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In this paper we study the number of angular momentumI states for both fermions and bosons. Suppose that
n is the particle number,M=Imax−I, and thatJ refers to the angular momentum of a single-particle orbit for
fermions or the spinL carried by bosons. We prove that the number of states is independent ofJ if Møs2J
−n+1d for fermions andMø2J for bosons, and that the number ofI states is independent of bothn andJ if
Møminsn,2J+1−nd for fermions andMøminsn,2Jd for bosons. We also present in this paper empirical
formulas for the number ofI states of three and four identical fermions or bosons.
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I. INTRODUCTION

The enumeration of the number of total angular momen-
tum I states is a very common practice in nuclear structure
theory. One usually obtains this number by subtracting the
combinatorial number of the states with a total angular mo-
mentum projectionM=I+1 from that withM=I. The combi-
natorial numbers of differentM’s seem to be irregular, and
such an enumeration procedure would be prohibitively te-
dious without a computer for a very large single-j shell. The
numbers of states of a few nucleons in a single-j (j is a half
integer) shell are usually tabulated in textbooks, for example,
Ref. [1], for sake of convenience.

Another well-known solution was given by Racha[2] in
terms of the seniority scheme, where one has to introduce
(usually by computer choice) additional quantum numbers.
More than one decade ago, a third route was studied by
Katriel et al. [3] and Sunko and co-workers[4], who con-
structed generating functions of the number of states for fer-
mions in a single-j shell or bosons with spinL.

These works are very interesting and important. On the
other hand, the number of states therein are not algebraic.
There was only one algebraic formula available forI=0
states with four fermions[5]. It would be very interesting to
have more general algebraic formulas, if possible. In another
context, it was noted[6] that the angular momentum 0
ground state probability of four fermions in a single-j shell in
the presence of random interactions has a synchronous stag-
gering with an increase of the number ofI=0 states by one
when j increases. It has not been clarified yet whether there
is a deep relation between these two quantities or this syn-
chronism is just a coincidence. This “coincidence” also mo-
tivated the present study of algebraic formulas of number of
states.

In this paper the number of states is denoted asDsn,Idj,
Dsn,Idl, and Dsn,IdL for n fermions in a single-j shell, n
fermions in a single-l shell, andn bosons with spinL, respec-
tively, wherej is a half integer, andl andL are integers. For
convenience we useDsn,IdJ to refer to all these three cases,
whereJ can bej, l, or L. Suppose thatM=Imax−I, whereImax

is the maximum ofI. For convenience we also denote the
number of states asDsn,MdJ, where the variable isM in-
stead ofI. In Sec. II, we shall show that theDsn,MdJ is
independent ofJ if Møs2J−n+1d for fermions orMø2L
for bosons, and that theDsn,MdJ is independent of bothJ
and n if Møminsn,2J+1−nd for fermions and M
øminsn,2Ld for bosons. In Sec. III, we shall construct em-
pirical formulas for all I states of three and four identical
particles. Although these formulas are obtained empirically,
we have confirmed them by computer forj ø999/2, lø500,
or Lø500, and for many cases with much largerJ’s which
were taken randomly. One therefore can use them “safely” in
practice. A summary is given in Sec. IV. In the Appendix we
shall present a few formulas for the cases of five particles.

II. A REGULARITY OF D„n,I …J FOR LARGE I
CASES

In this section, we shall first show the following regular-
ity, that is, for fermions withMø2J−n+1 [i.e., Iùsn−2dJ
− 1

2sn−1dsn−2d] and for bosons withMø2J [i.e., Iùsn
−2dJ], Dsn,MdJ is independent ofJ. For an example,
Ds5,MdJ=1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17,
18, 22, 23, 28, 29, 34, 36, 42, 44, 50, 53, 60, 63,…, for M
=0,1,2, .. . ,28..., ifMø2J−4 for fermions andMø2L for
bosons.

