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The width of the giant dipole resonance(GDR) at finite temperatureT in 120Sn is calculated within the
phonon damping model including the neutron thermal pairing gap determined from the modified BCS theory.
It is shown that the effect of thermal pairing causes a smaller GDR width atT&2 MeV as compared to the one
obtained by neglecting pairing. This improves significantly the agreement between theory and experiment,
including the most recent data point atT=1 MeV.
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I. INTRODUCTION

Intensive experimental studies of highly excited nuclei
during the last two decades have produced many data on the
evolution of the giant dipole resonance(GDR) as a function
of temperatureT and spin. The data show that the GDR
width increases sharply with increasingT from T*1 MeV
up to .3 MeV. At higher T a width saturation has been
reported(See Ref.[1] for the most recent review). The in-
crease of the GDR width withT is described reasonably well
within the thermal shape-fluctuation model[2] and the pho-
non damping model(PDM) [3–5]. The thermal shape-
fluctuation model assumes an adiabatic coupling of GDR to
quadrupole degrees of freedom with deformation parameters
b andg induced by thermal fluctuations and high spins in the
intrinsic frame of reference. Although this model shows an
increase of the GDR width withT comparable with the ex-
perimental systematic at 1.2&T&3 MeV, the GDR shapes
generated using the strength function of this model differ
significantly from the experimental ones[6]. The PDM con-
siders the coupling of the GDR topp andhh configurations
at TÞ0 as the mechanism of the width increase and satura-
tion. The PDM calculates the GDR width and strength func-
tion directly in the laboratory frame without any need for an
explicit inclusion of thermal fluctuation of shapes. The PDM
reproduces fairly well both of the observed width[3,4] and
shape[5,7] of the GDR atTÞ0.

In general, pairing was neglected in the calculations for
hot GDR as it was believed that the gap vanishes atT
=Tc,1 MeV according to the temperature BCS theory.
However, it has been shown in Ref.[8] that thermal fluctua-
tions smear out the superfluid-normal phase transition in fi-
nite systems so that the pairing gap survives up toT
@1 MeV. This has been confirmed microscopically in the
recent modified Hartree-Fock-Bogoliubov(HFB) theory at
finite T [9], whose limit is the modified-BCS theory[10,11].
Other approaches such as the static-path approximation[12],
shell-model calculations[13], as well as the exact solution of
the pairing problem[14] also show that pairing correlations
do not abruptly disappear atTÞ0. It was suggested in Ref.
[15] that the decrease of the pairing gap with increasingT,

which is also caused bypp andhh configurations at lowT,
may slow down the increase of the GDR width. By including
a simplifiedT-dependent pairing gap in theCASCADE calcu-
lations using the PDM strength functions, Ref.[7] has im-
proved the agreement between the calculated GDR shapes
and experimental ones.

Very recently theg decays were measured in coincidence
with 17O particles scattered inelastically from120Sn [16]. A
GDR width of around 4 MeV has been extracted atT
=1 MeV, which is smaller than the value of,4.9 MeV for
the GDR width atT=0. This result and the existing system-
atic for the GDR width in120Sn up toT.2 MeV are signifi-
cantly lower than the prediction by the thermal shape-
fluctuation model. Based on this, Heckmanet al. [16]
concluded that the narrow width observed in120Sn at lowT
is not understood. The aim of the present work is to show
that it is thermal pairing that causes the narrow GDR width
in 120Sn at lowT. For this purpose we include the thermal
pairing gap obtained from the modified-BCS theory[9–11]
in the PDM [3–5], and carry out the calculations for the
GDR width in 120Sn atTø5 MeV.

The paper is organized as follows. Section I summarizes
the main equations for the GDR including thermal pairing
within the PDM and discusses in detail the physical assump-
tions of the PDM. Section II analyzes the results of calcula-
tions of GDR width, energy, and cross section for120Sn at
finite temperature in comparison with the most recent experi-
mental systematic. The paper is summarized in the last sec-
tion, where conclusions are drawn.

