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The excitation energies of single analog states in even-odd Ti isotopes and double analog states in even-even
Ti isotopes are microscopically described in a singlej-shell formalism. A projection procedure for generalized
BCS states has been used. As an alternative description a particle-core formalism is proposed. The latter picture
provides a two-parameter expression for excitation energies, which describes fairly well the data in four odd
and three even isotopes of Ti.
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I. INTRODUCTION

In a series of papers[1–5], Zamick and his collaborators
investigated the spectra of even-even and even-odd nuclei in
the pf region. The authors used the shell model calculations
in a single open shell for both protons and neutrons. They
remarked that for some even-even nuclei, theJp=0+ excited
states were at twice the energies ofJ= j excited states in the
neighboring even-odd nuclei, in a singlej-shell calculation
for any isospin conserving interaction. Examples of this type
are the pairss44Ti, 43Scd, s44Ti, 43Tid, s48Ti, 49Tid, s48Ti, 47Scd.
In order that this relationship holds it is necessary that the
diagonalization spaces for the odd and even systems are
equal to each other. For the nuclei mentioned above the proof
was analytically given in Ref.[2]. The states mentioned
above for the even-odd and even-even isotopes can be
viewed as single analog(SA) and double analog(DA) states,
respectively.

For the combinations46Ti, 45Scd and the cross conjugate
pair s50Cr,51Crd one almost gets a 2 to 1relation, which
becomes precisely 2 to 1 if one does not allow admixtures of
seniority v=4 states in the ground states of the even-even
nuclei. In Ref.[4] the excitation energies of higher isospin
states were parametrized by linear relations

ET+1
* = bsT + Xd for J = j , SA state,

ET+2
* = 2bsT + X + 1

2d for J = 0, DA state. s1.1d

These are equivalent to a quadratic expression for the
binding energiesBE=−2bTsT+Yd, where Y=2X−1. For
Wigner SUs4d model Y is equal to 4 andX=2.5.

In the present paper we revisit the above problem for the
isotopes of Ti. We suppose that the states of interest are
mainly determined by the valence nucleons in thef7/2 shell,
which interact among themselves through an isospin invari-
ant pairing force.

The SA states are populated in asp, nd reaction process
[6,7]. Thus, the ground statesT, T3=Td of the target nucleus
sN, Zd (often called mother nucleus) is transformed by the

isospin raising operator1 T+ to the statesT, T−1d describing
the daughter nucleussN−1,Z+1d. This state is certainly an
excited state, the daughter nucleus ground state being asT
−1,T−1d state. The SA state has the same quantum numbers
as the ground state of the mother nucleus except forT3 which
is by one unit smaller than the initial value. This state can be
described either by a neutron hole-proton particle Tamm-
Dancoff approximation(TDA) applied to the mother system
or by diagonalizing a many body Hamiltonian associated
with the daughter nucleus within auaTT3l basis. Considering
now the daughter nucleus in the SA state as a target, one may
define again, by asp, nd process, a new SA state. This is a
DA state with respect to the initial mother nucleus and has
the isospin quantum numberssT, T−2d. According to the
above considerations this state can be obtained by two suc-
cessive TDA phonon excitations of the ground state of the
mother nucleus. Roughly speaking the SA energy is about
the shift of proton single-particle energy due to the Coulomb
interaction and symmetry energy, the deviation being caused
by the proton-neutron residual interaction. The remark of
Zamick and his collaborators is that in some Ti even isotopes
the excitation energy of the DA states is twice as much as the
excitation energy of SA in the neighboring even-odd Ti iso-
topes. For illustration, an example is given in Figs. 1 and 2.
The question is, of course, whether this is a general feature
or is mainly determined by the interaction regime(strong or
weak) between the odd nucleons and the core on one side
and between odd nucleons on other side.

