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In this paper we investigate possible reasons for the differences found in some kinematic regions between
existing microscopicpp bremsstrahlung models and experimental data. It is shown that this is partly the result
of an inaccurate description of the elastic nucleon-nucleonsNNd T matrix at low energies. We show that for the
phase space probed by the recent KVI experiment, Coulomb corrections do not influence the observables. The
difference between theory and experiment is reduced after theNN one-boson exchange model is refitted to the
pp phase shifts, however, a sizable discrepancy persists.
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I. INTRODUCTION

Many years ago, proton-proton bremsstrahlungsppgd was
suggested as a tool to discriminate between the various ex-
isting two-nucleon potential models[1]. Disagreements be-
tween competing theories, the inability of some theoretical
treatments to agree with the experiments, as well as the ne-
cessity of including contributions previously neglected, has
made resolving the resulting confusion aboutppg a primary
goal.

To describe bremsstrahlung a number of microscopic
models have been developed, of which we mention the clas-
sical works of Brown[2] and of Heller and Rich[3], and the
more recent models of Refs.[4–13]. At present the situation
in ppg remains unsatisfactory. The covariant model of Mar-
tinuset al. [11,12] disagrees with the TRIUMF data[14] for
certain asymmetric proton angles. Moreover, the absolute
normalization of the TRIUMF data remains controversial.
Also for the high-precision KVI data[15] there is a signifi-
cant discrepancy between theory and experiment for asym-
metric proton angles.

The size of the discrepancy is disturbing, since what pri-
marily enters in the computation of the bremsstrahlung am-
plitude are theNN interaction and the electromagnetic cou-
pling of the photon to the nucleon-nucleonsNNd system,
both of which had been believed to be accurately known.
The high precision of the KVI experimental data allows in
principle also the study of smaller effects such as, for ex-
ample, the negative-energy states, theD isobar, or the meson-
exchange currents. The observed discrepancy seems too
large to be due to these effects.

In this paper we investigate possible origins of the dis-
crepancy between theppg model of Martinuset al. [11,12]
and the experimental data of KVI. It is shown that it appears
for kinematics for which the dominant contribution comes
from terms which involve the elasticT matrix evaluated at
laboratory kinetic energies below about 15 MeV. It is thus
inferred that at least an important part of the problem resides
in the description of the low-energyNN interaction. Since at

such low energies the Coulomb interaction becomes impor-
tant, we also investigate its role inpp bremsstrahlung. This is
done within a toy model for bremsstrahlung, in which only
the pp interaction in the1S0 channel is considered.

The paper is organized as follows. The main ingredients
of the Martinuset al. model for bremsstrahlung are pre-
sented, its predictions are compared with the KVI experi-
mental data, and possible sources of the mentioned discrep-
ancy are investigated in Sec. II. In Sec. III a toy model for
bremsstrahlung is developed. Coulomb corrections to the
strong interaction are included and the sensitivity of the
bremsstrahlung observables on the low-energyNN interac-
tion is demonstrated. We then show that the discrepancy be-
tween theory and experiment can be partly removed by im-
proving theNN potential in the low-energy region(Sec. IV).
We end by summarizing our conclusions.

II. A COVARIANT MODEL FOR BREMSSTRAHLUNG
AND COMPARISON WITH DATA

A. A relativistic covariant model

In this section, the main ingredients of the Martinuset al.
model [11,12] for bremsstrahlung are summarized. In rela-
tivistic field theories theT matrix for the scattering of two
nucleons is a solution of the inhomogeneous Bethe-Salpeter
(BS) equation

Tsp, p8;Pd = Vsp, p8d − i E d4k

s2pd4Vsp, kdS2sk, PdTsk, p8;Pd,

s1d

where S2sp, Pd is the free two-body propagator which is
given by the direct product of two one-particle, free-
fermion propagators with relative momentump and total
momentumP. The NN-interaction kernel is chosen to be
given by the one-boson exchange model of Fleischer and
Tjon f16g. In this one-boson exchangesOBEd model the
strong interaction is described by the exchange of a few
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mesons:p, r, d, h, v, and e sor sd. The tree-level OBE
potential is presented in Appendix A.

Within the OBE model the full BS equation can in prin-
ciple be solved. In practice, this is a highly nontrivial task
due to the four-dimensional integrals, which need to be com-
puted in a space with an indefinite metric and due to the pole
structure of the propagators. Therefore, a quasipotential ap-
proximation is usually made. This consists in replacing the
two-particle propagator by one in which the relative energy
is restricted, but properties such as two-particle unitarity and
relativistic covariance are maintained. One such possible
choice, which will be used in the following, due to
Blankenbecler-Sugar-Logunov-Tavkhelidze[17] (known as
BSLT or equal-time approximation), consists of replacing the
scalar part of the two-nucleon propagator,

G0 =
1

s 1
2P + pd2 − M2 + ie

1

s 1
2P − pd2 − M2 + ie

s2d

by

G2
BSLT= ip

1

Ep − E

1

sEp + Ed2dsp0d. s3d

The two-particle propagator becomes

S2
BSLTsp, Pd =

1

2
sEp − Eddsp0dSs1dsp, PdSs2dsp, Pd, s4d

whereE= 1
2P0 and Ep=Îp2+M2. Using the above form of

the propagator the integration over the relative energy can
be performed in the BS equation. One is left with the
BSLT equation, which can be handled more easily from a
practical point of view,

Tsp̂, p̂8;Pd = Vsp̂, p̂8d

− i E d4k

s2pd4Vsp̂, k̂dS2
BSLTsk̂, PdTsk̂, p̂8;Pd,

s5d

where the four-momentumk̂ is restricted by thed function
in S2 such that in the center-of-mass frame of the two

nucleons its time component is zero, i.e.,k̂0=0.
The BSLT equation can be solved in a partial-wave basis

[18]. The partial-wave decomposition yields a system of
coupled one-dimensional equations for the partial-wave am-
plitudes. The equation is solved keeping also the contribu-
tions from negative-energy states both as intermediate states
or initial (final) states. The latter case is relevant only when
one considers the half or the fully off-shellT matrix. The
on-shellT matrix was fitted to thenp phase shifts of Arndtet
al. [19] by varying the meson-nucleon coupling constants.
The OBE model presented here has been successfully ap-
plied to the case of electron-deuteron scattering[18].