II. MAIN EQUATIONS FOR HOT GDR WITHIN PHONON
DAMPING MODEL

A. Equations for GDR width and energy including thermal
pairing

The quasiparticle representation of the PDM including
pairing has been already reported in Ref.[17]. Therefore we
discuss here only the final equations, which will be used in
numerical calculations. According to this formalism the
GDR widthGGDR is presented as the sum of quantalsGQd and
thermalsGTd widths as[3–5,17]
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GGDR = GQ + GT, s1ad

GQ = 2pF1
2o

ph
fuph

s+dg2s1 − np − nhddsEGDR − Ep − Ehd,

s1bd

GT = 2pF2
2 o

s.s8

fvss8
s−dg2sns8 − nsddsEGDR − Es + Es8d, s1cd

wheresss8d=spp8d andshh8d with p andh denoting the orbital
angular momentajp and jh for particles and holes, respec-
tively. The quantal and thermal widths come from the cou-
plings of quasiparticle pairsfap

†
^ ah

†gLM and fas
†

^ ãs8gLM to
the GDR, respectively. At zero pairing they correspond to the
couplings of ph pairs, fap

†
^ ãhgLM, and pp shhd pairs, fas

†

^ ãs8gLM, to the GDR, respectively(The tilde , denotes the
time-reversal operation). The quasiparticle energiesEj=fsej

−m̄d2+D̄2g1/2 are found from the modified-BCS equations
(39) and (40) of Ref. [11], which determine the modified

thermal gapD̄ and chemical potentialm̄ from the single-
particle energiesej and particle numberN. From them one
defines the Bogoliubov coefficientsuj, vj, and the combina-
tionsuph

s+d=upvh+vpuh, andvss8
s−d=usus8−vsvs8. The quasiparticle

occupation numbernj is calculated as[4]

nj =
1

p
E

−`

` nFsEdg jsEd
fE − Ej − MjsEdg2 + g j

2sEd
dE, s2d

nFsEd = seE/T + 1d−1,

whereMjsEd is the mass operator andg jsEd is the quasi-
particle damping, which is determined as the imaginary
part of the analytic continuation ofMjsEd into the complex
energy plane. These quantities appear due to coupling be-
tween quasiparticles and the GDR. Their explicit expres-
sions are given by Eqs.s3d and s4d of Ref. f3g, respec-
tively, in which Es is now the quasiparticle energyEj.
From Eq. s2d it is seen that the functional form for the
occupation numbernj is not given by the Fermi-Dirac dis-
tribution nFsEjd for noninteracting quasiparticles. It can be
approximately so if the quasiparticle dampingg jsEd is suf-
ficiently small so that the Breit-Wigner-like kernel under
the integration can be replaced with thed function. Equa-
tion s2d also implies a zero value fornj in the ground state,
i.e. njsT=0d=0. In general, it is not the case because of
ground-state correlationsssee, e.g., Refs.f10,18,19gd.
They lead tonjsT=0dÞ0, which should be found by solv-
ing self-consistently a set of nonlinear equations within
the renormalized random-phase approximationsrenormal-
ized RPAd. Within the RPA the equation fornj yields the
approximate expression

njsT = 0d . oJij8
s2J + 1d/s2j + 1dfYjj 8

sJidg2,

whereYjj 8
sJid is the RPA backward-going amplitudesJ is the

multipolarityd. Since for collective high-lying excitations
such as GDR one hasuYjj 8

sJid u !1, we expect the value
njsT=0d to be negligible.