The states whose energies are suspected to provide a ratio
of 2 to 1 are considered as approximate eigenstates of the
model Hamiltonian, which will be treated within a general-
ized BCS formalism. The corresponding energies are ob-
tained as average values of the many body Hamiltonian on
N, T, T3 projected states, generated by the generalized BCS
ground state. As in a previous publication[8], we restrict the
space of single-particle states to a proton singlejp and a
neutron singlejn shell with jp= jn.

1Throughout this paper we consider that protons and neutrons
haveT3 equal to1

2,−1
2, respectively.
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The results are presented as follows. In Sec. II, the even-
even system is presented. Since the results for such systems
were earlier described in Ref.[8], here we collect only the
main results in order to facilitate a self-consistent picture.
Section III is devoted to the even-odd system. Numerical
results are commented in Sec. IV and the final conclusions
are given in Sec. V.

II. EVEN-EVEN SYSTEM

The many body systems for mother and daughter nuclei
are described by the following Hamiltonian:

H = esN̂p + N̂nd −
G

4 o
j ,j8

fPp
†s jdPps j8d + Pn

†s jdPns j8d

+ 2Ppn
† s jdPpns j8dg, s2.1d

where the following notations have been used:

Pt
†s jd = o

m
ct jm

† c
t jm̃

†
, t = p, n,

Ppn
† s jd = o

m
cpjm

† c
njm̃

†
. s2.2d

In a previous paper, two of ussA.A.R. and E.M.G.d ap-
proached the generalized BCS ground state by a wave
function obtained by rotating the ground state of a proton-
neutron pairing Hamiltonian in the isospin space. Rotation
angles depend on the quantum numbers defining the
proton-neutron pair:

uBCSl = p
jm

R̂sV0
s jddsUj + Vj

*Cpjm
† c

njm̃

†
du0l ; R̂sV0duBCSlpn,

s2.3d

where the standard notation for the BCS ground state of
the p-n pairing Hamiltonian,uBCSlpn, and the rotation in
the space of the many body states,

R̂sV0d = ^ jR̂sV0
s jdd, s2.4d

have been used. The transformationR̂sV0d has the mean-
ing of a collective rotation which fixes the orientation of
the intrinsiclike frame in the space of isospin. ThusuBCSl
plays the role of an intrinsic state whileuBCSlpn of an
auxiliary intrinsic state. Clearly the functionuBCSl breaks
the gauge and isospin symmetries. These symmetries can
be restored by a projection procedure, and the resulting
states are

uNTMKl =
2T + 1

16p3 NNTE DMK
T *eisN̂−NdFR̂sVdR̂sV0d

3uBCSlpndVdF. s2.5d

HereN stands for the total number of valence nucleons,T
is the total isospin,K is the third component of the total
isospinsequal to minus the half of the neutron excessd. As
we already mentioned we suppose that the excitation en-
ergies are determined by the valence nucleons. In the case
of Ti isotopes, the open shells for protons and neutrons are
f7/2. In what follows we give, therefore, the useful results
for the case of a singlej-shell. To simplify the notations
we omit the indexj specifying the shell. Semidegeneracy

TABLE I. Excitation energies of single and double analog states
in Ti isotopes(MeV).

Single j shell Experiment
Even-odd E sMeVd E sMeVd

43Ti 1/2 3/2 4.340 4.338
45Ti 1/2 3/2 4.178 4.176

4.725
47Ti 3/2 5/2 7.191 7.187
49Ti 5/2 7/2 8.725 8.724

Even-even
44Ti 0 2 9.345 9.340
46Ti 1 3 14.150 14.153
48Ti 2 4 17.395 17.398

FIG. 1. The SA state in the daughter nucleus49Ti and the ground
state of the mother nucleus49Sc are schematically presented.

