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Since the existing calculations of the effective meson mass in nuclear medium involve approximations, it is
important to examine whether they satisfy the general requirement of the equivalence theorem that the physical
observables should be independent of the choice of field variables. We study here consequences of nucleon
field transformations. As an illustrative case we consider the in-medium effective pion mass calculated for the
s-wave pion-nucleon interaction in the linear-density approximation. We demonstrate that it is necessary to
include the Born term explicitly in order that the effective pion mass should obey the equivalence theorem.
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I. INTRODUCTION

Although the behavior of mesons in nuclear medium, in-
cluding the possibility of meson condensation, has been ex-
tensively studied for several decades[1–4], various aspects
of the problem continue to draw considerable attention
[5–10]. A number of calculations of effective in-medium me-
son properties have been done based on effective field theory
approaches, such as chiral perturbation theory(xPT), in or-
der to incorporate the basic properties of low-energy hadron
interactions in a field-theoretic framework. One of the issues
discussed intensively in the literature is the off-shell invari-
ance of the in-medium effective meson mass(or, equiva-
lently, its invariance under transformations of interpolating
field variables). According to the well-known equivalence
theorem[11–15] any observables, and hence in-medium ob-
servables as well, should be independent of the choice of
field variables. A question of practical importance is whether
this requirement is fulfilled in actual calculations that involve
approximations such as truncations of the Lagrangian, the
linear-density approximation, etc.(see, e.g., Refs.[6–9]).
Detailed studies by Thorsson and Wirzba[7] and Leeet al.
[8] have demonstrated that the in-medium effective meson
mass calculated in the linear baryon density approximation
and next-to-leading order inxPT is independent of the
choice of meson field variables in conformity with the
equivalence theorem. Beyond the linear-density approxima-
tion, one needs to take into account the possible influence of
multibaryonic terms in the Lagrangian as well as nuclear
correlations. This challenging problem has been addressed
by several authors(see, e.g., Refs.[2,8–10]), and further
studies in this direction are certainly warranted.

To shed more light on the issue of the off-shell invariance
of the in-medium meson properties, in this paper we examine
consequences of transformations of the nucleon field. Our
study is supplementary to those of Refs.[6–9] wherein trans-
formations of meson fields were discussed. We limit our-
selves here to the consideration of an in-medium effective
pion mass calculated in the standard linear-density approxi-
mation of the optical potential theory[1,2,16]. Furthermore,
we only deal with thes-wave pion-nucleon interaction. Al-
though (possible) meson condensation is very likely to be
influenced by not onlys-wave but alsop-wave interactions,

we believe it is still informative to study thes-wave contri-
butions alone. Whiles-wave interactions are more relevant to
kaon condensation[4], we consider here the pion for sim-
plicity. This should not affect the main conclusions of this
paper since they follow from the transformation of the
nucleon—rather than the meson—field. The basic nature of
the issues involved is expected to reveal itself even in the
present limited treatment.

The pion-nucleon scattering amplitude is calculated here
based on the relativistic chiral Lagrangian[17] at tree level.
In this formalism the in-medium modification of the pion
mass comprises contributions from contact pion-nucleon in-
teractions and from the nucleon exchange(Born) term. The
contact interaction includes effects of explicit chiral symme-
try breaking through the nucleons term and has been exten-
sively considered in the past[6,7]. In this paper we empha-
size that, in addition to the contact interaction, the Born term
must beexplicitly taken into account in order to ensure the
off-shell invariance of the effective pion mass. This is shown
by evaluating the effective in-medium mass in two different
representations of the Lagrangian which are connected by a
transformation of the nucleon interpolating field.

II. THE EFFECTIVE LAGRANGIAN

Our arguments are based on the second-order relativistic
chiral Lagrangian[17,18] containing the pion fieldwa (with
isovector indexa=1,2,3) and the nucleon fieldc. The La-
grangian reads

L = Lpp
s2d + LpN

s1d + LpN
s2d , s1d

where the superscripts show the order inQ, with Q being
a generic notation for small four-momenta or the pion
mass. The pion LagrangianLpp

s2d is given in terms of the
standard nonlinear fieldsU, which we expand in powers
of the pion field,

U = u2 = expSi
tW · wW

f
D = 1 +

i

f
tW · wW −

1

2f2wW 2 + ¯ , s2d
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um = iu†s]mUdu† = −
1

f
tW · ]mwW + ¯ , s3d

and

x+ = M2sU† + Ud = 2M2 −
M2

f2 wW 2 + ¯ , s4d

where f is the pion decay constant,M is the pion mass,
andta are the Pauli isospin matrices.1 Since we will con-
sider only tree-level contributions to the pion-nucleon
scattering amplitude, we will omit polynomials containing
three or more pion fields; such terms are denoted by an
ellipsis. The purely pionic Lagrangian in Eq.s1d is

