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We investigate Hamiltonians with attractive interactions between pairs of fermions coupled to angular
momentumJ. We show that pairs with spinJ are reasonable building blocks for the low-lying states. For
systems with only aJ=Jmax pairing interaction, eigenvalues are found to be approximately integers for a large
array of states, in particular, for those with total angular momentaIø2j. For I=0 eigenstates of four fermions
in a single-j shell we show that there is only one nonzero eigenvalue. We address these observations using the
nucleon pair approximation of the shell model and relate our results with a number of currently interesting
problems.
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I. INTRODUCTION

Since pairing has proven to be important in atomic,
nuclear, and condensed matter physics, pair truncation ap-
proximations to many body wave functions have been exten-
sively studied. The first example is the seniority scheme,
introduced by Racah[1,2], for the classification of states in
atomic spectra and later applied extensively in nuclear phys-
ics, whereS pairs with angular momentum zero are related
with a strong and attractive monopole pairing interaction.
The second example is the interacting boson model(IBM )
introduced by Arima and Iachello[3], where the low-lying
excitations of complex even-even nuclei are described suc-
cessfully by s bosons which correspond to correlatedS
nucleon pairs with angular momentum zero andd bosons
which correspond toD nucleon pairs with angular momen-
tum two. Again, the success of the IBM in nuclear physics
partly comes from the validity of the pairing plus
quadrupole-quadrupole force for effective interactions be-
tween valence nucleons. Monopole and quadrupole pairing
are important as well in low- and high-temperature supercon-
ductiviy in materials[4,5].

In this paper we investigate the general pair truncation
approximation for fermions in a single-j shell. The examples
explored may provide a clue as how to classify the states
which come from the diagonalization of an attractive pairing
interaction for which two fermions are coupled to an angular
momentumJ,

HJ = − o
M=−J

J

AM
J†AM

J ,

AM
J† =

1

Î2
faj

† 3 aj
†gJ, AM

J = − s− 1dM
1

Î2
fãj 3 ãjg−M

J , s1d

where fgM
J means coupled to angular momentumJ and

projectionM. Most of the examples pursued in this paper
haven=4, wheren is the nucleon number.

We first point out in this paper that the low-lying eigen-
states of Eq.(1) can be approximated by wave functions with
pairs with angular momentumJ only. We shall next show
that a large array of eigenvalues of four nucleons in a single-
j shell are asymptotic integers whenJ,Jmax=2j−1 and the
total angular momentumI is not very close toImax=4j−6,
and that this phenomenon originates from the validity of the
pair truncation scheme and special features of coupling co-
efficients. We shall finally prove that the pair Hamiltonian
(1) has exactlyone and only onenonzero eigenvalue for four
fermion eigenstates with total angular momentum zero,I=0.
This sheds light on the problem of angular momentum zero
ground state dominance in many-body systems interacting by
random interactions[6].

II. COMPARISON OF THE PAIR APPROXIMATION
TO THE SHELL MODEL

Figure 1 compares the exact ground state angular momen-
tum I for four nucleons in a single-j shell interacting by the
attractive pair HamiltonianHJ with the angular momentumI
of the ground state in the truncated space of pairs coupled to
angular momentumJ only. We have examined all the cases
up to J=20 andj ø31/2 but here we show only two typical
examples withJ=6 and 14. In the case ofJ=0, the seniority
scheme(S-pair approximation) produces the exact ground
state. In case ofJ=2 and n=4, a D-pair approximation is
found to be always very good. WhenJ.2, the J-pair ap-
proximation of low-lying states is not perfect but always
very reasonable. In Fig. 1, most of ground state angular mo-
menta are correctly reproduced by theJ-pair truncation. In
Fig. 1(b), there are two exceptions in which the ground state
is not correctly given by twoJ=14 pairs: 2j=19 and 25.

Even in those cases where the ground state angular mo-
menta are not correctly predicted by theJ-pair truncation, the
low-lying state energies are reasonably reproduced(includ-
ing the binding energies). As a “bad” example in which the
ground state angular momentum is not reproduced, we show
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in Fig. 2 the case of four nucleons in aj=25/2 shell withJ
=14. The calculated levels using twoJ=14 pairs are shown
in the first column. The next two columns are the shell model
states obtained by diagonalizing the Hamiltonian in the full
space. The states in the second column are the shell model
states corresponding to the pair truncation states in the first
column. All the levels below 0+ are included. One sees that
the lowest four states 21

