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The optical potential approach for low-energy scattering ofh mesons on three-body nuclei is compared to an
exact treatment of theh 3N system using four-body scattering theory with separable interactions ins waves
only. The higher-order terms including the interaction of the struck nucleon with the surrounding nuclear
medium and virtual target excitations in between successiveh scatterings are found to cause important cor-
rections. Effects of final state interaction inh photoproduction on3H and 3He are also studied and sizable
contributions beyond the optical model approach are found.
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I. INTRODUCTION

During the last 10 years much effort has been devoted to
the study of the interaction of anh-meson with very light
nuclei. The attention to this area, called primarily by the
pioneering work of Refs.[1,2], arises from the distinctive
features of theh-nuclear system at low energies. In more
detail we can note the following features.

(i) The hN interaction is characterized by theS11s1535d
resonance located near zerohN kinetic energy. As a conse-
quence, thes-wave part of thehN interaction is attractive
and rather large near threshold. This considerable attraction
which is assumed to be coherently enhanced in nuclei has led
to speculations about the existence ofh-nuclear bound states
which may be formed already inA=3 nuclei. Although a
calculation using an energy-independenthA potential has
confirmed this hypothesis[2], more sophisticated investiga-
tions [3,4] have shown that thehN interaction is unlikely to
yield a boundh 3N system even with a relatively large real
part of the scattering length ReahN=0.75 fm. The pole of the
scattering amplitude “recedes” to the nonphysical sheet gen-
erating ans-wave virtual state. It is important that apparently
the pole is located close to the scattering threshold, resulting
in a strong influence on low-energy scattering and production
processes withh mesons.

(ii ) Concerning the formal aspects, theS11s1535d reso-
nance, dominating the low-energyhN interaction, must dis-
tort the transparent connection between thehN andhA scat-
tering amplitudes. This connection is well established in the
pion-nuclear case within the local-density limit where the
equivalent optical potential is related in a simple fashion to
the elementarypN amplitude[5] (except for real absorption
of pions on few-nucleon clusters). The physical basis of this
fact, giving rise to the so-called impulse approximation of
the optical potential, is a large internucleon separation dis-
tance compared to the range of thepN interaction. On the
contrary, due to the resonance pole in thehN interaction, the
latter must be sizably influenced by the nuclear environment.
Indeed, usingG=75 MeV for theS11s1535d width near the

hN threshold, we obtain for the collision timeDt=2"/G
<1.7310−23 s which exceeds the timeDt="/mp<5
310−24 s associated with the pion-exchangeNN interaction.
Therefore, the validity of the simplest optical potential for
the hA interaction is expected to be doubtful, and more rig-
orous models have to be used.

The purpose of the present paper is to explore the inter-
action ofh mesons with three-body nuclei, a problem which
can be solved exactly using methods developed within four-
body scattering theory. At the same time, the generalization
of the results obtained in this way to heavier nuclei seems to
be more justifiable than in the deuteron case, where the two
nucleons are strongly kinematically correlated and very
weakly bound. Our intention is to analyze the quality of the
first-order optical potential for theh 3N interaction using as
a reference the exact four-body calculation. Since we have
no way of direct fittingh-nuclear scattering cross sections
using a phenomenological potential model, the information
on the low-energyh-nuclear interaction stems entirely from
the assumed properties of thehN interaction and depends
strongly on the model linking these two processes. For this
reason, a thorough microscopic approach to theh-nuclear
dynamics becomes particularly important. On the other hand,
rather complex mathematical infrastructure of the four-body
scattering theory prevents to some extent a simple interpre-
tation of the results. Therefore, we first will clarify the ques-
tion, whether theh-nuclear interaction can be adequately de-
scribed in terms of an optical potential. Furthermore, the
comparison of the four-body results with those obtained us-
ing less rigorous but very tractable approaches, such as the
lowest-order optical potential, may be very fruitful in under-
standing theh 3N interaction mechanism.

There exists already a variety of studies with respect to
the validity of the optical model approach by comparing the
corresponding results with the ones provided by the few-
body scattering equations. In particular, higher-order contri-
butions to the pion- or nucleon-deuteron optical potential
were analyzed in Refs.[6–8]. However, because of the dis-
tinctive properties ofhN low-energy interaction mentioned
above we find it necessary to examine the applicability of the
optical model to thehA scattering as a topic of its own right.

Several aspects concerning the accuracy of the simplest
optical model for the scattering ofh mesons ons-shell nuclei
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were already discussed in Ref.[3]. In particular, it was
shown that the behavior of thehN scattering matrix below
the free threshold has a crucial influence on the results. Here
we address other questions related to the optical potential
approach forh 3N scattering, which as follows.

(i) What is the influence of binding of the participating
nucleon on the elementary scattering process?

(ii ) What is the relative importance of target excitations in
between two successive scatterings on different nucleons?

(iii ) What is the importance of the short-range behavior of
the nucleon-nucleon potential?

The second part of the paper is devoted to coherenth
photoproduction on three-body nuclei

g + 3H/3He→ h + 3H/3He. s1d

These reactions are of special importance inh-nuclear
physics. First, the main driving mechanism ofh photopro-
duction, the photoexcitation of theS11s1535d-resonance, is
well established. This is in contrast to reactions with
nucleons as incident particles, where the main mechanism
connected with the short-range part of theNN interaction
is presumably much more complex and as of yet not well
understood. Second, the energy gap between the coherent
and incoherent thresholds, where theh yield is free from
the strong incoherent background is aboutDEg=7 MeV,
which is appreciably larger than the one on the deuteron
sabout 3 MeVd. This advantage has been partially used in
a recent 3Hesg ,hd3He experiment carried out with the
TAPS facility operating at MAMI f9g. Third, the
h-nuclear interaction, which is most important in thes
wave, must be particularly significant in reactions involv-
ing nuclei with nonzero spin. As a counter example, the
reaction4Hesg ,hd4He, where thes wave in the final state
is totally suppressed, does not show any strong influence
of the final state interactionsFSId. Finally, the dynamics
of reactionss1d may be treated within a few-body scatter-
ing theory, i.e., formally exactly. Though the near-
thresholdh photoproduction on three-body nuclei was al-
ready considered in Ref.f10g within the so-called finite-
rank approximationsFRAd, we reexamine it primarily in
order to show the results of the four-body approach for the
h 3N interaction in the final state.

