~1.29 MeV in the range £T<4 MeV (the rms deviation

In Z' is 0.09. The functional form(19) of In Z' is the IS =0.08. A qualitative difference is that unlike the case of_

essence of théback-shifted Bethe level density formula; _56Fe, Inz’ does_not approach zero at low temperatures. This

the result observed here implies that this formula is usefuls due to the spin degeneracy of the ground state of an even-

to considerably higher temperatures than was appare@dd nucleus and the much smaller energy gap to the first

from earlier calculations. At high temperatures, the domi-€Xcited state.

nant term in Eq.(19) is linear in T. However, the other

two terms are necessary to obtain a valueaothat is

comparable to the value extracted directly from the level We now determine the level densities associated with the

density, which will be the subject of Sec. IV. extended partition function of the preceding section. The
In the independent-particle model, 4 is approximately  level densities are calculated from the partition function as in

linear in T only for T=2MeV with a slope ofa  Refs.[17] and[18] using the saddle-point formula
~5.25 MeV?, i.e.,K~10.7. This value oK is smaller than

IV. LEVEL DENSITIES

— -2\ ~1/2,S
the Fermi gas valugs] K~15 but still larger than the value p(E) = 2mp2C) %, (21)
we found (K=9.5 above when correlations are taken into where S=In Z+pE=In Z’'+ B(E-E,) is the canonical en-
account. tropy and C=-g2dE/dg is the canonical heat capacity.

The canonical entropy can be calculated fr8m-dF/dT
where F=-TIn Z’ is the canonical free energy. Using the
empirical formula(19), this entropy is given by

20

S=2aT-In(6aT/m) -1, (20)

and is independent of the back-shift parameteihus the
parameter can be determined by a single parameter fit of
the extended entropy to E§20). The leading order term 10
in the entropy is linear iM and the last two terms in Eq.
(20) originate in the particle number fluctuations. The mi-
croscopic calculation of the extended entropy can be done
without taking numerical derivate with respectToas is

N
£

0 L 1

explained in Sec. IV. Figure 5 shows a fit of the empirical 0 2 ' 4
formula (20) (solid line) to the extended entropy in the T(MeV)

range T~1-4 MeV (solid squares with a=5.82 MeV*

(the rms deviation is=0.3). This value ofa is in agree- FIG. 6. The extended partition functiasolid squaresfor the

ment with the value found from |Z’. The fit is good, and  odd-even nucleu¥’Fe is compared with the SMMC partition func-
only at T~4 MeV do we start to observe a small devia- tion (open squarésThe solid line is a fit to the back-shift formula
tion. (19) with a=6.04 MeV! andA=-1.29 MeV.
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The thermal energy in Eq21) is a function of 8 that 10%° . . . .
satisfies
adlinz' 15
E-Eo=- : (22) 10
B
Using expressiori15) for the extended partition function a 10"
and Eq.(22), we have
5
E-Eo=(E, ~Epy) + [Esp~ (Espr *Eord],  (23) 10
whereEQ, =EQ,~ES,;, is theT=0 energy of the coréi.e., o L

the shells below the valence shelThe notation used here 10
for the various energies follows the same notation used for
the partition functions in Eq(15), and the subscript or

superscript “0” denotes the ground state in the corre-
b P 9 FIG. 7. Level density ofFe, calculated with the extended par-

sponding model space. - : ) o i
L . tition function (solid squares The solid line is a fit to the back-
Similarly, we find for the extended entropy and heat ca shifted Bethe formulg27) and describes well the extended level

0 20 40 60 80
E (MeV)

pacity density in the full excitation energy range shown in the figure. The
SMMC level density in the truncatefghgg» shell is shown by open
S=Sut SSD_ Ssmr' squares and the independent-particle model level density is shown
by the dashed line.
C= Cu,tr + Csp_ Csntr- (24)
JE\ Y
Equation(23) determines the relation between the excita- p= (Zw)‘l’z(— —) (—)eaT'A’T"B(E'Eo)
tion energy andg in the calculation of the extended level Ip 6atT
density. When the SMMC approach is used to calculate in- \G
teraction effects in the truncated spaég,, is calculated = ——a 32T 5/t (25

directly from the expectation value of the Hamiltonian and 12

E)y is found by extrapolation tgg—. The partitionZ,,  where the temperature is determined by the excitation en-
(and therefore the entrofy ) is found by integration using ergy E,=E-E, through