FIG. 2. The DA state in the final nucleus48Ti and the ground
state of the initial nucleus48Ca are schematically presented.
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of the j shell is denoted byV=s2j +1d/2.
The norm for the stateuNTMKl is

N NT
−2 = uDK,0

T sV0du2sNpnd2S uVu
U
DN

o
p

s− 2dpSV

p
D

312V − 2p

N

2
− 2p 2ZSN

2
, pD . s2.6d

The projected state energy characterizing the even-even
system of valence nucleons is analytically given by

kNTMKuHuNTMKl

= eN − G
N

4S2V −
N

2
+ 1D

−
G

2
N NT

2 Npn
2 uDK0

T sV0du2o
p

SpZSN

2
, pD s2.7d

with the notations

Sp = S uVu
U
DN

3 34pSV −
N

2
+ p + 1Ds− 2dpSV

p
D12V − 2p

N

2
− 2p 2

+ 4s− 2dpsp + 1d2S V

p + 1
D12V − 2sp + 1d

N

2
− 2sp + 1d 24 . s2.8d

The functionZsN/2, pd is defined in the Appendix.2

III. EVEN-ODD SYSTEM

A. Extension of projection formalism

The projected state describing the even-odd system is de-
fined by

uN + 1,ToMoKol

= NN+1,To

2To + 1

16p3 E eifN̂−sN+1dgfDMoKo

To *

3R̂sVdR̂sV0dcnjm
† uBCSlpndVdf. s3.1d

The norm of the stateuN+1ToMoKol has the expression

N N +1,To

−2 = uDKo,−1/2
To sV0du2sNpnd2S uVu

U
DN

o
p

s− 2dpSV − 1

p
D

3 312V − 2p − 1

N

2
− 2p 2ZsndSN

2
, pD

− Î212V − 2p − 2

N

2
− 2p − 1 2ZspdSN

2
, pD4, N = even,

s3.2d

where the functionsZstdsN/2, pd are those defined in the
Appendix. Alternatively, the norm of the projected state
describing an odd number of nucleons can be expressed in
terms of norms associated with the even system:

N N+1,To

−2 = U2uDKo,−1/2
To sV0du2o

Te

N NTe

−2 sC0 1/2 1/2
Te1/2To d2.

s3.3d

Following the procedure described in Ref.f8g, one can
express the energy for the even-odd system as

kN + 1ToMoKouHuN + 1ToMoKol

= esN + 1d −
G

2

N

2S2V −
N

2D −
G

4
N N+1To

2 Npn
2 S uVu

U
DN

uDKo,−1/2
To sV0du2

3o
p 5ZsndSN

2
, pD4s− 2dp3ps2V − N + 2p + 1dSV − 1

p
D12V − 2p − 1

N

2
− 2p 2 + 2sp + 1d2SV − 1

p + 1
D12V − 2sp + 1d − 1

N

2
− 2sp + 1d 2

+ sp + 1dSV − 1

p
D12V − 2p − 2

N

2
− 2p − 1 24 + ZspdSN

2
, pD4s− 2dp+1

Î2 3s2p + 1dSV −
N

2
+ p + 1DSV − 1

p
D12V − 2p − 2

N

2
− 2p − 1 2

+ 2sp + 1dsp + 2dSV − 1

p + 1
D12V − 2sp + 1d − 2

N

2
− 2sp + 1d − 1 2 − sp + 1dSV − 1

p + 1
D12V − 2sp + 1d − 1

N

2
− 2sp + 1d 246 s3.4d

2In Ref. [8] the second term in Eq.(2.8) has, by error, a factor 2 instead of 4. For the angular momentum considered there the deviation
from the correct result is however very small.
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with the factorsZ defined in the Appendix. Also the no-
tation V for the state semidegeneracy is used.

B. Particle-core interaction

The odd system can be described within a particle-core
coupled basis:

uN + 1ToM0K0l = o
Me,m

CMe m Mo

Te 1/2To uNTeMeKelxm, s3.5d

where uNTeMeKel describes the even-even system and is
given by Eq. s2.5d while xm stands for the odd neutron
wave function in the laboratory frame. Of course the iso–
spin projections in the intrinsic frame satisfy the equation

Ko = Ke − 1
2 . s3.6d

Since the even system states areJ=0 states, it results that
the odd system states areJ= j states.