The outline of the paper is as follows. First, we briefly
review in Sec. II the four-body formalism which is relevant
for the present consideration. For the separable representa-
tion of the kernels we use the energy-dependent pole expan-
sion method of Ref.[11]. In Sec. III, after a short summary
of the Kerman-McManus-Thaler theory, we discuss the
“standard” optical model for theh 3N elastic scattering with
particular emphasis on the role of the higher-order correc-
tions such as nucleon-core interaction and virtual target ex-
citations. Theh photoproduction on three-body nuclei is pre-
sented in Sec. IV where we illustrate the strong effect of the
h 3N interaction in the final state. In this section we also
compare our predictions with those given in Ref.[10]. The
main results are reviewed in the conclusion.

II. THE FOUR-BODY APPROACH TO h 3N SCATTERING

We begin the formal part with a brief review of the four-
body scattering formalism applied toh 3N scattering. Our
basic tool for solving the four-body equations is the quasi-
particle method, reduced to a purely separable representation
for the driving two-body potentials and also for the subam-
plitudes in thes3+1d ands2+2d partitions. The main features
of the method were widely presented in the literature(see,
e.g., Ref.[12], and references therein). In applying this ap-
proach to theh 3N problem, the relevant formalism is con-
sidered in Ref.[4]. Within the quasiparticle method, the
whole dynamics is described in terms of the amplitudes
Xa1 sa=1,2,3d connecting the three quasi-two-body channels
characterized by the following partitions:

a = 1:h + s3Nd, a = 2:N + shNNd, a = 3:shNd + sNNd
s2d

with the initial channela=1. To be specific, we consider
the triton as target. Because we neglect Coulomb forces
and thus isospin invariance holds, the channels with3H
and 3He are identical. Since only the energies up to the
three-body threshold will be considered, we treat the pion
energy relativistically but use nonrelativistic kinematics
for nucleons and theh meson. Furthermore, due to strong
dominance ofs waves inNN and hN scattering, we as-
sume that in the low-energy region only the lowest partial
wave sL=0d in the h 3N system has to be taken into
account.

The essence of the calculational scheme is the solution of
the scattering problem for the two- and three-body sub-
systems specified in partitions(2). For a=1 and 2 we deal
with interacting three-body systems. Using separable repre-
sentations for theNN and hN potentials, the corresponding
scattering amplitudes can be expressed in terms of effective
quasi-two-body amplitudesUa;ijsq,q8;Ed, which describe the
scattering of a particle on a two-body cluster(quasiparticle).
The corresponding states are specified by the indicesi , j
marking the quasiparticles, e.g.,i , j Phd,N*j for a=2, where
the sNNd andshNd systems are denoted asd andN*, respec-
tively. The notationN* is associated with theS11s1535d reso-
nance which dominates the low-energyhN interaction. For
a=3 we have two independent two-particle subsystems. The
relevant amplitudes are also represented in the quasi-two-
body formU3;ijsq,q8;Ed with i , j Phd,N*j [4].

The reduction of the four-body equations to a numerically
manageable form is achieved by expanding the amplitudes
Ua;ij into separable series of finite rankNa,

U1;dd
sss8dsq, q8;Ed = o

l,m=1

N1

vd;l
1ssdsq;EdQ1;lmsEdvd;m

1ss8dsq8;Ed, s3d

Ua;i j
ssd sq, q8;Ed = o

l,m=1

Na

vi;l
assdsq;EdQa;lm

ssd sEdv j ;m
assdsq8;Ed,

a = 2, 3. s4d

To condense the formulas to follow, we use here a unified
notation for the vertex functions or form factorsva in all
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three channels. They are related to the ones introduced in
Ref. [4] asvd;n

1 =un,vi;n
2 =vi;n,vi;n

3 =wi;n, iPhd,N*j. For the sake
of clarity, we note that the amplitudeU1 of the sNNd+N
scattering is a 232 matrix according to the spin indexs
=0,1 (we need only spin-doublet 3N states). Here the values
s=0,1 denote the total spin of thesNNd s-wave cluster with
isospint=1−s. At the same time, in the partitionsa=2,3, we
have two one-dimensional amplitudesUa

ssd. For instance, in
the channela=2 the indexs numerates two independent
hNN states withJp=0− ss=0d andJp=1− ss=1d, respectively.

Considering the identity of the nucleons, theh 3N prob-
lem is reduced to a 333 set of integral equations in one
scalar variable. For the transition amplitudesXa1 connecting
the channel 1 to the channelsa=2 and 3 we arrive at a
coupled set of equations

Xa1;nn8
sss8d sp, p8;Ed = Za1;nn8

sss8d sp, p8;Ed

+ o
b=2,3

o
l,m

o
s=0,1

E
0

`

Z̃ab;nl
sssd

3sp, p9;Ed Qb;lm
ssd SE −

p92

2Mb
D Xb1;mn8

sss8d

3sp9, p8;Ed
p92 dp

2p2 , a = 2, 3, s5d

where Zab and Z̃ab are the effective potentials realized
through particle exchange between the quasiparticles in

the channelsa and b. The arguments of the effective
propagatorsQa are the internal energies of the corre-
sponding clusters, given in Eq.s2d. In the casea=3 it is
equal to the sum of the c.m. kinetic energies in thehN and
NN subsystems. The reduced masses in the three channels
read

M1 =
3MNmh

3MN + mh
, M2 =

MNs2MN + mhd
3MN + mh

,

s6d

M3 =
2MNsMN + mhd

3MN + mh
.

Equations(5) are illustrated in Fig. 1, where also the

structure of the potentialsZab and Z̃ab is schematically ex-
plained. The former are expressed in terms of the form fac-
tors vi;n

a as

Zab;nn8
sss8d sp, p8;Ed =

Vss8

2 o
j
E

−1

+1

v j ;n
assdSq, E −

p2

2Ma
Dt j

ssd

3SE −
p2

2Ma

−
q2

2m j
aDv j ;n8

bss8d

3Sq8, E −
p82

2Mb
Ddsp̂ · p̂8d. s7d

Here, the functionst jszd are the familiar quasiparticle

vd

2 vN*

2

vN*

2

d

1v

d

3v vd

2

d

3vd

1v N*

3v
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Z
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FIG. 1. Diagrammatic representation of the coupled integral Eqs.(5) and(9) for theh 3N scattering and the effective potentialsZab and

Z̃ab. The dashed line represents anh meson. The lines close together indicate different two- and three-body quasiparticles.