The electromagnetic nuclear current can be split into two
parts: the one-body and the two-body current, the former
giving the dominant contribution in the energy region we are
considering. The invariant amplitude of the bremsstrahlung
process isMfi=emkfuJmuil, with em the polarization four-vector
of the emitted photon, whileJm is the nuclear current, which
has its matrix elements given by

K fUJmuil =Kp8, P8UTsp8, p̃;P8dSs1dsp̃, P8dGm
s1dsqdup, Pl +Kp8, P8UGm

s1dsqdSs1dsp̃8, PdTsp̃8, p;Pdup, Pl

+ s1 ↔ 2d − i E d4k

s2pd4kp8, P8uTsp8, k8;P8dSs1dsk8, P8dGm
s1dsqdS2sk, PdTsk, p;Pdup, Pl. s6d

The first two terms correspond to what is commonly
known as the impulse approximation(IA ). These terms cor-
respond to the sum of all single-scattering diagrams, when
the photon is emitted by one of the external legs. Consis-
tency with the equal-time approximation imposes that the

dependence of the elasticT matrix on the off-shell energy of
the particle from which the photon is emitted is neglected.
This amounts to omitting the retardation effects. It was
shown by Martinuset al. [12] that this introduces uncertain-
ties of at most 10% at 280 MeV. For the case of the KVI
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FIG. 1. Single-scattering diagrams contributing to the impulse
approximation[(a) and (b)] and the rescattering diagram contribu-
tion (c). Diagrams in which the photon couples to only one of the
protons are shown.
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experiment at 190 MeV, the effects are even smaller. In more
detail, the expression for one of the IA contributions(final-
state emission from leg 1) is

kf uJm
sIAduil = kp18, p28uGm

s1dsqdSs1dsp18 + qd

3Tsp̂18 + q̂, p̂28;p1, p2dup1, p2l, s7d

where the hat over some momenta labeling the elasticT
matrix means that in the center of mass of the nucleons
their zeroth component will be set equal to zero.

The last term in Eq.(6) is the rescattering contribution to
bremsstrahlung(see Fig. 1). The four-dimensional integral
appearing here is easily reduced to a three-dimensional one
[11,12] since, as a result of the equal-time approximation, the
elasticT matrix appearing in the integrand does not depend
on the relative energy of the two nucleons,k0. Thek0 integral
for the rescattering diagram(the photon being emitted by the
particle labeledi) is then of the form

I0
sid =E dk0

2p
Ssidsk0, kW − qW ;E8dGm

sidsqdS2sk0, kW ;Ed, s8d

with sv, qWd the photon four-momentum, and can easily be

evaluated analytically;S2sk0, kW ;Ed is the two-particle free
propagator. This is consistent with the equal-time frame-
work used for treating the elasticNN problem.

In addition, contributions from the two-body currents, de-
picted in Fig. 2, have been considered. They include contri-
butions from the meson-exchange currents(MEC) and theD
isobar. Details are presented in Appendix B.

For the case ofpp bremsstrahlung theNNg vertex is taken
to be

Gm
sidsqd = eSgm

sid −
ik

2M
smn

sid qnD , s9d

where e is the proton electric charge andk=1.79 is the
anomalous magnetic moment of the proton. Within the
present model,NN partial waves of angular momentum up
to and includingJ=9 have been considered. This is the
case for all figures if not otherwise stated. In our analysis
it was convenient to sometimes restrict the model to par-
tial waves up to and includingJ=2, which is being men-
tioned at the pertinent places.

B. Comparison with data

In Fig. 3 we have plotted the bremsstrahlung predictions
of the relativistic model for a few kinematical regions, as a
function of the angle of the emitted photonsugd or of one the
outgoing protons. The polar angles of the outgoing protons
are denoted byu1 and u2, the emitted photon being on the
same side of the incident beam as the outgoing proton 1. For
comparison, the experimental results of the KVI experiment
[15], performed at a proton energy of 190 MeV, are plotted.
For two of the kinematics plotted here(namely,u2=16°,ug

=145° and u1=8°,u2=16°), a large discrepancy between
theory and experiment is observed[20]. In both cases the
discrepancy appears at angles where the cross section has a
peak. The same type of discrepancy is present also for other
kinematics of the KVI experiment, which are not presented
here. Still, for a number of kinematical regions theory and
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FIG. 2. The Born terms of the two-body current bremsstrahlung.
The first one is a MEC contribution, the other two are contributions
of the D isobar.

FIG. 3. Bremsstrahlung cross sections and analyzing powers at
Tlab=190 MeV incoming proton kinetic energy for several kinemat-
ics. In the left panelu2=16°,ug=145° andu1=16°,ug=145° as a
function of the remaining outgoing proton angle; in the right panel
u1=8°,u2=16° andu1=16°,u2=19° as a function of the photon angle
ug. Predictions of the Martinuset al. model are compared with data
of the KVI experiment. The dashed line includes contributions only
from the nucleonic current, while for the full line MEC and theD
isobar contributions were also taken into account.
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experimental data are in reasonable agreement. Two such
cases are presented here:u1=16°,ug=145° andu1=16°,u2
=19°. The size of the discrepancy is disturbing, since the
ingredients that go into the computation of the bremsstrah-

lung amplitude(NN interaction,NNg vertex) are thought to
be well understood and described.

As already mentioned, various contributions have been
considered in the Martinuset al. model for bremsstrahlung:
nucleonic (impulse approximation and rescattering dia-
grams), MEC andD-isobar contributions. We note that it is
unlikely that the discrepancy is due to a poor description of
the MEC andD-isobar terms, since their contributions for the
kinematics studied here is small, especially at the position of
the cross-section peaks(see Fig. 3). We will thus concentrate
on the nucleonic contribution. The contribution of the rescat-
tering diagram is important(Fig. 4), giving a sizable de-
crease of the cross section, with respect to the IA result,
when both the positive- and negative-energy states are con-
sidered. The main part of its contribution comes from cou-
pling to the negative-energy states, the positive-energy state
contribution is modest(compare the dashed and the dash-
dotted curves). Negative-energy state contributions from the
IA diagrams and from the rescattering diagram cancel each
other to a large extent as can be seen from Fig. 3. This has
been shown to hold up to photon energies of about 100 MeV
[12]. The cancellation becomes exact in the limit of photon
energy going to zero, as required by the soft-photon theorem
for bremsstrahlung[21]. Keeping only the positive-energy
states is thus a good approximation to the full nucleonic
result. We conclude that the mentioned discrepancy already
resides at the level of IA diagrams. For the IA diagrams, we
have determined contributions of the different partial waves
separately. This allows us to understand the difference be-
tween kinematical regions likeu1=8°,u2=16° and u1
=16°,u2=19° in order to discover the possible source of these
discrepancies. The results for the first fewNN partial waves
contributing toppg, at the region of the cross-section peaks,
are shown in Table I. From this table it is clear that for the
specific kinematics we have chosen, only a few partial waves
are important for bremsstrahlung:1S0,

