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General pairing interactions and pair truncation approximations for fermions in a single shell
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We investigate Hamiltonians with attractive interactions between pairs of fermions coupled to angular
momentumJ. We show that pairs with spid are reasonable building blocks for the low-lying states. For
systems with only d=J,,,5 pairing interaction, eigenvalues are found to be approximately integers for a large
array of states, in particular, for those with total angular momest2j. For 1=0 eigenstates of four fermions
in a singlej shell we show that there is only one nonzero eigenvalue. We address these observations using the
nucleon pair approximation of the shell model and relate our results with a number of currently interesting
problems.
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[. INTRODUCTION We first point out in this paper that the low-lying eigen-
states of Eq(1) can be approximated by wave functions with

. . : airs with angular momenturd only. We shall next show
nuclear, and condensed matter physics, pair truncation ap: . . .
proximations to many body wave ?ur{ctionsphave been exten:- ata large array of (_a|genvalues of four nuclgons In a single-
sively studied. The first example is the seniority schemeiofglegnara;s)r/nn;?:;trﬁu'm?ger:gtv://:?ﬁglrgzg ztjd_l fzq_tge
introduced by Racalil,2], for the classification of states in 9 y max—‘* =0,

. . . ; and that this phenomenon originates from the validity of the
atomic spectra and later applied extensively in nuclear phys-

ics whereS pairs with anaular momentum zero are relatedpair truncation scheme and special features of coupling co-
> P 9 T . efficients. We shall finally prove that the pair Hamiltonian
with a strong and attractive monopole pairing interaction

. . . ‘(1) has exactlyone and only on@onzero eigenvalue for four
The second example is the interacting boson mat&\1) (1) h: . .
introduced by Arima and lachellfg], where the low-lying fermion eigenstates with total angular momentum z&r®.,

o . . This sheds light on the problem of angular momentum zero
excitations of complex even-even nuclei are described suc

cessfully by s bosons which correspond to correlat&d ?;ggg?nsﬁfrggigwéqce in many-body systems interacting by
nucleon pairs with angular momentum zero ahdosons '
which correspond t® nucleon pairs with angular momen-
tum two. Again, the success of the IBM in nuclear physics |I. COMPARISON OF THE PAIR APPROXIMATION
partly comes from the validity of the pairing plus TO THE SHELL MODEL
quadrupole-quadrupole force for effective interactions be-
tween valence nucleons. Monopole and quadrupole pairin? Figure 1 compares the exact ground state angular momen-
are important as well in low- and high-temperature supercontUm ! for four nucleons in a singlgshell interacting by the
ductiviy in materials{4,5]. attractive pair Hamiltoniai; with the angular momenturh

In this paper we investigate the general pair truncatiorPf the ground state in the truncated space of pairs coupled to
approximation for fermions in a singleshell. The examples &ngular momentund only. We have examined all the cases
explored may provide a clue as how to classify the state§P t0J=20 andj=31/2 but here we show only two typical
which come from the diagonalization of an attractive pairing€x@mples with)=6 and 14. In the case d=0, the seniority
interaction for which two fermions are coupled to an angularScheme(S-pair approximation produces the exact ground

Since pairing has proven to be important in atomic,

momentum, state. In case 09=2 andn=4, a D-pair approximation is
found to be always very good. Wheh>2, the J-pair ap-
J proximation of low-lying states is not perfect but always
Hy=- > AJAY, very reasonable. In Fig. 1, most of ground state angular mo-
M==J menta are correctly reproduced by thgair truncation. In

Fig. 1(b), there are two exceptions in which the ground state
is not correctly given by tw@=14 pairs: 2=19 and 25.

