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Number of states with a given angular momentum for identical fermions and bosons
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In this paper we study the number of angular momenttstates for both fermions and bosons. Suppose that
n is the particle numbetM =l,,,—1, and thatJ refers to the angular momentum of a single-particle orbit for
fermions or the spirk carried by bosons. We prove that the number of states is independéiitt 8ff <(2J
—-n+1) for fermions andM <2J for bosons, and that the numberlo$tates is independent of bothandJ if
M=min(n,2J+1-n) for fermions andM =<min(n,2J) for bosons. We also present in this paper empirical
formulas for the number df states of three and four identical fermions or bosons.

DOI: PACS numbseis): 21.60.Cs, 21.60.Fw, 21.4by, 02.90+p

|. INTRODUCTION is the maximum ofl. For convenience we also denote the

Th i f th b f total | number of states aB(n, M);, where the variable is\ in-
€ enumeration of the number ot total anguiar MOMeNy. oy of) |n Sec. 11, we shall show that thB(n,M); is

tum | states is a very common practice in nuclear Strucmrefndependent ol if M=(2J-n+1) for fermions orM=2L
theory. One usually obtains this number by subtracting th‘?or bosons, and that th®(n, M), is independent of botd
combinatorial number of the states with a total angular moyng n if AM<min(n,2J+1-n) for fermions and M
mentum projectiorM=1+1 from that withM=1. The combi-  <min(n,2L) for bosons. In Sec. Ill, we shall construct em-
natorial numbers of different’s seem to be irregular, and pjrical formulas for alll states of three and four identical

such an enumeration procedure would be prohibitively teparticles. Although these formulas are obtained empirically,
dious without a computer for a very large singlshell. The  we have confirmed them by computer fe999/2,1<500,
numbers of states of a few nucleons in a singlgds a half  or L<500, and for many cases with much largks which
integey shell are usually tabulated in textbooks, for example were taken randomly. One therefore can use them “safely” in
Ref. [1], for sake of convenience. practice. A summary is given in Sec. IV. In the Appendix we
Another well-known solution was given by Racf@ in  shall present a few formulas for the cases of five particles.
terms of the seniority scheme, where one has to introduce
(usually by computer choigeadditional quantum numbers. Il. AREGULARITY OF D(n,l); FOR LARGE |
More than one decade ago, a third route was studied by CASES
Katriel et al. [3] and Sunko and co-workeig], who con- ) ) _ _
structed generating functions of the number of states for fer- [N this section, we shall first show the following regular-
mions in a single-shell or bosons with spit. ity, that is, for fermions withmM<2J-n+1 [i.e., 1=(n-2)J
These works are very interesting and important. On the 3(\-1)(n-2)] and for bosons with\M<2J [i.e., I=(n
other hand, the number of states therein are not algebraic.2J], D(n,M); is independent of). For an example,
There was only one algebraic formula available fer0  P(5,.M),;=1,0,1,1,2,2,3,3,5,5,7,7, 10, 10, 13, 14, 17,
states with four fermiong5]. It would be very interesting to 18, 22, 23, 28, 29, 34, 36, 42, 44, 50, 53, 60,.63for M
have more general algebraic formulas, if possible. In anothet0,1,2,...,28..., iiM<2J-4 for fermions and\{ <2L for
context, it was noted6] that the angular momentum 0 bosons.
ground state probability of four fermions in a singlehell in Below we prove this observation. L&é(n, M) be the
the presence of random interactions has a synchronous stagdmber of partitions ofM=ij+iy+---+iy, with 0<i;=<i,
gering with an increase of the numberIefO states by one <:'*<in. Suppose that the angular momentum projection of
whenj increases. It has not been clarified yet whether theréhe kth particle ism(k=1,2,...n). Let us denoter of the
is a deep relation between these two quantities or this syrl=Imax State asw. Theng is J-k+1 for fermions andi=L
chronism is just a coincidence. This “coincidence” also mo-for bosons.
tivated the present study of algebraic formulas of number of Let P(n,0=D(n,0),=1. It is easily noted thaD(n, M),
states. =P(n, M)-P(n,M-1) if all m=m-i,=-J. One should be
In this paper the number of states is denotedés,);, aware that in them scheme, a state with a given value of
D(n,l),, and D(n,l), for n fermions in a singlg-shell, n  M=l,~M is obtained from the state with=I,, by sub-
fermions in a singld-shell, andh bosons with spir, respec-  tracting summandg, of M from the correspondingﬁ [71,
tively, wherej is a half integer, antlandL are integers. For with the largest summarig subtracted from the smallest,
convenience we usB(n,l); to refer to all these three cases, value. Thus the conditiom=-J here means that mim,)
whereJ can bej, |, or L. Suppose thaM =1, |, wherel ., ~ =m,=-J, i.e., i1=i,=-+-=i,4,=0 and i,<m’-(-J). The
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maximum of M which satisfies the condition of ath.=-J TABLE 1. For the cases witm=4, 7, 7%, and7*? of angular
is therefore 2—n+1 for fermions and 2for bosons. Namely, momental and 1+3 (I is ever) states change periodically at an
when M =<2J-n+1 [or IB(n—Z)J—%(n—l)(n—Z)] for fermi- interval A;=3 whenl<2J. One thus easily constructs formulas for

ons andM<2J [or 1=(n-2)J] for bosons,D(n, M), are  D(n,1);'s for states withl <2J.
independent ofl. We denote this maximum of1 of n par-