3P1, and3P2.
A further insight is obtained once the kinematics of the

four cases are analyzed. There are two distinct energy values
at which the elasticT matrix is evaluated: one is the kinetic

FIG. 4. The effect of the negative-energy states on the brems-
strahlung cross section is illustrated for two kinematics atTlab

=190 MeV for u1=8°,u2=16° andu1=16°,u2=19°. Calculations in-
cluding both the negative- and positive-energy statess+/−d or only
the positive-energy statess+d are shown. Results for the impulse
approximation(IA ) and the full nucleonic(IA+rescattering) contri-
butions are shown. It is seen that the full calculation with only
positive-energy states included is close to the full calculation with
both positive- and negative-energy states included, in agreement
with the soft-photon theorem for bremsstrahlung.

TABLE I. Cross sections, inmb/sr2 rad, for different kinematicsu1,u2,ug, split up in partial waves, radiation from initial and final proton
legs, and the total; only contributions from the positive-energy states have been considered. The results of the last four rows of the table are
obtained by considering all the partial waves up toJ=2 together. The kinematics correspond to the backward peak in the cross section.
Similar results are found for different values ofug, while keepingu1 andu2 fixed.

u1, u2, ug

8°, 16°, 139.5° 16°, 19°, 159.3°

Initial Final Total Initial Final Total
1S0 1.802 0.001 1.805 0.441 0.001 0.444
3P0 0.012 0.000 0.013 0.006 0.000 0.006
3P1 0.049 0.093 0.125 0.061 0.122 0.186
3P2 0.159 0.254 0.427 0.192 0.374 0.567
1D2 0.000 0.002 0.003 0.001 0.000 0.002

Initial 2.165 0.889
Final 0.456 0.730

External legs 2.507 1.556
External legs1rescattering 2.372 1.721
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energy of the projectile proton(in the case of the final-state
bremsstrahlung), and the other one is the kinetic energy of
the outgoing proton(initial-state bremsstrahlung). The latter
can be very low, since the emitted photons are energetic. For
the rescattering diagram, both cases occur, since the elasticT
matrix is evaluated at high energy before emission and at low
energy after emission. In Fig. 5, the energysTlab=fsE18
+E28d

2−spW1+pW2d2g/2M−2Md at which the elasticNN T matrix
is evaluated is plotted as a function of the unspecified proton
angle(u1 or u2) (left panel), and as a function of the photon
angle(right panel). The two panels correspond to the kine-
matics presented in Fig. 3. It is seen that the kinematical
points in disagreement with the experiment correspond to
those for which the elasticT matrix is evaluated at low en-
ergies(of the order of 10 MeV). The lowest energies corre-
spond to the cross-section peaks. For theu1=16°,ug=145°
andu1=16°,u2=19° cases the elasticT matrix is evaluated at
energies above 25 MeV.

In Fig. 6 we have plotted the difference between the the-
oretical and experimental values of the differential cross sec-
tion as a function of the kinetic energy of the outgoing pro-
tons Tlab for the four kinematical cases presented here. It
supports the previous conclusion that there is a systematic
large discrepancy between the theory and experiment for the
cases for which the energy of the outgoing proton system is
less than 15 MeV. A similar figure, with data points for other
kinematical regions, has been presented in Ref.[22]. An in-
crease of the discrepancy with the decrease of the kinetic
energyTrel is seen.

The above considerations lead us to the conclusion that a
significant discrepancy is present for the kinematics for

which the finalpp system has a low kinetic energy. We note
that in both the single-scattering diagrams and the rescatter-
ing diagram the elasticT matrix enters, evaluated at this low
energy. It is thus plausible that part of the problem resides in
a poor description of the elasticT matrix at low energies, and
since at low energies most of the interaction goes via the1S0
channel, we conclude that this partial wave is at the origin of
most of the observed discrepancy[20]. For both cases pre-
sented in Table I,3P waves are important: for theu2
=16°,ug=145° case they are somewhat less important than
the 1S0 partial wave, while for theu1=16°,ug=145° kinemat-
ics their contribution is dominant. Important contributions of
the 3P waves arise in diagrams in which the elasticT matrix
is evaluated at high energies. For an accurate description of
bremsstrahlung, it is thus necessary that the3P waves are
accurately reproduced by the OBE model we use at an en-
ergy equal to that of the incoming proton. But, since kine-
matics dominated by3P waves are in good agreement with
the experiment(suggesting a reasonable description of these
partial waves), we will concentrate on the1S0 partial-wave
contributions to theNN potential.

An additional concern comes from the fact that since we
are dealing with charged particles, Coulomb corrections have
to be accounted for. A complete treatment of the Coulomb
interaction within the framework of a nonrelativistic poten-
tial model is given in the classical paper of Heller and Rich
[3]. The cross section for pure Coulomb bremsstrahlung has
been shown to be small(of the order of nanobarns), and thus
it will be of no practical importance to consider it. However,
the Coulomb corrections to the strong bremsstrahlung ampli-
tude might be important. Including them in a relativistic
model is difficult due to the long-range nature of the Cou-
lomb interaction. We will study their effect on theppg cross
section within a toy model, which is the topic of the follow-
ing section.

III. TOY MODEL OF BREMSSTRAHLUNG

To investigate the effect of the Coulomb force, a simple
nonrelativistic model for bremsstrahlung is developed. The
NN interaction will be treated using a simple separable po-
tential. Only contributions from the1S0 partial wave are con-

FIG. 5. Kinetic energy of the incoming proton at which the
elasticNN T matrix is evaluated in the case of initial state brems-
strahlung, for the kinematics discussed in the text. For the case of
final-state bremsstrahlung theT matrix is evaluated at 190 MeV.

