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The single particle Nilsson as well as Nilsson-Seo-type potentials and the state dependentd-pairing force are
used to calculate nuclear deformations, root-mean square charge radii, quadrupole moments, and masses of rare
earth nuclei. The masses are evaluated by means of Strutinsky shell correction method where the macroscopic
part of the energy is the recently developed Lublin-Skrasbourg drop model and the microscopic energy is the
sum of shell and pairing corrections. The latter is based on thed-force pairing interaction, the strength of which
is adjusted to the three-mass pairing indicatorsDs3d calculated from the experimental nuclear masses. The
results are compared to experimental data and to estimates done in other models. The agreement of our results
with the measured data is acceptable. The standard deviation for calculated masses is about 0.8 MeV. The
results show that the state dependentd-pairing force works similarly as in the monopole pairing models.
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I. INTRODUCTORY REMARKS

Historically, the Nilsson potential[1,2] was introduced as
the first phenomenological single particle model taking into
account nuclear deformations. Algorithms using Nilsson
model are faster and more effective than those using, e.g.,
Hartree-Fock approximation, especially in cases where one
has to calculate fission barriers and mass parameters.

Methods based on self-consistent calculations such as
Skyrme-Hartree-Fock or Hartree-Fock-Bogoliubov are very
effective in ground state calculations and rather cumbersome
otherwise. At the same time the results obtained by Strutin-
sky shell correction method[3–5] and the BCS model are
comparable to the realistic ones. The Nilsson-type models
seem to work well also in cases ofb-unstable nuclei very far
from the nuclearb-stability line.

There are many examples of a successful use of the
Nilsson-type potentials, e.g., in Ref.[6,7] where nuclear
properties are calculated throughout the periodic system to a
very good accuracy.

To understand and to determine basic nuclear excitations
and the stability properties of the nuclei especially in case of
nuclei far from theb-stability line where the emission of
single particles as well as the pair of particles is observed[8],
the knowledge of the pairing force is crucial. It is a phenom-
enon responsible for pair formation and its transfer(collec-
tive pairing vibrations and rotations) and pair breaking. Such
phenomena are observed in radioactive nuclear beam facili-
ties [8].

Both thed function and the pairing force are intended to
represent the short range component of nuclear interaction.
As shown in, e.g., Ref.[9] the empirical level schemes of
two-particle states in magic nuclei such as210Po,210Pb show
that thed interaction reproduces empirical spectra more ac-
curately. The same is true for magic nuclei, such as Sn iso-
topes.

The common features of both interactions monopole pair-
ing andd suggest to use the latter as a particle-particle chan-
nel force instead of the monopole pairing interaction. The
expansion of thed interaction shows a clear multipole na-
ture. Besides the constant monopole term it contains all even
multipoles. The quadrupole-pairing interaction added to the
monopole pairing Hamiltonian was already studied in
particle-vibrational model of Bes and Broglia[10,11] or in
the analysis of the staggering of nuclear radii[12]. As was
shown, e.g., in Ref.[13], the isovector quadrupole pairing is
important to shift the rotational alignment in the rare earth
region and clarifies the signature inversion effect in some
nuclei [14]. The research concerning the state dependentd
pairing which contains all of the multipoles of the pairing
field seems therefore to be interesting and it might help in
clarifying the mentioned phenomena.

Primarily, the state dependent pairing was used in
Hartree-Fock-Bogoliubov calculations with Skyrme forces
[15] and later on also in relativistic mean field models
(RMF) where the authors treat the pairing in the framework
of Bogoliubov theory[16–18]. The Skyrme models using the
d-pairing-type BCS were also used to calculate the nuclear
collective 2+ and higher angular momentum states[19–21].

The results of such theories are comparable to the
Strutinsky-type calculations in case of the nuclei very close
to the nuclear stability line. The predicted nuclear masses
and rms calculated in the framework of the Skyrme-Hartree-
Fock model with thed-pairing force are very precise. The
rms deviation for the mass is close to 0.7 MeV in the ETFSI
model [22,23] or even less in HFBCS-1 model[24,25] and
the rms deviation for the charge radii is 0.024 fm[26].

The macroscopic part of the nuclear energy was recently
reinvestigated in Ref.[27] where instead of the standard
macroscopic energy as discussed, e.g., in Refs.[28,29] the
authors used the new curvature dependent liquid drop for-
mula, the so called Lublin-Strasbourg drop(LSD). Masses,
fission half-lives orQa values calculated using LSD are in a
very good agreement with experimental data[30].

The Strutinsky methods are very convenient in calcula-
tions of the total nuclear energy surfaces, fission barriers,
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high spin properties, in shape-isomerism studies, and excited
particle-hole configurations. On the other hand, the self-
consistent methods are extremely useful in the detailed the-
oretical description of the nuclear states, the global features
of which are already known.

The subject of the present paper is to calculate the masses
and the nuclear charge radii using the Nilsson potential and
the Strutinsky approach where the pairing energy is deter-
mined in the BCS state dependent pairing model with the
d-type interaction and the macroscopic part of energy is
LSD.