Eq.(17), while the heat capacit@, , is found by a numerical

derivative of the energy. E,~aT?+A. (26)

It remains to determine the respective quantities in the ) ) .
independent-particle modgboth in the full and truncated Relaztlon_ (26) generalizes the usual Bethe relatidt
spaces Here there is a technical complication in that the=21" t0 include an empirical offsed to the ground-state
needed quantities are canonical. For example, we need §'€r9y- This offset originates in correlation effects.
calculate the canonical energiks, and Eqy. In principle, When expressed in terms of the excitation energy, Eq.

one can use Eq(22), where Z' is calculated in the (25 IS justthe back-shifted Bethe formula

independent-particle model. However, sitds a canonical —
partition function, the partial derlvguve with respect B p(E,) = \ UAE, - A)‘5’4exd2\f'—a(Ex— Nl 27
must be evaluated at constant particle num¥eather than 12

at constant (e=Bu). The explicit expressions fdgg, and

Csp in terms of logarithmic derivatives of the grand- - .
canonical partition function are derived in Appendix B. In |€vel density parametex and the back-shift parametér

Appendix C we express these logarithmic derivatives infitting Eq. (27) to the calculated extended level density in

: — 1
terms of the corresponding single-particle spectrum and scat’® range S=E,=60 MeV, we find a=5.9 MeV™ and
tering phase shifts.p g single-p P A=1.35 MeV (with a y? per degree of freedom below,1

The extended level density &fFe is shown in Fig. 7 in overall agreement with the values found in Sec. Il by

(solid squaregas a function of excitation energf, =E-E,.  [tind Ed. (19) to In Z'. These values o& andA are also
For comparison, the SMMC level density calculated in thel ¢l0S€ agreement with the earlier values found by fitting
truncated spacé.e., fpgy, shell is shown by open squares, ©© theé SMMC level density in the energy rangesk,

— 1 —
while the level density calculated in the independent-particleg 16 MeV, a=5.85 MeV" and A=1.37 MeV. Hovever,

model (no truncation is shown by the dashed line. now the back—shiftgd Bethe formu(27) 'describes the ex-
To derive the back-shifted Bethe formula for the level€nded level density up to much higher values ff

density, we evaluate the inverse Laplace transforr@’on  (~90 MeV).” Thus the validity of this formula is now ex-

Eqg. (19) in the saddle point approximatiofseparating out

the particle number fluctuation term as a pre-exponential fac-“A temperature of T=4 MeV for 56Fe corresponds toE,

tor). We find ~86 MeV.

This formula has two fit parameters, the single-particle
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10%° - the A~40 region, while experiments in heavier spherical nu-
clei found a smallea. For example, in midmass nuclei, Ref.
[25] found that a=A/(9+1), while Ref. [26] found a
10*° ~A/(10-1). In both of these experimengswas found to be
constant through the measured temperature range. For the
heavier nucleA~ 200, the two experiments in Ref&7] and
a 10% [23] came to different conclusions. Refererj2&] found that
a temperature-dependeatis needed to fit the data, while
Ref. [23] found only a weak temperature dependence of
10° and its data are compatible with a constantA/12. It would
clearly be interesting to apply the methods developed here to
o heavier nuclei, and in particular to deformed nuclei for
10 —_— which deformation effects on the level density can be stud-
0 20 40 60 80 ied.
E . (MeV)
V. HEAT CAPACITY AND THE PAIRING PHASE
FIG. 8. Extended level densitfsolid squaresin comparison TRANSITION
with the SMMC level densityopen squargdor 5'Fe. The solid line . o
is a fit to the back-shifted Bethe formuia?). The back-shifted parametrizatioh9) works well for tem-

peraturesT=1 MeV, but not at lower temperatures. The de-

tended to significantly higher excitation energies than previations can be clearly seen in the canonical heat capacity as
viously thought. Furthermore, the specific values of thea function of the temperature. There can be a peak in this
parameters andA found in previous SMMC calculations function that is associated with the pairing phase transition,
[18] are approximately valid in this extended energybut the back-shifted parametrization permits only a mono-
range. tonic function rising linearly with temperature. Recently, ex-

Figure 8 shows the level density of the oldAucleus periments in rare-earth nuclei have been reported in which
5Fe, where we find in the extended range6.05 MeV!  effects of pair breaking can be seen in the canonical heat
andA=-1.3 MeV. These values are comparable to the valuesapacity [28,29. The authors measured the level density,
determined from IrZ’ in Sec. Ill. constructed a canonical partition function from their data,