FIG. 6. The difference between the theoretical predictions of the
covariant bremsstrahlung model and the experimental results of the
KVI experiment, shown as a function of the kinetic energy of the
outgoing protons(in a frame in which one of the protons is at rest).
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sidered here. The bremsstrahlung amplitude is computed by
evaluating the matrix elements of the electromagnetic current
between incoming and outgoing Coulomb waves. For clarity,
we will start by summarizing some of the conventions used.

The full Hamiltonian of our problem is given by

H = H0 + VC + VS, s10d

with H0 being the free-particle Hamiltonian, whileVC and
VS are the Coulomb and the strong potential, respectively.
The eigenvalue problems, in a concise notation, for the
free particle, a particle in a Coulomb potential and a par-
ticle in a Coulomb + strong potential are given, respec-
tively, by

H0upWl = E0upWl, s11d

sH0 + VCducpWl = ECucpWl,

sH0 + VC + VSdufpWl = ESCufpWl.

Starting from the Schrödinger equation one can also intro-
duce the Green’s functionsspropagatorsd with appropriate
boundary conditions. We will make use of the retarded
and advanced propagators, denoted byGs+d andGs−d, with
appropriate subscripts:0 for the free propagator,C for the
Coulomb modified propagator and SC for the total propaga-
tor,

Gs±dsEd =
1

E − H ± i«
. s12d

The relations between the energy states introduced in Eq.
s11d are

ucpW
s±dl = f1 + GC

s±dVCgupWl, s13d

ufpW
s±dl = f1 + GSC

s±dsVC + VSdgupWl, s14d

ufpW
s±dl = f1 + o

n=1

`

sGC
s±dVSdngucpW

s±dl. s15d

A. The two-potential formalism

The two-potential formalism was developed[23,24] to
deal with situations when physical processes are influenced
by two interactions(potentials) and one of them needs to be
treated nonperturbatively, while for the other one a perturba-
tive expansion suffices. Such a case is met in practice when
the strong interaction is studied in regions of the phase space
where the Coulomb interaction is known to be of some rel-
evance.

Starting from theS matrix

Sfi = kfp8W
s−dufpW

s+dl s16d

and using the Lippmann-Schwinger equation for the full
wave function

fpW
s±d = cpW

s±d + GC
s±dVSfpW

s±d, s17d

or its formal solution

fpW
s±d = cpW

s±d + Gs±dVScpW
s±d, s18d

it is straightforward to arrive at

Sfi = kcp8W
s−ducpW

s+dl + kcp8W
s−duGC

s+dsEpWdVSufpW
s+dl

+ kcp8W
s−duVSG

s+dsEp8W dufpW
s+dl. s19d

One then makes use of the fact that the Coulomb waves
and the full waves are eigenvectors of, respectively, the
Coulomb and the full propagator,

Sfi =Kcp8W
s−ducpW

s+dl +
1

Ep − Ep8 + i«Kcp8W
s−dUVSufpW

s+dl

+
1

Ep8 − Ep + i«
kcp8W

s−duVSufpW
s+dl

= kcp8W
s−ducpW

s+dl − 2ipdsEp8 − Epdkcp8W
s−duVSufpW

s+dl

= kcp8W
s−ducpW

s+dl − 2ipdsEp8 − Epdkfp8W
s−duVSucpW

s+dl. s20d

The equivalent expression for theT matrix reads

Tfi = kp8W uVCucpW
s+dl + kcp8W

s−duVSufpW
s+dl

= kp8W uVCucpW
s+dl + kfp8W

s−duVSucpW
s+dl = Tp8W ,pW

C + Tp8W ,pW
SC . s21d

We will apply this formalism to theppg process. The
derivation in this section is general and for the moment we
will adopt a simple expression for the electromagnetic opera-
tor (ignoring the magnetic moment of the proton) and will
suppress writing frame transformations explicitly. The pur-
pose is to split the bremsstrahlung amplitude in a few terms
which will be easier to understand from a diagrammatical
point of view. We will consider the following Hamiltonian
for the emission(or absorption) of photons,

Hem=
q

m
AW · PW . s22d

The starting point is the expression for theT matrix ele-
ment for bremsstrahlungf23,25g,

Tsp8W , pWd = kfp8W
s−duHems1d + Hems2dufpW

s+dl, s23d

since both protons can radiate. One can make use of Eq.
s15d to express the total wave function in terms of the
Coulomb wave function. The bremsstrahlung amplitude is
seen to split into three pieces. These are, respectively,

(1) Pure Coulomb bremsstrahlung. This would give the
full amplitude if the strong interaction would be turned off,
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TCoul = kcp8W
s−duHemucpW

s+dl =E dp9W kcp8W
s−ducp9W

s+dlkcp9W
s+duHemucpW

s+dl.

s24d

It is of small importance, as has been shown by various
authors and we will not consider it in the actual computa-

tion. HereSsp8W , pWdC=kc
p8W
s−ducpW

s+dl is the pure Coulomb elastic
S matrix.

(2) External-legs bremsstrahlung. There are two contribu-
tions of this type: initial-state bremsstrahlung, i.e., the pho-
ton is first emitted and then the interaction between the two
protons takes place, and final-state bremsstrahlung. The ex-
pressions for these processes are given by

TSC
sid = kfp8W

s−duVSGC
s+dsEfdHemucpW

s+dl

=E dp9W kfp8W
s−duVSucp9W

s+dlkcp9W
s+duGC

s+dsEfdHemucpW
s+dl, s25d

and

TSC
sfd = kcp8W

s−duHemGC
s+dsEidVSufpW

s+dl

=E dp9W kcp8W
s−duHemGC

s+dsEiducp9W
s−dlkcp9W

s−duVSufpW
s+dl, s26d

Tsp8W , pWdSC=kc
p8W
s−duVSufpW

s+dl being the elastic Coulomb-
corrected strongT matrix, as given by the two-potential
formalism.

