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State dependenté-pairing force with Nilsson models: Nuclear shapes, radii, and masses
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The single particle Nilsson as well as Nilsson-Seo-type potentials and the state depepdieing force are
used to calculate nuclear deformations, root-mean square charge radii, quadrupole moments, and masses of rare
earth nuclei. The masses are evaluated by means of Strutinsky shell correction method where the macroscopic
part of the energy is the recently developed Lublin-Skrasbourg drop model and the microscopic energy is the
sum of shell and pairing corrections. The latter is based o#floece pairing interaction, the strength of which
is adjusted to the three-mass pairing indicataf® calculated from the experimental nuclear masses. The
results are compared to experimental data and to estimates done in other models. The agreement of our results
with the measured data is acceptable. The standard deviation for calculated masses is about 0.8 MeV. The
results show that the state dependépairing force works similarly as in the monopole pairing models.
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I. INTRODUCTORY REMARKS The common features of both interactions monopole pair-
ing andé suggest to use the latter as a particle-particle chan-

. . . . .~ "~ nel force instead of the monopole pairing interaction. The
the first phenomenological single particle model taking into : . . .
: . . ) expansion of thes interaction shows a clear multipole na-
account nuclear deformations. Algorithms using Nilsson

model are faster and more effective than those using. e ture. Besides the constant monopole term it contains all even

L ) . 9. 'gr'hultipoles. The quadrupole-pairing interaction added to the
Hartree-Fock app_ro>_<|mat|0n_, especially in cases where on onopole pairing Hamiltonian was already studied in
has to calculate fission barriers and mass parameters. particle-vibrational model of Bes and Broglja0,11 or in

Methods based on self-consistent calculations such ag, analysis of the staggering of nuclear ra{dﬁ!j As was
Skyrme-Hartree-Fock or Hartree-Fock-Bogoliubov are veryghown, e.g., in Reff13)], the isovector quadrupole pairing is
effective in ground state calculations and rather cumbersomggnortant to shift the rotational alignment in the rare earth
otherwise. At the same time the results obtained by Strutingegion and clarifies the signature inversion effect in some
sky shell correction methofB—9] and the BCS model are pyclej [14]. The research concerning the state dependent
comparable to the realistic ones. The Nilsson-type modelg,iring which contains all of the multipoles of the pairing
seem to work well also in cases giunstable nuclei very far - fielq seems therefore to be interesting and it might help in
from the nucleays-stability line. clarifying the mentioned phenomena.

_There are many examples of a successful use of the primarily, the state dependent pairing was used in
Nilsson-type potentials, e.g., in Ref6,7] where nuclear  jartree-Fock-Bogoliubov calculations with Skyrme forces
properties are calculated throughout the periodic system to A5] and later on also in relativistic mean field models
very good accuracy. _ _ _____(RMF) where the authors treat the pairing in the framework

To understand and to determine basic nuclear excitationgs gogoliubov theory[16—18. The Skyrme models using the
and the stability properties of the nuclei especially in case ofs hairing-type BCS were also used to calculate the nuclear
nuclei far from thepg-stability line where the emission of qjective 2 and higher angular momentum staf@§—21.
single particles as well as the pair of particles is obsefggd The results of such theories are comparable to the
the knowledge of the pairing force is crucial. It is a phenom-gyrtinsky-type calculations in case of the nuclei very close
enon responsible for pair formation and its transfellec- 5 the nuclear stability line. The predicted nuclear masses
tive pairing vibrations and rotationand pair breaking. Such anq rms calculated in the framework of the Skyrme-Hartree-
phenomena are observed in radioactive nuclear beam facilEock model with thes-pairing force are very precise. The
ties [8]. _ . _ rms deviation for the mass is close to 0.7 MeV in the ETFSI

Both the 6 function and the pairing force are intended to ,5del [22,23 or even less in HFBCS-1 modg24,25 and
represent the short range component of nuclear interactiogye rmgs deviation for the charge radii is 0.024 [26].

As shown in, e.g., Refl9] the empirical Ievelzfchemes of " The macroscopic part of the nuclear energy was recently

two-particle states in magic nuclei such’a¥0 b show rejnvestigated in Ref[27] where instead of the standard

that the interaction reproduces empirical spectra more acinacroscopic energy as discussed, e.g., in HEB.29 the

curately. The same is true for magic nuclei, such as Sn iso;ythors used the new curvature dependent liquid drop for-

topes. mula, the so called Lublin-Strasbourg drdpSD). Masses,
fission half-lives orQ, values calculated using LSD are in a
very good agreement with experimental dg38].