The good fits we find to the back-shifted formuld@®)  and used it to deduce the heat capacity as a function of tem-
and (27) for the logarithm of the partition function and the perature.
level density, respectively, imply that the excitation energy Such low temperature characteristics, especially those re-
can be approximated by the quadratic expresgi#) for  quiring numerical derivatives, are nontrivial to calculate in
temperatures that are not too low. the SMMC, but in Ref[30] a method was found to accu-

Experimentally, the statistical properties of nuclei atrately calculate the heat capacity in the temperature range of
higher temperatures have been deduced from heavy ion r@terest. An enhancement over the Fermi gas heat capacity
actions. If the nuclei are equilibrated when they decay, theravas found in even iron nuclei aroufid~0.8 MeV. This en-
is a direct relation between the kinetic energy distributions ohancement is more pronounced for the neutron-rich iron iso-
the decay products and the temperature of the daughtéopes and is correlated with the reduction in the number of
nucleus. Experimental results have been reported indicating=0 neutron pairs with temperature. However, because the
that the quadratic dependencefon temperature needed to calculation was restricted to a finite spaépgy, shell), the
be modified at high temperatuf22]. However, in other ex- calculated heat capacity reached a maximum around tem-
periments only a slight deviation was foufB]. These latter peratures of~1.5 MeV and the effect of the pairing phase
experiments concluded a weak decrease wofith tempera-  transition was less pronounced.
ture and even a constaatcould not be excluded, in agree-  Here we use the extended theory to display the heat ca-
ment with our results. pacity in a much broader temperature ran@ge., up to

We close this section with a few remarks on the experi-~4 MeV), where deviations from the noninteracting heat ca-
mental determination of the statistical properties of nuclei apacity become obvious. The effect of the pairing transition
high temperature. To best achieve the equilibrium conditioron the heat capacity is now clearly observed even in the iron
(for which the statistical theory appligexperimentalists use isotopes with a smaller number of neutrons in which the
heavy ion fusion reactions to produce the nuclei, and theffect was not noticeable before, e.¢fFe. Figure 9 shows
nuclei studied have been mostly in the heavier mass regiornthe extended heat capacity ¥Fe calculated frong24) and
For deformed nuclei, one expects an enhancement of th@4) (solid squaresin comparison with the independent-
level density at low excitation energies, and indeed studies gbarticle heat capacity calculated in the full spadashed
nuclei aroundA~160 [22] found a significant decrease in line). Contrary to the SMMC heat capacity, the extended heat
the level density parameter,=E,/T? at high temperatures. capacity continued to increase monotonically with tempera-
For spherical nuclei, which are more relevant to our studyture, as doe€, However, it also exhibits a “shoulder” at
there have been a number of experiments in various madew temperatures, which is a clear signature of the pairing
regions ranging fronA~40 [24] to midmass nucle]25,2§ phase transition and is qualitatively similar to the measured
and up toA~200[27,23. Referencg24] founda=A/8 in  heat capacity in even-even rare-earth nug2sj.
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shift).5 The variation they observe at low temperatuiies

40 " T " T
~1-2 MeV is at least partly due to definitions Kfthat are
based on the Fermi gas limit.
30 f For temperatures below1 MeV, the pairing effects are
s strong and beyond the range of applicability of simple pa-
rametrizations. This can be seen in the canonical heat capac-
O 20 + ity if it is displayed over a large temperature range, as we did
using our extended theory.
/.E’DE, oo o g a
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APPENDIX A

In this appendix we derive the empirical back-shifted for-
mula (19) for the excitation partition function. The partition
function is obtained from the level density by a Laplace
transform

In this work we have combined the partition function of
the independent-particle model in the full space with the par-
tition function of the interacting shell model calculated in a
small space by the SMMC method. This enables us to extend
the SMMC calculations of partition functions and level den-Sypstituting the back-shifted Bethe formu7) for p(E,)
sities up to significantly higher temperatures. The results fofn Eq. (A1), and definingx=E,—A, we have
iron nuclei suggest that the back-shifted Bethe forni@ig

VI. CONCLUSION

zZ(p= J ) p(EePEdE,. (A1)
0

(with temperature-independent parametdssvalid over a [ © _
X . r N 14 -pA ~5/4g2\ax-px
wide range of temperatures extending frdmy1 MeV to T Z'= 12a e X . (A2)

