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Cold fusion barriers are studied with respect to the change of the charge density within the overlapping
region. Charge evolution from separated target and projectile up to the compound nucleus is taken into account
by means of a deduced transition formula which depends on geometric parameter variation defining the shape.
Macroscopic, shell correction and total deformation energy for fusionlike configurations are calculated for
different charge density paths. Minimization along this coordinate produces variations of about 4 MeV for light
nuclei and up to 8 MeV for superheavy synthesis, for the deformation energy in the last part of the process.
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I. INTRODUCTION

Fusion cross sections are sensitive to deformation
changes, especially for energies near the Coulomb barrier.
The way geometric parameters influence the total deforma-
tion energy during the fusion process has been largely stud-
ied [1,2]. How much charge variation is responsible for the
energy change and what is the mechanism through which its
influence is exercised, is the main issue this work addresses.

For intermediate energy heavy-ion collisions, the isotopic
composition of the emitted intermediate mass fragments, at
certain energies, depends on the isospin equilibration of the
composite system and on theN/Z of the target and projectile
as well as on theN/Z of the compound nucleus[3]. Changes
of the charge density in the superposed target and projectile
configuration are equivalent toZ (target and projectile)
changes within isobaric systems. Isobaric systems have been
treated for intermediate nuclei reactions, where the fusion
probability for 82Se+138Ba reaction was found very close to
that of 40Ar+180Hf, but different from124Sn+96Zr, for ener-
gies below the Bass barrier[4]. It is suggested that single-
particle levels for the two-center system maintain a gap up to
a short distance between centers, then the situation changes
and friction is considered to be the cause. We will try to
present charge density as a parameter responsible for struc-
ture variations near the end of the fusion process. In another
approach the hypothesis of unchanged charge density is pre-
ferred for another dinuclear process, nuclear fission[5]. The
evaporated neutron number is increased to preserve this con-
straint. Charge symmetry and asymmetry are demonstrated
to differentiate between isobaric systems in Ref.[6]. At low
energies, it is shown that the dependence on charge asymme-
try could decide between fusion and deep-inelastic processes.
Stiffness analysis concludes that a proton skin is developed
in the overlapping region. Differences between coupled
channels and orientation average calculation of the cross sec-
tion increase with the charge product of the projectile and
target, for the same synthesized nucleus in subbarrier fusion

reactions[7]. This observation is related to the present work.
Our calculations emphasize the role of the overlapping part
in the fusion process as it is influenced by the change in the
charge density of the projectile. The phenomenon induces the
same effect as minimizingZ1Z2 for isobaric systems in a
partially superposed configuration.

It is the influence of the charge density changes on the
structure connected to the shape evolution that is treated in
this work. We will show that, in the last part of the fusion
process, the system acts like a different isobaric reaction. The
situation is not decided for interacting nuclei fusing to form
a compound nucleus, even if the system overcomes the en-
trance channel into the fusion barrier. This work studies a
new degree of freedom for fusion reactions, the charge den-
sity of the projectile(and consequently the target) within the
overlapping configuration. It is demonstrated that changes in
the magnitude of the volume and in shape of the nonover-
lapped part induce charge density modifications, which influ-
ence the macroscopic and shell correction energies, and ac-
cordingly the whole shape of the fusion barrier. In Sec. II the
charge density variation is deduced in connection with geo-
metric parameter changes. Section III briefly presents a very
appropriate deformed two-center shell model, in order to de-
scribe the transition from two separated level schemes(target
and projectile) to the compound nucleus one, within the
overlapping region. A short Sec. IV reminds the main fea-
tures of the macroscopic energy calculation and the suitable
expression for two interacting overlapped systems. The re-
sults of fusion barrier calculation as functions of configura-
tion parameters which influence the charge density are dis-
cussed in Sec. V, followed by Conclusions.