*Email address: ksieja@hektor.umcs.lublin.pl The Strutinsky methods are very convenient in calcula-

"Email address: baran@tytan.umcs.lublin.pl tions of the total nuclear energy surfaces, fission barriers,

Historically, the Nilsson potentidll,2] was introduced as
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high spin properties, in shape-isomerism studies, and excitdd terms are given as in Reff32]
particle-hole configurations. On the other hand, the self-

consistent methods are extremely useful in the detailed the- vis= ~ 2hworyl - S, (6)
oretical description of the nuclear states, the global features
of which are already known. vi2= = hwg(unl® = (uniln) (7)

The subject of the present paper is to calculate the masses
and the nuclear charge radii using the Nilsson potential ant¥here
the Strutinsky approach where the pairing energy is deter- = 11 + 8uni(N + 3/2) T + k. P 3
mined in the BCS state dependent pairing model with the = sl o )1+ kP ®
S-type interaction and the macroscopic part of energy is
LSD. M= poProi 9)
The paper is organized as followg. In Sec. Il we remindgnd Psni, Pt are the integrals defined by
very shortly the main features of Nilsson and Nilsson-Seo
potentials. Section Il is devoted #r;,) pairing forces and b= Al Ro
to the way of treating the corresponding BCS equations. Sec- sNI=
tion IV describes the recent macroscopic nuclear drop model,
LSD, [27] which takes into account the curvature term pro- Ro+al2
posed originally in the nuclear liquid droplet model by My- Puni :f RZ,(r)r2 dr. (12)
ers and SwiatecKi29,3]. In Sec. V the rms charge nuclear ' Ry-a/2
radii are discussed. And finally in Sec. VI we discuss the . o AL/3
results of our calculations: matrix elements of the state del" the formulas abov&, is the nuclgar radiusRy=roA™,
pendent&-pairing interaction, strength¥, of the &-force a stands for the average surface diffuseness of the nuclear
(Sec. VI B), nuclear deformations, the minima of the poten—den_s'ty' andA IS the_mass _number. For the rare earth
tial energy surfacesPES (Sec. VI O, nuclear masses cal- region of nuclei considered in the present paper we take
culated according to LSD model and the shell correctiorfo‘zleis’ roil.Z fm, anda=0.7 im. Other ;iarametedrs are
(Sec. VI D), root mean square radisec. VI B, and quadru- €942 to those of Ref[32]: xp=0.021,x,=0.9, andu,
pole momentgSec. VI B of nuclear charge distributions. =0.062. . o
Section VII contains the discussion of the results and the In case ofk;=0 anduy=u, theh Hamiltonian reduces to

—a/2
RZ,(r)r? dr, (10
0

hints for further research. the ordinary Nilsson Hamiltoniaf2].
The potential part of the single particle Hamiltonify.
Il. HAMILTONIAN (4)] in stretched coordinates, 7, Z, where é&=x\Maw, /#,
etc., reads
The nucleus is described microscopically as a system of
particles which are moving in a deformed mean field and Viosap hwo[ 1 —5Py(cos )], (12

interact through state dependéhpairing forces. The Hamil-

tonian for one type of nucleons reads and is replaced by the potential including the higher mul-

tipolarities as in Refs[2,33]

H =Hsp* Hpair 1) 1 2
Vose= =phawp| 1 —=Py(cos@) +2 >, P,(cosb) |.
where 2 3 1=2.6
. . (13
Hyp=2 (alhla)(cle, + clca), 2)
a The same single particle Hamiltonian was used in Refs.
[6,7] to calculate the nuclear radii in case of monopole
Hopair= — bz VaabEC;C%CECf _ ; gabcgcgcgcb' 3) pairing force with constant matrix eleme¥iiz,=G.
a,b>0 a,b>0

wherela) is a single particle statéa) is its time reversed lll. #PAIRING FORCE

partner, Vg is a pairing matrix elementsee Sec. Il), A schematic pairing Hamiltonian is defined using constant
and the summation runs only over the single particlepairing matrix elemenG depending on the size of energy
states. We use the single particle Hamiltonian window in which the pairing is present. Constdbtis usu-
5 ally adjusted depending on atomic mass region. This kind of
ﬁ:_ﬁ_Aﬂ) +uS+ 02 (4) pairing forces leads to many fruitful results. However, in

treating fission process or the nuclei far from stability for
which the pairing strength cannot be determiried experi-
mentally known masses or gap parametéhe® method is
= %m[au(x2+y2) + w7, (5) only a_que_stionable extrapolation. It is more c_o_nveni_ent in
such situations to use the state dependent pairing with two
and the oscillator frequencies are parametrized accordingtrength parameter®ne for protons and one for neutrons
to Ref.[2]. The shell(N) dependent parameters ok and  possibly the same for the whole periodic table. The state

where the potential pau reads
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dependent pairing of thétype [15] or Gogny-type interac-
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TABLE I. The parameters of the LSD modgd7] appearing in

tion [34,39 serve as good candidates for such an approach&d. (26).

In this section we are considering tidgype pairing interac-
tion.
The Nilsson stateb,

D= Y

{a},2=£1/2

=|a) can be cast in the form

C275|ad®)[3), (14

where a denotes the quantum numbers of the basis states

but the third component of spii=+1/2 andos denotes
the sign ofX. Equation(14) can be rewritten as follows:
> Coflap+3)+ 2 Calaa)|-2)

{a}
= (I)a,+| + > + (Da,—|_ ’ (15)

where®, , are the spin ug+) and spin down-) compo-
nents ofd,,

(16)

=2 Ci¥ag).