The paper is organized as follows. In Sec. II we remind
very shortly the main features of Nilsson and Nilsson-Seo
potentials. Section III is devoted todsrW12d pairing forces and
to the way of treating the corresponding BCS equations. Sec-
tion IV describes the recent macroscopic nuclear drop model,
LSD, [27] which takes into account the curvature term pro-
posed originally in the nuclear liquid droplet model by My-
ers and Swiatecki[29,31]. In Sec. V the rms charge nuclear
radii are discussed. And finally in Sec. VI we discuss the
results of our calculations: matrix elements of the state de-
pendentd-pairing interaction, strengthsV0 of the d-force
(Sec. VI B), nuclear deformations, the minima of the poten-
tial energy surfaces(PES) (Sec. VI C), nuclear masses cal-
culated according to LSD model and the shell correction
(Sec. VI D), root mean square radii(Sec. VI E), and quadru-
pole moments(Sec. VI F) of nuclear charge distributions.
Section VII contains the discussion of the results and the
hints for further research.

II. HAMILTONIAN

The nucleus is described microscopically as a system of
particles which are moving in a deformed mean field and
interact through state dependentd-pairing forces. The Hamil-
tonian for one type of nucleons reads

Ĥ = Ĥsp+ Ĥpair, s1d

where

Ĥsp= o
a

kauĥualsca
†ca + cā

†cād, s2d

Ĥpair = − o
a,b.0

Vaābb̄ca
†cā

†cb̄cb = − o
a,b.0

gabca
†cā

†cb̄cb, s3d

where ual is a single particle state,uāl is its time reversed
partner,Vaābb̄ is a pairing matrix elementssee Sec. IIId,
and the summation runs only over the single particle
states. We use the single particle Hamiltonian

ĥ = −
"2

2m
D + v + vls+ vl2 s4d

where the potential partv reads

v = 1
2mfv'sx2 + y2d + vzz

2g, s5d

and the oscillator frequencies are parametrized according
to Ref. f2g. The shellsNd dependent parameters ofl ·s and

l2 terms are given as in Ref.f32g

vls = − 2"v0kNll ·s, s6d

vl2 = − "v0smNll
2 − kmNll

2lNd, s7d

where

kNl = k0f1 + 8mNlsN + 3/2dg + k1Ps,Nl, s8d

mNl = m0Pk,Nl s9d

and Ps,Nl ,Pk,Nl are the integrals defined by

Ps,Nl = A1/3E
0

R0−a/2

RNl
2 srdr2 dr, s10d

Pk,Nl =E
R0−a/2

R0+a/2

RNl
2 srdr2 dr. s11d

In the formulas aboveR0 is the nuclear radius:R0=r0A
1/3,

a stands for the average surface diffuseness of the nuclear
density, andA is the mass number. For the rare earth
region of nuclei considered in the present paper we take
A=165, r0=1.2 fm, anda=0.7 fm. Other parameters are
equal to those of Ref.f32g: k0=0.021,k1=0.9, andm0
=0.062.

In case ofk1=0 andmNl=m, the ĥ Hamiltonian reduces to
the ordinary Nilsson Hamiltonian[2].

The potential part of the single particle Hamiltonian[Eq.
(4)] in stretched coordinatesj, h, z, where j=xÎMv'/",
etc., reads

v/osc
1
2r2"v0f1 − 2

3P2scosudg , s12d

and is replaced by the potential including the higher mul-
tipolarities as in Refs.f2,33g

vosc=
1

2
r2"v0F1 −

2

3
P2scosud + 2 o

l=4,6
PlscosudG .

s13d

The same single particle Hamiltonian was used in Refs.
f6,7g to calculate the nuclear radii in case of monopole
pairing force with constant matrix elementVaābb̄=G.

III. d-PAIRING FORCE

A schematic pairing Hamiltonian is defined using constant
pairing matrix elementG depending on the size of energy
window in which the pairing is present. ConstantG is usu-
ally adjusted depending on atomic mass region. This kind of
pairing forces leads to many fruitful results. However, in
treating fission process or the nuclei far from stability for
which the pairing strength cannot be determined(no experi-
mentally known masses or gap parameters) the method is
only a questionable extrapolation. It is more convenient in
such situations to use the state dependent pairing with two
strength parameters(one for protons and one for neutrons),
possibly the same for the whole periodic table. The state
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dependent pairing of thed-type [15] or Gogny-type interac-
tion [34,35] serve as good candidates for such an approach.
In this section we are considering thed-type pairing interac-
tion.