Lpp
s2d =

f2

4
Trsumum + x+d =

1

2
s]mwW d · s]mwW d −

M2

2
wW 2 + ¯ ,

s5d

with the trace pertaining to the 232 isospin matrices. The
pion-nucleon Lagrangian in Eq.s1d involves the covariant
derivative

Dmc = S]m +
1

2
fu†, s]mudgDc

= S]m +
i

4f2eabgtgwas]mwbdDc + ¯ , s6d

where we have used Eq.s2d for the expansion ofu. The
relevant parts of the Lagrangian are

LpN
s1d = c̄siD” − mdc +

1

2
gAc̄u”g5c

= c̄si]” − mdc −
1

4f2eabgc̄tgwas]”wbdc

−
gA

2f
c̄tW · s]”wW dg5c + ¯ s7d

and

LpN
s2d = c1Trsx+dc̄c −

c2

4m2Trsumundsc̄DmDnc + H.c.d

+
c3

2
Trsumumdc̄c −

c4

4
c̄gmgnfum, ungc

=c1S4M2 −
2M2

f2 wW 2Dc̄c

−
c2

2m2f2s]mwW d · s]nwW dc̄s]m]ncd

−
c2

2m2f2s]mwW d · s]nwW ds]m]nc̄dc +
c3

f2s]mwW d · s]mwW dc̄c

− ieabg

c4

2f2c̄tgs]”wads]”wbdc + ¯ , s8d

where m is the nucleon mass,gA is the axial coupling

constant, andc1, . . . ,c4 are the standard low energy
constants.2

It is convenient to combine −mc̄c from Eq. (7) with

4c1M
2c̄c from Eq. (8) to form a modified nucleon mass

mN=m−4c1M
2. The difference betweenmN andmwill lead to

corrections ofOsQ4d in all the quantities calculated below.
Since such corrections are beyond the orderOsQ2d we are
interested in, we will simply keep the notationm for the

nucleon mass and drop the term 4c1M
2c̄c from LpN

s2d .

III. EFFECTIVE PION MASS IN NUCLEAR MATTER

The effective in-medium pion mass is determined by the
pole position of the full in-medium pion propagator[3]. The
pole position corresponds to the energy of a pionic mode
state and is related to the pion self-energy in the medium. We
will apply the usual mean-field approximation[2,16], where,
to the first order in the nuclear densityr, the s-wave pion
self-energy is proportional to the isospin-symmetric forward
pion-nucleon scattering amplitude. The general structure of
the pion-nucleon scattering amplitude is[21]

Tabsp, q;p8, q8d = usp8dFdabSD+ +
fq” , q”8g

4m
B+D

+
fta, tbg

2 SD− +
fq” , q”8g

4m
B−DGuspd, s9d

where the initial and final nucleon and pion four-momenta
are p, p8 and q, q8, respectively, and the initial and final
pion isospin indices area andb. The nucleons are on the
mass shell—described by Dirac spinorsuspd, usp8d—while
the pions can be off shell in general. The amplitudesD±

and B± are functions of the standard kinematic variables

n =
q2 − q82 + 2fpsq + q8dg

4m
, nB = −

sqq8d
2m

. s10d

The isospin-symmetric,s-wave interaction is described by
the invariant amplitudeD+. In the tree-level approximation,
the amplitude comprises contributions from thes- and
u-channel nucleon pole graphs, which constitute the
“pseudovector” Born termDBorn

+ =Ds
++Du

+, and from the four-
particle contact graphDc

+:

D+ = DBorn
+ + Dc

+ = Ds
+ + Du

+ + Dc
+, s11d

where the explicit expressions are obtained using the
Lagrangians, Eqs.s7d and s8d,

Ds
+ =

mgA
2

2f2 S nB

nB − n
−

n

2m
D , s12d

Du
+ =

mgA
2

2f2 S nB

nB + n
+

n

2m
D , s13d

1We will put arrows over isospin vectors and use the boldface for
the usual three-vectors.

2We use the definitions of Refs.[19,7] for the low-energy con-
stants and the conventions of Ref.[20] for the Dirac matrices, Lor-
entz vectors and their products, Feynman rules, etc.