{a
The spinor form ofd,

matrix elementV z,, entering the pairing Hamiltonia(B)
is given by

VaEbE:f d®ry &, ®L(FY) L) VI(Fy, 0151, o)

X [Dy(F7) Pp(p) — Pp(Iy) Py(FR)], (17)

where®' is Hermite conjugate o and the time reversal

spinor &z is defined by[36]

Da= Koy D, , (18)

Term Units LSD
by MeV -15.4920
Kyol 1.8601
Dsurt MeV 16.9707
Ksurf 2.2938
beyr MeV 3.8602
Keur -2.3764

ro fm 1.21725
Cy MeV 0.9181

allows for easy calculations of
matrix elements of the pairing interaction which depends
on spin matriceso see EQ.(20). The antisymmetrized

Vi = Jdr[®a+<ba+d>b+d>b++d> D, D} Dy

+ q); +q)a +(I)Z —(I)b -+ D —(Da,—(bg,+q)b,+]

=[S il @9
SS =t
The pairing gap equations become
1 Ay
a 22 aﬁbb r( —)\)2+Ab ( )
The occupation probabilities are given by
1 €.\
2 a
=l . 25
’a 2( \’(ea_)\)z"'Aaz) (29

IV. NUCLEAR MASSES AND LSD MODEL

There has been recently an impressive increase of the ac-

andK is the complex conjugation operator For the spincyracy of measurements of nuclear masses. The Penning trap

up/down component®, ,/o), whereo=4, one has
Oy, == 200, _, (19

The interactionV'(f;, o4, 05) is the pairing force of
S-type introduced in Ref{15]

1_0'1'0'2

V(I 0415, 05) =V 2 A —1p). (20)
While
_ 1forS=1 (21)
71727 | -3 for =0,
one has
l-0,-0, |OforS=1 05
4 1 for S=0. (22)

We consider here the case bf1 pairing, i.e., thep-p and
n-n pairing only. Taking this into account one obtains

measurement leads to accuracy of about 10 k&g, e.g.,
Ref.[37]). There is also an increase in the number of nuclei
far from g stability for which the mass has been recently
measured and this is expected to be continued, due to the fast
progress in the development of techniques of radioactive ion
beams(e.g., Ref[8]).

It was shown[27] that the liquid drop model which in
addition to the volume, surface, and Coulomb terms contains
only the first order curvature term satisfactorily describes the
nuclear binding energies. The parameters of the LSD model
were found by fitting the LSD masses to 2766 experimental
masses of Ref38]. The parameters are listed in Table I. The
mean square deviation of the binding energies of the model
equals toSM=0.698 MeV.

The nuclear mass according to the curvature dependent
LSD model[27] is given by the formula

M(Z, N;def) = ZMy, + NM,,— 0.000 014 337?%3°

+byo (1 - Kyl |2) A+ bgyr (1 = Kgyrd 2)
XAZ/sBsurf(def) +beyr (1= Keyr |2)
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2

3 A < 16 (a) neutrons, £,=0 ‘ ‘ ‘
xAllSBcur(def) + g GZW BCouI(deD é 12 . e v v es sl .140Nd
22 § 0.8 : e o
_ C“K + Emie(Z, N; def) + Egond Z, N), :_’ 0.4 2 8 “zo u 50 ~ 82 w \
0 . . .
1 2 3 4 5 6 7 8
here
W ey (hw)
Emicro: Epair+ Eshellr (27) ‘ ‘ ‘ ‘
< 16 (b) neutrons, €,=0.1 10N
Econg= — (10 MeV)exp(- 421//10). (29) % 12 B R Sy oo
B, are the coefficients which depend on the geometry of U%,’ 08 |
the nuclear shape and are defined as the ratio of the cor %4 2 8 l2e 8 1
. i X 0
resp?ondlng energies of the deformed and the spherical 1 ) 3 p 5 5 . 8
nucleus e (o)
_ Ex(def# 0) o . . .
= m. (29 FIG. 1. Gap parametek (big filled circleg and diagonal anti-

symmetrized matrix elementSyiag=0as=(aa|V;|aa) (small filled

The definitions of the curvaturB,,, CoulombBc,,, and circles in.MeV vs single particle energie@n units of h@) for
surfaceBy, coefficients remain the same as in the drop"eutrons in*Nd nucleus. Parta) corresponds to spherical case

model (Coulomb and surface coefficientsr in droplet — €=¢€=¢€=0 while (b) corresponds to the deformatiep=0.1. The
model (curvature coefficienB,,) [28,29 vertical lines represent the single particle spectrum. The magic neu-
cur = tron numbers are also shown. In the spherical case the gaps for

degenerate levels are nearly equal. In cdmecorresponding to a
slightly deformed nucleus, the degeneracy of levels is removed and
Progress in measuring nuclear radii is also lasg®, e.g., a very weak dependence df gaps on single particle energies is

Refs. [39-41). All this is a challenge for the theory. The observed. The strength4, used in calculations are given in Table

theoretical calculations of the rms charge radii are very com!"

mon in different theoretical framework&ee, e.g., Refs.