LOW-ENERGY SCATTERING AND PHOTOPRODUCTION… PHYSICAL REVIEW C 68, 044002(2003)

044002-3



propagators appearing in the separable model forNNs j
=dd and hNs j =N*d scattering which depend on the two-
body c.m. kinetic energies. The corresponding reduced
massesm j

a read

md
1 =

3

2
MN, md

2 =
2MNmh

2MN + mh
, mN*

2 =
MNsMN + mhd

2MN + mh
,

md
3 =

MNmh

MN + mh
, mN*

3 =
MN

2
. s8d

The spin-isospin coefficients are denoted byVss8. Clearly,
due to the pseudoscalar-isoscalar nature of theh meson
the spins of the NN cluster fixes uniquely the order of the
spin-isospin coupling of the wholeh 3N configuration.
The momentaq and q8 in Eq. s7d are functions of the
variablespW ,pW8, andE as given in Ref.f4g. The overall c.m.
energy E is counted from the four-body threshold, i.e.,
E=W−3MN−mh with W being the h3H invariant mass.
Below the first inelastic threshold the obvious relationE
ø−«d holds, where«d denotes the deuteron binding en-
ergy. For more details concerning the structure of the po-

tentials Z̃ab and Zab we refer to Ref.f4g.
Elastich3H scattering is described by the amplitudeX11,

which is determined by the amplitudesXa1 sa=2,3d as

X11;nn8
sss8d sp, p8;Ed = o

a=2,3
o
l,m

o
s=0,1

E
0

`

Z1a;nl
sssd sp, p9;Ed Qa;lm

ssd

3SE −
p92

2Mb
DXa1;mn8

sss8d sp9, p8;Ed
p92dp

2p2 .

s9d
As was already mentioned, the key point of the reduction

procedure, leading to numerically manageable equations(5),
is the separable expansion of subamplitudes(3) and (4). In
the present paper we use for this purpose the method of the
energy-dependent pole expansion(EDPE), presented in de-
tail in Ref. [11]. The starting point is the eigenvalue equation
for the vertex functionsvi;n

a sq,Ed,

vd;n
1ssdsq, B1d =

1

ln
1 o

s8=0,1

E
0

`

V1;dd
sss8dsq, q8;B1d td

ss8dSB1

−
q82

2md
1Dvd;n

1ss8dsq8, B1d
q82dq8

2p2 , s10d

vi;n
assdsq, Bad =

1

ln
assd o

j=d,N*
E

0

`

Va;i j
ssd sq, q8;Bad t j

ssdSBa

−
q82

2m j
aDv j ;n

assdsq8, Bad
q82dq8

2p2 , a = 2, 3.

s11d

The explicit expressions for the effective potentials
Va;i jsq,q8 ;Ed are given in Ref.f4g. Equationss10d are
solved for an arbitrarily fixed energyE=Ba. In the actual
calculation we have takenB1=−«3H sthe triton binding en-

ergyd and Ba=−«d in the other two channelsa=2,3.
The extrapolation of the verticesvi;n

a onto the whole en-
ergy axes is carried out according to the expressions

vd;n
1ssdsq, Ed = o

s8=0,1

E
0

`

V1;dd
sss8dsq, q8;Ed td

ss8dSB1 −
q82

2md
1D

3vd;n
ss8dsq8, B1d

q82dq8

2p2 , s12d

vi;n
assdsq, Ed = o

j=d,N*
E

0

`

Va;i j
ssd sq, q8;Ed t j

ssdSBa −
q82

2m j
aD

3v j ;n
assdsq8, Bad

q82dq8

2p2 , a = 2, 3. s13d

The effective EDPE propagatorsQa in Eqs.s3d ands4d are
defined by

fQ1
−1sEdgmn= o

s=0,1
E

0

` Fvd;m
1ssdsq, B1dtd

ssdSB1 −
q2

2md
1D − vd;m

1ssd

3sq, Edtd
ssdSE −

q2

2md
1DGvd;n

1ssdsq, Ed
q2dq

2p2 , s14d

fQa
ssd−1sEdgmn= o

j=d,N*
E

0

` Fv j ;m
assdsq, Badt j

ssdSBa −
q2

2m j
aD

− v j ;m
assdsq, Edt j

ssdSE −
q2

2m j
aDGv j ;n

assd

3sq, Ed
q2dq

2p2 , a = 2, 3. s15d

In the calculation, we use a 636 separable representation
s3d and s4d in each partitions2d which yields accurate
solutions up to the first inelastic threshold.

Due to the strong coupling between thehN andpN chan-
nels in theS11s1535d region, the transitionshN↔pN must in
general be taken into account. Clearly, the most straightfor-
ward way to introduce the pion degrees of freedom would be
to generalize theh 3N four-body equations to include the
coupled channelssp 3Nd↔sh 3Nd. But in practice, the four-
body treatment of thep 3N states turns out to be very com-
plicated. The reason for this is the appearance of moving
singularities arising near the physical region for thepNN
amplitudes above the three-body threshold. As a result, the
separable representation of the four-body kernels converges
very poorly [13]. Therefore, we neglect the channelp 3N
keeping only the intermediatepN “bubbles” in theS11s1535d
propagator. The validity of this neglect seems to be doubtful,
since thepN interaction in the second resonance region is
visibly stronger than thehN one. The crucial point, however,
is that the two-step processhN→pN→hN, favoring large
momenta of the intermediate pionkp<400 MeV/c, needs
two nucleons to be within the rangeR="/kp<0.5 fm.
Adopting a simple geometric interpretation, the correspond-
ing mechanism is associated with a small probability
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P =
4

3
pR3 r3Hs0d <

1

10
, s16d

where r3Hsrd is the 3H nucleon density, and thus is not
expected to be effective for low-energyh3H scattering.