II. CHARGE DENSITY VARIATION

The usual procedure to deal with different orientations of
the target nucleus is to average the fusion cross section over
all possible angles[1]. However, it is stressed, for example,
in Ref. [8], that the barrier height for subbarrier fusion reac-
tions increases with the collision angle for prolate deformed
nuclei. Here, the value of the angle between the symmetry
axis (axes) and collision axisu=0° corresponds to tip to tip
collision and produces the lowest Coulomb barrier height
(the studied reaction was76Ge+150Nd). The effective poten-
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tial is also shown to increase for a change in angular orien-
tation of the ellipsoidally deformed target, when the collision
angle increase from 0° to 90° in238U+16O reaction[9]. It is
also emphasized that, as far as geometrical effects are con-
cerned, when the deformed nucleus symmetry axis is rotated
as to be perpendicular to the collision axis, the Coulomb
barrier height increases[10]. These considerations lead us to
consider only the tip to tip configuration as being energeti-
cally the most favored one. Any deviationsu.0°d produces
an increase in the potential barrier. One has to mention, how-
ever, that this is true only for prolate type shapes. Forb,0°
deformations(oblate shapes), the barrier becomes higher
when the symmetry axis coincides with the collision one
[11]. Therefore a typical nuclear configuration for fusion
phenomena is described by two intersected ellipsoids with
sa1,b1d andsa2,b2d semiaxes, separated by a planez=zs as in
Fig. 1. The two volumes are defined by the shape parameters.
We will refer further on only to the left side of the shape
corresponding to the heavy fragmentsA1,Z1d, the demonstra-
tion for the light fragment being similar. The left side volume
sz,zsd of this intermediary shape is

V1 = pS2

3
a1 −

zs

3a1
2 + zsDb1

2. s1d

The whole ellipsoid volume for thesa1,b1d shape param-
eters is

V10 = 4
3pa1b1

2 = 4
3pR1x

3 = 4
3pr0

3A1x, s2d

where R1x is the radius of the sphere having the same
volume andA1x is the corresponding mass number. We
consider the ellipsoidal shapesa1,b1,zsd as having the
atomic properties as it were a whole nucleussA1x,Z1xd;
that means the charge density of the shape is determined
by its geometric correspondence tosA1x,Z1xd; thus Z1x is
the atomic number if the heavy fragment is a complete
ellipsoid with sa1,b1d semiaxes. Variation ofZ1x/A1x must
also comply to

SZ1x

A1x
D

f

=
Z0

A0
, s3d

whereZ0 andA0 are the final values corresponding to the
compound nucleus and

SZ1x

A1x
D

i

=
Z1

A1
, s4d

whereZ1 andA1 are the initial values of the target nucleus.
A variation law fulfilling these conditions is

Z1x

A1x
=

1

A0 − A1
FsA1x − A1d

Z0

A0
+ sA0 − A1xd

Z1

A1
G s5d

or

Z1xsA1xd =
A1x

A0 − A1
FsA1x − A1d

Z0

A0
+ sA0 − A1xd

Z1

A1
G . s6d

For A1x=A0 we haveZ1x=Z0 and for A1x=A1 resultsZ1x
=Z1. We emphasize thatA1x, Z1x, A2x, andZ2x are not the
real mass and atomic numbers, but the ones which corre-
spond to whole non-intersected nuclei having the same
semiaxes as the real intersected ones. The geometrical link
to actual dimensions is made through Eq.s1d. Similarly,
for the light nucleus part of the overlapping configuration
we have:

Z2xsA2xd =
A2x

A0 − A2
FsA2x − A2d

Z0

A0
+ sA0 − A2xd

Z2

A2
G , s7d

where A2x=a2b2
2/ r0

3. Obviously, one should mention that
A1x+A2xÞA0 and Z1x+Z2xÞZ0; in fact, A1xùA1i, A2x
ùA2i andZ1xùZ1i, Z2xùZ2i, whereA1i, Z1i andA2i, Z2i are
the real intermediary masses and charges. As the overlap-
ping region increasessthe R distance becomes smallerd
both target and projectile shapes approach the final com-
pound nucleus deformationsb0,a0d. In this way, at the
final step we have

r0
3A1x = pa1b1

2 → pa0b0
2 = r0

3A0,

r0
3A2x = pa2b2

2 → pa0b0
2 = r0

3A0. s8d

Then the two hypothetical atomic numbersZ1x and Z2x
become

Z1xsA1x = A0d =
A0

A0 − A1
sA0 − A1d

Z0

A0
= Z0,

Z2xsA2x = A0d =
A0

A0 − A2
sA0 − A2d

Z0

A0
= Z0. s9d

From these equations results, at the end of the fusion pro-
cess,

SZ1x

A1x
D

f

= SZ2x

A2x
D

f

=
Z0

A0
. s10d

The corresponding proton densities are

rp1 =
Z1x

V1x
=

Z1x

4p

3
a1b1

2

,

R

a1

b1

a2

b2

O1 O2

zs

FIG. 1. Typical fusionlike shape of ellipsoidally deformed target
and projectile in the overlapping region.
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rp2 =
Z2x