In order to treat the many body Hamiltonian(2.1) in the
basis defined above it is convenient to separate it into three
parts describing the two components of the system as well as
their mutual interaction:

H = Hsp+ Hcore+ Hcoup. s3.7d

We assume that the coupling term is simulated by a scalar
operator with respect to isospin rotations:

Hcoup= 2FtWTW , s3.8d

wheretW andTW are the isospin operators acting on the state
describing the odd particle and the even-even core, re-
spectively.

As can be seen from Table I, each state of the odd system
can be obtained uniquely by coupling the odd neutron isos-
pin to a single isospin state from the core space. For ex-
ample, the isospin 3/2 of47Ti can be obtained by coupling
the odd neutron isospin to the state of the even core withT
=1 while the state 5/2 originates from the coupling of the odd
particle to theT=3 core state. Another remark which is per-
tinent is that the low isospin state in the odd system is ob-
tained by aligning the odd neutron isospin to the core isos-
pin. On the contrary for the higher isospin state an
antialignment of the two isospin takes place. This property
holds for all even-odd pairs of isotopes considered here. As a
consequence the particle core interaction is repulsive in low-
est isospin states and attractive in the higher isospin ones.
For particle-core coupling models it is customary to adopt
the approximations

kN + 1ToMoKouHcoreuN + 1ToMoKol

= kNTeMeKeuHcoreuNTeMeKel, s3.9d

kN + 1ToMoKouHspuN + 1ToMoKol = e.

The average for the core Hamiltonian has been calculated
in Sec. II, being given by Eq.s2.7d. In this way the exci-
tation energies in odd isotopes are related to those in the
neighboring even-even ones by

DEs 7
2, 5

2d = D Es4, 2d − 7F,

DEs 5
2, 3

2d = D Es3, 1d − 5F,

DEs 3
2, 1

2d = D Es2, 0d − 3F.

IV. NUMERICAL RESULTS

Here we consider the SA states in odd and DA states in
even-mass isotopes of Ti. The energies for the lowest isospin
states in each case are obtained as expectation values of the
many body Hamiltonian on the particle number and isospin
projected states. Excitation energies depend on the pairing
strengthG. This is fixed so that the experimental values of
the excitation energies are reproduced. In this way we want
to explore effects such as the dependence ofG on the atomic
mass number, the blocking due to the odd particle, as well as
whether thev=0 (v denotes seniority quantum number) de-
scription suffices for both even-even and even-odd nuclei. As
we stated from the beginning we restrict the space of single-
particle states to a singlej shell, i.e., f7/2. The excitation
energies obtained in this way are given in Table I. The values
of G obtained through the fitting procedure mentioned above
are plotted in Figs. 3–6. as function ofA. In the first figures
we omitted the value ofG for 45Ti which is quite large
s<8.35 MeVd. The large values ofG for the lowest mass odd
isotopes might be caused by the fact that the restriction of the
many body states to thev=0 subspace is unrealistic and the
neglected contribution is compensated through an artificial
increase of the pairing strength. Also the blocking effect of
the odd particle, which as a matter of fact is neglected here,
is suspected to be large. For the last two pairs of isotopes
s46Ti, 47Tid and s48Ti, 49Tid, the pairing strengths are fairly

FIG. 3. (Color online) The pairing strength as function of the
atomic massA. The values ofG are obtained by fitting the single
and double analog resonances, respectively, and represented by
black circles. These points may be interpolated by a polynomial of
fifth order in A. The resulting polynomial is given by the full line.
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close to each other. Moreover the ordering of theG value for
even-even and even-odd isotopes is opposite to that of the
case of light isotopes. As shown in Fig. 4 the pairing strength
falls on a third-degree polynomial inA. TheA dependence of
G is plotted separately for even-even and even-odd isotopes
in Figs. 5 and 6, respectively. While in the even A case the
points are almost collinear, for odd isotopes the pairing
strengths lie on a Gaussian curve.

