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Description of single and double analog states in th&;,, shell: The Ti isotopes
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The excitation energies of single analog states in even-odd Ti isotopes and double analog states in even-even
Ti isotopes are microscopically described in a singshell formalism. A projection procedure for generalized
BCS states has been used. As an alternative description a particle-core formalism is proposed. The latter picture
provides a two-parameter expression for excitation energies, which describes fairly well the data in four odd
and three even isotopes of Ti.
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I. INTRODUCTION isospin raising operatf)r‘l’+ to the statg(T, T-1) describing
. . . the daughter nucleudN-1,Z+1). This state is certainly an
. In a series of paperil—9), Zamick and his coIIaborators' excited £éta\te, the dbfl:lghter nl}cleus ground state be{ﬁ'g a
investigated the spectra of even-even and even-odd nuclei I01 T-1) state. The SA state has the same quantum numbers
the pf region. The authors used the shell model calculationgg the ground state of the mother nucleus excepE{ovhich
in a single open shell for both protons and neutrons. Theys py one unit smaller than the initial value. This state can be
remarked that for some even-even nuclei, Iie0" excited  gegcribed either by a neutron hole-proton particle Tamm-
states were at twice the energiesJefj excited states in the pgncoff approximatioTDA) applied to the mother system
neighboring even-odd nuclei, in a singleshell calculation . by diagonalizing a many body Hamiltonian associated
for any isospin conserving interaction. Examples of this typ&yith the daughter nucleus within|aTT,) basis. Considering
are the palrs(44_T|, 435C); (44T'3 i), (48T'1 “OTi), (*°Ti, S0, now the daughter nucleus in the SA state as a target, one may
In order that this relationship holds it is necessary that thgjefine again, by dp,n) process, a new SA state. This is a
diagonalization spaces for the odd and even systems afga state with respect to the initial mother nucleus and has
equal to each other. For the nuclei mentioned above the progf,q isospin quantum numbex3, T-2). According to the
was analytically given in Ref[2]. The states mentioned aphove considerations this state can be obtained by two suc-
above for the even-odd and even-even isotopes can R&ssive TDA phonon excitations of the ground state of the
viewed as single anala@A) and double analoOA) states,  mother nucleus. Roughly speaking the SA energy is about
respectively. e 45 , the shift of proton single-particle energy due to the Coulomb
.FogotheSComblnatlor( °Ti, ©*S) and the cross conjugate jnteraction and symmetry energy, the deviation being caused
pair (*Cr,*'Cr) one almost gata 2 to 1irelation, which 1 the proton-neutron residual interaction. The remark of
becomes precisely 2 to 1 if one does not allow admixtures ofamick and his collaborators is that in some Ti even isotopes
seniority v=4 states in the ground states of the even-evenne excitation energy of the DA states is twice as much as the
nuclei. In Ref.[4] the excitation energies of higher isospin gycitation energy of SA in the neighboring even-odd Ti iso-

states were parametrized by linear relations topes. For illustration, an example is given in Figs. 1 and 2.
. ) The question is, of course, whether this is a general feature
Er.1=b(T+X) for J=], SA state, or is mainly determined by the interaction regiiisérong or

wealk between the odd nucleons and the core on one side
and between odd nucleons on other side.

The states whose energies are suspected to provide a ratio
These are equivalent to a quadratic expression for th8f 210 1 are cqnsidergd as approximate e_ig(_enstates of the
binding energiesBE=—2bT(T+Y), where Y=2X-1. For model Hamiltonian, which will be treated within a general-
Wigner SU4) modelY is equal to 4 andK=2.5. ized BCS formalism. The corresponding energies are ob-

ained as average values of the many body Hamiltonian on

In the present paper we revisit the above problem for th% . )
isotopes of Ti. We suppose that the states of interest ar T Ts pro;ected_states, generateql bY the genera_hzed BCS
round state. As in a previous publicatif8i, we restrict the

mainly determined by the valence nucleons in the shell, 9 ) : =
which interact among themselves through an isospin invarisPace of .smglle-pamcltla s.tazgs to a proton singland a
ant pairing force. neutron singlg, shell with j,=j,.