The GDR energyEGDR is found as the solution of the
equation

v − vq − Psvd = 0, s3d

where vq is the unperturbed phonon energy andPsvd is
the polarization operator:

PsEd = F1
2o

ph

fuph
s+dg2s1 − np − nhd

E − Ep − Eh
− F2

2 o
s.s8

fvss8
s−dg2sns − ns8d

E − Es + Es8
.

s4d

Note that, in general, there are also backward-going pro-
cesses leading to the terms,dsv+Ep+Ehd and dsv+Es
−Es8d as has been shown in Eqs.s14d and s15d of Ref.
f17g. However, as the maximum of these terms is located
at negative energy v=−sEp+Ehd,0 and v=−sEs
−Es8d,0, respectively, their contribution to the GDR,
which is located atv=EGDR@1 MeV, is negligible. There-
fore these backward-going processes are omitted here. It

is now easy to see that, at zero pairingD̄=0, one hasup

=1, vp=0, uh=0, vh=1 so thatfuph
s+dg2=1, fvss8

s−dg2=1. As for
the single-particle occupation numberf j, one obtainsfh

=1−nh and fp=np. The PDM equations forD̄=0 in Refs.
f3,4g are then easily recovered from Eqs.s1d–s4d.

B. Assumptions of phonon damping model

The PDM is based on the following assumptions.
(i) The matrix elements for the coupling of GDR to non-

collectiveph configurations, which causes the quantal width
GQ (1b), are all equal toF1. Those for the coupling of GDR
to pp shhd, which causes the thermal widthGT (1c), are all
equal toF2. The assumption of a constant coupling strength
is well justified when the width of a collective mode is much
smaller than the energy rangeDE (of order of EGDR) over
which this mode is coupled to the background states(the
so-called weak coupling limit discussed in Refs.[13,20]).

(ii ) It is well established that the microscopic mechanism
of the quantal(spreading) width GQ (1b) comes from quantal
coupling of ph configurations to more complicated ones,
such as 2p2h ones. The calculations performed in Refs.
[21,22] within two independent microscopic models, where
such couplings to 2p2h configurations were explicitly in-
cluded, have shown thatGQ depends weakly onT. The mi-
croscopic study in Ref.[20], where a hierarchy of states of
increasing complexity located aroundEGDR is considered,
has also confirmed the near constancy ofGQ. It also indicated
that the width of a collective vibration does not depend on
the detailed coupling to the compound nuclear eigenstates.
Therefore, in order to avoid complicated numerical calcula-
tions, which are not essential for the increase ofGGDR at T
Þ0, such microscopic mechanism is not included within
PDM, assuming thatGQ at T=0 is known. The model param-
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eters are then chosen so that the calculatedGQ and EGDR

reproduce the corresponding experimental values atT=0 (see
below).

Assumption(i) is satisfied forF1 since the quantal width
GQ does not exceed 4.9 MeV. The PDM calculations in fact
have shown thatGQ decreases from 4.9 MeV atT=0 to
around 2.5 MeV atT=5 MeV for 120Sn due to thermal ef-
fects in the factor 1−np−nh (see the dashed line in Fig. 1(a)
of Ref. [3] for zero pairing). A similar trend was also ob-
served in the microscopic calculations of Ref.[21], where it
was found that the GDR width atT=3 MeV is in fact smaller
than atT=0 (see Figs. 9 and 10 of Ref.[21] and the discus-
sion therein). That is whyGQsT=0d cannot be simply taken as
a parameter uniformly added to what is calculated forGT at
TÞ0 since a widthGQsTd=GQsT=0d would lead to a larger
value for the total widthGGDR (1a) at higherT, worsening the
agreement with the data.