V. NUCLEAR RADII

[7,26,43, and the references cited thergin A. é-pairing matrix elements and gap parameters
The rms radiugr?) of the distribution of the qunt-like In the following section the matrix elemertg, [see Egs.
protons is calculated as the expectation values“dh the  (3) and(17)] and the gap parametessfor the representative
BCS ground state of the system case of nearly spherical nucletfNd are discussed and dis-
played in figures separately for protons and neutrons. The
— — 2
(r’) =(BCYr?BCY = go 20i(KIr?[k). (30 values ofV, used in calculations of pairing gags, corre-

spond to the values given in Sec. VI(Bee Table II).
The finite proton size and its internal charge distribution The ground state deformations have been calculated by

are taken into account through the formula many groups of authors but the results of the state dependent
) X version of BCS approach are nearly absent in the publica-
reh=(r) +s5, (31)  tions. Thus it seems to be worth and interesting to look here

wherer, is the rms charge radius corresponding to theat the calculated values of th&pairing matrix elements

finite proton size ands,=0.8 fm [43] is the rms charge Jan=(aa]V,|bb) and the BCS derived values of the gap pa-
radius inside the finite proton alone. rametersA, as a function of the single particle energies

and/or number of particles as well as their dependence on the
nuclear shape deformation. The dependencies of this kind are
shown in the following figuregFigs. 1-5.

Extended numerical calculations have been performed for Figure 1 shows the gap paramete(big filled circles as
the set of nuclei from the rare earth regid=582)72] for ~ well as diagonal antisymmetrized matrix elements of the
which the pairing gaps were possible to be calculated fronstate dependené-pairing interactionggiq=0a,=(aa|V;|aa)
experimental masses. The results are divided into a fewsmall filled circleg in MeV vs single particle energies. The
parts. First we discuss in detail tidgoairing matrix elements single particle energies are in units &b. The figure is for
and the corresponding gap parameters in Sec. VI A. In th@eutrons in a nearly magit*™Nd nucleus. Parta) of the
following section the state depende®pairing strength con- figure corresponds to the spherical casee,=e,=0 while
stantsV, are adjusted for both protons and neutrons. Therits second partb) is for the deformatiore,=0.1. The vertical
the calculations of nuclear radii, masses, and quadrupole mdines represent the single particle spectrum of the nucleus
ments are performed with the fixed values of strength con?*™Nd. The magic neutron numbers corresponding to the
stants and their presentation is done in the following secelosed shells are also displayed. In case of spherical nucleus
tions. (a), the gapsp, for the degenerate levels show a small de-

VI. RESULTS
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S (a) protons, €,=0 140N d (a) neutrons, &,=0 . 140N g
Q . oo o o . />-\ 0.6 .
S 12 . ° DAL TN WA ©
=) . ® o é 04 +
g o8} P
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0 0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
e (hw e (hw)

2 : : : : ‘ ‘ 0.8 : : :
< (b) protons, £,=0.1 140 (b) neatrons, £,=0.1
s 16 2 Nd S 06} .
= . %e L)
o 1.2 ’ S T e Clony oo s 0.4 ¢
[} bt X ~ . it
£ 08 g i
L B TSN A

0 0 : : :

1 2 3 4 5 6 7 8 1 2 3 4 5 6
e, (8 w) e, (N w)
FIG. 2. Same as in Fig. 1 but for protons. FIG. 4. Diagonalggiag=0aa=(aa]V,|ad) (filled circles and non-

N . . diagonalg,-=(aalVs|FF) coupled to Fermi levefF matrix elements
crease with increasing energy. The maximal valueAgf ¢ e é-pairing interaction vs single particle energi@deV) for

~1 MeV corresponds to the lowest magic sh@F2) and 0 different deformations if“Nd. Part(a) corresponds ta,=0
decreases down to the value of 0.7 MeV in case of the singlgng part(b) to €,=0.1.
particle levels abov&l=82.

Case (b) of Fig. 1 corresponds to slightly deformed corresponds to the fact that a single particle statds an
nucleus at deformatioe=0.1. The single particle levels are sgmixture of differeni shells(j-basis statese.g.,

already not degenerate and one observes a small spread of
values ofA, for each shell. There is also a dependenca pf
gaps on the single particle energies along the whole single
particle spectrum. The global decreaseqf vs energy is
comparable to that for the spherical case. However, the valwhere v stands for otheq numbers. For small deforma-
ues of A, for the deformed case are lower on abouttions, in the set of expansion coefficienG'NjQ” still
0.15 MeV as compared to the spherical case. dominates a “main shell’j value causing rather small
Closer look at Figs. 1 and 2 shows that there are only fevgpread ofA, values that is illustrated in Table II. The table
different values ofy, inside each degenerate sh@it ,=0).  shows the largesfiagonal contributions of the basis states
The degeneracy of gap parametgyis removed already at |NIjQ)) to the &pairing force matrix elemengygng (in
small deformations and one observes the spreading,of spherical oscillator basiNIj(2)) for Vy=240 MeV fni2 for
values fore,>0. In terms of single particle Nilsson levels it protons in'*Nd. We select at random two typical wave
functions |[NQ)=[3,5/2 and [NQ)=|3,1/2 with energies