The SA states are populated in(jg n) reaction process
[6,7]. Thus, the ground statd@, T;=T) of the target nucleus  ‘Throughout this paper we consider that protons and neutrons
(N,2) (often called mother nucleuss transformed by the haveT; equal to,—3, respectively.

Er,p=2b(T+X+3) for J=0, DA state. ~ (1.1)
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7 TABLE I. Excitation energies of single and double analog states
(712,5/2) in Ti isotopes(MeV).
. Singlej shell  Experiment
Even-odd E (MeV) E (MeV)
s E,, 43T 112 3/2 4.340 4.338
= | 45T 12 32 4.178 4.176
@ 4.725
E ATTi 3/2 5/2 7.191 7.187
’ 49T 52 72 8.725 8.724
(5/2,5/2) Even-gven
—_— 44T 0 2 9.345 9.340
1 (LI ji2,712) a6 1 3 14.150 14.153
481
g - 8Ti 2 4 17.395 17.398
FIG. 1. The SA state in the daughter nuclé®& and the ground PIHH=> C:jme%{p =p, N,
state of the mother nucled€Sc are schematically presented. m
The results are presented as follows. In Sec. Il, the even- Pgn(j) => cgjmegj; . (2.2

even system is presented. Since the results for such systems . m

were earlier described in Ref3], here we collect only the Ina pr:eglorls paper, tIWOdOf uc(sg.A.R. agd E'M'E) ap-
main results in order to facilitate a self-consistent picture.proa(.: ed t € generalizec B ground state by a wave
Section Il is devoted to the even-odd system. NumericafUNCtion obtained by rotating the ground state of a proton-

results are commented in Sec. IV and the final conclusion@€Utron pairing Hamiltonian in the isospin space. Rotation
are given in Sec. V. angles depend on the quantum numbers defining the

proton-neutron pair:

~ . & T ~
Il. EVEN-EVEN SYSTEM BCS =11 RO (U;+V] C,T)jmeqr;)lw = R(Q0)|BCp,
m

The many body systems for mother and daughter nuclei (2.3

are described by the following Hamiltonian:
where the standard notation for the BCS ground state of

G the p-n pairing Hamiltonian,|BCSpn, and the rotation in
H = e(Ny + Ny) - ZE [P;g(j)Pp(j’) + Pﬁ(j)Pn(j’) the space of the many body states,
i’

R(Q) = ®;R(QY)), (2.4)

+ 2PL(D)Ppi(i )], (2. .
have been used. The transformatig{{),) has the mean-
ing of a collective rotation which fixes the orientation of
the intrinsiclike frame in the space of isospin. THBES)
plays the role of an intrinsic state Whi||8CS>pn of an
q (4.2) auxiliary intrinsic state. Clearly the functidgBCS) breaks

] the gauge and isospin symmetries. These symmetries can
T be restored by a projection procedure, and the resulting
T states are

where the following notations have been used:

2T+1 s en
(43 |Foa INTMIQ = FNNTJ D €M PRIOR Qo)

T X |BCS) prdQ2d. (2.5

. HereN stands for the total number of valence nucleons,
(2,2) is the total isospinK is the third component of the total
(3,3) isospin(equal to minus the half of the neutron exce#ss
ATITD N44) — we already mentioned we suppose that the excitation en-
ergies are determined by the valence nucleons. In the case
“ca “®sc By of Ti isotopes, the open shells for protons and neutrons are
f2o. In what follows we give, therefore, the useful results
FIG. 2. The DA state in the final nucled&Ti and the ground for the case of a singlg-shell. To simplify the notations
state of the initial nucleu$®Ca are schematically presented. we omit the index specifying the shell. Semidegeneracy

Energy[MeV]
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of the j shell is denoted by)=(2j+1)/2. Ill. EVEN-ODD SYSTEM