V2x
=

Z2x

4p

3
a2b2

2

, s11d

where V1x=s4p /3da1b1
2 and V2x=s4p /3da2b2

2 are the vol-
umes of the ellipsoids corresponding to separate nuclei
sA1x,Z1xd andsA2x,Z2xd. But the real intermediary volumes
are V1 and V2, with the same proton densities asV1x and
V2x, respectively. Hence the real intermediary atomic
numbersZ1i and Z2i of the fusion shapes are

Z1i =
Z1x

V1x
V1 =

Z1x

4p

3
a1b1

2

V1 = rp1V1,

Z2i =
Z2x

V2x
V2 =

Z2x

4p

3
a2b2

2

V2 = rp2V2. s12d

The squared charge densities arerei
2 =rpi

2 1.44. Theanalysis
refers to adiabatic cold fusion process. Every step within
the overlapping region towards the complete fusion is
slow enough to allow nucleon rearrangement. Therefore
the total volume is conserved. Since the number of nucle-
ons remains the same, the total nucleon density is consid-
ered constant. With the simplifying hypothesis of constant
mass density, we have for the intermediary mass numbers
A1i and A2i and neutron numbersN1i and N2i:

A1i =
V1

4p

3
r0

3

, N1i = A1i − Z1i .

A2i =
V2

4p

3
r0

3

, N2i = A2i − Z2i . s13d

For the same fusion reaction, an ellipsoidal projectile can
change its shape parameterssa2,b2d in different ways along
the overlapping region: it can preserve its initialb20 semiaxis
or b2 can become larger up to the limit whereb2=b0, the
semiaxis of the compound nucleus. Between these two lim-
its, b2 can take any value, provided that the volumeV2 does
not become larger then its initial value. Consequently, the
corresponding intermediary atomic numberZ2i changes ac-
cording to the above considerations. In Fig. 2, upper part, the
variation ofZ2x with the normalized distance between centers
Rn=sR−Rfd/sRt−Rfd is presented, whereRf and Rt are the
final and the tangent configuration distances between centers.
Different curves correspond to different laws of variation for
the small semiaxis ofsA2i ,Z2id. The plots refer to a super-
heavy nucleus synthesis:54Cr+238U→292116. The middle
plot refers to the real intermediary atomic number variation
Z2i with Rn. Variations in the last part of the fusion process
sRnø0.4d are due to volume differences. The smallest value
for the V2 volume is forb2=b20s292116d at the sameRn, the
situation where the projectile preserves its initial semiaxes.

The lower plot represents the proton density variation. The
larger the volume, the lower the charge density, as can be
seen. The highest proton density corresponds tob2
=b20s292116d, when the nonoverlapped part of the projectile
remains almost at its initial shape.

III. SINGLE-PARTICLE ENERGY LEVELS

The microscopic potential which follows the equipotenti-
ality on the nuclear surface is generated by the ellipsoidally
deformed two-center oscillators:

Vsrdsr, zd =HV1sr, zd= 1
2m0vr1

2 r2 + 1
2m0vz1

2 sz+ z1d2, v1

V2sr, zd= 1
2m0vr2

2 r2 + 1
2m0vz2

2 sz− z2d2, v2

s14d

wherev1 and v2 are the space regions where the two po-
tentials are acting. These Hilbert space regions are defined
by
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FIG. 2. Intermediary hypothetic atomic numberZ2x (upper plot),
real intermediary atomic numberZ2i (middle plot), and charge den-
sity variation of the target nucleus in the synthesis of292116.
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V1sr, zd = V2sr, zd. s15d

The shape and the volume ofv1 and v2 depend on the
overlapping grade andsA1,Z1d target andsA2,Z2d projec-
tile. Any change in the oscillator frequencies is converted
to a change inv1 and v2. The four frequencies define the
shape; when using the volume conservationaibi

2=Ri
3 and

"vi =41Ai
−1/3, whereRi =r0Ai

1/3, one obtains the shape de-
pendence of the frequencies

m0vri

2 =sai/bid2/3m0v0i
2 =sai/bid2/3 54.5/Ri

2,

m0vzi
2 =sbi/aid4/3m0v0i

2 =sbi/aid4/3 54.5/Ri
2 s16d

with i =1,2. In this way the two-center oscillator potential
for fusionlike shapes follows the changes of the two ellip-
soidal partner deformations. The influence of the charge
density on the potential manifests through Eqs.s11d and
s16d. In such a way the variation of the charge density is
expressed by the variation of the four frequencies via the
ellipsoid semiaxes.