@=INQ»=> CN*INTjQ), (32
j

S 2 (@) neutrons, £,=0 ‘ en=3 0=52=4.14% 0w and ey-3 0-1,=4.59%w at spherical
hCa 140 ; i i ;
2 16 . Nd configuration. The increase of deformation leads to the state
\Jg; 1.2 ¢ ¢ ¢ ¢ ¢ e, o . :..
g o087 ae o 1 ‘ ‘ ‘ ‘ ‘ ‘
L N VR ST A1 A e, s “oNd
< 0 : : ‘ : ‘ : 3 06 '
1 2 3 4 5 6 7 8 =3 04
e (e & 0.2
= 2 ‘ — : 0
% 16l (b) neutrons, £,=0.1 LN g 1 2 3 4 5 6 7 8
=3 ’ . ®e  woe e (M w)
o 12t Laadl I o
K] O‘o “ e
g 0.8 + oo & 1
ool L U DL ) g e e
ol 0 : : ‘ 3 06
1 2 3 4 5 6 7 8 2 04
& () & 0.2
FIG. 3. Same asi_n Fig. 1 but for nondiagonal matrix elements 0 1 2 3 4 5 6 7 8
Onondiag=Yar=(@a] V5| FF) which couple to the Fermi levef. The ey (hw)
energy of the Fermi level is shown as a longer and thicker vertical
line in the single particle spectrum. FIG. 5. Same as in Fig. 4 but for protons.
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TABLE II. The diagonalcontributionsgy;o,nijo Of spherical basis statghllj() to the S-pairing matrix elementgyq nq for protons in
154Nd. Two states from the main shél=3 are shown. In the second column the energy of the Nilsson mode|$ftén #w units is given.
Third column gives the squared coeffici&t‘fQ in the expansiofNQ)==; C|'j“9|NQIj) and the following one shows the quantum numbers
INIjQ) of the base states. The contributiogigjo nijo of the stateNIj€2) to the matrix elementyq ng are given in column five. The last
column gives the total value @ygnq in the statgNQ). Parts(i), (i), and(iii) of the table correspond to the deformatians0, 0.2, and
0.4, respectivelyVy=240 MeV fni3).

IN Q) eno(hw) |C|'\‘,'Q|2 INTj Q) ANQNIQ InaNe
(i) &=0
|3 5/2 4.149 1.0000 |3 37/25/2 0.0976 0.2254
‘3 1/2 4.599 1.0000 |3 13/21/2 0.2219 0.3328
(il) £=0.2
|3 5/2 4.192 0.9919 |3 37/25/2 0.0960 0.2254
|3 1/2 4.451 0.4871 |3 13/21/2 0.0526 0.2247
0.1033 |3 37/21/2 0.0010
0.2068 |3 35/21/2 0.0042
0.2028 |3 11/21/2 0.0091
(iil) €=0.4
|3 5/2 4.276 0.9776 |3 37/25/2 0.0932 0.2254
0.0224 |3 35/25/2 0.0001
‘3 1/2 4.291 0.2666 |3 11/21/2 0.0158 0.1949
0.2090 |3 37/21/2 0.0043
0.3989 |3 35/21/2 0.0155
0.1255 |3 13/21/2 0.0035

mixture (measured by the values of the expansion coeffifunction const(2n)?3, where the proportionality constant is
cientsC{jm shown in column Bof the basis states and to the close to 3 MeV. A similar behavior of the constant matrix

decrease of the main shell state contributiRg)q njo (col-  elementG was already observed4] and is a characteristic
umns 4 and b This behavior is typical for all of the matrix feature of the spectra build on the basis of harmonic oscilla-
elements. tor potentials. All the properties discussed so far apply for

The dependence in energy &f follows that of the diag- larger nuclear deformations.
onal matrix elementg,, on the energy. This matrix elements
are shown in the same figutsee Figs. 4 and 5 for more B. Pairing strength V,

details and explanationGap parameters for neutrons and ) .
protons behave very similarly what is illustrated in Fig. 2. Both the strength/, and the energy width of the pairing

Figures 4 and 5 show values of the diagonal as well a¥vindow are connected through the condition of the equality
nondiagonal matrix elementg,, for neutrons and protons, Of experimental energy gap paramefernd the gap deter-
respectively, in**Nd. The matrix elements connecting a m|r!ed from the BCS equation24) fo_r the Fermi level. A
state whose energy is closest to the Fermi energy with any2/i€ty Of energy cutoff procedures is usesee, e.g., Refs.
other state are shown. Filled circles correspond to diagonaf0:45,48). All of them give the values of the pairing
9. values while the open circles are the valueygf The strengt_h depenc_il_ng on the energy cutoff or on the number of
Fermi level is shown also in the plot as a longer and thickef€Vels in the pairing window. o
vertical line. One observes here a few interesting features. ~ 1here are also different types of approximations for the

(i) The values of the diagonal matrix elements are largefXPerimental gapsle,, Different approaches use various

than nondiagonal ones about a factor of 1.5—2 on an averagBUMmPers of experimental masses in the gap fornua4 .
(i) The nondiagonal matrix elemengse are rather “ran- The very modern view on this problem is presented in an

domly” distributed around some average value; no long?PProach which was undertaken in Rgf8], where the new
range energy dependence is observed. formula for the“pa|r_|ng indicator A® Was_derlved. It in-
(iii ) The diagonal matrix elements,, show the regular volves three experimental masses and is proved to be a
decrease of the average value with the increase of the singR§oper estimate of the pairing gap parameté?. differs sig-
particle energy. nificantly from the gaps calculated so far. The gap is defined
(iv) There is always a dominant matrix elemegy inside  as[48] [Eq(1)]
each shell which is on a factor of 1.5-2 larger than the small-
est matrix element present in the shell. @ (N — TN _ _
(v) The averageg,, linearly decreases with increasing A=N) = 2 [BN-1)+B(N+1)-2B(N)], (33
energy.
(vi) The average dependenceggf on particle number2  wheremy=(-1)N is the parity ofN number and(N) is the
filling the levels up to the considered leveebehaves like a binding energy of the system consisting Nf particles.
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FIG. 6. The experimental pairing indicatd@p for rare earth ¢ 1008 LT, -0.08
0.1-0.05 0 0.05 0.1 0.15 -0.15-