Even in those cases where the ground state angular mo-
menta are not correctly predicted by theair truncation, the
where [}, means coupled to angular momentulmand  low-lying state energies are reasonably reprodu@edud-
projectionM. Most of the examples pursued in this papering the binding energigsAs a “bad” example in which the
haven=4, wheren is the nucleon number. ground state angular momentum is not reproduced, we show

1 1.
Al = —E[ajT xall, Ay=-(- 1)“”75[31' X3y, @)
\J V
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16 momentum is not correctly given by this=14 pair approxi-
12l a) 0 G| ] mation. The @ state is always precisely reproducet we
shall see, there is only one nonzero eigenvalud £@r states
g 8 o ; and that eigenstate is constructeddyyairs. The states with
§ \ odd | are always outside the pair truncation space but their
g ar \ /"\J_ | energies are quite high in all cases that we have checked. In
2 ol 4 N,nTu,u,u,u,uTu Fig. 2, the g is the lowest state with odd value bfBelow
£ 5 10 15 the 9 there are ten states with even valued ahd most of
g sof ] them are reasonably described by flel4 pair approxima-
é b) —m ° Gy, tion. The angular momenta of those states for which excited
g ool 2. ] energies are not well reproduced by tdgairs are labeled
z :\o by italic font in Fig. 2.
g 10} u o T For J=J,.,=2]—1, the I=1,,=4j—6 or I=l,—2 states
N /\:/ are always the lowest. These two states may be constructed
ot .\n/u . by pairs with angular momentum eith&y,, or Jya,— 2. How-
10 15 ever, pairs with angular momentudp,,—2 do not present a
j good classification for othdrstates while those with angular
momentumJ,,,, do.
FIG. 1. Ground state angular momemtéor four fermions in a For n=3, the J-pair truncation describes the low-lying

singlej shell for the pair Hamiltoniart, for J=6 in (8) and 14 in  states precisely. We note without details that bosons with
(b) as a function ofj. The solid squares are ground state angularspin | exhibit a similar situation. It would be interesting to

momenta obtained by truncating the space of states to those will,o\w the situation in more complicated systems.
two pairs with angular momentuhonly, and the open circles are
ground state angular momenta calculated by diagonalizing the pair IIl. INTEGER EIGENVALUES
Hamiltonian in the full shell model space.
We next report a very interesting regularity in the spec-
trum of Hamiltonian(1) with J=J,,,,=2)j— 1. The eigenvalues

=14. The calculated levels using twie=14 pairs are shown .Of most states with §2j_3 are found to be very .close to
in the first column. The next two columns are the shell modefntegers corresponding to the number of pairs with angular

states obtained by diagonalizing the Hamiltonian in the fullMOMENtUMJnay eXxcept for a very few eigenvalues. Taking

space. The states in the second column are the shell modfé)lur_ nucleons in 3231./2 Srl.e” as an e_xample, the diagonal-
ation of H; (J=30) gives “integer” eigenvalues for low

states corresponding to the pair truncation states in the firsf I o | 0 -1 and -2 ithi .
column. All the levels below Dare included. One sees that States—all eigenvalues are 0, -1, an to within & preci-

the lowest four states'2 6, 12, and 10 are well approxi- sion of 0.01 for all states with<<22. For states with 221

mated by twal=14 pairs, although the ground state angular$52’ these three “i_nteger” eigenv_alues continue to be valid
' except that seven eigenvalues which are not close to 0, -1, or

—2 come in. These “noninteger” eigenvalues are very stable

in Fig. 2 the case of four nucleons inja25/2 shell withJ

15l [ — pair truncation — shell model | ] in magnitude for states with 221<52. The states with
. o e 156 =53 are one dimensional, so the corresponding eigenvalues
" Tl & - Lo g 15 100 ] (which saturate quickly with) may be analytically derived
o i e 20260 0 = 1242213— 166 [7]. These “integer” eigenvalues are best seen in cask of
+ 8+ o200 20+ 22+ 12+ 104 — 2 .
D 20 Tk — 2264 15, =Wim =Jmnaxand becomes less dominant for smallemd the same
> ' R - oo 2T singley.
= 2t 200 . To understand the validity of the pair approximation and
()
S £ 8t 16 the occurrence of these “integer” eigenvalues we consider
-25¢ e 12t 1 the pair basis of four nucleons,
el
2o 1 4 It adahy()
1o+ [j1313:01, M) = 0 (AT AN |0y, (2

3,351,3,

FIG. 2. A comparison of low-lying spectra calculated with wave ) i . .