Besides the overlapped deformed oscillator energies,
charge density acts on the angular momentum dependent in-
teractions. In order to assure hermicity of the matrices(due
to the fact that strength parameters have specific values vary-
ing with the mass number), the anticommutator is used to
obtain the spin orbit and thel2 term [12]:

Vso=5− H "

m0v01
k1sr, zd, s=Vsrd 3 pdsJ sv1 regiond

− H "

m0v02
k2sr, zd, s=Vsrd 3 pdsJ sv2 regiond,

s17d

and similarly for theVl2 term. It is important to observe
that with the above form, the spin-orbit potential becomes
shape dependent through the¹Vsrd term.

The spin-orbit operator is calculated as usual using cre-
ation and annihilation components:

Vs= 1
2sV+s− + V−s+d + Vzsz, s18d

where

V+ = − eiwF ] Vsrdsr, zd
] r

]

] z
−

] Vsrdsr, zd
] z

]

] r

−
i

r

] Vsrdsr, zd
] z

]

] w
G ,

V− = e−iwF ] Vsrdsr, zd
] r

]

] z
−

] Vsrdsr, zd
] z

]

] r

+
i

r

] Vsrdsr, zd
] z

]

] w
G ,

Vz = −
i

r

] Vsrd

] r

]

] w
. s19d

Strength parameterskisr,zd depend on the mass region
and each of these regions corresponds tov1 and v2 space
domains. For the same regionvi we have a differentki for
protons and neutrons. Asv1, v2 are determined byV1sr,zd
=V2sr,zd, when frequencies(i.e. ellipsoid semiaxes) vary, so
do the matrix elements ofVs, in direct correspondence with
charge density variation. The result is characterized by dif-
ferent proton and neutron level schemes for various charge
density paths. Detailed matrix elements and level scheme
calculation are described in Ref.[13]. The final energy levels
of the synthesized system depend on the two perpendicular
frequencies corresponding to the fused nucleus,vr0 andvz0.
At this point it is worth mentioning that, along the fusionlike
shape sequences, the two crossing level schemes of the target
and projectileconvergetoward the compound nucleus level
scheme. This is possible only if the two partner frequencies
svr1,vz1;vr2,vz2d approachsvr0,vz0d. The final level ener-
gies will depend onvr0,vz0 through the oscillator and spin-
orbit potential:

V0
srdsr, zd = 1

2m0v0
2r2 + 1

2m0vz0
2 z2, s20d

Vso
s0d = −H "

m0v0
k0sr, zd, f=V0

srdsvr0, vz0;r, zd 3 pgsJ
s21d

and similarly forVl2. Hence the frequency dependent po-
tentials, as a consequence of Eqs.s20d, s21d, and s19d, or
with respect to the convergence of the energy levels, must
follow a cycle like

Vsrd = Vsrdsvr1, vz1;vr2
, vz2d → V0

srdsvr0, vz0d,

Vso= Vsosvr1, vz1;vr2, vz2d → Vso
s0dsvr0, vz0d s22d

and the same forVl2. By taking into account the boundary
conditions for vri

,vzi as a result of Eq.s22d, two free
parameters are likely to be modified: one is the semiaxis
b2 and the other is the ratiox2=b2/a2. Besides the bound-
ary conditions, these parameters are subjected to nuclear
volume conservation. Sincex2 andb2 can take values over
the rangesx20,x0d, and sb20,b0d respectively, two laws of
variation fulfill the above conditions:

x2sR, kd = x0 + sx20 − x0d
R− Rf

kDR
s23d

and

b2sR, md = b0 − mDb − fsb0 − mDbd − b20g
R− Rf

Rt − Rf
, s24d

where DR is the pace inR. At R=Rf the projectile is
completely embedded in the target.k is the number of
steps inR. In this work DR=0.1 fm. The maximum value
of k, which is kmax, varies fromkmax

sfd DR=Rf to kmax
std DR=Rt.

When kmax=kmax
std , x2 starts to modify towardx0 starting

from the first step of overlapping, after the tangency. For
kmax=kmax

sfd , the projectile preserves its initial semiaxis ratio
all along the overlapping region; this is the situation when
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the charge density of the nonoverlapped part of the pro-
jectile does not change during the fusion process. Finally,
for R=Rf we havex2=x0.