01-005 0 0.05 0.1
) )

BT (Vyin=2.207 MeV) YD (Vjiy=-0.332 MeV)

T : 0.12

10.08

0.04 &4

nuclei. Part(a) of the figure is for protons and p4&it) for neutrons.

The quality of A® is also discussef46]. In the present |

paper we follow the definition of the gap parameter as| "~ .-~

given by Eq.(33). LS Xt
The formula for the average behavior&f)(A) as a func- A

tion of the mass numbek does not match the well known

s & WeEl R 0.1 01507 02503 035 045 02 02563 03504 0%
12/VA dependencgsee Ref[43]). The A® pairing indica- & e
tors for rare earth nuclei are shown in Fig. 6. In p@t of
the figure one seeg,, of neutrons and in pait) AL, of FIG. 7. Potential energy surfaces for some rare earth nuclei. The
protons. The average behavior&f,,is given by the simple separation of contour levels equals 2 MeV. The minima of PES are
formula shown by plus sigr{+). For comparison the minima calculated in
Ref. [33] (times sign,X) are shown.
A =dy /N, (34) €4= €4m—0.06(0.04) €+ 0.06, (36)

where the subscriptsn denote the initial deformation
which we took from Ref[33]. For each nucleus the PES
was calculated and the minimum of the total energy was
found. The procedure was repeated until the difference of
the successive ground state deformations was reasonably

for both types of nucleons. Hew, , are constants which
differ rather little for both types of nucleons and we have
assumed here one value for both kinds of particles

dhp=95, small.
The ¢ deformation was treated in a static way, i.e., it was
andN is the number of neutrons or protons. kept equal toes ., as in Ref[33]. This is reasonable while the

Integrals(17) were calculated in the Nilsson or Nilsson- minimization of PES in three-dimensional space leads to the
Seo Hamiltonian eigenstates directly using the GaussY@lues ofesm nearly equal to the deformations in RE83].
Hermite and Gauss-Laguerre integration quadrat#@f The typical PES are shown in Fig. 7 where the plus sign

The adjustment of thé-pairing strengttV, has to be per- (+) denotes the minima taken from R¢83] and thetimes
formed at the energy minimum of the nucleus which is un-Sign (X) the minima of the PES as calculated here.
known initially. In order to simplify the procedure of adjust- ~ 1he number of levels in the pairing window is the same
ing the strengthV, of the pairing interactiojsee Eq.(20)]  as in Ref.[2], i.e., we have assumet:2y15N(2).
we proceed as follows. Our reference point was the results of The adjustment o¥, can be formulated as a problem of
Ref. [33]. First the grids in the three-dimensional deforma-solving the equation
tion space of(e,, €, €5) were chosen. We have done this ac-
cording to the minima of the PES given in R¢83]. The Agp= ApEm(Vo®), (37)

grid is defined as at the minimum of the total energy of the nucleus, where

AEP_(VGP) corresponds to the Fermi level of neutraimg
€= €,n—0.06(0.04 €,,,+0.06, (350  and protongp), respectively. The procedure involves the
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FIG. 8. The strengtly, of the pairing force in case of Nilsson
model as a function of the neutron numib&for protons[part(a) of

72 80

112

FIG. 10. Same as in Fig. 8 but for Nilsson-Seo model.

the figurg and for neutrongpart (b) of the figurg for rare earth

solution of the system ofr+1 BCS equation$24) for the

nuclei. The same isotopes are connected by lines. The average v&et 0fA; gaps and the Fermi levalin the pairing window.

ues ofVy are shown as straight lines.

250 s
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We have used a very effective iterative method of solution
of the system of equation@4). Given an initial set ofA
gaps on the right hand side of E@4), the left hand side

of it determines the new set of solutions and the procedure
is repeated until the assumed accuracy is obtained. At ac-
curacy0.001 MeV oneneeds usually only a few iterations
to reach the convergence. At the same time the Fermi
level was determined by the commonly used Newton
method.

In Figs. 8 and 9 exact values ™” are shown for rare
earth nuclei obtained with Nilsson model. The average val-
ues of the pairing strength are shown as well. The structure
of V, seems to be too complicated and was not in fact found
as a function of the number of proto#sor neutronsN as
well as the isospin=(N-2)/A, which are typically used in
such cases. It is observed that the value¥pbscillate in a
very irregular manner showing the maxima at the magic
numbers and the minima in the middle of the shell. The value
of the amplitude of the oscillations is rather sm@llose to
10 MeV fr) and it does not change very much the value of
the AF gap corresponding to the Fermi level. Changifgo
e.g., 10%, produces only a few percentage changs’of

Any chain of isotopes aZ=const in Fig. 8 and aiN
=const in Fig. 9 shows an average decreas¥yivith in-

TABLE Ill. & pairing strength paramete¥4® for neutrons and
protons, respectively, for rare earth nuclei in units Me\? faul-
justed for the pairing window witm=2y15N(2).