Rescattering contribution

TSC
srescd = kfp8W

s−duVSGC
s+dsEfdHemGC

s+dsEidVSufpW
s+dl

=E dp9W dp-W kfp8W
s−duVSucp9W

s+dl

3kcp9W
s+duGC

s+dsEfdHemGC
s+dsEiducp-W

s−dlkcp-W
s−duVSufpWl.

s27d

This term is not considered any further in the present calcu-
lation, since its contribution is expected to be very small due
to the fact that theNN potential only acts in the1S0 channel.

B. Elastic pp scattering with a separable potential

Separable potentials have been used in the past as a
simple approximation to theNN potential [26,27]. Such an
approximation is suitable for regions near a bound-state pole
[28]. Since the1S0 interaction has such a pole nearE=0, the
separable interaction in this partial wave is a good approxi-
mation. The potential is taken to be of the form

Vsp8, pd = lgsp8dgspd. s28d

Depending on the explicit expression ofgspd, there can be
additional parameters besides the coupling constantl. They
can be determined by fitting the scattering amplitude to the
effective-range expansion, i.e., the scattering lengtha and the
effective rangere. For thenp system the standard effective-

range formula for the casea=0 has to be reproduced, while
in the case of thepp system the modified effective-range
formula is used, i.e.,

pscot d − id = −
1

2p2m

e2is0

TSCspd
, s29d

Ch
2pscot d − id + amHshd = −

1

aC
+

1

2
r0p

2,

with

Ch
2 =

2ph

e2ph − 1
, h =

am

2p
. s30d

The conventional effective-range formula is obtained by
taking the limit a→0 in Eq. s29d above.

In the absence of Coulomb interactionsa=0d, the elasticT
matrix is obtained by summing the perturbative series expan-
sion, which is of the form of a geometric series,

Tp8W ,pW = o
n=0

` Kp8W UVSfG0
s+dsEdVSgnupWl =

lgsp8dgspd
1 − lI0spd

, s31d

with the loop integral given by

I0spd =E d3kWgskd2 m

p2 − k2 + i«
. s32d

The form factorgspd is chosen such that the loop integral
is convergent.

When the Coulomb interaction is added, the potential re-
mains separable. One can treat the problem as if only one
potential was present, separable, with the matrix elements
between plane waves given byVsp8, pd=lgcsp8dgcspd. In or-
der to derive an expression forgcspd, one starts from the
expression of the Coulomb-correctedT matrix,

Tp8W ,pW
SC = o

n=0

`

kcp8W
s−duVSfGC

s+dsp2/mdVSgnucpW
s+dl. s33d

By inserting a complete set of states at various places one
can easily derive that the Coulomb-correctedT matrix can be
written in the form

Tp8W ,pW
sSCd =

lgcsp8dgcspdeis0sp8d+is0spd

1 − lIspd
, s34d

Ispd =E d3kWgcskd2 m

p2 − k2 + i«
,

with gcspd given by

gcspd =E d3kWgskdkcpWukWl, s35d

wherekcpWukWl is the Coulomb wave function in the momen-

tum representation. Fora=0 it reduces tod3spW −kWd and
thusgcspd=gspd, as it should be. For the particular case of
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an S-wave potential the expression ofgc can be shown to
be

gcspd =
2

pp
E

0

`

dr rF0sprdE
0

`

dqq2gsqd j0sqrd. s36d

Here F0sprd is the regular Coulomb wave function forl
=0, while j0sqrd is the spherical Bessel function. Using
this relation one can in principle determinegc and then use
it to determine the Coulomb-corrected elasticT matrix.

In the following calculations a specific choice for thegspd
form factor has been made,

gspd =
1

p2 + b2 , s37d

which will reproduce the effective-range formula expres-
sion, plus a term proportional top4. In this particular case
an analytical expression for the couplings, in terms of the
strong scattering length and effective range, can be ob-
tained,

l =
2b3

p2ms1 − rebd
, s38d

b =
3

2re
S1 +Î1 −

16re

9a
D .

Also the Coulomb-corrected form factorgc can be ob-
tained analyticallyf29g,

gcspd =
1

p2 + b2Chspde
2h arctansp/bd, s39d

but the loop integral which appears in the expression of
the elasticT matrix has to be evaluated numerically. TheT
matrix has been fitted to reproduce the experimental1S0
phase shifts of both anp and app potential. The results
are plotted in Fig. 7, where plots of anp+Coulomb and a
pp without Coulomb system are also plotted to show the
effect of the Coulomb interaction on the phase shifts.
Since in the computation of bremsstrahlung theT matrix
at an off-shell point is needed, we have plotted in Fig. 8
both the real and the imaginary part of the elasticT matrix
for the pp potential and have shown which are the effects
of Coulomb interaction on them. In the region needed for
the KVI bremsstrahlung experiment, namely high off-shell
momenta, the influence of Coulomb interaction is small.
The difference between our computation and the one of
Ref. f29g lies in the real part of the loop integral: we
compute its exact value numerically, while in Ref.f29g
only an approximate, though rather accuratesthere, only
the first term of the power expansion ina was keptd ex-
pression is derived.

C. Bremsstrahlung

To compute the bremsstrahlung amplitude only the con-
tributions from the external legs were kept,

SSC
sinid = mE dpW9Tp8W ,p9W

SC 1

p8W 2 − p 9W 2 + i«
kcp 9W

s+duHemucpW
s+dl s40d

and

SSC
sfind = mE dpW9Kcp8W

s−dUHemucpW
s−dl

1

pW2 − p 9W 2 + ie
Tp 9W ,pW

SC .

s41d

These terms are evaluated in the center of mass of the
incoming and outgoing protons, respectively, and then
boosted to the frame of interest. The matrix elements of the
electromagnetic vertex are evaluated in coordinate space by
first making a partial-wave expansion of the Coulomb and
plane-wave functions, computing the angular integrals ana-
lytically and the radial integrals numerically. Explicit expres-
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FIG. 7. Phase shifts for the separable potential withgspd
=1/sp2+b2d for pp andnp scattering(both in the absence and pres-
ence of the Coulomb interaction). For thenp systema=−23.7 fm
and re=2.62 fm, while for the pp system a=−7.79 fm and re

=2.48 fm; when the Coulomb interaction is switched off, for thepp
system, these parameters becomeassd=−18.1 fm andre

ssd=2.60 fm.
For comparison, also the phase shifts for thenp (triangles) andpp
(circles) cases as given by the PWA93 analysis are shown.
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FIG. 8. TheT matrix as a function of the off-shell momentumk,
for the separable potential withgspd=1/sp2+b2d at a laboratory en-
ergy of 10 MeV. The curves describe app system in the presence
(dashed and dotted lines) or absence(full and short-dashed lines) of
the electromagnetic interaction.
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sions of the Coulomb wave functions in coordinate space can
be found in Ref.[30]. Due to the fact that we deal only with
a 1S0 strong potential the summations over various angular
momenta involved simplify considerably. Finally, the inte-
gral over the off-shell momentum is performed numerically.
Checks have been performed by comparing the numerical
result with the analytical result fora=0. Details of the cross-
section computation formalism will be omitted; we refer to
[24] for a general discussion and to[25] for the specific case
of bremsstrahlung.