A similar analysis is available for theb1 variation. The
target deformation path is subjected to two similar equations
for x1 and b1 as Eqs.(23) and (24). However, our calcula-
tions work only withx1 as variable for the target, sinceb1 is
no more independent, due to total volume conservation. Con-
sequently, anotherx1 equation is functional with the samek
so thatb1 (thusa1) is calculated from volume conservation.
However, it is worth mentioning that a more complete analy-
sis would comprise differentk values for target and projec-
tile. Various maximal and minimal values fork for the two
partners produce a large possible range of deformation paths.
A minimization procedure is compulsory to obtain the opti-
mal pair ofk’s for a given reaction. However, this work uses
the samek value for the target and projectile in order to
emphasize the impact of this parameter on charge density
variation.

Due to the volume conservation limitations[the nonover-
lapped volume ofsA2,Z2d cannot exceed its initial value], the
maximum value ofm is determined for every reaction chan-
nel. The finalb2 value is reached whenR=Rf, whereas the
initial one (touching point) stays forR=Rt:

b2sRt, md = b20,

b2sRf, md = b2f = b0 − mDb, s25d

whereDb is the variation pace for theb2 semiaxis. Equa-
tions s23d ands24d together with Eqs.s11d ands16d define
the geometrical correspondence between charge density
and nuclear shape changes.

Variations ofZ1x/A1x and Z2x/A2x depend onsa1,b1d and
sa2,b2d, respectively, through Eq.(2) for the target and a
similar equation for the projectile. Equations(6) and (7) are
their laws of variation as functions of the intermediary hy-
potheticalA1x andA2x. But A1x andA2x are determined them-
selves bya1,b1 anda2,b2, respectively, through Eq.(8), i.e.,
A1x=A1xsa1,b1d=A1xsx1,b1d andA2x=A2xsx2,b2d. The indepen-
dent quantities during the overlapping process arex1, x2 and
b1 andb2; their variations are described by Eqs.(23) and(24)
for the projectile and similarly to Eq.(23) for the x1 target.
The values of the parametersk andm in these equations are
obtained by minimization of the total deformation energy.
Any different value ofx1 or x2 andb1 andb2 yields a differ-
ent A1x andA2x, or differentsvr1

,vz1d and svr2
,vz2d as well.

The level scheme sequence of the overlapping configura-
tions through the fusion path is used as input for the calcu-
lation of the shell correction energyEshell. Strutinsky method
[14] is used separately for protons and neutrons, as corre-
sponding to different nucleon numbers and different spin-
orbit strength parametersk, cf. Eq. (12). Mass number de-
pendentkp andkn for protons and neutrons, respectively, act
on Z2i and N2i. As a result,Eshell is calculated as charge
density dependent.

IV. MACROSCOPIC ENERGY

The macroscopic energyEmacro is computed as the sum of
the Coulomb EC [15] and the nuclear Yukawa-plus-
expoenential termEY [16]. The Coulomb term reads

EC =
2p

3
reE

zmin

zmax

dzE
zmin

zmax

dz8FCsz, z8d s26d

where

FCsz, z8d = Hrszdrsz8d
Kskd − 2Dskd

3
3 F2fr2szd + r2sz8d

− sz− z8d2g + 1.5sz− z8dSdr2sz8d
dz8

−
dr2szd

dz
DG

+ KskdHr2szdr2sz8d
3

+ Fr2szd − 0.5sz− z8d
dr2szd

dz G
3Fr2sz8d + 0.5sz− z8d

dr2sz8d
dz8

GJJ
3

1

hfrszd + rsz8dg2 + sz− z8d2j1/2, s27d

where

k2 =
4rszdrsz8d

frszd + rsz8dg2 + sz− z8d2 ,

Dskd =
Kskd − K8skd

k2 , s28d

and rszd is the surface equation. Ifz=z8 we have

Fsz, z8d =
4r3szd

3
. s29d

For our two intersected nuclei system shape, the Coulomb
energy can be written as[17]

EC =
2p

3
sre1

2 FC1 + re2
2 FC2 + 2re1re2FC12d, s30d

where

FC1 =E
−a1

zs

dzE
−a1

zs

dz8F1sz, z8d, s31d

FC2 =E
zs

R+a2

dzE
zs

R+a2

dz8F2sz, z8d, s32d

FC12 =E
−a1

zs

dzE
zs

R+a2

dz8F12sz, z8d. s33d

The integrands read
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Fisz, z8d = Hriszdrisz8d
K − 2D