Assumption(i) becomes poor forF2 at T*3 MeV, when
the thermal widthGT is larger than 10 MeV(see the dotted
line in Fig. 1(a) of Ref. [3]). Within such a large width one
expects a considerable change of the level density of back-
ground states. To be quantitatively precise, one needs to use
a self-consistent theory for the strength function, which in-
cludes the coupling to doorway states as in Ref.[20]. Such a
theory is valid for any ratio ofGGDR/DE. However, from
assumption(ii ) it also follows that the increase ofGGDR is
now driven mainly by the thermal widthGT due to the factor
ns8−ns. The change ofnj implies a change of the quasiparti-
cle entropySqp. The latter is ultimately related to the change
of the level density of background states within the realistic
mean-field basis. This can be seen as follows. The complex-
ity of the background states is measured by the information
entropySinf of individual wave functions, which reflects the
complicated relationship between the eigenbasis and repre-
sentation basis. Meanwhile, the thermodynamic entropySth
of the total system is directly determined by its statistical
weight VsEd=rsEddsEd as Sth=ln VsEd, where rsEd is the
level density. In a situation with incomplete information,
such as in the statistical description of hot nuclei considered
here, individual compound systems are replaced with a grand
canonical ensemble of nuclei in thermal equilibrium. The
probability for a quantum system to have a given eigenen-
ergy is determined by the density matrixD rather than by a
pure wave function. The expectation valuekOl of an observ-
ableO is given as the statistical average over the grand ca-
nonical ensemblekOl=TrsDOd, which is derived from the
maximum of the thermodynamic entropySth=−TrsD ln Dd.
The modern shell-model calculations in Ref.[13] have
shown that these three apparently different entropies,Sqp,
Sinf, andSth, behave very similarly for the majority of states
in the realistic mean field consistent with residual interac-
tions (see column II of Fig. 56 in Ref.[13] and the discus-
sion therein). Significant differences between them take
place only when the residual interaction beyond the mean
field is very weak(see column I of Fig. 56 in Ref.[13]) or
when the quasiparticle mean-field is absent(Sinf reaches its
chaotic limit) (see column III of Fig. 56 in Ref.[13]). This
might be the reason why the numerical results performed so
far within the zero-pairing PDM[3–5] using assumptions(i)

and (ii ) fit fairly well the experimental systematic for the
GDR width including the existing data on the width satura-
tion atT*3 MeV. This is partly also due to the large experi-
mental error bars for the extracted GDR width at highT (see,
e.g., Refs.[23,24]). Therefore, atT*3 MeV the results ob-
tained under these assumptions should be considered as
qualitative. This does not affect our present study of the pair-
ing effect as the latter is significant only at low temperature
(T,2.5 MeV).

Within assumptions(i) and (ii ) the model has only three
T-independent parameters, which are the unperturbed pho-
non energyvq, F1, and F2. The parametersvq and F1 are
chosen so that after theph-GDR coupling is switched on, the
calculated GDR energyEGDR and widthGGDR reproduce the
corresponding experimental values for GDR in the ground
state. AtTÞ0, the coupling topp and hh configurations is
activated. TheF2 parameter is then fixed atT=0 so that the
GDR energyEGDR does not change appreciably with varying
T. The values of the PDM parameters for120Sn are given in
Ref. [4] for the zero-pairing case.

In Ref. [4] we have presented an argument that, in our
opinion, the effect due to coupling of GDR to noncollective
ph, pp, and hh configurations atTÞ0 within the PDM is
tantamount to that of thermal shape fluctuations. This has
been demonstrated by expanding the coupling of GDR pho-
non to noncollectiveph, pp, andhh configurations into cou-
plings to different multipole fields(see pages 437 and 438 of
Ref. [4]). In this expansion thepp shhd-pair operatorBss8

†

;as
†as8 is expanded in terms of the tensor products of two

ph-pair operators(see mappings(22) and (23) of Ref. [19]).
Each ph-pair operatorBph

† ;ap
†ah can be then expressed in

terms of the RPA phonon operatorsQq
† and Qq with RPA

amplitudesXph
q andYph

q . This leads to Eq.(2.43) in Ref. [4]
for the part of the PDM Hamiltonian which describes cou-
pling between the phonon and single-particle fields. Hence if
Qq

† and Qq are GDR phonon operators,hQq1

† ,Qq1
j and

hQq2

† ,Qq2
j in Eq. (2.43) of Ref. [4] can have the moment and

parity equal tos1−,2+d, s2+,3−d, etc. to preserve the total mo-
mentumlp=1−. Therefore, althoughFss8

sqd are dipole matrix
elements, the amplitudesXph

qi and Yph
qi si=1,2d can be calcu-

lated microscopically, using the dipole-dipole, quadrupole-
quadrupole, octupole-octupole, etc. components of residual
interaction. This means that coupling topp andhh configu-
rations already includes in principle the coupling to different
multipole-multipole fields via multiphonon configuration
mixing at TÞ0.1