~4 MeV. The two parameters of the formula, the single-

particle level density parametarand the back shiff, agree  \ye evaluate the integral in E§A2) in the saddle point

well with the empirical values. A corresponding empirical approximation. The saddle point is given By=aT?, and
formula(19) that accommodates correlation effects describege fing

well the logarithm of the excitation partition function.
Expressed in the forna=A/K, the theoretical value for -

56Fe is K=9.5 MeV. This is considerably smaller than the Z' = ﬁeaT_NT- (A3)

Fermi-gas value oK~15 MeV. It is also smaller than the a

value K=10.7 MeV extracted from the high temperature

slope of the logarithm of the independent-particle partition

function, indicating the importance of correlation effects. In

the literature, effective values of the parameteare often . o .
canonical energy and heat capacity in the independent-

defined from relations that are valid in the Fermi gas limit ~_ . 27 I o
(and that ignore corrections due to particle-number fluctuapamcle approximation in terms of logarithmic derivatives of

tions); e.g.,E,=aT?, S=2aT, andS=4aE2 In the presence of the grand-canonical partition function.

shell and correlation effects, these effective valuea ofu- We introduce the following notation for the logarithmic
. ’ e derivatives of the grand-canonical partition function in the

ally differ from each other and exhibit a temperature depen- :
: o independent-particle model

dence even at lower temperatures. Using the empirical rela-

APPENDIX B
In this appendix we obtain explicit expressions for the

tion (19) for the partition function, we find a constant value #In Z
of a that is similar to the value extracted from the level Zap= . (B1)
density itself. Ja”dp

The effects of interactions and unbound states were als
taken into account in Ref{12]. The authors parametrized
their results with a temperature-dependéntaind found it to
vary significantly, unlike ouK. However, their work only
included part of the interaction, omitting in particular the SAlso note that in Ref[12] Coulomb effects were included and
pairing interactionwhich is largely responsible for the back different parameters of the Woods-Saxon potential were used.

&elation(9) determinesy=a(B, N). Consideringa a func-
tion of 8 andN in relation (9), we find from dN/d3=0,
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da Zl 1
ot (B2)
A8~ Zyo
We can now use Eq$8) and(22) to obtain
ZZ 1 Z3 OZI 1
Es,=—Z -—. B3
Sp 0,1 2220 23%,0 ( )

Similarly, the canonical heat capacity in the independent-

particle model is given by

272 .+ Z
_ 9 117222
o - 20 2
_ Zg,l"' 2231211t 230212
225,
433 0221211+ 24025, 1 %ozil) (B4)
223, 230 )

EquationgB3) and(B4) are used to calculate the canoni-
cal thermal energies and heat capacities in the independent-

particle model in both the full and truncated spaces.

APPENDIX C

PHYSICAL REVIEW (58, 044322(2003
dag
dé’

Note thatg;(x)=1/(1+€‘)=f, wheref is the Fermi-Dirac
occupation number fox=a—-Be. We also have

g=f=f(1-1),

gx)=In(1+€), ga= (C2

g3=f,=f(1-f)(1-2f),
gy =fz=f(1-1)(1 - 6f + 62, (C3)

gs = fa=f(1 —)(1 - 14f + 36f2 - 24f3).

To avoid the numerical derivative of the phase shift, we
can integrate Eq.C1) by parts to obtain

Za,b:(_ 1)b|2 (2] + 1){2 gr%ljga+b(a - :Bfnlj)
J

n

b o0
- f de ()& g,up(a - Be)
TJo

In this appendix we derive explicit expressions for thefor b>0 and

partial derivativesz, , of the grand-canonical partition func-

tion (see Appendix Bin terms of the single-particle spec-

trum and scattering phase shifts.
Using Eq.(4), we find

ab_z (21+1)|:E (- Enlj) ga+b(a IBGnI])
f 1) - g - Be)]. (€

where we have defined

+ Ef dedj(s)ebgamﬂ(a - BG)} (C4)
mJo
IE (2j+1 {E [9a(a = Benj) = Gal@)]
i
+ EJ de 6j(€)Gar1(a - ,86)} (CH)
mJo

for b=0.
We note that Eq11) and(12) can be rewritten as

N=Z5, ((AN)®=Z;,, (Ce)

where 2, ; and Z, , are given as special cases of £EG4).
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