FIG. 9. The strengtly, of the pairing force in case of Nilsson

model as a function of the atomic numbk&for protons[part(a) of
the figurg@ and for neutrongpart (b) of the figurg for rare earth

nuclei. The same isotones are connected by straight lines. On the
right side neutron numbers corresponding to given curves are

Model A V5
Nilsson 250 220
Nilsson-Seo 245 245

shown.
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FIG. 11. The differences in the ground state deformations as 1-1
calculated in the present paper and those given in [R8&f.for both I ”A\‘\/\\
€, and e, deformations. HereSe,;=¢,—€; and de,=€,— €5, where
superscriptsn denote the ground state deformations in R&8] for
rare earth nuclei. f\\/_\

rSm

B or

Nd {0
creasing neutron numb&=A-Z starting at the largest value r Ce
of Vy which corresponds to the magic isotopes with well
separated energy shells, decreases and then increases again. : : ‘
The latter behavior is observed on the left hand side of the 60 70 8 90 100 110 120
peak ofV, for the lighter isotopes considered here, i.e., Ce to N
Er inclusively. There is no net increase or decreas¥,ah
the shell or it is very small. Therefore, it is hard to adopt
some simple physically explained dependence.

In consequence, we do not find some typical dependence €5=—0.3¢, +0.02. (40)
of Voon N, Z, orl. Instead we have assumed the average
value ofV, as the strength of the pairing force for the con-

B or

FIG. 13. Same as in Fig. 14 but for Nilsson-Seo potential.

sidered region of nuclegiFig. 10). This allows for the approximate calculations of PES.
In Table Il we show the strengti(, as adjusted for the ~ The equilibrium deformations obtained in R¢83] and
rare earth nuclei. those presented here differ and the difference can be mea-

sured by the following rms deviations fey and e, deforma-

) tions, respectively,
C. Nuclear deformations

Figure 11 shows new equilibrium deformations for the

rare earth region. As already saigl is the same as in Ref. /ﬁ/«\\\*\ I
[33]. In Fig. 12 5 vs ¢, is shown. The average; deforma- Hf {0
tion region can be approximated by il 11
O 7 Yb m
€5=— 0.3¢,. (39 11 m 11
Er 10
. . 1-1
The boundaries o&; deformation are 1l ~\//\
S 0rDy
g 1
€s=—0.3¢,—-0.02, (39 < 11
2 Gd {0
1-1
0.08 ‘ 1r
£6(€4) 0fSm
0.06 t 1t
0.04 | - /\\\/‘/ na |0
e N 11
o 0.02 RTINS Al f\\/
0 Pegrebethiile 0Ce
. .. . _l L
-0.02 + s, ]
-0.04 ¢ \ 1 60 70 80 90 100 110 120
-0.06 : : : N
-01 -005 0 005 01 015
€4 FIG. 14. The mass deviatiodM=M,—Me,, for rare earth nu-
clei as calculated with the Nilsson model. The experimental data
FIG. 12. The deformationgs vs ¢, for rare earth nuclej33]. Meyp Were taken from Audi and Wapstra mass taljle.
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atom and the neutron, respectively. The results are shown
in Fig. 13 for Nilsson-Seo potential and in Fig. 14 for rare
ey e, earth region for the pure Nilsson model. The rms devia-
ceNd ﬁ&% () Nilsson tion for ME evaluated for all considered nuclei is less than
140 150 160 170 180 0.7 Me\( in both t_he_ considered models. ThIS value of ac-
A curacy in determining the nuclear mass is comparable to

the corresponding values obtained in more refined theo-

Gd py Er Yo o Hi

Brgp, (fm)
ob6 ooo
WN—=2O =MW

0.3 ey ries[26,33. The comparison of nuclear masses calculated
£ og Sm = e &:3“‘% H for spherical nuclei in Skyrme+HF, Gogny+HF as well as
5 o Nw voE the RMF model was also presented in Ré¢B2-54. The
LI S PN (b) Seo quality of those estimates of the nuclear masses for a

0.3 sample of 116 spherically symmetric nuclei is comparable

140 150 160 170 180

to the present one.

A : . -
There is a systematic deviation between the two models

FIG. 15. The charge radius deviati@n,=rc = ch expfOr rare
earth nuclei calculated with the Nilssaga) and Nilsson-Seab)
models. The experimental datg, were taken from Refd39-41.

studied: the masses as calculated using Nilsson approach are
better as compared to the version of Nilsson-Seo model. In
Seo model there is only one set of potential parameters

Ko, K1, andug which regulate the dependence of the poten-
tial on the spin-orbit -s and thel? terms[see Eqs(9). The
dependence on atomic numbArenters here through the
“universal” assumptions made in E@ll). The parameters
Ko, K1, and ug are common for both protons and neutrons
and are the same for the whole periodic table. On the other
hand, one has four analogous parameters in the pure Nilsson
model and the values of them are different in various nuclear
[33]. It was shown that for the considered isotopes regipns for which t_hey are adjus'Feq to reproduc_e th_e single
particle level spacings characteristic to the region in ques-

:0‘034 ando,=0.02. ThedeformatlonSeg and € were not tion. It seems that the universal behavior of the Nilsson-Seo
taken into account while they do not appear in the consid-

ered region of nuclei and in case of the minima of PES_pa}rqmeters as given in EQLL) is too simple and does not
The deformationg, equals in both Ref33] and our case. mlmlc_the propeA dependence of the parameters. The mass
. . .deviations seem to be the consequence of this fact.