It is worth mentioning that the isospin invariant pairing
HamiltoniansHpaird considered for a singlej shell is exactly
solvable. Indeed,Hpair can be expressed in terms of the qua-
dratic Casimir operator of the group O(5) generated by the
proton-proton, neutron-neutron, and proton-neutron qua-
sispin operators[9]. Therefore, its eigenvalues have simple
expressions in terms of the highest weight of the irreducible
representations of the O(5) group. These weights are deter-
mined by the reduced isospint [10] and the seniority quan-
tum numberv,

Hpair = −
G

2 S1

4
sN − vds4V − N − v + 6d + tst + 1d − TsT + 1dD .

s4.1d

The notationV stands for the state semidegeneracy. In the
BCS treatment adopted here the projected states have van-
ishing seniority and reduced isospin. Therefore for the
even-even isotopes one obtains a close formula expressing
the energy of a system ofN valence nucleons:

ET = eN −
G

2 SN

4
s4V − N + 6d − TsT + 1dD . s4.2d

Using this formula withG values obtained in the manner
specified above one obtains for excitation energies exactly
the same energies as given in Table I. One may conclude
that the projection procedure yields for singlej energy the
same value as the group theory method.

Now let us turn our attention to the particle-core formal-
ism. We applied Eq.(3.9) for odd isotopes in the following
way. The strength of the particle-core interaction was fixed
so that the excitation energies for the SA states are repro-
duced. The values ofF, obtained in this way, are plotted in
Fig. 7. They are also listed in Table II. From Fig. 7 one sees
that apart fromF of 45Ti the other three points lie on a
straight line. However the point for45Ti is not far from the
straight line. Indeed, taking the value ofF which falls on the
straight line(this value is equal to 1.54 MeV and is given in
Table II in brackets) and calculating the corresponding exci-
tation energy for the state withT= 3

2, one obtains a value
equal to 4.725 MeV which has to be compared with the ex-
perimental value of 4.176 MeV.

Comparing the values ofF and G given in Table II one
remarks thatF is almost half the value ofG.

Coming back to Eq.(3.9) and usingF=G/2 one obtains
for the excitation energies in the odd isotopes the values
4.672, 4.672, 7.104, and 7.698 MeV, respectively. We re-
mark that the last two values listed above are close to the

FIG. 4. (Color online) The pairing strength as function of the
atomic massA. The values ofG are obtained by fitting the single
and double analog resonances, respectively, and represented by
black circles. These points may be interpolated by a polynomial of
third order inA. The resulting polynomial is given by the full line.

FIG. 5. (Color online) The pairing strength as function of the
atomic massA for even-mass isotopes of Ti. The values ofG are
obtained by fitting the double analog resonance energies, respec-
tively, and represented by black circles. These points may be inter-
polated by a linear polynomial inA. The resulting polynomial is
given by the full line.

FIG. 6. (Color online) The pairing strength as function of the
atomic massA for odd-mass isotopes of Ti. The values ofG are
obtained by fitting the single analog resonance energies, respec-
tively, and represented by black circles. These points may be inter-
polated by a Gauss function ofA. The resulting function is repre-
sented by a full line.
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experimental values in47Ti and 49Ti, respectively, while for
43Ti and 45Ti the deviations are equal to 334 and 496 keV,
respectively. Thus one could state that we obtained a quite
reasonable description of the excitation energies of SA and
DA states in Ti isotopes using only one parameter, the pair-
ing strength, which is depending linearly onA.

Denoting byT=uN−Zu/2 the ground state isospin, one ar-
rives at very simple expressions for SA and DA excitation
energies in terms of isospin:

EDA = Gs2T + 3d,

ESA = GsT + 1d,

G = − 0.156A + 9.979sMeVd, A = even. s4.3d

For even-odd isotopes one should take in the expression
of G the value of A corresponding to the neighboring
even-even core. If the small deviation ofF from G/2 is not
ignored then the SA excitation energy is given by

SSA = 2sG − FdsT + 1d,

F = − 0.0717A + 1.9773sMeVd, A = odd. s4.4d

Recalling thatA=2Z±2T where the minus sign holds for
43Ti, it is clear that the above equations provide quadratic
expressions ofT for SA and DA excitation energies.