For the target wave function we take only thes-wave part

CMJMT
sqW, kWd =

1

Î3
s1 − P12 − P13d o

s=0,1
cssdsq1, k23d

3FF1

2
3

1

2Gst

3
1

2Gs1/2dMJs1/2dMT

, s17d

where the isospint=1−s andMJ andMT denote total spin
and isospin projections, respectively. The spatial functions
cssdsq1,k23d are taken symmetric with respect to the nucle-
ons 2 and 3. They are extracted from the bound state pole
of the 3N scattering amplitude, calculated within the
three-body model. The corresponding expression in terms
of the s3Nd→N+sNNd verticesvd;1

1ssd reads

cssdsq, kd = − Ngd
ssdtd

ssdS− «3H −
3q2

4MN
D vd;1

1ssdsq, − «3Hd

«H +
3q2

4MN
+

k2

MN

.

s18d

The normalization factor is obtained from the residue of
the scattering matrix

N−2 = Udl1
1

dE UE=−«3H

, s19d

wherel1
1 is the first eigenvalue of the kernelV1;ddtd fsee

Eq. s10dg. Finally, for theh3H scattering amplitude we get

Fh3Hskhd = −
mh3H

2p o
s,s8=0,1

X11;11
sss8d skh, kh, ;Ed, s20d

with the h3H reduced massmh3H and the on-shell momen-
tum kh=f2mh3HsE+«3Hdg1/2.

As was already noted, we consider theNN andhN inter-
actions only ins states. For theNN 1S0 and3S1 configurations
we adopt a rank-1 separable parametrization

vNN
ssd sk, k8d = − gd

ssdskdgd
ssdsk8d,

with gd
ssdskd = Î2po

i=1

6
Ci

ssd

k2 + bi
ssd2 for s= 0, 1,

s21d

where the parametersCi
ssd and bi

ssd are listed in Ref.f14g.
The indexs=0,1 refers to the singlet and triplet states,
respectively. The separable potentials21d is obtained by
fitting the off-shell behavior of the ParisNN potential at
zero energy and is therefore appropriate for processes
without target breakup. The corresponding three-body cal-
culation gives for the triton binding energy a reasonable
value «3H=8.64 MeV and describes rather well the3H
charge form factor up toQ2=8 fm−2.

As for thehN interaction, we use here the simplest sepa-
rable parametrization with the energy-dependent potential

vhNsk, k8;Wd =
gN*

shdskdgN*
shdsk8d

W− M0
,

with gN*
shdskd =

gN*
shd

Î2vh

bN*
shd2

k2 + bN*
shd2 , s22d

which gives the familiar isobar ansatz for the meson-
nucleon amplitude with the bare resonance massM0. In
the present paper, the excitation of theS11s1535d reso-
nance is assumed to be the only mechanism for the meson-
nucleon interaction. Rather than to investigate the depen-
dence of the results on thehN scattering lengthahN, we
preferred to choose the parameters in Eq.s22d such that
the hN scattering length

ahN = s0.50 +i0.32dfm s23d

is reproduced. This value lies approximately “halfway” in
the listing of varioushN scattering lengths which can be
found in the literaturessee, e.g., Ref.f15gd. It must be
noted that the low-energyh-nuclear interaction depends
strongly on the continuation of thehN amplitude to nega-
tive kinetic energies and hence must be sensitive to the
amplitudes in the channels coupled to thehN one. There-
fore, we use here the unitary model of Ref.f16g where
three coupled channelshN,pN, andppN are considered.
In order to reproduce values23d we have slightly changed
the set of parameters presented in Ref.f16g in such a
manner that thepN→pN andpN→hN scattering data are
reasonably well described in the region below and just
above thehN threshold. The results shown in Fig. 2 are
obtained with the parameter values

gN*
spd = 8.898/Î12p, bN*

spd = 404 MeV,

gN*
shd = 7.090/Î4p, bN*

shd = 695 MeV, s24d

M0 = 1599 MeV.

The additional factors in Eq.s24d appear due to different
normalizations of the meson-nucleon potentialsvpN and
vhN used in this work and in Ref.f16g. The parameters of
the two-pion channelppN were taken unchanged from
Ref. f16g.

III. THE OPTICAL MODEL FOR h3H SCATTERING

We begin the analysis of the optical potential approach by
reviewing the corresponding formalism. According to the
Watson multiple scattering theory[19], the h-nuclear inter-
action may be treated as a series ofhN collisions. In the
present discussion we use the version put forward by
Kerman-McManus-Thaler(KMT ) [20]. The corresponding
expansion of the scattering operator reads
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T = o
i

A

tsid + o
iÞ j

A

tsidG ts jd + ¯ . s25d

Here Green’s functionG describes the propagation of a
free h and A interacting nucleons

G =
Â

E − H0 − VA
, s26d

where the nuclear potentialVA describes the interactions
of the nucleons, and the free HamiltonianH0 includes only
the kinetic energy operator of meson and nucleons. Fur-
thermore, we have included into Green’s function the pro-

jection operator Â onto the completely antisymmetric
nuclear states. The scattering matrixt in Eq. s25d de-
scribes the off-shell scattering of anh meson on a single
bound nucleon and obeys the equation

t = vhN + vhNG t. s27d

Within the KMT theory the nucleons are treated to be
identical from the beginning. Therefore we have dropped
the nucleon indexi in Eq. s27d.

The operatorU of the equivalent optical potential is usu-
ally introduced by rewriting Eq.(25) in the form

T = U +
A − 1

A
UGP0T, s28d

where P0 is the projector onto the nuclear ground state.
The many-body aspects of the problem are then incorpo-
rated in the operatorU which obeys the equation

U = Us1d +
A − 1

A
Us1dGs1 − P0dU, s29d

with the driving termUs1d=At.
In the present paper we explore two approximations to the

potentialU which have been used in previous work in low-
energyh-nuclear physics.