The influence of the Coulomb interaction on theppg cross
section has been studied before[8,3,31,32]. Large effects
have been reported for the case of small symmetric outgoing
proton anglessu1=u2d and low energy of the incoming pro-
tons[3]. This is due to the fact that for this particular case the
elasticT matrix is probed at low energy, case for which the
Coulomb corrections are large(Fig. 8). For energies of the
projectile proton higher than 100 MeV, the effect of includ-
ing the Coulomb interaction was shown to be small(of the
order of a few percent), for certain kinematics with symmet-
ric outgoing protons.

Our findings are consistent with the above mentioned re-
sults, as can be seen from Fig. 9. There we present the effect
of the Coulomb interaction on the differential cross section
for the two kinematics already discussed in the previous sec-

tions. It is seen that the effect of Coulomb interaction is
indeed small and it amounts to at most 1% of the total cross
section. We have considered other shapes of the form factor
gspd in Eq. (28) than the already mentioned one as well. Also
in these cases the Coulomb corrections to theppg cross sec-
tion were found to be small. Furthermore, we have com-
puted, as a check, some of the low-energy kinematics pre-
sented in Ref.[3] and found a good agreement. Coulomb
corrections to the bremsstrahlung cross section can be impor-
tant even for the case of a projectile proton with kinetic
energyTlab=190 MeV if the energy of the outgoing protons
is very small. One such situation is presented in Fig. 10. The
amount of the Coulomb correction varies rapidly as a func-
tion of u1 and can vary from 22% foru1=1° to less than 1%
for u1=5°. This is due to a rapid variation of the kinetic
energy of the outgoing protons as a function ofu1: it is as
low as 1.6 MeV foru1=1° and increases to 18 MeV foru1
=5°. This type of kinematical region has not been probed by
the KVI experiment, where the lowest value of the energy of
the outgoing protons was around 10 MeV.

Coulomb effects in the higher partial waves are thought to
be negligible. This is due to the fact that higher partial-wave
contributions enter via terms evaluated at high energies. In
the presented kinematical situations, a full calculation of the
Coulomb effects(including the higher partial waves) will not
reveal a bigger effect than the one already observed for the
1S0 wave, which was at most 1%. We conclude that in the
kinematical regions probed by the KVI experiment the Cou-
lomb corrections are not important, excluding them as a pos-
sible source for the observed discrepancy between the model
and the data.

From the expressions of the external-legs contributions to
bremsstrahlung, it can be seen that the Coulomb corrections
can appear in two places: the half off-shell elasticT matrix
TSC and the two-body operator(propagator plus the electro-
magnetic vertexkCs±duHemuCs±dl), as can be seen from Eqs.
(40) and (41). One can study in which of the two terms the
Coulomb corrections are bigger. For that one can switch off,
alternatively, the Coulomb corrections in the elasticT matrix

FIG. 9. Bremsstrahlung cross sections atTlab=190 MeV incom-
ing proton kinetic energy for two different kinematics:u2=16°,ug

=145° as a function ofu1 andu1=8°,u2=16° as a function ofug. The
results were obtained using the toy model for bremsstrahlung de-
scribed in this section. Calculations with(dotted line) and without
(full line) Coulomb corrections are shown, but the two are difficult
to distinguish in this plot, due to the small difference between them.

FIG. 10. Differential cross section for bremsstrahlung for vari-
ableu1. This particular set was chosen to illustrate the dependence
of the Coulomb contribution as a function of the energy of the final
protons. For the point atu1=1° the elasticT matrix is evaluated at
an energy of 1.6 MeV for the initial-state emission diagram. The
energy of the final protons is lowest foru1=1°.
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and in the two-body operator. The results are presented in
Table II for the following two kinematics:u1=1°,u2=7°,ug

=150° andu1=8°,u2=16°,ug=130°. The effects of the Cou-
lomb corrections in the elasticT matrix [the column denoted
by Jsa=0d] and in the two-body operator[the Telsa=0d col-
umn] seem to have opposite effects: Coulomb effects in the
elasticT matrix alone seem to lower the cross section for the
first kinematics while it seems to increase it for the second.
Coulomb effects in the two-body operator alone decrease the
cross section in both cases, but much more than in the full
result. One concludes that both ingredients are necessary if
the Coulomb effect on bremsstrahlung is to be described ac-
curately.

IV. SENSITIVITY OF BREMSSTRAHLUNG TO THE NN
INTERACTION

In order to study the effect of the separable1S0 potentials
on theppg cross section in a realistic model we have modi-
fied the OBE model of Fleischer and Tjon. We have dis-
carded any contribution from the negative-energy states,
since when properly treated their effect on the bremsstrah-
lung cross section at 190 MeV is small[11,12]. Furthermore,
we have only kept partial waves up to a total angular mo-
mentum J=2. Contributions of higher partial waves, al-
though not explicitly shown here, are small. We have, how-
ever, replaced the1S0 partial-wave amplitude with the one
given by the separablepp potential of the preceding section.
The consequences of considering such a potential, forpp
bremsstrahlung, are shown in Fig. 11. Calculations were per-
formed using the Martinuset al. model for bremsstrahlung.
This calculation adds to the results from Fig. 9, since contri-
butions from the magnetic moment of the proton and from
higher partial waves are included here as well. For the kine-
matics for which we have shown that the1S0 partial wave is
dominant, some differences with respect to the original OBE
model are observed. We conclude that an accurate descrip-
tion of the1S0 wave is important for an accurate description
of bremsstrahlung.