+, 61
+, 121

+, and 101
+ are well approxi-

mated by twoJ=14 pairs, although the ground state angular

momentum is not correctly given by thisJ=14 pair approxi-
mation. The 01

+ state is always precisely reproduced(as we
shall see, there is only one nonzero eigenvalue forI=0 states
and that eigenstate is constructed byJ pairs). The states with
odd I are always outside the pair truncation space but their
energies are quite high in all cases that we have checked. In
Fig. 2, the 91

+ is the lowest state with odd value ofI. Below
the 91

+ there are ten states with even values ofI and most of
them are reasonably described by theJ=14 pair approxima-
tion. The angular momenta of those states for which excited
energies are not well reproduced by twoJ pairs are labeled
by italic font in Fig. 2.

For J=Jmax=2j−1, the I=Imax=4j−6 or I=Imax−2 states
are always the lowest. These two states may be constructed
by pairs with angular momentum eitherJmaxor Jmax−2. How-
ever, pairs with angular momentumJmax−2 do not present a
good classification for otherI states while those with angular
momentumJmax do.

For n=3, the J-pair truncation describes the low-lying
states precisely. We note without details that bosons with
spin l exhibit a similar situation. It would be interesting to
know the situation in more complicated systems.

III. INTEGER EIGENVALUES

We next report a very interesting regularity in the spec-
trum of Hamiltonian(1) with J=Jmax=2j−1. The eigenvalues
of most states withIø2j−3 are found to be very close to
integers corresponding to the number of pairs with angular
momentumJmax except for a very few eigenvalues. Taking
four nucleons in aj=31/2 shell as an example, the diagonal-
ization of HJ sJ=30d gives “integer” eigenvalues for lowI
states—all eigenvalues are 0, −1, and −2 to within a preci-
sion of 0.01 for all states withI,22. For states with 22øI
ø52, these three “integer” eigenvalues continue to be valid
except that seven eigenvalues which are not close to 0, −1, or
−2 come in. These “noninteger” eigenvalues are very stable
in magnitude for states with 22øIø52. The states withI
ù53 are one dimensional, so the corresponding eigenvalues
(which saturate quickly withj) may be analytically derived
[7]. These “integer” eigenvalues are best seen in case ofJ
=Jmax and becomes less dominant for smallerJ and the same
single-j.

To understand the validity of the pair approximation and
the occurrence of these “integer” eigenvalues we consider
the pair basis of four nucleons,

u j4fJ1J2gI, Ml =
1

ÎNJ1J2;J1J2

sId
sAJ1† 3 AJ2†dM

sIdu0l, s2d

whereNJ1J2;J1J2

sId is the diagonal matrix element of the nor-
malization matrix

NJ18J28;J1J2

sId = k0usAJ18 3 AJ28dM
sIdsAJ1† 3 AJ2†dM

sIdu0l

=dJ1,J18
dJ2,J28

+ s− dIdJ1,J28
dJ2,J18

− 4Ĵ1Ĵ2Ĵ18Ĵ285 j j J1

j j J2

J18 J28 I .
6 . s3d

FIG. 1. Ground state angular momentaI for four fermions in a
single-j shell for the pair HamiltonianHJ for J=6 in (a) and 14 in
(b) as a function ofj. The solid squares are ground state angular
momenta obtained by truncating the space of states to those with
two pairs with angular momentumJ only, and the open circles are
ground state angular momenta calculated by diagonalizing the pair
Hamiltonian in the full shell model space.
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FIG. 2. A comparison of low-lying spectra calculated with wave
functions with two pairs with angular momentumJ=14 (the column
on the left hand side) and by a diagonalization of the full space(the
column in the middle and the column on the right hand side) for the
case of four nucleons in a single-j sj=25/2d shell. The middle col-
umn plots the lowest shell model states with even spin and the right
column plots the other shell model states. All the levels below 01

+ in
the full shell model space are included. One sees that the low-lying
states withI=21

+, 61
+, 121

+, and 101
+ are well reproduced. It is noted

that the 01
+ coupled by twoJ=14 pairs is equivalent to that obtained

by a full shell model diagonalization; refer to the text.
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In general, this basis is overcomplete and the normaliza-
tion matrix may have zero eigenvalues for a givenI.