(i) Coherent approximation: here one keeps only the lead-
ing term in Eq.(29). The resulting optical potential is given
by the ground state expectation value of the matrixt times
the number of nucleons in the nucleus

UCspW , pW8;Ed = k0;pW uUs1dsEdu0;pW8l = Ak0;pW utu0;pW8l.

s30d

As may be seen, the restriction to the first-order termUs1d

in expansions29d neglects the virtual target excitations in
between successive scatterings on different nucleons. Of
course, as follows from Eq.s27d, excitations are allowed
whenh interacts successively with the same nucleon. One
of the points in favor of the coherent approximation is the
assumed dominance of the nearest singularitysbound state
poled. Probably no less important is the orthogonality of
the nuclear ground state wave function to the excited
states, which results in a reduction of the matrix element
k0uUs1d unl at least at small momentum transfers. However,
in spite of these reasonable arguments the study ofnd f21g
and hd f22g scattering has shown that keeping only the
target ground state weakens sizably the overall interaction
in the system and is therefore a rather poor approximation.

(ii ) Impulse approximation: it is considered as a further
simplification of the approximation(i) and consists of the

FIG. 2. Upper left panel: the
S11 partial wave of thepN scatter-
ing amplitude predicted by the pa-
rametrization of S11s1535d reso-
nance used in the present paper
[see Eqs.(22) and (24)]. Nota-
tions: solid curve—real part,
dashed—imaginary part. Circles
and triangles represent the result
of the VPI analysis[17]. Upper
right panel: totalp−p→hn cross
section. The data are taken from
the compilation presented in Ref.
[18]. Lower panel: thehN off-
shell scattering amplitude atq
=q8=0. Notations as in the upper
left panel.
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substitution of the operatort in Eq. (30) by the free-space
hN scattering matrixthN satisfying the equation

thN = vhN + vhNG0thN, with G0 =
1

E − H0
. s31d

The resulting optical potential for theh3H scattering is then

UIspW , pW8;Ed = Ak0;pW uthNu0;pW8l

= AE C3H
* sqW, kWdthNswhNsqWddC3H

3SqW +
2

3
spW − pW8d, kWD d3q

s2pd3

d3k

s2pd3 , s32d

where the argumentqW of the ground state wave function
C3H is the relative momentum of the participating nucleon
with respect to the other two nucleons. Thus within this
approximation, the struck nucleon is bound only before
and after the interaction with the incident meson but is
free during the scattering. The role of the surrounding
nucleons is to provide only the momentum distribution for
the active scatterer. The impulse approximation is more or
less successful for low-energy pion-nucleus scattering far
away from the resonance regionf5g, that is, for light pro-
jectiles which interact weakly with the target constituents.
But its validity may be marginal in theh-nuclear case.
The main reason for this fact is that the impulse approxi-
mation breaks down if the projectile is in resonance with
the nucleonf19g. As was already noted in the Introduc-
tion, since thehN scattering is associated with a nonvan-
ishing time delay due to theS11s1535d resonance, the in-
teraction of the struck nucleon with the remaining ones
must be generally important.

In order to study the quality of approximations(i) and(ii )
for the h-nuclear interaction we have calculated theh3H
elastic scattering using the optical potentialsUC (30) andUI
(32). In each case only thes-wave part of the scattering
amplitude was taken into account. The results are obtained
by solving Eq.(28) in momentum space

Tsp, p;Ed = Usp, p;Ed

+
2

3

mh3H

p2 E
0

` Usp, p8;EdTsp8, p;Ed
p2 − p82 + i«

p82dp8.

s33d

The numerical difficulties caused by the singularity in the
integrand atp8=p were eliminated with the help of the
Noyes-Kowalski trickf23g.

It is worthwhile to note that since the in-mediumhN scat-
tering matrixt is an sA+1d-body operator, its full treatment
is in general possible only with certain approximations.
However, in the case ofA=3, Eq.(27) can be solved exactly
using the four-body formalism. Indeed, this equation repre-
sents the reduced problem where theh meson is scattered off
only one of the nucleons which in turn interacts with the
other two nucleons. Therefore, using the separable represen-
tation for the two- and three-body scattering matrices as de-
scribed in Sec. II, Eq.(27) can be transformed into the form

presented in Eqs.(5) and(9) where now we must switch off
the h exchange between the nucleons. In the computation,
we simply set the potentialV2;N*N* in Eqs. (11) and (13) as

well as the termZ23
1 sZ32

1 d in the potentialZ̃23sZ̃32d (see Fig. 1)
equal to zero. The matrixX11, obtained in this way, yields the
s-wave potentialUC (30) for the h3H scattering in the form

UCsp, p8;Ed = o
ss8=0,1

X11;11
sss8d sp, p8;Ed. s34d

In Fig. 3 we compare the results of approximations(30)
and(32) with those given by the four-body theory where the
h 3N multiple scattering series(25) is summed exactly.
There are two main conclusions to be drawn from this
comparison.

(i) The h3H interaction generated by the optical potential
UI (32) is relatively weak. It is interesting to compare our
result with that obtained within the scattering length approxi-
mation thN→−s2p/mhNdahN. The latter predicts a binding of
the h 3N system already for relatively modest values ofahN
(see, e.g., Refs.[2,24]). The trivial source of this discrepancy
lies in the strong energy dependence of thehN amplitude
which is ignored by the scattering length approximation. The
change of the freehN energywhN

free in the medium is primarily
due to the Fermi motion and due to the binding of the nucle-
ons. A rough estimation at zeroh3H kinetic energy gives

Dv = whN − whN
free< − «b −

kq2l
2M3

, s35d

where«b<6.5 MeV is the binding energy of a participat-
ing nucleon to the two-nucleon core, whilekq2l stands for
the mean squared nucleon momentum inside the nucleus,
and the reduced massM3 is given by Eq. s6d. Taking
Îkq2l=120 MeV/c we obtainDv<−15 MeV. In thecalcu-
lation, the energy at which thehN amplitude has to be
calculated was chosen according to the so-called “specta-