1In Ref. [25] a version of PDM, which explicitly includes cou-
pling to two-phonon configurations in the second order of the inter-
action vertex, was proposed. Expressions(2.17) and (2.18) of Ref.
[25] derived for the polarization operator show that the width in-
crease is still driven mainly by the factorsns−ns8d. The calculations
with the GDR coupled to the first quadrupole phonon 21

+ required
the energyv21

+ and the ratior=Fi
s2d/Fi

s1dsi=1,2d to be fixed as addi-
tional parameters. A similar quality for the description of the ex-
perimental data for the temperature dependence of the GDR width
has been restored after a reduction of the dipole matrix elements
F1

s1d;F1 andF2
s1d;F2.
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CASCADE calculations using PDM strength functions have
produced the GDR shapes in good agreement with the ex-
perimental data for120Sn atT.1.54 MeV(see Fig. 2 of Ref.
[7]). The discrepancy atTø1.54 MeV is due to omission or
improper inclusion of pairing at lowT, which is now studied
in the present work. The splitting of GDR into two peaks is
also clearly seen in the PDM calculations for106Sn [26].
These evidences are in favor of the argument discussed
above and in Ref.[4].

Nonetheless, we recognize that the issue of whether cou-
pling to pp and hh configurations atTÞ0 is a microscopic
(although indirect) interpretation of thermal shape fluctua-
tions within the PDM is still not settled. The question of
whether thermal shape fluctuations need to be included ad-
ditionally within PDM or not remains to be investigated. The
thermal shape-fluctuation model calculates the time-
correlation function of the GDR by replacing the microca-
nonical ensemble with an ensemble of macroscopic vari-
ables, which are the deformation parameterssb,gd in the
body-fixed (principal axes) frame of reference(intrinsic
frame). It parametrizesa priori the dipole correlation tensor

by a frequencyEk=E0 expf−Î5/4pb cossg+ 2/3pkdg and a
width equal toGk=G0sEk/E0d1.8 along eachith semiaxis[2].
The effect of thermal fluctuations in this model is included
via fluctuations of shapes by employing the macroscopic
Landau theory of phase transitions[27]. Therefore, an ex-
plicit inclusion of thermal shape fluctuations in the PDM will
bring in additional degrees of freedom, which increase the
number of parameters of the model. At the same time, in a
way similar to that mentioned in the footnote above, this will
certainly require a renormalization of the existing parameters
of the PDM to restore the agreement with the experimental
systematic. While this issue is left open for future study, it
does not affect the study of the role of thermal pairing in the
present paper, since, as will be seen below, in order to de-
scribe the GDR width at lowT, it is necessary to include
thermal pairing in any model, whether it is the PDM or ther-
mal shape-fluctuation one.

III. ANALYSIS OF NUMERICAL CALCULATIONS

A. Role of thermal pairing gap at low temperature

Shown in Fig. 1 is theT dependence of the neutron pair-

ing gap D̄n for 120Sn, which is obtained from the
modified-BCS equations[9–11] using the single-particle en-
ergies determined within the Woods-Saxon potential atT=0.
They span a space from,−40 MeV up to ,17 MeV, in-
cluding seven major shells and 1j15/2, 1i11/2, and 1k17/2 levels.
The pairing parameterGn is chosen to be equal to 0.13 MeV,

which yields D̄sT=0d;D̄s0d.1.4 MeV. In difference with
the BCS gap (dotted line), which collapses at Tc

.0.79 MeV, the gapD̄ (solid line) does not vanish, but de-
creases monotonously with increasingT at T*1 MeV, re-
sulting in a long tail up toT.5 MeV. This behavior is
caused by the thermal fluctuation of quasiparticle number,
dN2;oj dNj

2, where dNj
2=njs1−njd is the quasiparticle-

number fluctuation onjth orbital. The latter is incorporated

as dNj in the modified-BCS gapD̄ (see the last term at the
right hand side of Eq.(39) of Ref. [11]).