The matrix elements ofHJ are [8]

k j4fJ18J28gI, MuHJu j4fJ1J2gI, Ml

= −
1

ÎNJ1J2;J1J2

sId NJ18J28;J18J28
sId o

J8=even

NJ1J2;JJ8
sId NJ18J28;JJ8

sId , s4d

whereĴ1 is a shorthand notation ofÎ2J1+1. There are two
terms in NJ1J2;JJ8

sId : the second term is a nine-j coefficient
which is usually much less than unity in magnitude, in
particular, whenJ is large andI not largesrefer to Appen-
dix Ad. Neglecting this nine-j symbol, the allowed states
are u j4fJ1J2gI, Ml<sAJ1†3AJ2†dM

sIdu0l for J2,J1, and
u j4fJ1J1gI, Ml<1/Î2sAJ1†3AJ1†dM

sIdu0l, I even only, and the
Hamiltonian matrix becomes

k j4fJ18J28gI, MuHJu j4fJ1J2gI, Ml

< −
fdJ1,J18

dJ2,J28
+ s− 1dIdJ1,J28

dJ2,J18
g

Î1 + s− 1dIdJ1,J2
Î1 + s− 1dIdJ18,J28

sdJ1,J + dJ2,Jd. s5d

First of all we see that the matrix is diagonal, which vali-
dates the pair approximation. Second the eigenvalues are
either 0, −1, or −2 with their corresponding wave func-
tions having 0, 1, or 2 pairs with angular momentumJ,
respectively. Therefore, the integer eigenvalues of manyI
states originate from both the special properties of these
nine-j symbols and the validity ofJ-pair truncation.

From the J-pair coupling scheme, the number of
uj4fJ1J2gI, Ml with J1=J2=2j−1 is 1+s−dI/2, and the number
of uj4fJ1J2gI, Ml with J1=2j−1, J2,J1, and I,2j−1 is fI/2g
(the largest integer not exceedingI/2). According to the
above discussion, the number of states with eigenvalues
.−2 is 1+s−dI/2 and the number of states with eigenvalues
.−1 is f I

2
g. This is confirmed inall cases withI,2j−8.

Eigenvalues not close to integers arise in states with 2j−8
øIø4j−12. These “noninteger” eigenvalues are found to be
almost the same for the 2j−8øIø4j−12 states; an under-
standing of this regularity is in progress.

From a more general expression of Eq.(4), say, Eq.(5.8)
of Ref. [9], we expect that the “integer” eigenvalues appear
not only in even systems, but also in odd-A systems. Accord-
ing to our numerical results, the pattern of “integer” eigen-
values also appears in the states with smallI for j ù11/2 and
n=3, and for j ù23/2 andn=5, etc. For cases withn=3, a
similar proof is readily obtained in terms of six-j symbols.
An explicit proof for more nucleons will be quite compli-
cated.

IV. EXACT RESULTS FOR ANGULAR MOMENTUM
ZERO STATES

We now come to the last point of this paper by pointing
out that there is only one nonzero eigenvalue forI=0 andn
=4. We define a new basis for theI=0 states for the pair
HamiltonianHJ,

u j4J1l = u j4fJ1J1gI = M = 0l

−
NJ1J1;JJ

s0d

ÎNJJ;JJ
s0d NJ1J1;J1J1

s0d
u j4fJJgI = M = 0lsJ1 Þ Jd, s6d

u j4Jl = u j4fJJgI = M = 0l. s7d

The unnormalized statesu j4J1l, J1ÞJ, are orthogonal with
respect toonly uj4fJJgI=M=0l. From Eq.s4d one has

k j4fJ18J18g0, 0uHJu j4fJ1J1g0, 0l = −
NJ1J1;JJ

s0d NJ1J1;JJ
s0d

ÎNJ18J18;JJ
s0d

NJ1J1;JJ
s0d

, s8d

whereJ18, J1=0, 2, . . . , 2j −1. Using this formula, one eas-
ily confirms that all matrix elements of the Hamiltonian in
basiss6d, k j4J18uHJu j4J1l, J18ÞJ, are zero. Therefore all the
eigenvalues forn=4 andI =0 are zero except for the single
state with both pairs having angular momentumJ and its
eigenvalue isE0

Js jd=−NJJ;JJ
s0d .

Since HJ is a negative definite operator, its eigenvalues
will be negative or zero. From above we see that, forI=0,
there is only one state with a nonzero eigenvalue,E0

Jsjd.
Therefore one expects this eigenvalue to be the lowest in the
spectrum because the eigenvalues ofIÞ0 states are more or
less scattered in many states, generally speaking. Thus the
probability that theI=0+ is the lowest state of four fermions
in a single-j shell in the presence of random two-body inter-
actions is expected to be larger than the probability for all
other angular momentumI, according to the empirical rule of
Ref. [7]. For j ø31/2 there are only two exceptions,j=7/2
and 13/2.