FIG. 3. Elastic cross section forh3H scattering(left panel) and
Argand plot (right panel) of the scattering amplitude. The dashed
curves (filled triangles on the right panel) represent the impulse
approximation to the first-order optical potential[Eq. (32)]. In the
dash-dotted curves(open triangles) the medium corrections to the
single scattering are taken into account[Eq. (30)]. The solid curves
(filled circles) represent the result of the full four-body calculation.
The long-dashed curve in the left panel is obtained with the
YamaguchiNN potential embedded into the nuclear sector. In the
right panel the circles and triangles indicate the following c.m.
kinetic energies: Eh3H=0.1,0.2,0.5,1.0,1.5,2.0,3.0,4.0, and
6.0 MeV.
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tor on-shell” prescription. The corresponding energy shift
uDvu is larger than that given by estimations35d where the
internal energy of the two-nucleon core is neglected. Tak-
ing into account the differenceDv results in decreasing
the hN scattering amplitude and especially its imaginary
part, which has a sharp energy dependence around thehN
thresholdssee Fig. 2d. The crucial importance of this fact
was also discussed in Refs.f3,15g. One sees in Fig. 3 that
inclusion of the intermediate nuclear interactionsthe dash-
dotted curved accounts for an appreciable portion of the
noted disagreement, and it leads to a much better descrip-
tion near zero energy. We consider this fact as evidence
that calculations, which investigate the dependence of the
hA dynamics on the elementary amplitudethN but disre-
gard the interaction of the participating nucleon with the
surrounding nucleons, are of little significance.

(ii ) Comparison of the results obtained within the coher-
ent approximation(30) with the four-body treatment shows
the role of higher-order terms in expansion(29). As was
already noted, their contribution is associated with virtual
target excitations in between scatterings. As one sees, this
effect is significant and increases as the energy approaches
the inelastic threshold(analogous conclusions with respect to
the hd interaction are given in Ref.[22]). With increasing
energy the cross section becomes similar to the one of the
impulse approximation but as one sees in Fig. 3 the Argand
plots remain very different.

In our opinion, the conclusions above have an important
bearing on models of theh-nuclear interaction. In particular,
they point to the fact that such models should not be devel-
oped as a mere repetition of the first-orderp-nuclear scatter-
ing formalism.

Returning to Fig. 3 we would like to note a strong en-
hancement of the cross section close to zero energy as a
consequence of theh3H virtual state. The scattering length
ah3H=s1.82+i2.75d fm locates the position of the pole at
Eh3H

pole<−1/sah3H
2 mh3Hd=s1.53+i3.59d MeV. The pole lies on

the first nonphysical sheetsImÎE,0d attached to the physi-
cal one through the two-body cut beginning ath3H threshold
[25]. The somewhat unusual behavior of the Argand plots
near the inelastic threshold supposedly can be ascribed to a
cusplike structure of the amplitude with a rapidly varying
real part.

In order to investigate the role of the short-range nucleon-
nucleon dynamics we have performed in addition a four-
body calculation with a Yamaguchi parametrization of the
potential vNN [26] where the complicated structure of the
short-rangeNN interaction is ignored. The respective result
is represented by the long-dashed curve in Fig. 3. As one
notes, the difference is insignificant. An obvious conclusion,

which follows, is that in the low-energy region only the long-
range part of theNN interaction comes into play, which may
be described quite satisfactorily by the Yamaguchi potential.
In other words, our results are not sensitive to theNN inter-
action models(which must, of course, be on-shell equivalent
at low energy) as long as the momenta in question are essen-
tially smaller than those associated with the short-range part
of the NN force.

IV. h PHOTOPRODUCTION ON A 53 NUCLEI NEAR
THRESHOLD

Turning now toh photoproduction, we treat the electro-
magnetic interaction as usual up to the first order in the fine
structure constant. As a consequence, the photon appears
only in the initial state as an incident particle. This scheme is
illustrated in Fig. 4 where the electromagnetic vertex func-
tions ua sa=2,3d are of first order in thegN coupling. The

corresponding expression of the amplitudeY11
sss8d reads

Y11
sss8dsp, kg;Ed = o

a=2,3
o
l,m

o
s=0,1

E
0

`

Xa1;l1
sssd sp, p8;Ed

3Qa;lm
ssd SE −

p82

2Ma
DU1a;1m

sss8d

3sp8, kg;Ed
p82dp8

2p2 , s36d

where the hadronic amplitudesXa1 are defined in Sec. II
fsee Eq.s5dg. Here the spin coupling in the initialg3N
state is also uniquely determined by the spins of the NN
pair since the spin of the target is fixed toS=1/2. The
effective potentials, involving the photon-induced excita-
tion of the resonanceN* , are defined by

U1a;nn8
sss8d sp, kg;Ed =

sVa
stgddss8

2
E

−1

+1

vd;n
1ssdsq1, − «3Hd

3td
ssdS− «3H −

3q1
2

4MN
Dun8

asss8,tgdsqaddsk̂g · p̂d,

a = 2, 3, s37d

with a relative momentum at thes3Nd→N+sNNd vertex

qW1=pW + 1
3kWg. The form factorsun

asss8,tgdsqad are associated
with the absorption of a photon having isospintg by a
nucleon or by a nucleon pairssee Fig. 4d. For thegsNNd
andgN relative momentaqa sa=2,3d we use semirelativ-
istic expressions

d

1v d

1v

γ
η

3
u 2 u

12U 13U

+=11Y 21X X 31

FIG. 4. The photon-induced effective poten-
tials appearing in leading order of the electro-
magnetic interaction inh photoproduction on
three-body nuclei(37).
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qW2 = kWg +
vg

vg + 2MN
pW , qW3 = kWg +

vg

vg + MN
pW . s38d

The spin-isospin coefficients, presented in Eq.(37) in ma-
trix form by Va

stgd, are obtained from standard spin algebra

V2
s0d =1

0 0

0 2Î2

3
2, V2

s1d =1 0 ±Î2

3

±Î2

3
0 2 ,

V3
s0d =1

Î6 0

0 −Î2

3
2, V3

s1d =17Î2

3
0

0 7Î2

3
2 ,

s39d

with the upperslowerd sign referring to3Hes3Hd.

It should be noted that going fromh3H elastic scattering
to h photoproduction we are faced with qualitatively new
physics where large momentum transfers dominate. In par-
ticular, due to this reason, the contribution of pion exchange
between the nucleons to theh production mechanism must
be included in general. This fact is confirmed by several
theoretical developments[27,28]. However, for reasons of
principal numerical difficulties, already noted in Sec. II, we
do not include pion rescattering into our calculation and
make only several remarks in the conclusion.