The Nilsson stateFa;ual can be cast in the form

Fa = o
haj,S=±1/2

Ca
a,sSuaa

sSluSl, s14d

wherea denotes the quantum numbers of the basis states
but the third component of spinS= ±1/2 andsS denotes
the sign ofS. Equations14d can be rewritten as follows:

Fa = o
haj

Ca
a,+uaa

+lu+ 1
2l + o

haj
Ca

a,−uaa
−lu− 1

2l

= Fa,+u + l + Fa,−u− l, s15d

whereFa,± are the spin ups+d and spin downs−d compo-
nents ofFa,

Fa,± = o
haj

Ca
a,±uaa

±l. s16d

The spinor form ofFa allows for easy calculations of
matrix elements of the pairing interaction which depends
on spin matricess see Eq.s20d. The antisymmetrized
matrix elementVaābb̄ entering the pairing Hamiltonians3d
is given by

Vaābb̄ =E d3r1 d3r2 Fa
†srW1d Fā

†srW2d VtsrW1, s1;rW2, s2d

3 fFbsrW1d Fb̄srW2d − Fb̄srW1d FbsrW2dg, s17d

whereF† is Hermite conjugate ofF and the time reversal
spinor Fā is defined byf36g

Fā = − iKsyFa , s18d

and K is the complex conjugation operator. For the spin
up/down componentsFa,susl, wheres=±, one has

Fā,s = − 2sFa,−s
p . s19d

The interactionVtsrW1,s1; rW2,s2d is the pairing force of
d-type introduced in Ref.f15g

VtsrW1, s1;rW2, s2d = V0
t 1 − s1 · s2

4
dsrW1 − rW2d. s20d

While

s1 · s2 = H 1 for S= 1

− 3 for S= 0,
s21d

one has

1 − s1 · s2

4
= H0 for S= 1

1 for S= 0.
s22d

We consider here the case ofT=1 pairing, i.e., thep-p and
n-n pairing only. Taking this into account one obtains

Vaābb̄ =E d3rfFa,+
p Fa,+Fb,+

p Fb,+ + Fa,−
p Fa,−Fb,−

p Fb,−

+ Fa,+
p Fa,+Fb,−

p Fb,− + Fa,−
p Fa,−Fb,+

p Fb,+g

=E d3r o
s,s8=±

uFa,su2uFb,s8u
2. s23d

The pairing gap equations become

Da =
1

2 o Vaābb̄

Db

Îseb − ld2 + Db
2
. s24d

The occupation probabilities are given by

va
2 =

1

2S1 −
ea − l

Îsea − ld2 + Da
2D . s25d

IV. NUCLEAR MASSES AND LSD MODEL

There has been recently an impressive increase of the ac-
curacy of measurements of nuclear masses. The Penning trap
measurement leads to accuracy of about 10 keV(see, e.g.,
Ref. [37]). There is also an increase in the number of nuclei
far from b stability for which the mass has been recently
measured and this is expected to be continued, due to the fast
progress in the development of techniques of radioactive ion
beams(e.g., Ref.[8]).

It was shown[27] that the liquid drop model which in
addition to the volume, surface, and Coulomb terms contains
only the first order curvature term satisfactorily describes the
nuclear binding energies. The parameters of the LSD model
were found by fitting the LSD masses to 2766 experimental
masses of Ref.[38]. The parameters are listed in Table I. The
mean square deviation of the binding energies of the model
equals todM=0.698 MeV.

The nuclear mass according to the curvature dependent
LSD model[27] is given by the formula

MsZ, N;defd = ZMH + NMn − 0.000 014 33Z2.39

+ bvol s1 − kvol I2d A + bsurf s1 − ksurfI
2d

3A2/3Bsurfsdefd + bcur s1 − kcur I2d

TABLE I. The parameters of the LSD model[27] appearing in
Eq. (26).

Term Units LSD

bvol MeV −15.4920
kvol 1.8601
bsurf MeV 16.9707
ksurf 2.2938
bcur MeV 3.8602
kcur −2.3764
r0 fm 1.21725
C4 MeV 0.9181
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3A1/3Bcursdefd +
3

5
e2 Z2

r0
chA1/3 BCoulsdefd

− C4

Z2

A
+ EmicrsZ, N;defd + EcongsZ, Nd,

where

Emicro = Epair + Eshell, s27d

Econg= − s10 MeVdexps− 42uI u/10d. s28d

Bx are the coefficients which depend on the geometry of
the nuclear shape and are defined as the ratio of the cor-
responding energies of the deformed and the spherical
nucleus

Bx =
ExsdefÞ 0d
Exsdef = 0d

. s29d

The definitions of the curvatureBcur, CoulombBCoul, and
surfaceBsurf coefficients remain the same as in the drop
model sCoulomb and surface coefficientsd or in droplet
model scurvature coefficientBcurd f28,29g.

V. NUCLEAR RADII

Progress in measuring nuclear radii is also large(see, e.g.,
Refs. [39–41]). All this is a challenge for the theory. The
theoretical calculations of the rms charge radii are very com-
mon in different theoretical frameworks(see, e.g., Refs.
[7,26,42], and the references cited therein).