Below we prove this observation. LetPsn,Md be the
number of partitions ofM=i1+i2+¯+in, with 0ø i1ø i2
ø¯ø in. Suppose that the angular momentum projection of
the kth particle ismksk=1,2, .. . ,nd. Let us denotemk of the
I=Imax state asmk

0. The mk
0 is J−k+1 for fermions andJ=L

for bosons.
Let Psn,0d=Dsn,0dJ=1. It is easily noted thatDsn,MdJ

=Psn,Md−Psn,M−1d if all mk=mk
0−ikù−J. One should be

aware that in them scheme, a state with a given value of
M=Imax−M is obtained from the state withI=Imax by sub-
tracting summandsik of M from the correspondingmk

0 [7],
with the largest summandin subtracted from the smallestmn
value. Thus the conditionmkù−J here means that minsmkd
=mnù−J, i.e., i1=i2=¯=in−1=0 and inømn

0−s−Jd. The
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maximum ofM which satisfies the condition of allmkù−J
is therefore 2J−n+1 for fermions and 2J for bosons. Namely,
whenMø2J−n+1 [or Iùsn−2dJ− 1

2sn−1dsn−2d] for fermi-
ons andMø2J [or Iùsn−2dJ] for bosons,Dsn,MdJ are
independent ofJ. We denote this maximum ofM of n par-
ticles asMn. One sees that not all partitions withM.Mn

lead to physical states.
As a consequence of the above result, we shall be able to

present in Sec. IIIunified formulas forn=3 and 4 under the
condition that MøMn, i.e., IùJ−1 sIù2J−3d for three
(four) fermions andIùJ sIù2Jd for three(four) bosons.

Now we discuss the range in whichDsn,MdJ is indepen-
dent of bothJ andn. Here an additional condition should be
satisfied: Møn. In another sentence, whenM
øminsn,Mnd, i.e., Møminsn,2J−n+1d for fermions and
Møminsn,2Jd for bosons,Dsn,MdJ is the same for alln.
For example, Ds5,M=5dj=31/2s=2d is equal to Ds5,M
=5dj=21/2 andDs10,M=5dL=30. The universalDsn,MdJ series
is 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88,
105, 137, 165, 210, 253, 320, forM=0,1, .. . ,24,respec-
tively.

III. EMPIRICAL FORMULAS OF D„n,I …J FOR n53 AND 4

For IøJ, we empirically obtain

Ds3, Id j = F2I + 3

6 G ,

Ds3, Idl = F I

3G +
1

2
„1 − s− dI+l

…,

Ds3, IdL = F I

3G +
1

2
„1 + s− dI+L

…, s1d

where fg means to take the largest integer not exceeding
the value inside.

For fermions withIùJ−1 or bosons withn=3 andIùJ,
the Ds3,IdJ’s can be empirically given in a unified form:

Ds3, IdJ = F Imax− I

6 G + dI , s2d

where

dI = H0 if sImax− Id % 6 = 1

1 otherwise.

In this papera%b is the smallest integer congruent toa
smod bd, where a is a non-negative integer andb is a
natural number, i.e.,a%b=a−bfa/bg; for example, 7%3
=1 and 27%10=7.

According to Eq.(1), Ds3,1
2

d
j=0,Ds3,0dl=1 (or 0) if l is

odd(or even), andDs3,0dL=1 (or 0) if l is even(or odd). It is
noted that there are overlaps ofI’s between the range de-
scribed by Eq.(1) and that by Eq.(2), and that one may use
either of them to obtain theseDs3,IdJ.