We observed that the discrepancies between our model
and the KVI data appear in kinematical regions where the
ppg amplitude is dominated by contributions from the1S0
partial wave. Two possible sources for this inaccuracy were
identified, the difference between app and anp potential in
this region and Coulomb corrections to the elasticT matrix.
Regarding the interference of the strong and the Coulomb
interaction, we have shown in the preceding section that the
difference between the pure strong bremsstrahlung and the
Coulomb-modified strong bremsstrahlung is of the order of
1% at the peaks of the cross section for kinematics specific to

the KVI experiment. One concludes that at least part of the
discrepancy has its origin in the fact that originally the strong
interaction was fitted to a potential with a scattering length
a=−23.7 fm, which corresponds to anp system. Given the
fact that for the KVI kinematics the Coulomb corrections are
small, a fit of the strong interaction which would givea
=−17.1 fm should be performed, since the OBE model does
not incorporate the Coulomb interaction explicitly. Such a fit
is performed by fitting the phase shifts of the model in ques-
tion to the experimentally available ones. Extracting such
phase shifts from thepp ones is model dependent. Lacking a
model which incorporates both the Coulomb interaction and
the relativistic OBENN interaction, we have performed a fit
of the relativistic OBE model of Fleischer and Tjon to thepp
phase shifts of the PWA93[33] analysis. Results using this

TABLE II. The origin of the Coulomb corrections can be revealed by settinga=0 in the Coulomb-
corrected elasticT matrix TSC and in the two-body operatorJ in Eqs.(40) and(41) alternatively. Results for
no Coulomb corrections at allsa=0d and the full resultsa=1/137d are also presented.

u1 u2 ug a=0 a=1/137 TSC sa=0d J sa=0d

1° 7° 150° 8.3665 6.5480 7.9101 6.9462
8° 16° 130° 0.8958 0.8870 0.8525 0.9323

FIG. 11. Bremsstrahlung cross sections atTlab=190 MeV in-
coming proton kinetic energy for two different kinematics:
u1=8°,u2=16° andu1=16°,u2=19° as a function ofug. In the OBE
model the1S0 partial wave has been replaced with the one obtained
from the separable potential, resulting in the dotted curve, to be
compared with the original OBE result(the full line).
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refitted potential have already been presented in a previous
paper[20]. The range of the fit was from 5 to 215 MeV, the
lower limit has been chosen having in mind that below this
energy Coulomb effects will grow in magnitude and a fit of
the OBE model to reproduce Coulomb effects will be less
trustworthy as the energy decreases.

In Fig. 12 we compare thepp strong phase shifts of the
Nijmegen PWA93 and those given by the Fleischer-Tjon
OBE model before and after refitting. The new coupling con-
stants for the OBE model are presented in the Table III. For
comparison, the coupling constants before the refit are also
shown. Most of the partial waves have been improved by the
process of refitting. One observes a substantial improvement
of the 1S0 phase shift, which now lies very close to the ex-
perimental strongpp phase shift in the 5–215 MeV range
(shown only up to 50 MeV in the figure). The 3P0 and 3P2
also show a noticeable improvement, being now close to the
experimental data also in the high-energy region. An excep-
tion to the general trend of improvement is the3P1 wave
which is still off in the high-energy region. In one of the
previous sections, this partial wave was seen to give an im-
portant contributions25–30 %d to the cross section even for
kinematics dominated by the1S0 wave.

A possible residual on-shell dependence has been investi-
gated by modifying the elasticT matrix to reproduce the

PWA results exactly and investigating how this modifies the
bremsstrahlung cross section for various kinematics. Using
the results of the PWA93[33] analysis for thepp phase
shifts, the Coulomb-corrected matrix elements in the partial-
wave basis for each value of the total angular momentumJ
have been computed[34]. The partial-wave amplitudes of
the OBE model have then been normalized on-shell to these
experimental values(in the expression below, momenta with
a hat are on-shell, while the others can also be off shell),

Tsp̂, kd = TsPWAdsp̂, p̂d ·
TsOBEdsp̂, kd
TsOBEdsp̂, p̂d

. s42d

This ensures that on shell, the elastic experimental data
are reproduced, while keeping the off-shell structure of the
elasticT matrix as dictated by the OBE model. Again, we
have produced two such modifications to the initial OBE
model: in the first only the1S0 partial wave has been modi-
fied in the described way, while for the second case all partial
waves were subject to this modification. Bremsstrahlung has
been computed by considering only the IA graphs. Partial
waves with an total angular momentum higher than 2 have
also been omitted.

The results are shown in Fig. 13. The case where only the
1S0 wave is modified(dotted line) hardly differs from the
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FIG. 12. A comparison between the Nijmegen PWA93 strongpp phase shifts(dotted line) and two “predictions” of the Fleischer-Tjon
model: the old one used to obtain the result of Fig. 3(dashed line) and the one which resulted from the refit(full line). The phase shifts(in
degrees) are presented as a function of the kinetic energy in MeV in the laboratory frame of the incident proton.

TABLE III. Coupling constants of the Fleischer-Tjon OBE model ofNN interaction before(old) and after(new) the refit.

gp
2/4p ge

2/4p gd
2/4p gh

2/4p gr
V2/4p gr

T2/4p gv
2/4p L

Old 14.20 7.60 0.75 3.09 0.43 19.88 11.0 1.5
New 12.38 5.24 0.33 10.82 0.72 18.51 6.03 1.3
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refitted OBE calculation, suggesting that now the low-energy
behavior of thepp potential is properly reproduced. When all
partial waves are normalized(dashed line), a slight increase
in the cross section is observed for both cases presented, with
a stronger increase for theP-wave dominated kinematics.
This is due to the fact that after the refit theP-waves phase
shifts still deviate at high energies from the experimental
ones, the on-shell normalization causing the elasticT-matrix
in these channels to increase towards the experimental data.
In Table IV we have listed the various partial-wave contri-
butions to the IA graphs both before and after the on-shell
normalization has been performed. Each of the3P1 and 3P2
partial-wave contributions suffer changes of the order of
10–15 %, but when all partial waves are considered together,
the change is at most 5%. We conclude that after the new fit
has been performed there is still a sensitivity to the on-shell
NN interaction, which might trigger a change of at most 5%
in the bremsstrahlung cross section once a perfect fit to the
elasticNN scattering data is obtained.