To analyze the qualitative effect of thermal pairing on the
GDR width we plot the usual single-particle occupation
number f j=uj

2nj+vj
2s1−njd with nj obtained within the

modified-BCS theoryfgjsEd=0g as a function of single-
particle energyej for the neutron levels around the chemical
potential in Fig. 2. It is seen that, in general, the pairing
effect always goes counter to the temperature effect onf j,
causing a steeper dependence off j on ej. Decreasing with
increasingT, this difference becomes small atTù3 MeV.
Since a smootherf j enhances thepp andhh transitions lead-
ing to the thermal widthGT, pairing should reduce the GDR
width, and this reduction is expected to be stronger at a
lower T, provided the GDR energyEGDR is the same. A
deviation from this general rule is seen at very lowT
.0.1 MeV, where the temperature effect is still so weak that

f j obtained atD̄Þ0 (solid line) is smoother than that ob-
tained at zero pairing(dotted line).
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FIG. 1. Neutron pairing gap as a function ofT. Solid and dotted

lines show the modified-BCS gapD̄ and BCS gap, respectively.
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FIG. 2. (Color online) Single-particle occupation numberf j as a
function ofej for the neutron levels around the chemical potential at
T=0.1,1, and 3 MeV. Results obtained including and without pair-
ing are shown by solid and dotted lines, respectively(a thicker line
corresponds to a higherT). The horizontal dashed line at

,−6 MeV shows the chemical potential atD̄=0 andT=0.
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To get an insight into the detail of the change of GDR
width at low T we show in Fig. 3 the combinationsfuph

s+dg2

and fvhh8
s−d g2 of the Bogoliubov coefficientsup, vh, and vh8

together with the factorss1−np−nhd and snh−nh8d as well as
their zero-pairing counterpartsfh− fp and fh8− fh for the par-
ticle p=2j7/2, hole h=2d3/2, andh8=1d5/2 orbits as functions
of T. The hole orbith=2d3/2 is located just below the chemi-
cal potential. Therefore the pairing effect is strongest for the
ph and hh configurations involving this orbit. This figure
shows a sharp increase offuph

s+dg2 and fvss8
s+dg2 at T&1-2 MeV

due to a steep slope of the pairing gap, showing a strong
pairing effect. At very lowT, the numerator of the polariza-
tion operator(4) is close to fuph

s+dg2sEp+Ehd because 1−np
−nh.1, while the thermal part,sns−ns8d.0. This value is
equal to 3.67 MeV atT=0.1 MeV, which is smaller than

seh−epd=4.63 MeV obtained atD̄=0. The denominator of Eq.

(4) is also smaller than that obtained atD̄=0 becauseEp
+Eh.eh−ep due to the gap. Therefore, at very lowT, pairing
may lead even to a smaller GDR energy. On the other hand,
asfuph

s+dgs2ds1−np−nhd andfvss8
s−dg2sns−ns8d are also smaller than

fh− fp and fs8− fs, respectively, the competition of these ef-
fects in Eq.(1) can result in a larger width in the very low-T
region. AsT increases, the factor 1−np−nh decreases while
fuph

s+dg2 increases to reach 1 atT*2 MeV because of the de-
creasing gap. This leads to the decrease of the quantal width
GQ. At the same time, coupling topp andhh configurations
starts to contribute due to the factorsns−ns8d. The combina-
tion fvss8

s−dg2 also increases withT and reaches 1 atT
*3 MeV. As the result, thermal widthGT starts to give an
increasing contribution withT. However, as compared to

their zero-pairing counterparts,fh− fp and fs8− fs, the decrease
of the quantal part,s1−np−nhd and increase of the thermal
part ,sns−ns8d are much more moderate with increasingT
up to 1 MeV. On the contrary, at 1&T&3 MeV the decrease
of s1−np−nhd and increase ofsns−ns8d with increasingT are

steeper than their counterparts atD̄=0. At T.3–4 MeV the
total width approaches the saturation because of the domi-
nating contribution ofGT, which ceases to increase due to the
T dependence ofns−ns8 shown in Fig. 3(b) [3,4].