. n .. . n | |+3 J J+1 J+2
ticles asM". One sees that not all partitions witht > M " [ "
lead to physical states. 0 3 1 0 0

As a consequence of the above result, we shall be able to 5 1 1 0
present in Sec. llunifiedformulas forn=3 and 4 under the 4 7 1 1 1
condition that M<sM", i.e., 1=J-1(1=2J-3) for three 6 9 5 1 1
(four) fermions and =J (1= 2J) for three(four) bosons. 8 11 ° 2 1

Now we discuss the range in whid(n, M); is indepen-

o o 10 13 2 2 2

dent of bothJ andn. Here an additional condition should be

o 12 15 3 2 2
satisfied: M=n. In another sentence, whenM 14 17 3 3 5
<min(n,M"), i.e., M=min(n,2)J-n+1) for fermions and 3 3 3

M=min(n,2J) for bosons,D(n, M); is the same for alh. 1'6 1.9
For example, D(5,M=5)j-3;4=2) is equal to D(5,M :
=5)j=212andD(10,M=5), 30 The universaD(n, M), series
Ilso:;’ 01’317’ 1162552210427538 %goldffoélzozi 34, girgngg 88[$2J. We define nf:D(4,I)J+1—D(4,I)J, and A(I)=D(4,1),
tivel,y ’ ' ' ' ' e -D(4,1+3); (evenl). It is found thatz; (A(1)) changes peri-
' odically asJ(I) changes by threéfour) for 1<2J. Table |
shows that théz;, 77**, 7*?) of four particles is the partition
of (1/2+1) with the conditions that; = 7}*'= 7*? and (7}

Ill. EMPIRICAL FORMULAS OF D(n,l); FOR n=3 AND 4

For I<J, we empirically obtain - <1,(5-7"?<1. Herel is an even number. Al-
though the origin of this regularity is not known, one may
D(3.1); = [2| + 3} make use of this to construct the formulas®,l); for |
g ' =<2J. The cases of=2J will be addressed later in this sec-
tion.

For 1=<2J with | being even, we empirically obtain

— l 1 1+l
D@3, = 3 +§(1—(—) ),

L£-1/2 |
D(4,1);= —3 [ X3! +C(hm-45+d(l), (3)
| 1
D@3, ). = L—J +§(1+(—)'+L), (1)  wherem=(L-1/2)%3. For fermions in a singl¢-shell,
the coefficients in Eq(3) are given by
where[] means to take the largest integer not exceeding 1 |
the value inside. £L=j-=, C()= {_} +1,
For fermions withl =J-1 or bosons witm=3 and|=J, 2 6

the D(3,1);'s can be empirically given in a unified form:

S F1%6=0
_ Imax_I = )

D@3, 1);= s |* 3, (2 0 otherwise,
where d(1) =3K(K = 1) + K + (L +K)K + 8 4+ S s,

O if (lpax= ) %6=1 where K=[(1+4)/12], and K=((1+4)%12)/2. For fermi-

'" 11 otherwise. ons in a singld-shell,
In this papera%b is the smallest integer congruent & B | 1+4
(mod b), wherea is a non-negative integer and is a L=l cl)= 6 |’

natural number, i.e.a%b=a-b[a/b]; for example, 7%3
=1 and 27%10=7. .
_{5m2 if (1+4)%6=0

According to Eq.(1), D(3,3),=0,D(3,0,=1 (or 0) if | is
0 otherwise,

odd(or even, andD(3,0), =1 (or 0) if | is even(or odd. It is
noted that there are overlaps B between the range de-
scribed by Eq(1) and that by Eq(2), and that one may use d(1) = 3K(K - 1) + K + (1 +K)K + 8 4+ S« s,
either of them to obtain thed®(3,1);. ' '