The rms radiuskr2l of the distribution of the point-like
protons is calculated as the expectation values ofr2 in the
BCS ground state of the system

kr2l = kBCSur2uBCSl = o
k.0

2vk
2kkur2ukl. s30d

The finite proton size and its internal charge distribution
are taken into account through the formula

rch
2 = kr2l + sp

2, s31d

where rch is the rms charge radius corresponding to the
finite proton size andsp=0.8 fm f43g is the rms charge
radius inside the finite proton alone.

VI. RESULTS

Extended numerical calculations have been performed for
the set of nuclei from the rare earth regionfZ=58s2d72g for
which the pairing gaps were possible to be calculated from
experimental masses. The results are divided into a few
parts. First we discuss in detail thed-pairing matrix elements
and the corresponding gap parameters in Sec. VI A. In the
following section the state dependentd-pairing strength con-
stantsV0 are adjusted for both protons and neutrons. Then
the calculations of nuclear radii, masses, and quadrupole mo-
ments are performed with the fixed values of strength con-
stants and their presentation is done in the following sec-
tions.

A. d-pairing matrix elements and gap parameters

In the following section the matrix elementsgab [see Eqs.
(3) and(17)] and the gap parametersD for the representative
case of nearly spherical nucleus140Nd are discussed and dis-
played in figures separately for protons and neutrons. The
values ofV0 used in calculations of pairing gapsDa corre-
spond to the values given in Sec. VI B(see Table III).

The ground state deformations have been calculated by
many groups of authors but the results of the state dependent
version of BCS approach are nearly absent in the publica-
tions. Thus it seems to be worth and interesting to look here
at the calculated values of thed-pairing matrix elements

gab=saāuVd ubb̄d and the BCS derived values of the gap pa-
rametersDa as a function of the single particle energies
and/or number of particles as well as their dependence on the
nuclear shape deformation. The dependencies of this kind are
shown in the following figures(Figs. 1–5).

Figure 1 shows the gap parameterD (big filled circles) as
well as diagonal antisymmetrized matrix elements of the
state dependentd-pairing interactiongdiag=gaa=saāuVd uaād
(small filled circles) in MeV vs single particle energies. The
single particle energies are in units of"v. The figure is for
neutrons in a nearly magic140Nd nucleus. Part(a) of the
figure corresponds to the spherical casee2=e4=e6=0 while
its second part(b) is for the deformatione2=0.1. The vertical
lines represent the single particle spectrum of the nucleus
140Nd. The magic neutron numbers corresponding to the
closed shells are also displayed. In case of spherical nucleus
(a), the gapsDa for the degenerate levels show a small de-
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FIG. 1. Gap parameterD (big filled circles) and diagonal anti-
symmetrized matrix elementsgdiag=gaa=saāuVd uaād (small filled
circles) in MeV vs single particle energies(in units of "v) for
neutrons in140Nd nucleus. Part(a) corresponds to spherical case
e2=e4=e6=0 while (b) corresponds to the deformatione2=0.1. The
vertical lines represent the single particle spectrum. The magic neu-
tron numbers are also shown. In the spherical case the gaps for
degenerate levels are nearly equal. In case(b) corresponding to a
slightly deformed nucleus, the degeneracy of levels is removed and
a very weak dependence ofDa gaps on single particle energies is
observed. The strengthsV0 used in calculations are given in Table
III.
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crease with increasing energy. The maximal value ofDa
<1 MeV corresponds to the lowest magic shellsN=2d and
decreases down to the value of 0.7 MeV in case of the single
particle levels aboveN=82.

Case (b) of Fig. 1 corresponds to slightly deformed
nucleus at deformatione=0.1. The single particle levels are
already not degenerate and one observes a small spread of
values ofDa for each shell. There is also a dependence ofDa
gaps on the single particle energies along the whole single
particle spectrum. The global decrease ofDa vs energy is
comparable to that for the spherical case. However, the val-
ues of Da for the deformed case are lower on about
0.15 MeV as compared to the spherical case.

Closer look at Figs. 1 and 2 shows that there are only few
different values ofDa inside each degenerate shell(at e2=0).
The degeneracy of gap parameterDa is removed already at
small deformations and one observes the spreading ofDa
values fore2.0. In terms of single particle Nilsson levels it

corresponds to the fact that a single particle stateual is an
admixture of differentj shells(j-basis states), e.g.,

ual = uN V nl = o
j

Cl j
N V nuN l j Vl, s32d

where n stands for otherq numbers. For small deforma-
tions, in the set of expansion coefficientsCl j