The norm for the Statb\lTM}Q IS A. Extension of projection formalism

The projected state describing the even-odd system is de-

_ IVI\N Q fined by
NZZDT (Q)ZN )2(_ (—2)p
NT | K,0\=~0 | ( pn U % p |N+ 1,T0MOK0>
20-2p 2T0+1f TR .
N :N eI[N (N+l)]¢)DT
i AP Z<§, p)- (2.6 o 1677 ko
2 XRQRQo)C][BCSpdQds. (3.1
The projected state energy charag:terlzm_g the even-evef,a norm of the statéN+1T,M,K,) has the expression
system of valence nucleons is analytically given by VN 0-1
N, = |DL‘;,-1/2<90>|2<NW>2(U) > 2>p( )
(NTMK|/H|NTMK) P P
N GN<ZQ N+1) Aot N
-en-cN(20- 1 Alw e elSe)
4 2 —=-2p 2 P
G N 2
= SN KNGl Dol Q022 sz<§- p) 2.7 20-2p-2 N
p
-V2[ N 2p-1 Z@(E’ p) , N=even,
with the notations 2
(3.2
v\ N 20-2p where the functionZ?(N/2,p) are those defined in the
S = (_) X 4p<Q_ —+p+ 1)(_ 2)p< ) N Appendjx. Alternatively, the norm of the projected state
U 2 p 57 2p describing an odd number of nucleons can be expressed in
terms of norms associated with the even system:
20-2(p+1 - _
) (p+1) N N-zi-l,To: U2|D&2,—1/2(Qo)|22 N NzTe(Cge%T‘ilz)z-
+4=2Pp+ A )N o+ || (2.9 Te
P 2 AP 3.3
Following the procedure described in R¢8], one can
The functionZ(N/2, p) is defined in the Appendi%. express the energy for the even-odd system as
|
(N+ 1T ;MK [H|N + 1T ;M K,)
GN N\ G V[ \N
=e(N+1)- EE(ZQ - E) - ZNr%HlTON;zan(U) |le),—1/2(90)|2
20-2p-1 20-2(p+1)-1
xS z<v><N )4( 2)° p(2Q - N +2 +1)(Q_1> N i +2( +1)2<Q_1) N oy
= 2P P P P = —2p P p+1)| =-20p+1)
2 2
20-2p-2 20-2p-2
+( +1)<Q_l) N +Z(7T)(N )4(_2)p+1 (2 +1)<Q N+ +1)<Q_1> N
P p —-2p-1 2'P V2 P 2P p 5 -2p-1
2 2
~ 20-2(p+1)-2 a-1 20-2(p+1) -1
+2(p+1)(p+2 N -(p+1 N 3.4
(P 1P )<p+1) S-2pry-1 | P )(p+1) >-2p+1) 54

In Ref. [8] the second term in Eq2.8) has, by error, a factor 2 instead of 4. For the angular momentum considered there the deviation
from the correct result is however very small.
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with the factorsZ defined in the Appendix. Also the no- T ' ' T

tation () for the state semidegeneracy is used. 61 ® Gwhich fits E_, and E,,
—— Polyn. fit of G
B. Particle-core interaction 51 i
The odd system can be described within a particle-core %‘ 4l |
coupled basis: =
© 3
— 12T, ] 7
IN+1TMKo) = X Cif L8 INTeMKox,,,  (3.5)
Me,u 5

where INT.MK,) describes the even-even system and is
given by Eg.(2.5) while x, stands for the odd neutron

wave function in the laboratory frame. Of course the iso—
spin projections in the intrinsic frame satisfy the equation

FIG. 3. (Color online The pairing strength as function of the
atomic massA. The values ofG are obtained by fitting the single
KO:KE—%_ (3.6 and double analog resonances, respectively, and represented by
black circles. These points may be interpolated by a polynomial of

Since the even system states dred states, it results that fifth order in A. The resulting polynomial is given by the full line.