3
+ F2fri

2szd + ri
2sz8d

− sz− z8d2g + 1.5sz− z8dSdr1
2sz8d
dz8

−
dri

2szd
dz

DG
+ KHri

2szdri
2sz8d

3
+ Fri

2szd − 0.5sz− z8d
dri

2szd
dz G

3Fri
2sz8d + 0.5sz− z8d

dri
2sz8d
dz8

GJJ
3

1

hfriszd + risz8dg2 + sz− z8d2j1/2 s34d

and K=Kskdi, K8=K8skid with i =1,2, and

ki
2 =

4riszdrisz8d
friszd + risz8dg2 + sz− z8d2 . s35d

The interaction term reads

F12sz, z8d = Hr1szdr2sz8d
Ksk12d − 2Dsk12d

3

3 F2fr1
2szd + r2

2sz8d − sz− z8d2g + 1.5sz− z8d

3Sdr2
2sz8d
dz8

−
dr1

2szd
dz

DG + Ksk12dHr1
2szdr2

2sz8d
3

+ Fr1
2szd − 0.5sz− z8d

dr1
2szd
dz G

3Fr2
2sz8d + 0.5sz− z8d

dr2
2sz8d
dz8

GJJ
3

1

hfr1szd + r2sz8dg2 + sz− z8d2j1/2 s36d

with

k12
2 =

4r1szdr2sz8d
fr1szd + r2sz8dg2 + sz− z8d2 . s37d

For the sphere the Coulomb energy is

EC0 =
3Z2e2

5r0A
1/3. s38d

The Yukawa-plus-exponential energyEY is f17g

EY =
1

4pr0
2fcs1FEY1 + cs2FEY2 + 2scs1cs2d1/2FEY12g, s39d

wheref16g

FEY1 =E
0

2p E
−a1

zs E
−a1

zs

FY1
s1dFY2

s1dQs1ddfdzdz8, s40d

FEY2 =E
0

2p E
zs

R+a2 E
zs

R+a2

FY1
s2dFY2

s2dQs2ddfdzdz8, s41d

FEY12 =E
0

2p E
−a1

zs E
zs

R+a2

FY1
s12dFY2

s12dQs12ddfdzdz8. s42d

The terms in the integrand are

FY1
sid = ri

2szd − riszdrisz8dcosf − 0.5sz− z8d
dri

2szd
dz

,

FY2
sid = ri

2sz8d − riszdrisz8dcosf + 0.5sz− z8d
dri

2sz8d
dz8

,

Qsid = 2 −FSsi

a
D2

+ 2
si

a
− 2Ge−si/a

1

si
4 ,

s1 = fri
2szd + ri

2sz8d − 2riszdrisz8dcosf + sz− z8d2g1/2

s43d

with i =1,2 and theinteraction term

FY1
s12d = r1

2szd − r1szdr2sz8dcosf − 0.5sz− z8d
dr1

2szd
dz

,

FY2
s12d = r2

2sz8d − r1szdr2sz8dcosf + 0.5sz− z8d
dr2

2sz8d
dz8

,

Qs2d = 2 −FSs12

a
D2

+ 2
s12

a
− 2Ge−s12/a

1

s12
4 ,

s12 = fr1
2szd + r2

2sz8d − 2r1szdr2sz8dcosf + sz− z8d2g1/2.

s44d

For the sphere

EY
s0d = H1 − 3S a

R0
D2

+ SR0

a
+ 1D

3F2 + 3
a

R0
+ 3S a

R0
D2Ge−2R0/aJES

s0d, s45d

where

ES
s0d = csA

2/3. s46d

For the intermediate surface coefficientscs1i andcs2i, with
the general expression

csji = ass1 − kI ji
2d, s47d

we use A1i ,Z1i from Eqs. s9d and s10d, with I ji =sNji
−Zjid /Aji where j =1,2.

The total macroscopic deformation energy is

Emacro= sEC − EC
s0dd + sEY − EY

s0dd. s48d

V. RESULTS AND DISCUSSION

First results are presented for the light nuclei fusion reac-
tion 36Ar+66Fe→102Ru. All the curves are drawn after mini-
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mization against thex parameter. The figures show only the
variation as a function ofb2.

36Ar is spherical, with the initial
radiusR20s36Ard=3.3 fm,66Fe has an ellipsoidal deformation

of b2
s66Fed=0.027 and102Ru is deformed withb2

s102Rud=0.189.
The projectile36Ar maintains its spherical shape for the four
possible paths presented in Figs. 3 and 4. This situation cor-
responds tok=1 in Eq. (23). For a differentk, hence a dif-
ferent x variation which implies ellipsoidal shape of the
same projectile, the total deformation energy takes higher
values. The macroscopic energiesEC and EY and their sum
Emacro have been computed with respect to the spherical
shape values of102Ru. Calculations have been performed for
four values of them parameter[see Eq.(24)], defining four
ways the charge density passes from projectile value to the
compound nucleus one. During the overlapping process, the
36Ar radius becomesR2 if the projectile preserves its spheri-
cal shape. TheR2=b0s102Rud curves correspond to the situa-
tion when the projectile ends the fusion process with its ra-