N V n still
dominates a “main shell”j value causing rather small
spread ofDa values that is illustrated in Table II. The table
shows the largestdiagonalcontributions of the basis states
uNljVl to the d-pairing force matrix elementgNV,NV sin
spherical oscillator basisuNljVld for V0=240 MeV fm−3 for
protons in 154Nd. We select at random two typical wave
functions uNVl=u3,5/2l and uNVl=u3,1/2l with energies
eN=3 V=5/2=4.149"v and eN=3 V=1/2=4.599"v at spherical
configuration. The increase of deformation leads to the state
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FIG. 2. Same as in Fig. 1 but for protons.
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FIG. 3. Same as in Fig. 1 but for nondiagonal matrix elements

gnondiag=gaF=saāuVd uFF̄d which couple to the Fermi levelF. The
energy of the Fermi level is shown as a longer and thicker vertical
line in the single particle spectrum.
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FIG. 4. Diagonalgdiag=gaa=saāuVd uaād (filled circles) and non-

diagonalgaF=saāuVd uFF̄d coupled to Fermi levelF matrix elements
of the d-pairing interaction vs single particle energies(MeV) for
two different deformations in140Nd. Part(a) corresponds toe2=0
and part(b) to e2=0.1.
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mixture smeasured by the values of the expansion coeffi-
cientsClj

NV shown in column 3d of the basis states and to the
decrease of the main shell state contributiongNljV NljV scol-
umns 4 and 5d. This behavior is typical for all of the matrix
elements.

The dependence in energy ofDa follows that of the diag-
onal matrix elementsgaa on the energy. This matrix elements
are shown in the same figure(see Figs. 4 and 5 for more
details and explanation). Gap parameters for neutrons and
protons behave very similarly what is illustrated in Fig. 2.

Figures 4 and 5 show values of the diagonal as well as
nondiagonal matrix elementsgab for neutrons and protons,
respectively, in140Nd. The matrix elements connecting a
state whose energy is closest to the Fermi energy with any
other state are shown. Filled circles correspond to diagonal
gaa values while the open circles are the values ofgaF. The
Fermi level is shown also in the plot as a longer and thicker
vertical line. One observes here a few interesting features.

(i) The values of the diagonal matrix elements are larger
than nondiagonal ones about a factor of 1.5–2 on an average.

(ii ) The nondiagonal matrix elementsgaF are rather “ran-
domly” distributed around some average value; no long
range energy dependence is observed.

(iii ) The diagonal matrix elementsgaa show the regular
decrease of the average value with the increase of the single
particle energy.

(iv) There is always a dominant matrix elementgaa inside
each shell which is on a factor of 1.5–2 larger than the small-
est matrix element present in the shell.

(v) The averageḡaa linearly decreases with increasing
energy.

(vi) The average dependence ofḡaa on particle number 2n
filling the levels up to the considered levela behaves like a

function const/s2nd2/3, where the proportionality constant is
close to 3 MeV. A similar behavior of the constant matrix
elementG was already observed[44] and is a characteristic
feature of the spectra build on the basis of harmonic oscilla-
tor potentials. All the properties discussed so far apply for
larger nuclear deformations.

B. Pairing strength V0

Both the strengthV0 and the energy width of the pairing
window are connected through the condition of the equality
of experimental energy gap parameterD and the gap deter-
mined from the BCS equations(24) for the Fermi level. A
variety of energy cutoff procedures is used(see, e.g., Refs.
[20,45,46]). All of them give the values of the pairing
strength depending on the energy cutoff or on the number of
levels in the pairing window.

There are also different types of approximations for the
experimental gapsDexp. Different approaches use various
numbers of experimental masses in the gap formula[43,47].
The very modern view on this problem is presented in an
approach which was undertaken in Ref.[48], where the new
formula for the“pairing indicator Ds3d was derived. It in-
volves three experimental masses and is proved to be a
proper estimate of the pairing gap parameter.Ds3d differs sig-
nificantly from the gaps calculated so far. The gap is defined
as [48] [Eq.(1)]

Ds3dsNd =
pN

2
fBsN − 1d + BsN + 1d − 2BsNdg, s33d

wherepN=s−1dN is the parity ofN number andBsNd is the
binding energy of the system consisting ofN particles.

TABLE II. The diagonalcontributionsgNljV,NljV of spherical basis statesuNljVl to thed-pairing matrix elementsgNV,NV for protons in
154Nd. Two states from the main shellN=3 are shown. In the second column the energy of the Nilsson model stateuNVl in "v units is given.
Third column gives the squared coefficientClj

NV in the expansionuNVl=olj Clj
NVuNVlj l and the following one shows the quantum numbers

uNljVl of the base states. The contributionsgNljV,NljV of the stateuNljVl to the matrix elementgNV,NV are given in column five. The last
column gives the total value ofgNV,NV in the stateuNVl. Parts(i), (ii ), and(iii ) of the table correspond to the deformationse2=0, 0.2, and
0.4, respectivelysV0=240 MeV fm−3d.

uN Vl eNVs"vd uCl j
NVu2 uN l j Vl gNljV,NljV gNV,NV

(i) e2=0
u3 5/2l 4.149 1.0000 u3 3 7/2 5/2l 0.0976 0.2254
u3 1/2l 4.599 1.0000 u3 1 3/2 1/2l 0.2219 0.3328

(ii ) e2=0.2
u3 5/2l 4.192 0.9919 u3 3 7/2 5/2l 0.0960 0.2254
u3 1/2l 4.451 0.4871 u3 1 3/2 1/2l 0.0526 0.2247