the odd system states alej states. o
In order to treat the many body Hamiltonia®.1) in the ' he average for the core Hamiltonian has been calculated

basis defined above it is convenient to separate it into thre® Sec. 1I, being given by E(2.7). In this way the exci-
parts describing the two components of the system as well d&tion energies in odd isotopes are related to those in the
their mutual interaction: neighboring even-even ones by

AE(L,2)= AE(4,2) - TF,
H:HSp+ Hcore+ HCOUp‘ (37) (2 2)

5 3\ _ _
We assume that the coupling term is simulated by a scalar AE(E’ 5) = AE@B, D-5F,

operator with respect to isospin rotations:
AE(3,3)= AE(2,0 - 3F.
Heoup= ZFﬁ—:, (3.8

IV. NUMERICAL RESULTS

whergt .andT are the ISospin operators acting on the state Here we consider the SA states in odd and DA states in
describing the odd particle and the even-even core, re-

: even-mass isotopes of Ti. The energies for the lowest isospin
spectively. ; . ;
states in each case are obtained as expectation values of the
As can be seen from Table I, each state of the odd system S . . .
. . ; .~ ~many body Hamiltonian on the particle number and isospin
can be obtained uniquely by coupling the odd neutron isos- . L ) "
. ) ) . projected states. Excitation energies depend on the pairing
pin to a single isospin state from the core space. For ex: T .
. ; s . . strengthG. This is fixed so that the experimental values of
ample, the isospin 3/2 of'Ti can be obtained by coupling the excitation energies are reproduced. In this way we want
the odd neutron isospin to the state of the even core With 9 P ) y

=1 while the state 5/2 originates from the coupling of the oddto explore effects such as the dependenc oh the atomic

: ~ L mass number, the blocking due to the odd particle, as well as
particle to theT=3 core state. Another remark which is per- 2 S
. - . ) . . whether thev=0 (v denotes seniority quantum numbpeie-
tinent is that the low isospin state in the odd system is ob-_ .~ . , .
. S . . . scription suffices for both even-even and even-odd nuclei. As
tained by aligning the odd neutron isospin to the core isos: L : .
) . . : we stated from the beginning we restrict the space of single-
pin. On the contrary for the higher isospin state an

antialignment of the two isospin takes place. This propert;Parthl.e states to a smglp shell, "_6"f7/_2' The excitation
. X . energies obtained in this way are given in Table I. The values
holds for all even-odd pairs of isotopes considered here. As g, ; " .
i ; 2 L of G obtained through the fitting procedure mentioned above
consequence the particle core interaction is repulsive in low- - . e
) . L . X : are plotted in Figs. 3—6. as function Af In the first figures
est isospin states and attractive in the higher isospin ones. . A5 S .
) . o We omitted the value ofs for “°Ti which is quite large
For partlcle_:-cor_e coupling models it is customary to adopt(x8 35 MeV). The large values o for the lowest mass odd

the approximations : )

isotopes might be caused by the fact that the restriction of the
many body states to the=0 subspace is unrealistic and the
(N+ 1ToMoKo|HeoreN + 1TMoKo) neglected contribution is compensated through an artificial
= (NTM Ko Heord NTaM K, (3.9  increase of the pairing strength. Also the blocking effect of
the odd particle, which as a matter of fact is neglected here,
is suspected to be large. For the last two pairs of isotopes
(N+ 1ToMoKo[HsgN + 1ToMoKo) = €. (“®Ti, 4'Ti) and (“8Ti, 4°Ti), the pairing strengths are fairly
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16 7
64 4
14 7
) ] ® G which fits E,
5 ® GwhichfitsE , andE g 12 —— Gauss fit of G 7
—— Polyn. fit of G ]
- = 10- 1
5 >
o 44 4 (]
= = 8 ]
i (O]
o ] ]
2l | 6
4- ]
2- 1 21 i

FIG. 6. (Color online The pairing strength as function of the
atomic massA for odd-mass isotopes of Ti. The values @fare
Fbtained by fitting the single analog resonance energies, respec-
i

FIG. 4. (Color online The pairing strength as function of the
atomic massA. The values ofG are obtained by fitting the single
and double analog resonances, respectively, and represented
black circles. These points may be interpolated by a polynomial o
third order inA. The resulting polynomial is given by the full line.