The cases of four particles are more complicated. How-
ever, a regular staggering ofDs4,IdJ can be easily noticed if

Iø2J. We definehI
J=Ds4,IdJ+1−Ds4,IdJ, and DsId=Ds4,IdJ

−Ds4,I+3dJ (evenI). It is found thathI
J (DsId) changes peri-

odically asJsId changes by three(four) for Iø2J. Table I
shows that theshI

J,hI
J+1,hI

J+2d of four particles is the partition
of sI /2+1d with the conditions thathI

JùhI
J+1ùhI

J+2 and shI
J

−hI
J+1dø1,shI

J+1−hI
J+2dø1. Here I is an even number. Al-

though the origin of this regularity is not known, one may
make use of this to construct the formulas ofDs4,IdJ for I
ø2J. The cases ofIù2J will be addressed later in this sec-
tion.

For Iø2J with I being even, we empirically obtain

Ds4, IdJ = FL − I/2

3 G 3 S I

2
+ 1D + CsIdm− d + dsId, s3d

where m=sL− I /2d%3. For fermions in a single-j shell,
the coefficients in Eq.s3d are given by

L = j −
1

2
, CsId = F I

6G + 1,

d = Hdm2 if I % 6 = 0

0 otherwise,

dsId = 3KsK − 1d + K + s1 + KdK + dK,4 + dK,5,

where K=fsI +4d /12g, and K=(sI +4d%12) /2. For fermi-
ons in a single-l shell,

L = l, CsId = F I + 4

6 G ,

d = Hdm2 if sI + 4d % 6 = 0

0 otherwise,

dsId = 3KsK − 1d + K + s1 + KdK + dK,4 + dK,5,

where K=fsI +2d /12g, and K=(sI +2d%12) /2. For bosons
with spin L,

TABLE I. For the cases withn=4, hI
J, hI

J+1, andhI
J+2 of angular

momentaI and I+3 (I is even) states change periodically at an
interval DJ=3 whenIø2J. One thus easily constructs formulas for
Dsn,IdJ’s for states withIø2J.

I I +3 hI
J hI

J+1 hI
J+2

0 3 1 0 0
2 5 1 1 0
4 7 1 1 1
6 9 2 1 1
8 11 2 2 1
10 13 2 2 2
12 15 3 2 2
14 17 3 3 2
16 19 3 3 3
A A A A A
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L = L, CsIdJ = F I + 4

6 G ,

d = Hdm2 if sI + 4d % 6 = 0

0, otherwise,

dsId = 3KsK − 1d + K + s1 +KdK + dK,4 + dK,5,

whereK=fsI +8d /12g andK=(sI +8d%12) /2.
For Iø2J with I being odd, we introduceI=I0+3, and

obtain

Ds4, Id j = Djs4, I0d − F I

4G − 1,

Ds4, Idl = Dls4, I0d − F I + 2

4 G ,

Ds4, IdL = DLs4, I0d − F I

4G − 1. s4d

One easily sees that theDs4,1dJ’s are always zero.
For Iù2J−3, we define

for evenI: I = Imax− 2m,

for odd I: I = Imax− 3 − 2m.

We let K=fm/6g, K=m%6, and obtain

Ds4, IdJ = 3KsK + 1d − K + sK + 1dsK + 1d + dK0 − 1 s5d

for fermions with I ù2J− 1
2sn−1dsn−2d=2J−3 and for

bosons withI ù2L= Imax−2L.
It is noted that for fermionsDs4,IdJ of I=s2J−3, 2J

−2, 2J−1, and 2J) can be obtained either by Eqs.(3) and(4)
or by Eq. (5). The formulas ofDs4,IdJ present an even-odd
staggering of the number of states: the number of states with
even number ofI is not smaller and mostly larger than those
of their odd-I neighbors. A similarity between the formulas
for four fermions(in both half-integerj orbit and integerl
orbit) and bosons is also easily noticed.

The situation ofn=5 is much more complex, and we are
unable to construct simple and unified formulas. In the Ap-
pendix we list a few formulas for the cases withI,Imin.

IV. SUMMARY AND DISCUSSION

To summarize, we have shown in this paper that the num-
ber of statesDsn,MdJ is independent ofJ if Mø2J−n+1
for fermions in a single-j or l shell, andMø2L for bosons
with spin L. The Dsn,MdJ is independent of bothn and J
when Møminsn,2J+1−nd for fermions and M
øminsn,2Jd for bosons. These facts have eluded from obser-
vation in the long history of enumerating theDsn,IdJ.