B. Temperature dependence of GDR width and energy

The GDR widthGGDR and energyEGDR for 120Sn were
calculated from Eqs.(1) and(3), respectively, using the same
set of PDM parametersvq, F1, and F2, which have been
chosen for the zero-pairing case[3,4] (set A). The effect of
quasiparticle damping is included in the calculations by us-
ing Eq. (2). The results are shown as the thin solid lines in
Fig. 4. As seen from Fig. 4(b), the oscillation of GDR energy
EGDR with varying T occurs within the range of
, ±1.5 MeV, which is wider compared with that obtained
neglecting pairing. The latter is almost independent ofT
[dashed line in Fig. 4(b)]. As expected from the discussion
above, the GDR energyEGDR at T=0.1 MeV drops to
14 MeV, i.e., by 1.4 MeV lower than the GDR energy mea-
sured on the ground state. The GDR width increases to
5.3 MeV compared to 4.9 MeV on the ground state as shown
in Fig. 4(a). At 0&T&0.5 MeV, the above-mentioned com-
petition between the decreasing quantal and increasing ther-
mal widths makes the total width decrease first to reach a
minimum of 3.4 MeV atT.0.2 MeV then increase again
with T. At T*Tc the width only increases withT. At 1&T
&3 MeV the GDR width obtained including pairing is
smaller than the one obtained neglecting pairing[dashed line
in Fig. 4(a)], but this difference decreases with increasingT

so that atT.3 MeV, when the gapD̄ becomes small, both
values nearly coincide. This improves significantly the agree-
ment with the experimental systematic at 1&T&2.5 MeV. In
order to have the same value of 4.9 MeV for the GDR width
at T.0, we also carried out the calculation using slightly
readjusted valuesF1

’ =0.96F1 and F2
’ =1.03F2 while keeping

the samevq (setB). The result obtained is shown in the same
Fig. 4 as the thick solid lines. The GDR energyEGDR moves
up to 16.6 MeV atT=0.1 MeV and atTc&T&1.2 MeV in
agreement with the value of 16.5±0.7 MeV extracted atT
=1 MeV in Ref. [16]. The width atT=1 MeV also becomes
slightly smaller, which agrees quite well with the latest ex-
perimental point[16]. At T.1 MeV the results obtained us-
ing two parameter setsA and B are nearly the same. The
effect of quantal fluctuationsdN2 of particle number within
the BCS theory atT=0, however, is neglected in these re-
sults. To be precise, this effect should be included using the
particle-number projection method at finiteT. However, the
latter is so computationally intensive that the calculations
were carried out so far only within schematic models(see,
e.g., Ref.[31]), or one major shell for nuclei withAø60 as
in the shell-model Monte Carlo method[32]. Therefore, for
the limited purpose of the present study, assuming thatdN2

@1, we applied the approximated projection atT=0 pro-
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FIG. 3. Combinations of Bogoliubov coefficients(a) and quasi-
particle occupations numbers(b). In (a), the thin and thick lines

show fuph
s+dg2 and fvhh8

s−d g2, respectively, for the orbitsp=2j7/2, h
=2d3/2, and h8=1d5/2. In (b), the corresponding factors 1−np−nh

(thin line) andnh−nh8 (thick line) are shown. The factorsfh− fp and
fh8− fh for the zero-pairing case are shown as the dotted and dashed
lines, respectively.
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posed in Ref.[33], which leads to the renormalization of the

gap as D̃sTd=f1+1/dN2gD̄ with dN2=D̄s0d2oj sj+1/2d/fsej

−m̄d2+D̄s0d2g [34]. This yields D̃sT=0d.1.5 MeV sdN

. ±4d. The PDM results obtained using the gapD̃ and the
parameter setB are shown in the same Fig. 4 as the thick
dotted lines. The GDR width becomes 5 MeV withEGDR
=15.3 MeV atT=0 in good agreement with the GDR param-
eters extracted on the ground state. It is seen that the fluc-
tuation of the width atT&0.5 MeV is largely suppressed by