\yely, and represented by black circles. These points may be inter-

polated by a Gauss function & The resulting function is repre-
sented by a full line.

close to each other. Moreover the ordering of @wealue for

even-even and even-odd isotopes is opposite to that of thg  _ _ E(E(N —0) (4O -N-p+6)+t(t+1) - T(T+ 1)>_
case of light isotopes. As shown in Fig. 4 the pairing strength """ 2\ 4
falls on a third-degree polynomial it. The A dependence of (4.1)

G is plotted separately for even-even and even-odd isotopes

in Figs. 5 and 6, respectively. While in the even A case theThe notation() stands for the state semidegeneracy. In the

points are almost collinear, for odd isotopes the pairingBCs treatment adopted here the projected states have van-

strengths lie on a Gaussian curve. ishing seniority and reduced isospin. Therefore for the
It is worth mentioning that the isospin invariant pairing even-even isotopes one obtains a close formula expressing

Hamiltonian(H,;) considered for a singlgshell is exactly  the energy of a system & valence nucleons:

solvable. IndeedH ;5 can be expressed in terms of the qua-

dratic Casimir operator of the group(®) generated by the Er=eN- E(N(m ~N+6)-T(T+ 1)>. (4.2)

proton-proton, neutron-neutron, and proton-neutron qua- 2\ 4

sispin operator$9]. Therefore, its eigenvalues have simple

expressions in terms of the highest weight of the irreducibldJsing this formula withG values obtained in the manner

representations of the(®) group. These weights are deter- specified above one obtains for excitation energies exactly

mined by the reduced isosptr{10] and the seniority quan- the same energies as given in Table I. One may conclude

tum number, that the projection procedure yields for singlenergy the
same value as the group theory method.
3.2 . . . : . Now let us turn our attention to the particle-core formal-
3.1] ] ism. We applied Eq(3.9) for odd isotopes in the following
® G which fits E,, way. The strength of the particle-core interaction was fixed
3.0 Elnsar firof 1 so that the excitation energies for the SA states are repro-
2.9- . duced. The values df, obtained in this way, are plotted in
S 250 1 Fig. 7. They are also listed in Table Il. From Fig. 7 one sees
s~ that apart fromF of “Ti the other three points lie on a
o 271 7 straight line. However the point fd¥Ti is not far from the
2.6 i straight line. Indeed, taking the value Bfwhich falls on the
straight line(this value is equal to 1.54 MeV and is given in
&5 i Table Il in bracketsand calculating the corresponding exci-
24 . . . . T tation energy for the state witng, one obtains a value
a4 45 46 4 8 equal to 4.725 MeV which has to be compared with the ex-
A perimental value of 4.176 MeV.

FIG. 5. (Color onling The pairing strength as function of the ~ Comparing the values df and G given in Table Il one
atomic massA for even-mass isotopes of Ti. The values@fare ~ remarks thaf is almost half the value o®.
obtained by fitting the double analog resonance energies, respec- Coming back to Eq(3.9) and usingF=G/2 one obtains
tively, and represented by black circles. These points may be intefor the excitation energies in the odd isotopes the values
polated by a linear polynomial ik The resulting polynomial is 4.672, 4.672, 7.104, and 7.698 MeV, respectively. We re-
given by the full line. mark that the last two values listed above are close to the
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18 i i i TABLE Il. The values of pairingsecond columnand particle-
o core strengthsgfourth column are given in units of MeV.
17 ¢
— 16| Even-even G (MeV) Even-odd F (MeV)
>
215t 44T 3.115 43T 1.669
— 45T 1.723(1.54
Y o A e 467] 2.830 4TT] 1.392
whnicl Its energies . .
131 e 48Tj 2.485 49Tj 1.239
12 - - -
42 44 46 48 50