We have also found that there are simple structures in the
number of states of three and four identical particles, which
enabled us to construct empirical formulas forn=3 and 4.
For n=5 we presented formulas for a few lowestI states. We

have confirmed the validity of these empirical formulas for
j ø999/2 andlsLdø500, which are large enough for practi-
cal use.
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APPENDIX: NUMBER OF LOW I STATES
FOR FIVE PARTICLES

First, we come to the case with five fermions in a single-
j shell. We define Asj , j0,dd=fsj− j0d/dg and Bsj , j0,dd
=sj− j0d%d, and obtain

DS5,
1

2D j

= 6A2S j ,
9

2
, 12D + 3AS j ,

9

2
, 12D

+ FAS j ,
9

2
, 12D + 1GFBS j ,

9

2
, 12D + 1G

+ dBs j ,9/2,12d, sA1d

where

dBs j ,9/2,12d =5− BS j ,
9

2
, 12D if BS j ,

9

2
, 12D ø 2

− 2 if 3 ø BS j ,
9

2
, 12D ø 4

− 3 otherwise;

DS5,
3

2D j

= 3A2S j ,
11

2
, 6D + 4AS j ,

11

2
, 6D

+ FAS j ,
11

2
, 6D + 1GFBS j ,

11

2
, 6D + 1G

+ dBs j ,11/2,6d + 1, sA2d

where

dBs j ,11/2,6d = 51 if BS j ,
11

2
, 6D ù 4

0 otherwise;

DS5,
5

2D j

= 2A2S j ,
9

2
, 4D + 3AS j ,

9

2
, 4D+ FAS j ,

9

2
, 4D + 1G

3FBS j ,
9

2
, 4D + 1G + dBs j ,9/2,4d + 1, sA3d

where

dBs j ,9/2,4d = 51 if BS j ,
9

2
, 4D ù 2

0 otherwise;

and
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DS5,
7

2D j

= 6A2S j ,
3

2
, 6D + F2AS j ,

3

2
, 6D + 1G

3FBS j ,
3

2
, 6D + 1G + dBs j ,3/2,6d − 1, sA4d

where

dBs j ,3/2,6d = 5− 1 if 1 ø BS j ,
3

2
, 6D ø 3

0 otherwise

.

An interesting behavior is that there exists an approximate
relation for five fermions in a single-j shell: Ds5,Idj

,sI+ 1
2

dDs5,1
2

d
j when I, j.

Next, we come to five fermions in a single-l shell. ForI
=0, we define

k = Hsl − 2d/2 if l % 2 = 0

sl − 11d/2 if l % 2 = 1,
K = fk/6g, K = k % 6,

and obtain

Ds5, 0dl = 3KsK + 1d − K + sK + 1dsK + 1d + dK0 − 1

sA5d

for I =1, we define

k = Hsl − 1d/2 if l % 2 = 1

sl − 4d/2 if l % 2 = 0,
K = fk/2g, K = k % 2,

and obtain

Ds5, 1dl = KsK + 1d + KsK + 1d. sA6d

We finally come to the case of five bosons with spinL.
For I=0, we define

k = HL/2 if L % 2 = 0

sL − 9d/2 if L % 2 = 1,
K = fk/6g, K = k % 6,

and obtain

Ds5, 0dL = 3KsK + 1d − K + sK + 1dsK + 1d + dK0 − 1.

sA7d

For I =1, we define

k = HL if L % 2 = 1

sL − 3d if L % 2 = 0,
K = fk/4g,

K = fsk % 4d − 1g/2,

and obtain

Ds5, 1dL = sK + 1dsK + K + 1d. sA8d

The formulas for largerI’s with n=5 are more compli-
cated and are not addressed in this paper.
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