As for the electromagnetic vertex functionsun
a, it is easy

to show that up to the first order in thegN interaction they
are given by[cf. Eq. (13)]

un
asss8,tgdsqad =E

0

`

Ṽa;dN*
ss,tgd sqa, q8d tN*SBa −

q82

2mN*
a DvN* ;n

ass8d

3sq8, Bad
q82dq8

2p2 , a = 2, 3, s40d

where the effective potentialsṼ
a;dN*
ss,tgd are determined analo-

gous to the hadronic potentialsVa;dN* f4g but with an in-
cident h replaced by a photon

Ṽ2;dN*
ss,tgd sq2, q8d = −

1

Î2
E

−1

+1 gd
ssdSUqW8 +

1

2
qW2UDg̃N*

stgdSUqW2 +
vg

vg + MN
qW8U, vN*D

«3H +
3

4MN
SpW +

1

3
kWgD2

+
1

MN
SqW8 +

1

2
qW2D2 dsq̂ · q̂8d, s41d

Ṽ3;dN*
ss,tgd sq3, q8d = −

gd
ssdsq8dg̃N*

stgdsq3, vN*d

«3H +
3

4MN
SpW +

1

3
kWgD2

+
1

MN
q82

,

s42d

whereg̃N*
stgdskgN,vN*d denotes thegN→N* vertex functions

depending on thegN c.m. momentumkgN and the invari-
ant hN energyvN* . The denominators in expressionss41d
and s42d are obtained by taking into account the on-shell
conditions in the initialg3H state, i.e.,E=−«3H+vg−mh

+kg
2 /2M3H as well as the dependence of the momentaqW2

andqW3 on kWg andpW given by Eq.s38d. One readily sees that
the singularities on the realq8 axis are never reached in

Ṽa;i j .
In the actual calculation, we treat the vertices

g̃N*
stgdsk,vN*d independent of the momentumk and parametrize

their behavior in the following form

g̃N*
s1dsk, vN*d =5

e

Î4p
o
n=0

4

anS kp

mp
Dn

, vN* . MN + mp,

ug̃N*
s1dsk, vN*duvN*=MN+mp

else,

s43d

g̃N*
s0dsk, vN*d = 0.1 g̃N*

s1dsk, vN*d,

where kp is the on-shell pion momentum in thepN c.m.
frame corresponding to the total energyvN* . The isospin
separation of theS11s1535d photoexcitation amplitude is
chosen such that the relation

ssgp → hpd
ssgn → hnd

= 0.67 s44d

is reproduced in accordance with the experimental results
for quasifreeh photoproduction on light nucleif29,30g.
The coefficients in Eq.s43d,
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a0 = 5.0073 10−1, a1 = − 1.7503 10−2,

a2 = 0.9263 10−1, a3 = 2.0523 10−3,

a4 = − 6.4083 10−3, s45d

were obtained by fitting thegp→hp dataf31g as shown in
Fig. 5. In the same figure we also compare our calculation
of the gp→S11s1535d→pp amplitudepE0+

s1/2d with the re-
sults of the MAID parametrizationf32g. For definiteness,
we present here the elementary photoproduction ampli-
tude for gp→pp,

tl = pE0+
s1/2dssW · «Wld,

with pE0+
s1/2d = fg̃N*

s0dskg, vN*d + g̃N*
s1dskg, vN*dg

3tN*svN* − MN − mhdgN*
shdskhd. s46d

The c.m. differential cross section then reads

ds

dV
sgp → hpd =

kh

kg

2vhENi
ENf

s4pvN*d2 upE0+
s1/2du2, s47d

with vh and ENisfd
denoting the energies of theh meson

and the initialsfinald nucleon, respectively.
Before completing the formal part, we recall once more

that all the expressions above relate only to thes wave. With
increasing energy, higher partial waves, where however no
significant interaction is expected, are needed to fill the
available phase space. To take into account their contribution
we use here the standard prescription

Y = YPW+ f Y − YPWgL=0, s48d

whereYPW is the plane-wave approximation to the produc-
tion amplitude. Assuming that the hadronic interaction in
the higher partial waves is insignificant, the difference in
the parenthesis is reduced tos waves only. The amplitude
YL=0 is given by Eq.s36d. The diagrammatic representa-
tion of the amplitudeYPW is presented in Fig. 6. The cor-
responding analytic expression is easily obtained and need
not be presented here. We note only that each term in the
sum is represented by a six-dimensional integral, which
were calculated numerically without any approximation.

The reaction matrix element for the transition between the
nuclear states with spin 1/2 is related to amplitude(48) by
the Wigner-Eckart formula

K1

2
MfuTlu

1

2
MiL =

1

Î2
S1

2
Mi ulu

1

2
MfD o

ss8=0,1

Ysss8d.

s49d

For the unpolarized c.m. cross section, we obtain

ds

dV
sgA → hAd =

kh

kg

2vhEAi
EAf

s4pWd2

1

6U o
ss8=0,1

Ysss8dskWg, kWh dU2
,

s50d

with EAisfd
being the total target energy in the initialsfinald

state.
Our predictions for total as well as differential cross sec-

tions are shown in Fig. 7. First we note an approximate
equality

FIG. 5. Left panel: thegp→hp total cross section compared with the data of Ref.[31]. Right panel: thepE0+
s1/2d multipole of gp→pp

generated by the photoexcitation of theS11s1535d resonance. Solid curve—real part, dashed curve—imaginary part. Open and filled circles
represent the results of the MAID parametrization[32].

++

+

2 2

2 +

=
γ η

PWY

2

FIG. 6. Schematic representa-
tion of the plane-wave term in the
h photoproduction amplitude(48)
related to our model of the target
wave function(17) and (18). The
factor 2 stems from the identity of
the nucleons.
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ssgn → hnd
ssgp → hpd

<
ssg3He→ h3Hed
ssg3H → h3Hd

< 0.6. s51d

As was already explained in Refs.f10,33g this result is a
consequence of the spin-flip nature of theh photoproduc-
tion amplitudetl s46d. Approximating the spatial part of
the target wave functions17d by only the principal, totally
symmetrics state it is easy to see that theh meson can
only be produced on the neutron in3He and on the proton
in 3H. The remaining two nucleons, coupled to a total spin
s=0, do not participate due to the Pauli principle. The
h-rescattering effects, being spin independent do not dis-
tort this relation. A small deviation from relations44d is
simply due to the presence of the state with mixed permu-
tation symmetry.