A
Ssa=2G-F)(T+1),
FIG. 7. (Color onling The particle-core coupling strength as
function of the atomic mas# for odd-mass isotopes of Ti. The F=-0.071A+1.9773(MeV), A=odd. (4.4)
values ofFF are obtained by fitting the single analog resonances
energies, respectively, by using Eg.9), and represented by white Recalling thatA=27+2T where the minus sign holds for
circles. Three points lie on a straight line represented by a full line®3Ti, it is clear that the above equations provide quadratic
expressions of for SA and DA excitation energies.

V. CONCLUSIONS
experimental values iA'Ti and “°Ti, respectively, while for o _ ,
43Ti and %5Ti the deviations are equal to 334 and 496 key, EXcitation energies for SA(single analog and DA
respectively. Thus one could state that we obtained a qui _ouble an_alogstates in even-odd_ and even-even isotopes of
reasonable description of the excitation energies of SA an I, respectively, have heen described with a many body iso-

DA states in Ti isotopes using only one parameter, the Ioair_spln invariant Hamiltonian in a singleshell. The states de-

ing strength, which is depending linearly @n scribing the neighboring even-even and even-odd isotopes
Denoting byT=|N-Z]/2 the ground state isospin, one ar- are obtained through aN, T projection procedure from a

. __—" . for SA and DA .~ generalized proton-neutron BCS wave function. The pairing
rives at very simple expressions for SA an excitationgyrengih for even-even systems depends linearly on the
energies in terms of isospin:

atomic mass numbe. It is worth mentioning that the group
theory formula produces identical results for excitation ener-
Epp = G(2T +3), gies as the projectipn prpcedure. Alternatively thgz even-odd
systems are described in a particle-core coupling scheme
where the coupling interaction is an isospin invariant opera-
tor acting on both odd particle and core degrees of freedom.
The fitted strength for the coupling term is almost half the
pairing strength. Taking into account that the excitation en-
ergy for the even system is analytically given by a very
G=-0.15A+9.979(MeV), A=even. (4.3)  simple formula, it results that the present paper provides also
a compact expression for the excitation energy in even-odd
isotopes. Sinc& depends linearly o\, one may conclude
For even-odd isotopes one should take in the expressiothat the excitation energies in the seven isotopes considered
of G the value ofA corresponding to the neighboring here are fairly well obtained by fixing only two free param-
even-even core. If the small deviation®ffrom G/2 is not  eters. Finally, analytical expressions for a quadratic depen-
ignored then the SA excitation energy is given by dence onT for SA and DA excitation energies are obtained.

Esa=G(T+1),

APPENDIX

Here we give the analytical expressions for the overlap integrals which enter the formulas determining the energies for
even-even and even-odd systems:

2 5.p) = T [ dhict e wagtigpsingas

@T+1)27TP(T\?(T+p-k\[(k+p N
= _\ptk+nl _ N
k%n( ) m+n+s+1\k m n ,m+n+s=even;s 5 2p, (A1)
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N 2T +1 ) _
Z(V)(E, p) = 02 J dI(i/Z,—l/Z(dfl)O)le Zp(diodilo)pdylz/z,—l/zsmﬁdﬁ

1 1 1
-3 (- )p+k+m(2To +1)2N2 T (5r2pHHme [y > To- > To+p-k+ > <k+ p)
m 1
i §—2p+l+m+1 k K I
N
—+|+m=even; (A2)
2

N 2T, +1 o .
20 5.p) = 2107 [ il gpet o singts

2' 2
(ZTO + 1)2N/2—T0—(5/2)p+|+m—1 TO + E TO _ E TO +p- k + } k + p+ 1
- 2 (- )p+k+m 2 2 2 .
m
ki S-2p+lem k k |
N [ dd
—+Il+m=odd.
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