0.1033 u3 3 7/2 1/2l 0.0010
0.2068 u3 3 5/2 1/2l 0.0042
0.2028 u3 1 1/2 1/2l 0.0091

(iii ) e2=0.4
u3 5/2l 4.276 0.9776 u3 3 7/2 5/2l 0.0932 0.2254

0.0224 u3 3 5/2 5/2l 0.0001
u3 1/2l 4.291 0.2666 u3 1 1/2 1/2l 0.0158 0.1949

0.2090 u3 3 7/2 1/2l 0.0043
0.3989 u3 3 5/2 1/2l 0.0155
0.1255 u3 1 3/2 1/2l 0.0035
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The quality of Ds3d is also discussedf46g. In the present
paper we follow the definition of the gap parameter as
given by Eq.s33d.

The formula for the average behavior ofDs3dsAd as a func-
tion of the mass numberA does not match the well known
12/ÎA dependence(see Ref.[43]). The Ds3d pairing indica-
tors for rare earth nuclei are shown in Fig. 6. In part(a) of
the figure one seesDexp

n of neutrons and in part(b) Dexp
p of

protons. The average behavior ofDexp is given by the simple
formula

D̄ = dn,p/N
1/3, s34d

for both types of nucleons. Heredn,p are constants which
differ rather little for both types of nucleons and we have
assumed here one value for both kinds of particles

dn,p = 5,

and N is the number of neutrons or protons.
Integrals(17) were calculated in the Nilsson or Nilsson-

Seo Hamiltonian eigenstates directly using the Gauss-
Hermite and Gauss-Laguerre integration quadratures[49].

The adjustment of thed-pairing strengthV0 has to be per-
formed at the energy minimum of the nucleus which is un-
known initially. In order to simplify the procedure of adjust-
ing the strengthV0 of the pairing interaction[see Eq.(20)]
we proceed as follows. Our reference point was the results of
Ref. [33]. First the grids in the three-dimensional deforma-
tion space ofse2,e4,e6d were chosen. We have done this ac-
cording to the minima of the PES given in Ref.[33]. The
grid is defined as

e2 = e2,m − 0.06s0.04d e4,m + 0.06, s35d

e4 = e4,m − 0.06s0.04d e4,m + 0.06, s36d

where the subscriptsm denote the initial deformation
which we took from Ref.f33g. For each nucleus the PES
was calculated and the minimum of the total energy was
found. The procedure was repeated until the difference of
the successive ground state deformations was reasonably
small.

Thee6 deformation was treated in a static way, i.e., it was
kept equal toe6,m as in Ref.[33]. This is reasonable while the
minimization of PES in three-dimensional space leads to the
values ofe6,m nearly equal to the deformations in Ref.[33].

The typical PES are shown in Fig. 7 where the plus sign
s+d denotes the minima taken from Ref.[33] and thetimes
sign s3d the minima of the PES as calculated here.

The number of levelsn in the pairing window is the same
as in Ref.[2], i.e., we have assumedn=2Î15NsZd.

The adjustment ofV0 can be formulated as a problem of
solving the equation

Dexp
n,p = DFermi

n,p sV0
n,pd, s37d

at the minimum of the total energy of the nucleus, where
DFermi

n,p sV0
n,pd corresponds to the Fermi level of neutronssnd

and protonsspd, respectively. The procedure involves the

FIG. 6. The experimental pairing indicatorDexp
s3d for rare earth

nuclei. Part(a) of the figure is for protons and part(b) for neutrons.
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FIG. 7. Potential energy surfaces for some rare earth nuclei. The
separation of contour levels equals 2 MeV. The minima of PES are
shown by plus signs+d. For comparison the minima calculated in
Ref. [33] (times sign,3) are shown.
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solution of the system of 2n+1 BCS equationss24d for the
set ofDi gaps and the Fermi levell in the pairing window.
We have used a very effective iterative method of solution
of the system of equationss24d. Given an initial set ofD
gaps on the right hand side of Eq.s24d, the left hand side
of it determines the new set of solutions and the procedure
is repeated until the assumed accuracy is obtained. At ac-
curacy0.001 MeV oneneeds usually only a few iterations
to reach the convergence. At the same time the Fermi
level was determined by the commonly used Newton
method.

In Figs. 8 and 9 exact values ofV0
n,p are shown for rare

earth nuclei obtained with Nilsson model. The average val-
ues of the pairing strength are shown as well. The structure
of V0 seems to be too complicated and was not in fact found
as a function of the number of protonsZ or neutronsN as
well as the isospinI=sN−Zd/A, which are typically used in
such cases. It is observed that the values ofV0 oscillate in a
very irregular manner showing the maxima at the magic
numbers and the minima in the middle of the shell. The value
of the amplitude of the oscillations is rather small(close to
10 MeV fm3) and it does not change very much the value of
theDF gap corresponding to the Fermi level. ChangingV0 to
e.g., 10%, produces only a few percentage change ofDF.