V. CONCLUSIONS

Excitation energies for SA(single analog) and DA
(double analog) states in even-odd and even-even isotopes of
Ti, respectively, have been described with a many body iso–
spin invariant Hamiltonian in a singlej shell. The states de-
scribing the neighboring even-even and even-odd isotopes
are obtained through anN, T projection procedure from a
generalized proton-neutron BCS wave function. The pairing
strength for even-even systems depends linearly on the
atomic mass numberA. It is worth mentioning that the group
theory formula produces identical results for excitation ener-
gies as the projection procedure. Alternatively the even-odd
systems are described in a particle-core coupling scheme
where the coupling interaction is an isospin invariant opera-
tor acting on both odd particle and core degrees of freedom.
The fitted strength for the coupling term is almost half the
pairing strength. Taking into account that the excitation en-
ergy for the even system is analytically given by a very
simple formula, it results that the present paper provides also
a compact expression for the excitation energy in even-odd
isotopes. SinceG depends linearly onA, one may conclude
that the excitation energies in the seven isotopes considered
here are fairly well obtained by fixing only two free param-
eters. Finally, analytical expressions for a quadratic depen-
dence onT for SA and DA excitation energies are obtained.

APPENDIX
Here we give the analytical expressions for the overlap integrals which enter the formulas determining the energies for

even-even and even-odd systems:

ZSN

2
, pD ;

2T + 1

2
E d00

T sd00
1 dN/2−2psd10

1 d−10
1 dpsinbdb

= o
k,m,n

s− dp+k+n
s2T + 1d2−T−p

m+ n + s+ 1
ST

k
D2ST + p − k

m
DSk + p

n
D, m+ n + s= even;s=

N

2
− 2p, sA1d

TABLE II. The values of pairing(second column) and particle-
core strengths(fourth column) are given in units of MeV.

Even-even G sMeVd Even-odd F sMeVd

44Ti 3.115 43Ti 1.669
45Ti 1.723 (1.54)

46Ti 2.830 47Ti 1.392
48Ti 2.485 49Ti 1.239

42 44 46 48 50
A

1.2

1.3

1.4

1.5

1.6

1.7

1.8

F
 [

 M
eV

 ]

 F which  fits SA energies
 liniar fit of F

FIG. 7. (Color online) The particle-core coupling strength as
function of the atomic massA for odd-mass isotopes of Ti. The
values ofF are obtained by fitting the single analog resonances
energies, respectively, by using Eq.(3.9), and represented by white
circles. Three points lie on a straight line represented by a full line.
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ZsndSN

2
, pD ;

2To + 1

2
E d−1/2,−1/2

To sd00
1 dN/2−2psd10

1 d−10
1 dpd−1/2,−1/2

1/2 sinbdb

= o
k,m,l

s− dp+k+m
s2To + 1d2N/2−To−s5/2dp+l+m+1

N

2
− 2p + l + m+ 1

1To +
1

2

k
21To −

1

2

k
21To + p − k +

1

2

l
2Sk + p

m
D ,

N

2
+ l + m= even; sA2d

ZspdSN

2
, pD ;

2To + 1

2
E d−1/2,−1/2

To sd00
1 dN/2−2p−1sd10

1 d−10
1 dpd−10

1 d1/2,−1/2
1/2 sinbdb

= o
k,m,l

s− dp+k+m
s2To + 1d2N/2−To−s5/2dp+l+m−1

N

2
− 2p + l + m

1To +
1

2

k
21To −

1

2

k
21To + p − k +

1

2

l
2Sk + p + 1

m
D .

N

2
+ l + m= odd.
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