The sum rule of diagonal matrix elements[10] gives
oJ E0

Jsjd=−1
2nsn−1dD0

sjd=−6D0sjd, whereD0
sjd is the number of

I=0 states and heren=4. For n=4 the number of states is
D0

sjd=fs2j+3d/6g [11], which gives 1, 1, 1, 2, 2, 2, 3, 3, 3, .. .
for 2j=3, 5, 7, 9, 11, 13, 15, .. ., etc., regularly. Thus the stag-
gering in the number of states is expected to be reflected in
the staggering of the energy which was pointed out in Refs.
[7,12] but without an explanation.

V. SUMMARY

In this paper we have shown that an attractiveJth pairing
interaction favors pairs with angular momentumJ in low-
lying states of fermions in a single-j shell. Therefore, one
may use pairs with angular momentumJ as building blocks
of wave functions of low-lying states. This is in contrast to
repulsive pair interactions, used, for example, in the frac-
tional quantum Hall effect[13–15], for which the pair trun-
cation approximation is not valid.

In addition, we discovered that the eigenvalues of states
with low angular momentumI for pair Hamiltonians withJ
larger thanj are approximately integers. We explain the ori-
gin of this fact for four nucleons in a single-j shell from the
validity of pair truncation and special properties of nine-j
symbols. We point out without details that the same holds for
n=3 and j ù11/2 and forn=5 sj ø23/2d.
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Finally, we pointed out that there is only one nonzero
eigenvalue forI=0 andn=4. This result is useful in studying
the large probability of angular momentum zero states to be
the lowest in energy forn=4.
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APPENDIX A: SOME NINE- j SYMBOL FORMULAS
These formulas are obtained in the following two steps.

First, rewrite the nine-j in terms of six-j symbols, i.e.,

5 j j r 1

j j r 2

s1 s2 I
6 = o

t
s− d2ts2t + 1dH j j r 1

r1 I t JH j j r 2

j t s2
J

3Hs1 s2 I

t j j J ,

and second, make use of the analytical formulas of six-j .
Through these examplessthough we are unable to get a
universal formulasd, one sees that the nine-j symbols in
Eq. s3d are much less than unity and may be neglected in
Eq. s4d when I is not very large:

5 j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 0
6 = −

js4j − 3dfs2j − 1d !g2

s4j − 1ds4j − 1d !
,

5 j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 2
6 =

js8j2 − 6j − 3dfs2j − 1d !g2

s4j − 1ds4j − 3ds4j − 1d !
,

5 j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 4
6

= −
3js2j + 1ds4j2 − 3j − 5dfs2j − 1d !g2

s4j − 1ds4j − 3ds4j − 5ds4j − 1d !
,

5 j j 2j − 1

j j 2j − 1

2j − 1 2j − 1 6
6

=
5js j + 1ds2j + 1ds8j2 − 6j − 21dfs2j − 1d !g2

s4j − 1ds4j − 3ds4j − 5ds4j − 7ds4j − 1d !
,

5 j j 2j − 1

j j 2j − 3

2j − 1 2j − 3 2
6

= −
jh36 + js4j − 9df19 + 2js− 9 + 4jdgjfs2j − 1d !g2

3s4j − 3ds4j − 5ds4j − 1d !
,

5 j j 2j − 1

j j 2j − 3

2j − 1 2j − 3 3
6

=
js4j − 3df1 + 2js4j − 9dgfs2j − 1d ! g2

6s4j − 5ds4j − 1d !
.

From the above formulas one sees that these nine-j sym-
bols are proportional tofs2j−1d! g2/s4j−1d!, and are very
close to zero whenj becomes considerably large. For ex-
ample, the absolute values of these nine-j symbols are less
than,10−15 when j=31/2.

APPENDIX B: A NEW SUM RULE FOR A SIX- j SYMBOL
From Eq.(3) one obtains

NJJ;JJ
s0d = 2 + 4s2J + 1dH j j J

j j J J .

Since −NJJ;JJ
s0d is also the unique eigenvalue of theI =0

eigenstate ofHJ, one has a sum rule that

o
even J

NJJ;JJ
s0d =

1

2
nsn − 1dD0

s jd,

wheren=4, D0
s jd=s2j +3d/6 f11g. One finally obtains that

o
even J

s2J + 1dH j j J

j j J J =5
1

2
if 2 j = 3k

0 if 2 j + 2 = 3k

−
1

2
if 2 j − 2 = 3k.
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