The cases of four particles are more complicated. Howwhere K=[(1+2)/12], and X=((1+2)%12)/2. For bosons
ever, a regular staggering Bf(4,1); can be easily noticed if with spinL,
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| +4 have confirmed the validity of these empirical formulas for
L=L, C();= it j=<999/2 andl(L)<500, which are large enough for practi-
cal use.
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For I<2J with | being odd, we introducé=I,+3, and
obtain APPENDIX: NUMBER OF LOW | STATES
FOR FIVE PARTICLES
D(4,1); =D;(4, o) - {l} -1 First, we come to the case with five fermions in a single-
I 4] j shell. We define A(j,jo,d)=[(j—jo)/d] and B(j,jo,d)
=(j—jo)%d, and obtain
| +2
= | == 1 9 9
D(4,1),=Dy(4,1p) [ 2 }, D<5, _) = 6A2<j, = 12) + 3A<j, =, 12)
2 ]. 2 2
I .9 .9
D(4,1) =D 10 - | 7|~ 1. 4 A 12) 1B 5,12+ 1
One easily sees that tH(4,1)'s are always zero. + 55(j,012,12» (A1)
For I=2J-3, we define where
for evenl: | =1, 2m, ( 9 - 9
-B ],5,12 if B 1,5,12 <2
foroddl: |=1lp—3-2m.
- Sa02.10% ) _ t3=8(j, 2 12) <4
We letK=[m/6], X=m%6, and obtain e =bll.5 <
D(4,1);=3K(K+1)-K+(K+1)(K+1)+ 5g—-1 (5 \—3 otherwise;
for fermions with 1=2J-3(n-1)(n-2)=2J-3 and for 3 1 1
bosons withl =2L =1 ,,,—2L. D(S, _) = 3A2<j, — 6) + 4A<', — 6)
It is noted that for fermionsD(4,l); of 1=(2]-3, 2] 2/, 2

-2, 2]J-1, and J) can be obtained either by Eq8) and(4) 11 11

or by Eq.(5). The formulas ofD(4,l); present an even-odd + [A(j, —, 6) + 1} {B(j, —, 6) + 1]
staggering of the number of states: the number of states with 2 2

even number of is not smaller and mostly larger than those + 81120t 1 (A2)
of their odd} neighbors. A similarity between the formulas

for four fermions(in both half-integerj orbit and integed ~ Where

orbit) and bosons is also easily noticed.

The situation ofn=5 is much more complex, and we are 1 if B(j, 1—1 6) =4
unable to construct simple and unified formulas. In the Ap- O8(j,11/2,6 = 2
pendix we list a few formulas for the cases with | . 0 otherwise;
IV. SUMMARY AND DISCUSSION 5 9 9 9
D(S,—) :2A2(j, -, 4) +3A<j, —,4)+ [A(j, = 4) - 1}
To summarize, we have shown in this paper that the num- 2 j 2 2 2

ber of statesD(n, M); is independent of if M=<2J-n+1 9

for fermions in a singlg-or | shell, andM <2L for bosons X{B(j, > 4) + 1} + 3gj012,4 + 1, (A3)

with spin L. The D(n, M); is independent of botm and J

when M<min(n,2J+1-n) for fermions and M where

<min(n,2J) for bosons. These facts have eluded from obser-

vation in the long history of enumerating tiEn,1);. 1 if B(j 5_3 4> -
We have also found that there are simple structures in the Sa(.912.4 = "2’

number of states of three and four identical particles, which

enabled us to construct empirical formulas for3 and 4.

Forn=5 we presented formulas for a few lowéstates. We and

0 otherwise;
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D(S 7>—6A2<' 36>+ ZA(' 36)+1 k= (=12 it1%2=1 K=[k/2 K=k%2
2), -\ ho “la-a2 ifroe2=0, KM K=k,
-3 and obtain
X {B<J. = 6) + 1} + 853261, (A4)
2 D(5, 1), = K(K + 1) + (K + 1). (AB)
where We finally come to the case of five bosons with spin
For =0, we define
3
5 _]-1 if1$B(j,§,6)s3 _JL2 ifL%2=0 K=[K6], K=k%6
B3z ™ . ' Tlw-9r2 ifLw2=1,  r TR
0 otherwise
. . . . . and obtain
An interesting behavior is that there exists an approximate
relation for five fermions in a singlg-shell: D(5,)); D(5,0 =3K(K+1) -K+(L+1D(K+1)+ 5o 1.
~(1+3)D(5,3); whenI <j. (A7)
Next, we come to five fermions in a sindleshell. Forl )
=0, we define For =1, we define
(1-202 if1%2=0 K {L TL%2=l g
- 0 Z= = =
= . K=[ki6], K=k%6, L-3) ifL%2=0, '
{(|—11)/2 t12=1, <K ’ (=3 L%
and obtain K=[k%4)-1]2,
and obtain
D(5,0,=3K(K+1) -K+(+1)(K+1)+ -1
(5,0 (K+1) ( )(K+1) + 8o e D(5. 1), = (K+ DK+ K+ 1), (A8)
The formulas for larget’s with n=5 are more compli-
for 1=1, we define cated and are not addressed in this paper.
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