functions with two pairs with angular momentulw14 the column ~ WNereN; ; ., , is the diagonal matrix element of the nor-
on the left hand sideand by a diagonalization of the full spagee ~ Malization matrix

column in the middle and the column on the right hand sfdethe

| ’ r
case of four nucleons in a singl€j=25/2 shell. The middle col- N(Ji)Jé;JlJz = <0|(AJl X AJZ)E\l/I)(AJlT X AJZT)#\I/I)|O>
umn plots the lowest shell model states with even spin and the right =8, 18y 1+ (=)'8), 18y 1
column plots the other shell model states. All the levels bel§n0 199929, J19,%929)
the full shell model space are included. One sees that the low-lying i
states withi=2], 67, 12, and 14 are well reproduced. It is noted N .
that the  coupled by twaJ=14 pairs is equivalent to that obtained 433,311 1 J2. )
by a full shell model diagonalization; refer to the text. Ji Jé l.
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In general, this basis is overcomplete and the normalizaij43,) =|j*(J,J,]1 = M = 0)
tion matrix may have zero eigenvalues for a given

. 0
The matrix elements dfl; are[8] )

Nj,3,:33

0 N©O
33.33N3,3,:3,9,

- I*AM=M=0)3, #J), (6)

(1319201 MIHl L3301, M)

1 SN N
N0 N(l) NN RN ANN Y
’r—
313510035 Y 3134,0;.35 ' =even

()

The unnormalized statdg’J;), J; # J, are orthogonal with
respect toonly |j4JJ]I=M=0). From Eq.(4) one has

(@) ) =10331 =M =0).

wherejl is a shorthand notation of2J,+1. There are two
terms in N‘(Jll)JZ;‘J‘]/: the second term is a nineeoefficient
which is usually much less than unity in magnitude, in
particular, whenl is large and not large(refer to Appen-
dix A). Neglecting this ning-symbol, the allowed states
are  [j4301I, My= (At x A%H oy for J,<J;, and
11403,3.01, My=1/2(A%T x A%H)1|0), I even only, and the
Hamiltonian matrix becomes

(0) ©
3,9,:090N3,3,:90

(0) o
\Y NJiJi;JJNJlJl;JJ

whereJ;, J;=0, 2, ..., 3-1. Using this formula, one eas-
ily confirms that all matrix elements of the Hamiltonian in
basis(6), (j*J;/H,|j*31), J;# J, are zero. Therefore all the
eigenvalues fon=4 andl =0 are zero except for the single
state with both pairs having angular momentdrand its

| eigenvalue is€)V=-NQO
~ [83,50,0+ (=1)'83 316,.5/] SinceH, is a negative definite operator, its eigenvalues

- v 1)|5‘]1,J2\/1 (- 1)|5J1,Jé will be_ negative or zero. Frpm above we see that,lﬁg?,

there is only one state with a nonzero elgenvaIE§',.

First of all we see that the matrix is diagonal, which vali- Therefore one expects this eigenvalue to be the lowest in the
dates the pair approximation. Second the eigenvalues afPectrum because the eigenvalues#D states are more or
either 0, -1, or -2 with their corresponding wave func- less scattered in many states, generally speaking. Thus the
tions having O, 1, or 2 pairs with angu|ar momentljm probablllty that the =0* is the lowest state of four fermions
respectively. Therefore, the integer eigenvalues of miany in @ singlej shell in the presence of random two-body inter-
states originate from both the special properties of thes@ctions is expected to be larger than the probability for all
nine{ symbols and the validity of-pair truncation. other angular momentuiy according to the empirical rule of

From the J-pair coupling scheme, the number of Ref.[7]. For j<31/2 there are only two exceptions;7/2
1133501, M) with J;=J,=2j-1 is 14-)'/2, and the number and 13/2. _ _ _
of [j4[JJ.]1, M) with J,=2j-1, J,<J;, and1<2j-1 is[1/2] The sum rule of diagonal matrix elemenfs0] gives
(the largest integer not exceedin(®). According to the 3;Ej”=-3n(n-1)DY'=-6Dy(j), whereDJ is the number of
above discussion, the number of states with eigenvaluelssO states and here=4. For n=4 the number of states is
=-2 is 1+-)"/2 and the number of states with eigenvaluesD!'=[(2j+3)/6] [11], which gives 1, 1, 1, 2, 2, 2, 3, 3, 3, ...
=-1is [%]. This is confirmed inall cases withl<2j-8.  for 2j=3,5,7,9,11, 13,15, ..., etc., regularly. Thus the stag-
Eigenvalues not close to integers arise in states wjthi82 gering in the number of states is expected to be reflected in
<|=4j-12. These “noninteger” eigenvalues are found to bethe staggering of the energy which was pointed out in Refs.
almost the same for thej28<1=<4j-12 states; an under- [7,12 but without an explanation.
standing of this regularity is in progress.