dius equal to the small semiaxis of102Ru. The characteristics
of these laws have been explained in Fig. 2. Figure 3 shows
these four cases of shape sequences for macroscopic ener-
gies. Since for separated nuclei the energies do not differ,
calculations are presented only for the overlapping region,
i.e., for normalized distanceRn=sR−Rfd/sRt−Rfd,1. Differ-
ences are more significant in the last part of the fusion pro-
cess. Higher values ofEC (upper plot), EY (middle plot), and
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FIG. 3. Coulomb EC (upper plot), nuclear Yukawa-plus-
exponentialEY (middle plot), and their sumEmacro for four configu-
ration paths corresponding to four different charge density varia-
tions for 102Ru synthesis.
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FIG. 5. The corresponding sequences of shapes for102Ru; each
column represents the path along each of the fusion barriers in Fig.
4.
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total macroscopic energyEmacro correspond to the situation
when 36Ar projectile preserves its initial radiusR2
=R20s36Ard until the end of the process. Intermediary situa-
tions are assigned by the two finalR2 values, 0.9b0s102Rud
and 0.8b0s102Rud. The lowest values are obtained when the
projectile ends in the target withR2=b0s102Rud. The bump in
Emacro at aboutRn=0.2 appears because of the higher charge
density of the projectile shape, especially forR2=R20s36Ard
(see Fig. 2). Maximum total macroscopic energy difference
reaches 4 MeV between largest and smallest projectile radius
curves, or between lowest and highest charge density values
at the sameRn. Microscopic influence is depicted in Fig. 4
for 102Ru synthesis and the same four charge density varia-
tion paths.Rn takes values far beyond the touching distance
sRn.1d, in order to comprise the whole cold fusion barrier.
The variation ofEshell (upper plot) nears 2 MeV and is more
pronounced in the last part of the fusion process, assR
−Rfd/sRt−Rfd approaches zero. There is a mixed behavior of
the four curves. The lowest values are successively reached

by R2=b0s102Rud at the beginning of the process, then by
R2=0.8b0s102Rud followed by 0.9b0s102Rud curve in the last
part. The total sumEb=Emacro+Eshell is shown in the lower
plot of Fig. 4. Differences of about 4 MeV are visible when
Rn approaches zero, and the situations when the projectile
enlarge its dimensions as to seize synthesized nucleus size
and shape are favored[R2=b0s102Rud]. A remarkable feature
is the appearance of minimum atsR−Rfd/sRt−Rfd=0.5. Such
a shape isomerism has already been presumed in light nuclei
fusion reactions[18,19], but it is only within this work that a
minimum is obtained along the deformation energy for a
certain reaction channel, for a dinuclear system. A compre-
hensive geometric correspondence of the different cold fu-
sion paths can be observed in Fig. 5. The starting point of the
fusion process is the touching configuration, depicted in the
lowest part of the figure. Every column is the shape sequence
matching to one of the barriers from Fig. 4. First column
shows the situation when the projectile ends its total overlap-
ping with R2=b0s102Rud. The next two columns are drawn for
R2=0.9b0s102Rud and 0.8b0s102Rud, respectively, and the last
one is the sequence forR2=R20s36Ard.

The next cold fusion reaction which has been analyzed is
24Mg+128Xe→152Dy. All three partners are ellipsoidally de-

formed (b2
s128Xed=0.143,b2

s24Mgd=0.374, andb2
s152Dyd=0.153).

In Fig. 6 macroscopic energy behavior is depicted, with the
Coulomb termEC in the upper plot, nuclear Yukawa-plus-
exponential termEY in the middle plot and their sumEmacro
in the lower plot. Calculations have been performed for the
same four charge density variation paths, i.e., the same varia-
tions for the projectile small semiaxisb2. Though the shapes
of the macroscopic barriers are different, their behaviors
have the same characteristics. Differences are lower than in
the previous case. A bump inEC slightly visible for b2
=b20s24Mgd disappears completely forb2=b0s152Dyd. The
lowest values ofEmacro correspond again to the situation
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where the24Mg projectile enlarge its dimensions so as to
reach the synthesized152Dy proportions [b2=b0s152Dyd
curves]. This configuration path assures the smoothest pass
of the charge density from projectile to compound nucleus
value, but still only macroscopic terms are involved here.
Shell corrections for the same reaction are depicted in Fig. 7,
upper plot. Their values stretch from −3 MeV to 4.2 MeV.
The lowestEshell values are first reached forb2=b0s152Dyd
curve, but then for b2=b20s24Mgd followed by b2
=0.8b0s152Dyd values are lower. Significant differences in
the total deformation energyEb (lower plot) appear toward
the end of the fusion process. Againb2=b0s152Dyd curve has
the smallest energy values. The gain in lowering the total
deformation energy by minimization againstx2 andb2 is up
to 3.7 MeV.