While the nuclear deformation parameters cannot be di-
rectly compared to their experimental equivalents the more
distinct comparison of our results concerning the nuclear
shapes is presented in Sec. VI F where the quadrupole mo- The root mean square radif), Eq.(31), are compared to
ments which are the proper observables measuring thexperimental dat§39—-41 in Fig. 15. It was pointed out in
nuclear deformations are shown. Ref. [7] that the best fit to experimental data is achieved if
one assumes the Nilsson oscillator frequeriey=40/AY3
and the standard isospin dependencé®f is changed for

The mass of the nucleus is totally determined by @g).  the following one
In the following the mass excess 40 40 (N 1/3
oo r(i) ’

7 _
ME =M(Z, N, def) - ZM,, - NM,, (42) hag=

is calculated and compared to experimental d&@&51. whereN and Z are neutron and proton numbers, respec-
Here M and M, are the mass excesses for hydrogentively.

n=N 1/2 n=N 1/2
2 (62,n - Egq,n) 2 (64,n - €4m,n)
n=1 n=1
N ' N '
(41)

where N is the number of nuclei in calculations amd
stands for equilibrium deformations calculated in Ref.

O — Oy —

E. Charge root mean square radii

D. Nuclear masses

s (43

10 prrrrr e ey

Ce Nd Sm Gd Dy Er Yb Hf
8
K

~ 6 " %
S FIG. 16. Quadrupole moments of rare earth
2 4 nuclei calculated with the Nilsson modépen
= squares[]) in comparison to experimental data

5 (X with error bar$ which were extracted from

x * Refs.[55,56.
0
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8
o 4 ] FIG. 17. Same as in Fig. 16 but for Nilsson-
o Seo model.
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In case considered here the constant 40 used in[Regs  of V, depend on the energy cutqBuch as the traditionally
too small and we adopt the larger value of it, namely, 41. exploredG constants in case of the monopole paijinghe
Despite of this choice diwg there are large discrepancies typical value ofV,, corresponding to the pairing window
between the model calculations and the experimental daignich consist oh=2y15N(Z) levels is around 250 MeV ffa
especially in case of heavier nuclei. Calculating the masses we have used LSD m¢2i@l in
which the additional curvature term is added. The masses for

F. Quadrupole moments the considered set of about 200 nuclei are reproduced with
The quadrupole momeR is calculated as an expectation the rms mass deviation equal to 0.700 MeV. For comparison
value of the quadrupole moment operator the rms deviation in other calculations such as FR[34],
R ETFSI[23], HFBCS-1[24] or in the new approach as in Ref.
Q=2P,(cos 6) (44) [27] done for nearly 3000 nuclei is less than the given value.

in the proton sector of the BCS ground state of the The nuclear radii calculated in the framework of the
nucleus. In Eq(44) P,(cos ) is the Legendre polynomial. present model do not differ very much from those obtained

This leads to the expression in other approaches of this type. The best calculations which
reproduce RMSR are the self-consistent Skyrme-HF models.
Q= <BCSQ|BCS> =3 Zvﬁ<k|(§|k>, (45) The rms radii are reproduced here with the accuracy defined

k>0 by rms deviation which is 0.08 fm which is twice higher,

where vﬁ are the occupation probabilities defined in Eq. e.g_l._,hFRlefvl or fqur t|me§, sho Iargedas HIFBCS'l reab).
(25). The values of the quadrupole moments calculated in e de ormatlpns and the qua fupole momepts are com-
Nilsson model are shown in Fig. 16 and those for Nilssonparable to experimental data and consistent with other ap-
Seo model in Fig. 17. The experimental détaosses with proa(_:hes(see, e.g.,_Re_fs{.?,Ss’]). . : .
error barg were extracted from Ref§55,56. The similar It is worth mentioning here_ _that the caICL_JIatlon time in
results obtained with Nilsson-Seo single particle potentiaf@Se of the state dependehpairing does not increase very
were reported early6,7] but for the monopole pairing. rT;uch mt comparison to the calculations with constant matrix
elements.
VIl. CONCLUSIONS Our aim was to find if the Nilsson models when used with
the &type state dependent pairing force can reproduce basic
In the present paper we have calculated the basic charaouclear data concerning both deformed and undeformed nu-
teristics of nuclei in the rare earth region using the Nilsson-<clei. The use of the>-pairing force instead of the traditional
type potential and the Strutinsky macroscopic-microscopianonopole pairing with constant matrix elements seems to
prescription with the state dependefitype pairing force work at the similar accuracy as compared to the latter. From
and the LSD macroscopic model. the point of view of practical calculations the monopole pair-
First, we have adjusted the pairing strength constapts ing force still seems to be a satisfactory choice for the re-
for the considered nuclei and models of interest. The valuesidual part of the nuclear interaction.
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