To conclude, we present the cross section and analyzing
power predictions for the new fit. The fullppg model is used,
contributions from the negative-energy states and two-body
currents being thus included. From Fig. 14 it is seen that the

cross-section predictions for theu2=16°,ug=145° and u1
=8°,u2=16° are improved by the new fit. A decrease of the
discrepancy has been achieved by improving the low-energy
part of the strong interaction, but a sizable discrepancy re-
mains. Turning our attention to the analyzing powers, we
notice that the new fit somewhat improves the predicted val-
ues with respect to the experimental data, especially for the
u2=16°,ug=145° andu1=16°,ug=145°. The overall agree-
ment with the experimental data remains satisfactory, also
due to the fact the experimental values of this observable
carry rather large error bars.

V. FINAL REMARKS

We have demonstrated the sensitivity of the bremsstrah-
lung observables to the low-energyNN interaction. Theppg
cross section at 90 MeV varies strongly throughout the al-
lowed phase space, the maxima corresponding to situations
where the elasticNN T matrix is evaluated at very low ener-
gies. In the cases dominated by the1S0 partial wave, a sig-
nificant discrepancy between theory and experiment has been
previously observed. It was shown here that an important
part of it originates in a poor description of theNN interac-
tion at low energies(the 1S0 channel). For the kinematics
discussed here, the corrections due to the Coulomb interac-
tion were shown to be minor. A similar conclusion was
drawn for the importance of the two-body currents. TheNN
potential was improved by a refit of the Fleischer-Tjon po-
tential to thepp phase shifts in the 5–215 MeV region. This
resulted in an improved1S0 phase shift(especially in the
low-energy region), along with other phase shifts. The ana-
lyzing powers have been improved somewhat due to the refit
of the NN interaction, their rather good agreement with the
experimental data still holding. Using the refitted potential an
improvement in the description of the bremsstrahlung cross
sections is observed. This improvement is mainly due to the
change of the scattering length from the value of annp sys-
tem towards the value of thepp system. However, a sizable
discrepancy, of unclear origin, persists for the cross sections.
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APPENDIX A: TREE LEVEL POTENTIALS IN THE OBE
MODEL

In the OBE model of Fleischer and Tjon contribution of
the following mesons have been included:p, r, d, h, v,
ande. The tree level potentials of the isovector mesonsp, r,
andd are given, respectively, by

Vpsk, pd = − i
gp

2

4M2fg5sk” − p” dgs1dDpsk − pd

3fg5sk” − p” dgs2dtW1 · tW2,

Vrsk, pd = − igr
VSga

s1d −
igr

T

2M
sam

s1dsk − pdmDDr
absk − pd ·Sgb

s2d

−
igr

T

2M
sbn

s2dsk − pdnDtW1 · tW2,

Vdsk, pd = − igd
2Ddsk − pdtW1 · tW2, sA1d

and for the isoscalar mesonsh, v, ande by

Vhsk, pd = − i
gh

2

4M2fg5sk” − p” dgs1dDhsk − pdfg5sk” − p” dgs2d,

Vvsk, pd = − igv
v2ga

s1dDv
absk − pdgb

s2d,

Vesk, pd = − ig«
2D«sk − pd, sA2d

where the bracketed upper indices denote the nucleon on
which operators act,Dspd is the propagator of scalarsd, ed
and isoscalarsp, hd mesons, whileDmnspd is the propaga-
tor of vector mesonssr, vd; k andp are the four-momenta
of the final and the initial nucleons, respectively. To en-
sure the correct behavior at high momenta, a cutoff of the
monopole form,

Fsp2d =
L2

L2 − p2 , sA3d

is introduced at each nucleon-meson vertex, withL being
the cutoff mass. In the present OBE model the same cutoff
mass is taken for each meson.

APPENDIX B: TWO-BODY CURRENT CONTRIBUTIONS
In the Martinuset al. model for bremsstrahlung the two-

body currents have been included in a perturbative way. Be-
sides the Born term, single- and double-scattering contribu-
tions have been considered. The current operator for
contributions from meson-exchange currents(MEC) and the
D isobar has the following expression in the center of mass
of the incoming nucleons:

Jm
MEC+D =E E d4k8

s2pd4

d4k

s2pd4UsLdCsp8, k8;P8dU−1sLdsGm
MEC

+ Gm
DdCsk, p;Pd, sB1d

whereL denotes the Lorentz transformation from the c.m.
system of the final nucleons to the center-of-masssc.m.d
of the initial nucleons,Gm

MEC andGm
D represent the coupling

of a photon to theNN system via MEC or aD isobar, and
C is a two-nucleon scattering state, given for the initial
nucleons by

Csp8, p;Pd = fs2pd4d4sp8 − pd − iS2sp8, PdTsp8, p;Pdgup, Pl,

sB2d

where uPl is an antisymmetrized two-particle plane wave.
In evaluating the four-dimensional integrals the BSLT ap-
proximation is again employed, and further, in performing
the k0 integration, only contributions from the intermedi-

FIG. 14. Cross sections and analyzing powers for bremsstrah-
lung atTlab=190 MeV for the four kinematics discussed in the text.
Full line represents the old calculation while the dashed one repre-
sents the calculation using the new potential. Both calculation were
done considering the full model of Martinuset al. for bremsstrah-
lung. As usual, the experimental data are from the KVI experiment.
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ate nucleonic poles are retained.
In the case ofpp bremsstrahlung the leading-order meson-

exchange contributions, the seagull and the pion-in-flight
terms vanish because in this case the exchanged particles are
neutral. Therefore, the leading contributions come from
decay-type diagrams[Fig. 2(a)]. The coupling of mesons to
nucleons is described identically as in the OBE model. The
vertex of the decay of either of the vector mesons into the
pion and photon is given by

Gvpg
mn = − i

egvpg

2mv
emsntqskt

v. sB3d

The leading contributions involving theD isobar are also
of decay typefFigs. 2sbd and 2scdg. The pND and rND

vertices are taken to be of the form

GpND
m skd =

gpND

mp

QmnsZpdkn,

GrND
mn skd = i

grND

mr

fk”/kQmnsZrd − gmksQansZrdgg5, sB4d

with

QmnsZd = gmn − S1

2
+ ZDgmgn, sB5d

with Z=1/2 within the presented model.
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