As expected, the final state interaction leads to a rather
pronounced enhancement of the plane-wave result, espe-
cially very close to the production threshold. The cross sec-
tion reaches very fast its characteristic value and has a form
of a flat plateau. The angular distribution ofh mesons in both
reactions is shown in the upper right panel of Fig. 7. Within
our model only the angular-independents-wave part of the
h 3N wave function undergoes distortion due to the FSI. As

a consequence, the differential cross section is much more
isotropic as compared with the plane-wave calculation.

Comparing our results for3Hesg,hd3He reaction with
those of Ref.[10] obtained within the FRA, we observe
rather well agreement in magnitude of the total cross sections
close to the threshold(we take for comparison the results of
Refs.[10] corresponding to the model IIIa for thehN inter-
action). However we think, this fact has no physical signifi-
cance, since there are principal differences in the models.
First, we would like to note a disagreement concerning the
nature of the final state interaction. Namely, as explained in
Ref. [10] the strong effect of FSI, found by the authors, is
due to thes-waveh 3N resonance, located near zero kinetic
energy[34]. In our case it is a consequence of the virtual
state, as was already discussed in Ref.[4]. We do not find
any evidence for the resonance behavior of theh3H ampli-
tude(see, e.g., the Argand plots in Fig. 3). Furthermore, our
calculation does not exhibit a strong slope in the cross sec-
tion caused by a cusp at the inelastic threshold, which was
found to be very pronounced in Ref.[10].

In the lower panel of Fig. 7, we also depict the total cross
section for the reaction on3H where the final state is dis-
torted by the first-order optical potential[the approximation
denoted as(distorted wave) DW]. The corresponding photo-
production amplitude is given by[cf. Eq. (33)]

FIG. 7. Upper panels: total and differential cross section forh photoproduction on3He and3H calculated within the four-body scattering
model for the finalh 3N system compared to the results of the plane-wave calculation(the dashed curves on both panels). In the lower panel
the FSI effects provided by the distorted wave(DW) approach with the optical potential(32) (dash-dotted curve) are compared with those
given by the four-body calculation and the plane-wave approximation(PW).
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YskWh, kWg;Ed = YPWskWh, kWg;Ed +
2

3

mh3H

p2

3E
0

` Tskh, p;EdfYPWspW , kWg;EdgL=0

kh
2 − p2 + i«

p2dp,

s52d

where theT matrix for theh3H scatteringTskh ,p;Ed was
calculated with the potentials32d. As one readily notes,
the DW approach visibly underestimates the strong FSI
effect of the four-body theory.

A comparison of the DW calculation for the reaction
3Hesg,hd3He with the full model has also been done in Ref.
[10]. In particular, the authors have noted a very large differ-
ence between the cross sections obtained within FRA and
DW approaches. At the energyEg=605 MeV the DW results
reported in Ref.[10] underpredict those of the FRA model by
about a factor of 20. The reason of this disagreement is a
very strong suppression of the DW cross section in the near-
threshold region. In contrast to this conclusion, our calcula-
tion predicts a typicals-wave energy dependence of the cross
section for the coherent reaction of the form

s , ÎEg − Eg
th, s53d

with Eg
th denoting the threshold energy. This form is

slightly distorted by theh-nuclear optical potential which
tends to increase the cross section value close to the
threshold. As a consequence the difference between the
DW result and the full four-body calculation turns out to
be not so impressive as in Ref.f10g.

V. CONCLUSION

In the present paper we have investigated elastic scatter-
ing and photoproduction ofh mesons on three-body nuclei
near threshold. The possibility of having the exact solution at
hand permits us to investigate unambiguously the corrections
to the lowest-order optical potential which are usually ne-
glected within the “standard” optical model approach. Ac-
cording to the results presented above, we would like to draw
the following conclusions.

(i) The contributions beyond the impulse approximation
turn out to be very important. It is reasonable to assume that
the origin of this fact lies in the resonance nature of thehN

amplitude giving rise to large corrections caused by the bind-
ing of the nucleons. One may expect that this effect is even
stronger in heavier nuclei.

(ii ) The influence of virtual target excitations between
successive scatterings is also rather important. Although the
three- and four-body thresholds are relatively far from the 3N
binding energy, neglect of the excited states makes the result
very different from the exact one. In other words, the contri-
butions of virtual three- and four-body states are also quite
important below the corresponding unitary cuts.

(iii ) Since in the energy region considered here the inci-
dent energy of theh-meson remains small, i.e., its wave-
length is large compared to the characteristic internuclear
distance, the results for theh3H scattering are not visibly
sensitive to the details of the short-rangeNN dynamics. This
conclusion is confirmed straightforwardly comparing the re-
sults of the PEST potential[14] with those given by the
simplest Yamaguchi form of theNN interaction.

(iv) Close to the threshold, the final state interaction en-
hances theh yields appreciably, which was already noted in
a variety of studies ofh production on lightest nuclei with
different entry channels[35–37]. The angular distribution
shows pronounced isotropy, associated with thes-wave
dominance of FSI.

In conclusion, we would like to note once more the pos-
sible importance of pion exchange in theh photoproduction
on nuclei. One can expect this since the suppression due to
the strong momentum transfer which is presumably impor-
tant for low-energyh3N scattering appears not to be effec-
tive here. Furthermore, as was already noted, due to the spin-
flip nature of the h photoproduction mechanism, only
<1/3 of the nucleons are involved in the process. This may
further enhance the importance of thep-exchange contribu-
tion where the nonvanishing non-spin-flip part gives rise to a
coherent enhancement of the reaction strength. A good case
in point is the pion production viaDs1232d excitation (the
spin-independent part dominates) with subsequent rescatter-
ing into h through the excitation ofS11s1535d (the spin-flip
part is negligible) on the next nucleon. On the other hand, we
suppose that due to the short-range nature of the pion-
rescattering mechanism its contribution does not influence
the strong energy dependence of the cross section discussed
above but its magnitude can be visibly affected.
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