Finally a superheavy synthesis reaction is analyzed,54Cr
+238U→292116. Both target and projectile are deformed with

b2
s54Crd=0.180 andb2

s238Ud=0.215. The superheavy292116 is
considered spherical, with radiusR0s292116d=6.63 fm. Mac-

roscopic components are displayed in Fig. 8 for the same
four b2 variation laws. Despite the larger differences around
Rn=0.7 in EC (upper plot) andEY (middle plot), the signifi-
cant variations in the total macroscopic energyEmacro appear
at the end of the process, forsR−Rfd/sRt−Rfd,0.4. This is
due to the fact that lowerEC corresponds to higherEY for the
sameb2 law of variation, like it is easily visible forb2
=R0s292116d curve. The lowest values forEmacro are obtained
for b2=R0s292116d curve at the end of fusion. Shell effects do
not change the order. Theb2=R0s292116d curve forEshell (Fig.
9, upper plot) has not always the lowest values: at the begin-
ning of the overlapping region it is theb2=b20s54Crd path
which produces lower shell corrections. Then all four varia-
tion curves mix. At the end, againb2=R0s292116d is favored.
This trend is transmitted to the total deformation energyEb
(Fig. 9, lower plot). Close to the tangent point theb2
=b20s54Crd curve displays lowerEb values. It is the situation
where54Cr keeps its semiaxis ratioand b2 at its initial val-
ues. This part corresponds to the highest charge density, the
initial charge density value of the projectile(see Fig. 2).
Around sR−Rfd/sRt−Rfd=0.4 the small semiaxis tends to in-
crease towardR0s292116d. This volume enhancement induces
the charge density decrease down to the synthesized super-
heavyre value. Differences between curves reach 8 MeV, a
rather large value for the cold fusion total deformation en-
ergy variation.

All the above results demonstrate the necessity of taking
into account the charge density as a free parameter. Its influ-
ence is directly related to geometrical characteristics of the
fusionlike shape, as the semiaxis ratiox and the small semi-
axisb2 quantities. Minimization against these two parameters
produces a significant decrease in barrier height.

VI. CONCLUSION

Charge density influence on cold fusion barriers manifests
itself through geometrical parameters characterizing the tar-
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get and projectile nuclei within the overlapping region.
Changes of semiaxis ratios and magnitude trigger a modifi-
cation in proton density over the nonoverlapped volume of
the projectile. As a free coordinate, charge density can lower
the cold fusion deformation energy, as a result of minimiza-
tion againstb2 and x2. This kind of influence is especially
active in the last part of the fusion process, when the projec-
tile is already half embedded in the targetsRn,0.5d up to
total synthesis. For light and intermediate nuclei cold fusion,
the energy variation in the last part of the deformation path
reaches 4 MeV for102Ru and 3.7 MeV for152Dy synthesis.
For a possible superheavy production channel, influence of
charge density changes is quantitatively more important. En-
ergy differences in the cold fusion channel barrier of292116
reach about 8 MeV in the last part of the overlapping process
as a result of energy minimization. These very large energy
deviations appear both in macroscopic and shell correction
curves. Due to the exponential dependence of the penetrabil-
ity factor on the deformation energy(via the action integral)
such a variation is expected to be quantitatively significant.
As a general trend, projectile tends to increase the volume of
its nonoverlapped part toward the final stage of the fusion,
approaching the synthesized nucleus geometry. Finally this

work emphasizes the importance of calculating thewhole
fusion barrier shape. It is not only the height(which usually
occurs at the very beginning of the process for light nuclei
and in the middle of partially overlapping configuration for
superheavy synthesis), but also the last part of the barrier
which influences the process. We mention that the tip to tip
collision is only the energetically favorized situation, corre-
sponding to target-projectile axes angleu=0. A complete
procedure implies separate analysis for rotation anglesu.0.
Such a complete calculation could enhance the value of the
total cross section. Due to different target orientations,
charge density follows other paths than those obtained by
minimization of deformation energy atu=0.
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