From a more general expression of E4), say, Eq.(5.8)
of Ref. [9], we expect that the “integer” eigenvalues appear
not only in even systems, but also in oddsystems. Accord- In this paper we have shown that an attractitte pairing
ing to our numerical results, the pattern of “integer” eigen-interaction favors pairs with angular momentulin low-
values also appears in the states with sthédr j=11/2 and  lying states of fermions in a singleshell. Therefore, one
n=3, and forj=23/2 andn=5, etc. For cases with=3, a may use pairs with angular momentuhas building blocks
similar proof is readily obtained in terms of sjxsymbols.  of wave functions of low-lying states. This is in contrast to
An explicit proof for more nucleons will be quite compli- repulsive pair interactions, used, for example, in the frac-
cated. tional quantum Hall effecf13-15, for which the pair trun-
cation approximation is not valid.

In addition, we discovered that the eigenvalues of states
with low angular momentunh for pair Hamiltonians withJ
larger thanj are approximately integers. We explain the ori-
We now come to the last point of this paper by pointinggin of this fact for four nucleons in a singjeshell from the

(11313110, GH,[j13,3,10,0) = - (8)

(1319201 MIHl L3301, M)

©)

(63,0% 03,9).

V. SUMMARY

IV. EXACT RESULTS FOR ANGULAR MOMENTUM
ZERO STATES

out that there is only one nonzero eigenvaluelfo® andn
=4. We define a new basis for tHe0 states for the pair
HamiltonianHj,

validity of pair truncation and special properties of nine-
symbols. We point out without details that the same holds for
n=3 andj=11/2 and fom=5 (j<23/2.
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Finally, we pointed out that there is only one nonzero| j j 2j-1
eigenvalue fol =0 andn=4. This result is useful in studying

the large probability of angular momentum zero states to b _J _J 2-1
the lowest in energy fon=4. 2j-1 2)-1 6
_ 5+ @)+ 1(8j*- 6 - 2D[(2) - D!?
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APPENDIX A: SOME NINE- j SYMBOL FORMULAS

These formulas are obtained in the following two steps.| | i2j-1
First, rewrite the ning-in terms of sixj symbols, i.e., j j 2j-3
o D i 2j-1 23-3 3
P ED (‘)Zt(2t+1){r | ;H. : 32} (4] -3)[1+2j(4i - 9N - ! P
s s 1) ! L b= 6(4] - 5)(4j - 1! '
s, s, | From the above formulas one sees that these niyn-
X t bols are proportional td(2j—-1)!1%/(4j-1)!, and are very

close to zero wherj becomes considerably large. For ex-
and second, make use of the analytical formulas ofjsix- @mple, the absolute values of these njrgymbols are less
Through these examplgshough we are unable to get a than~107*° whenj=31/2.

universal formulag one sees that the nijesymbols in
Eq. (3) are much less than unity and may be neglected in
Eq. (4) whenl is not very large:

APPENDIX B: A NEW SUM RULE FOR A SIX- j SYMBOL
From Eq.(3) one obtains

; ; © i
j i 2j-1 Njjag=2+42J+ 1)) . -
N O (U R (G b
5i-1 2i-1 o0 R EE T Since N, is also the unique eigenvalue of tHe0
(4] ] ) eigenstate oH;, one has a sum rule that
ro. . . ) 1 -
] [ ol . NQ.  =Zn(n-21)DY,
S O (G R 11 2 Nijyy=5n(n-1Dg

J

wheren=4, Dg):(2j+3)/6 [11]. One finally obtains that
g

1
. . . ) - if2j=3k
i 0 2i-1 o > el
i io2i-1 > (2J+1){J_ : J}=< 0 if2j+2=3%
2j-1 2-1 4 evenJ ] 1
) - -— if2j-2=3%k.
_3i(2+ D@~ 3 - 52 - DI 2 "7
(4i-D@4j-3(4j-54j-1! ’ (B1)
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