Any chain of isotopes atZ=const in Fig. 8 and atN
=const in Fig. 9 shows an average decrease ofV0 with in-

TABLE III. d pairing strength parametersV0
n,p for neutrons and

protons, respectively, for rare earth nuclei in units MeV fm3 ad-
justed for the pairing window withn=2Î15NsZd.

Model V0
n V0

p

Nilsson 250 220
Nilsson-Seo 245 245

FIG. 8. The strengthV0 of the pairing force in case of Nilsson
model as a function of the neutron numberN for protons[part(a) of
the figure] and for neutrons[part (b) of the figure] for rare earth
nuclei. The same isotopes are connected by lines. The average val-
ues ofV0 are shown as straight lines.
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FIG. 9. The strengthV0 of the pairing force in case of Nilsson
model as a function of the atomic numberZ for protons[part (a) of
the figure] and for neutrons[part (b) of the figure] for rare earth
nuclei. The same isotones are connected by straight lines. On the
right side neutron numbers corresponding to given curves are
shown.

FIG. 10. Same as in Fig. 8 but for Nilsson-Seo model.
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creasing neutron numberN=A−Z starting at the largest value
of V0 which corresponds to the magic isotopes with well
separated energy shells, decreases and then increases again.
The latter behavior is observed on the left hand side of the
peak ofV0 for the lighter isotopes considered here, i.e., Ce to
Er inclusively. There is no net increase or decrease ofV0 in
the shell or it is very small. Therefore, it is hard to adopt
some simple physically explained dependence.

In consequence, we do not find some typical dependence
of V0 on N, Z, or I. Instead we have assumed the average
value ofV0 as the strength of the pairing force for the con-
sidered region of nuclei(Fig. 10).

In Table III we show the strengthV0 as adjusted for the
rare earth nuclei.

C. Nuclear deformations

Figure 11 shows new equilibrium deformations for the
rare earth region. As already saide6 is the same as in Ref.
[33]. In Fig. 12e6 vs e4 is shown. The averagee6 deforma-
tion region can be approximated by

e6 = − 0.3e4. s38d

The boundaries ofe6 deformation are

e6 = − 0.3e4 − 0.02, s39d

e6 = − 0.3e4 + 0.02. s40d

This allows for the approximate calculations of PES.
The equilibrium deformations obtained in Ref.[33] and

those presented here differ and the difference can be mea-
sured by the following rms deviations fore2 ande4 deforma-
tions, respectively,
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FIG. 11. The differences in the ground state deformations as
calculated in the present paper and those given in Ref.[33] for both
e4 and e2 deformations. Herede4=e4−e4

m and de2=e2−e2
m, where

superscriptsm denote the ground state deformations in Ref.[33] for
rare earth nuclei.
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FIG. 12. The deformationse6 vs e4 for rare earth nuclei[33].
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FIG. 13. Same as in Fig. 14 but for Nilsson-Seo potential.
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FIG. 14. The mass deviationdM=Mth−Mexp for rare earth nu-
clei as calculated with the Nilsson model. The experimental data
Mexp were taken from Audi and Wapstra mass tables[51].
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s2 = 1 o
n=1

n=N

se2,n − e2,n
m d

N
2

1/2

, s4 = 1 o
n=1

n=N

se4,n − e4,n
m d

N
2

1/2

,

s41d

where N is the number of nuclei in calculations andm
stands for equilibrium deformations calculated in Ref.
f33g. It was shown that for the considered isotopess2
=0.034 ands4=0.02. Thedeformationse3 ande5 were not
taken into account while they do not appear in the consid-
ered region of nuclei and in case of the minima of PES.
The deformationse6 equals in both Ref.f33g and our case.

While the nuclear deformation parameters cannot be di-
rectly compared to their experimental equivalents the more
distinct comparison of our results concerning the nuclear
shapes is presented in Sec. VI F where the quadrupole mo-
ments which are the proper observables measuring the
nuclear deformations are shown.

D. Nuclear masses

The mass of the nucleus is totally determined by Eq.(26).
In the following the mass excess

ME = MsZ, N, defd − ZMH − NMn s42d

is calculated and compared to experimental dataf50,51g.
Here MH and Mn are the mass excesses for hydrogen

atom and the neutron, respectively. The results are shown
in Fig. 13 for Nilsson-Seo potential and in Fig. 14 for rare
earth region for the pure Nilsson model. The rms devia-
tion for ME evaluated for all considered nuclei is less than
0.7 MeV in both the considered models. This value of ac-
curacy in determining the nuclear mass is comparable to
the corresponding values obtained in more refined theo-
ries f26,33g. The comparison of nuclear masses calculated
for spherical nuclei in Skyrme+HF, Gogny+HF as well as
the RMF model was also presented in Refs.f52–54g. The
quality of those estimates of the nuclear masses for a
sample of 116 spherically symmetric nuclei is comparable
to the present one.