using this renormalized gapD̃. For comparison, the predic-

tions by two versions of thermal shape-fluctuation model
[2,28] are also plotted in Fig. 4(a) as the dash-dotted[2] and
thin dotted [28] lines. It is seen that these predictions, in
particular the one given by the phenomenological version in
Ref. [28], significantly overestimate the GDR width at low
temperatureT&1.3 MeV. The predicted overall increase of
the width is not as steep as the experimental systematic and
the PDM prediction. The curvature of the trend is also oppo-
site to the experimental one and that given by the PDM. It is,
therefore, highly desirable to see how the prediction by the
thermal shape-fluctuation model would change by taking into
account the effect of thermal pairing gap discussed in the
present work in combination with the use of a specific
Hamiltonian to calculate every quantity[35].

C. Effect of thermal pairing on GDR cross section at low
temperature

Shown in Fig. 5 are GDR cross sections obtained for
120Sn using Eq.(1) of Ref. [7]. The experimental cross sec-
tion are taken from Fig. 2 of Ref.[7]. They have been gen-
erated by CASCADE at excitation energiesEp=30 and
50 MeV, which correspond toTmax=1.24, and 1.54 MeV, re-
spectively. The theoretical cross sections have been obtained
using the PDM strength functionSGDRsEgd from Eq.(2.22) of
Ref. [5] at T=Tmax. This is the low temperatures region, at
which discrepancies are most pronounced between theory
and experiment.(A divided spectrum free from detector re-
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FIG. 4. GDR widthGGDR (a) and energyEGDR (b) as functions
of T for 120Sn. The dashed lines show the PDM results obtained
neglecting pairing(In (a) it is the same as the solid line with dia-
monds from Fig. 1(a) of Ref. [3]). The thin and thick solid lines are

the PDM results including the gapD̄, which are obtained using the
parameter setsA andB, respectively. The thick dotted lines are the

PDM results including the renormalized gapD̃ (see text). Solid
circles are the low-T data from Ref.[16]. Crosses and open tri-
angles in(a) are from Fig. 4 of Ref.[28]. The corresponding GDR
energies decrease from 16 MeV to 14.5 MeV with increasingT as
shown in the shaded rectangle in(b). Solid upside-down triangles
are data from Ref.[29]. Open squares and stars are high-T data for
110Sn from Refs.[23] and [24], respectively. Data atT=0 are for
GDR built on the ground state of tin isotopes with massesA
=116–124 from Ref.[30]. The predictions by two versions of the
thermal shape-fluctuation model are shown in(a) as the dash-dotted
[2] and thin dotted[28] lines, respectively.

FIG. 5. Experimental(shaded areas) and theoretical divided
spectra obtained without pairing(dashed lines) and including the

gap D̄ (thick solid lines) as for the thick solid line in Fig. 4.
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sponse atT=1 MeV is not available in Ref.[16].) From this
figure it is seen that thermal pairing clearly offers a better fit
to the experimental line shape of the GDR at low tempera-
ture. As has been discussed in Ref.[7], for an absolute com-
parison, the PDM strength functions for all decay steps start-
ing from Tmax down toT.0 MeV should be included in the
CASCADE to generate a divided spectra, which can be directly
compared with the experimental ones. It is our wish that such
calculations be carried out in collaboration with the authors
of Ref. [16] in the near future.

IV. CONCLUSIONS

In this paper we have included the pairing gap, deter-
mined within the modified-BCS theory[10,11], in the PDM
to calculate the width of GDR in120Sn at Tø5 MeV. In

difference with the gap given within the conventional BCS
theory, which collapses atTc.0.79 MeV, the modified-BCS
gap never vanishes, but monotonously decreases with in-
creasingT up to T.5 MeV. The results obtained show that
thermal pairing indeed plays an important role in lowering
the width atT&2 MeV as compared to the value obtained
without pairing. This improves significantly the overall
agreement between theory and experiment, including the
width at T=1 MeV extracted in the latest experiment[16].
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