There is a systematic deviation between the two models
studied: the masses as calculated using Nilsson approach are
better as compared to the version of Nilsson-Seo model. In
Seo model there is only one set of potential parameters
k0, k1, andm0 which regulate the dependence of the poten-
tial on the spin-orbitl ·s and thel2 terms[see Eqs.(9). The
dependence on atomic numberA enters here through the
“universal” assumptions made in Eq.(11). The parameters
k0, k1, and m0 are common for both protons and neutrons
and are the same for the whole periodic table. On the other
hand, one has four analogous parameters in the pure Nilsson
model and the values of them are different in various nuclear
regions for which they are adjusted to reproduce the single
particle level spacings characteristic to the region in ques-
tion. It seems that the universal behavior of the Nilsson-Seo
parameters as given in Eq.(11) is too simple and does not
mimic the properA dependence of the parameters. The mass
deviations seem to be the consequence of this fact.

E. Charge root mean square radii

The root mean square radiikr2l, Eq. (31), are compared to
experimental data[39–41] in Fig. 15. It was pointed out in
Ref. [7] that the best fit to experimental data is achieved if
one assumes the Nilsson oscillator frequency"v0

0=40/A1/3

and the standard isospin dependence of"v0 is changed for
the following one

"v0
Z =

40

A1/3, "v0
N =

40

A1/3SN

Z
D1/3

, s43d

where N and Z are neutron and proton numbers, respec-
tively.

FIG. 15. The charge radius deviationdrch=rch,th−rch,exp for rare
earth nuclei calculated with the Nilsson(a) and Nilsson-Seo(b)
models. The experimental datarexp were taken from Refs.[39–41].
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FIG. 16. Quadrupole moments of rare earth
nuclei calculated with the Nilsson model(open
squares,n) in comparison to experimental data
s3 with error bars) which were extracted from
Refs.[55,56].
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In case considered here the constant 40 used in Ref.[7] is
too small and we adopt the larger value of it, namely, 41.

Despite of this choice of"v0
0 there are large discrepancies

between the model calculations and the experimental data
especially in case of heavier nuclei.

F. Quadrupole moments

The quadrupole momentQ is calculated as an expectation
value of the quadrupole moment operator

Q̂ = 2P2scosud s44d

in the proton sector of the BCS ground state of the
nucleus. In Eq.s44d P2scosud is the Legendre polynomial.
This leads to the expression

Q = kBCSuQ̂uBCSl = o
k.0

2vk
2kkuQ̂ukl, s45d

where vk
2 are the occupation probabilities defined in Eq.

s25d. The values of the quadrupole moments calculated in
Nilsson model are shown in Fig. 16 and those for Nilsson-
Seo model in Fig. 17. The experimental datascrosses with
error barsd were extracted from Refs.f55,56g. The similar
results obtained with Nilsson-Seo single particle potential
were reported earlyf6,7g but for the monopole pairing.

VII. CONCLUSIONS

In the present paper we have calculated the basic charac-
teristics of nuclei in the rare earth region using the Nilsson-
type potential and the Strutinsky macroscopic-microscopic
prescription with the state dependentd-type pairing force
and the LSD macroscopic model.

First, we have adjusted the pairing strength constantsV0
for the considered nuclei and models of interest. The values

of V0 depend on the energy cutoff(such as the traditionally
exploredG constants in case of the monopole pairing). The
typical value of V0 corresponding to the pairing window
which consist ofn=2Î15NsZd levels is around 250 MeV fm3.

Calculating the masses we have used LSD model[27] in
which the additional curvature term is added. The masses for
the considered set of about 200 nuclei are reproduced with
the rms mass deviation equal to 0.700 MeV. For comparison
the rms deviation in other calculations such as FRDM[33],
ETFSI[23], HFBCS-1[24] or in the new approach as in Ref.
[27] done for nearly 3000 nuclei is less than the given value.

The nuclear radii calculated in the framework of the
present model do not differ very much from those obtained
in other approaches of this type. The best calculations which
reproduce RMSR are the self-consistent Skyrme-HF models.
The rms radii are reproduced here with the accuracy defined
by rms deviation which is 0.08 fm which is twice higher,
e.g., FRDM or four times so large as HFBCS-1 radii[26].

The deformations and the quadrupole moments are com-
parable to experimental data and consistent with other ap-
proaches(see, e.g., Refs.[7,33]).

It is worth mentioning here that the calculation time in
case of the state dependentd pairing does not increase very
much in comparison to the calculations with constant matrix
elements.

Our aim was to find if the Nilsson models when used with
the d-type state dependent pairing force can reproduce basic
nuclear data concerning both deformed and undeformed nu-
clei. The use of thed-pairing force instead of the traditional
monopole pairing with constant matrix elements seems to
work at the similar accuracy as compared to the latter. From
the point of view of practical calculations the monopole pair-
ing force still seems to be a satisfactory choice for the re-
sidual part of the nuclear interaction.
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