S. KONDRATYUK, K. KUBODERA, AND F. MYHRER PHYSICAL REVIEW C68, 044001(2003)

044001-2



Dc
+ = −

4c1M
2

f2 +
c2

m2f2fsqpdsq8pd + sqp8dsq8p8dg +
2c3

f2 sqq8d.

s14d

In the mean-field approximation[2,16] the pion self-
energyPsv,k ,rd is given by the forward scattering ampli-
tudeD+ in the nucleon rest frame, i.e., forn andnB evaluated
from Eqs.(10) with p=p8=sm,0d andq=q8=sv,kd:

Psv, k, rd = − rD+sn = v, nB = sk2 − v2d/s2mdd. s15d

This kinematical situation describes a pion interacting
with a heavy, nonrecoiling nucleon in the Fermi sea. Sub-
stitution of Eqs.s11d–s14d into Eq. s15d yields

Psv, k, rd =
r

f2FgA
2sk2 − v2d2

4mv2 − s − 2sc2 + c3dv2 + 2c3k
2G

+ OsQ3, r2d, s16d

wheres=−4c1M
2 equals the nucleons term up to correc-

tions of OsQ3d f19g.
The effective in-medium pion massMeff is defined as the

pole of the pion propagator

fv2 − k2 − M2 − Psv, k, rdg−1, s17d

whenk =0, i.e.,Mef f is the solution of the dispersion equa-
tion for v:

v2 − M2 − Psv, k = 0, rd = 0. s18d

Using the pion self-energy of Eq.s16d, we get for the
square of the effective mass

Mef f
2 = M2 + Mef f,Born

2 + Mef f,c
2 + OsQ3, r2d

= M2F1 −
r

f2M2S−
gA

2M2

4m
+ s + 2sc2 + c3dM2DG

+ OsQ3, r2d, s19d

where we have separated the Born contribution for later
convenience. The contribution of the Born termDBorn

+ to
Mef f

2 is

Mef f,Born
2 = r

gA
2M2

4mf2
, s20d

while the contribution of the contact termDc
+ equals

Mef f,c
2 = −

r

f2fs + 2sc2 + c3dM2g. s21d

The Born contribution is estimated to be
Mef f,Born

2 <0.066M2sr /r0d, wherer0 is the normal nuclear
matter density sr0=0.17 fm−3d, using gA=1.27, f
=92.4 MeV, M =139 MeV, andm=938 MeV. However, a
quantitative evaluation of Eq.s19d is quite sensitive to the
precise values of thes term and the low-energy constants
c2 and c3 ssee Refs.f19,22g regarding the values of the
low-energy constants and Ref.f23g for a recent discussion
on the s termd. Such numerical analysis is outside the
scope of this work, and we remark only that the Born and

the contact term contributions toMef f
2 are of the same

order,OsQ2d.
At first sight, the presence of the Born contribution

Meff,Born
2 in Eq. (19) may not look significant as its effect can

formally be absorbed into the contact term by using, e.g.,
c28=c2−gA

2 /s8md instead ofc2. In fact, the expressionMeff
2

=M2+Meff,c
2 has appeared in the literature[7]. We shall

show however that, in order to ensure thatMeff
2 is indepen-

dent of the nucleon interpolating field, onemustkeep track
of the terms of different origins.

IV. TRANSFORMATION OF THE NUCLEON FIELD AND
THE EQUIVALENCE THEOREM FOR THE

IN-MEDIUM PION MASS

Insofar as the effective pion mass has the status of an
observable quantity, the equivalence theorem requires it to
be invariant with respect to redefinitions of the
interpolating—or off-shell—fields. The off-shell invariance
of the scattering matrix has been studied in various ap-
proaches, including axiomatic field theory[11], Lagrangian
and Hamiltonian formalisms[12,13], the path-integral
method[14] (which in xPT is exemplified by the generating
functional approach[24,17]), and Feynman-graph techniques
[15]. The role of the equivalence theorem in hadronic phys-
ics has been also discussed recently within several models
and approximation schemes[25].

The main purpose of the present paper is to study conse-
quences of the equivalence theorem for the effective in-
medium pion mass as calculated using the commonly em-
ployed mean-field approximation. It should be emphasized
that the off-shell invariance of observables holds not only in
general, but also at tree level separately[13]. This fact is
crucial for our present calculation as it allows us to apply the
equivalence theorem to the tree-level amplitudes, which sig-
nificantly simplifies the approach. It is also important that the
equivalence theorem is applicable to the transformations in-
volving only the pion or only the nucleon fields, as well as to
more complicated transformations in which both pion and
nucleon field variables change. The invariance of the effec-
tive mass with respect to field transformations of the pion
field separately was extensively discussed before(see, e.g.,
Refs.[6–9]). Here we consider a complementary case where
it is the nucleon field that undergoes a transformation while
the pion field does not change. Specifically, we consider a
transformation of the nucleon field,

c → S1 + i
l

f
g5tW · wW −

l2

2f2wW 2Dc, s22d

where l is a real parameter. This may be viewed as a
truncated form of the chiral rotation c
→exphisl / fdg5tW ·wW jc in which the terms linear and qua-
dratic in the pion field are retained. As before, we drop the
terms with three or more pion fields since they are irrel-
evant to our tree-level calculation. The truncation, how-
ever, should not suggest that the parameter of the trans-
formation is small: the equivalence theorem holds for any
l in Eq. s22d. The redefinition of the nucleon field, Eq.
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s22d, entails the transformation of the Lagrangian in Eq.
s7d:

LpN
s1d → LpN

s1d −
l

f
c̄tW · s]”wW dg5c − i

2ml

f
c̄tW · wW g5c

+
gAl

f2 eabgc̄s]”wadwbtgc − eabg

l2

f2 c̄was]”wbdtgc

+
2ml2

f2 wW 2c̄c + ¯ , s23d

while the LagrangiansLpp
s2d andLpN

s2d in Eqs.s5d and s8d do
not change. The transformed Lagrangian, given by the
sum of Eqs.s5d, s23d, and s8d, defines a new representa-
tion of the theory; we will put tildes over the quantities
calculated from the transformed Lagrangian.

The tree-level isospin-symmetric amplitude in the new

representation is the sum of a new Born termD̃Born
+ =D̃s

+

+D̃u
+ and a new contact termD̃c

+:

D̃+ = D̃Born
+ + D̃c

+ = D̃s
+ + D̃u

+ + D̃c
+. s24d

Using the transformed Lagrangian, we obtain for the new
s channel,u channel, and contact diagrams

D̃s
+ =

mgA
2

2f2 S nB

nB − n
−

n

2m
D −

l2s2m+ nd + lgAn

f2 , s25d

D̃u
+ =

mgA
2

2f2 S nB

nB + n
+

n

2m
D −

l2s2m− nd − lgAn

f2 , s26d

D̃c
+ = −

4c1M
2

f2 +
c2

m2f2fsqpdsq8pd + sqp8dsq8p8dg +
2c3

f2 sqq8d

+
4ml2

f2 . s27d

Note that bothD̃Born
+ =D̃s

++D̃u
+ and D̃c

+ depend on the arbi-

trary transformation parameterl. Only the sum D̃+

=D̃Born
+ +D̃c

+ is independent ofl. Thus the complete tree-
level scattering amplitude is invariant under the field
transformation, Eq.s22d, and we have

D̃+ = D+. s28d

Exactly as was done in the original representation[see

Eqs.(15) and (18)], the effective massM̃ef f in the new rep-
resentation is obtained by solving the dispersion equation

v2 − M2 − P̃sv, k = 0, rd = 0, s29d

where the pion self-energy is proportional to the ampli-

tude D̃+ evaluated at the forward scattering, nucleon rest
frame kinematics:

P̃sv, k, rd = − rD̃+sn = v, nB = sk2 − v2d/s2mdd. s30d

Using Eqs.s24d–s27d, we obtain in the new representation

M̃ef f
2 = M2 + M̃ef f,Born

2 + M̃ef f,c
2 + OsQ3, r2d, s31d

where the Born and the contact term contributions equal

M̃ef f,Born
2 =

r

f2SgA
2M2

4m
+ 4ml2D s32d

and

M̃ef f,c
2 = −

r

f2fs + 2sc2 + c3dM2 + 4ml2g, s33d

respectively. Thel-dependent terms present inM̃ef f,Born
2

and M̃ef f,c
2 mutually cancel when the sum in Eq.s31d is

taken, and comparison with Eq.s19d shows that the
equivalence theorem is fulfilled for the effective mass

M̃ef f = Mef f, s34d

which is a direct consequence of Eq.s28d. The crucial
observation is that this representation invariance of the
in-medium pion mass holds only ifboth the Born and the
contact contributions are taken into account.

Without considering the nucleon field transformation, one
might falsely conclude from Eq.(19) that the effective mass
could be calculated based on the contact term alone. For
example, from the outset one might want to usec28=c2

−gA
2 /s8md instead ofc2 in the LagrangianLpN

s2d of Eq. (8) in
order to forgo the Born term throughout the calculation. In
doing so, one would have to take into account the following
two points. First, the consistency of calculation would re-
quire one to drop the Born term in all considered represen-
tations. Second, since the equivalence theorem dictates
[12,15] that transitions between representations are effected
solely by changes of field variables while the coupling con-
stants must stay unchanged, the constantc2 could not be
redefined differently in different representations. In the origi-
nal representation, a calculation based on the contact term
with the constantc82 would lead to an effective mass of the
form

M2F1 −
r

f2M2fs + 2sc28 + c3dM2gG + OsQ3, r2d, s35d

which numerically gives the same value as Eq.s19d. How-
ever, an effective mass calculated solely from the corre-
sponding contact term in the new representation would
then equal

M2F1 −
r

f2M2fs + 2sc28 + c3dM2gG − r
4ml2

f2 + OsQ3, r2d.

s36d

This expression contains an arbitraryl-dependent term
−r 4ml2/ f2 and hence cannot in general be equal to Eq.
s35d. Thus any attempt to mimic the Born contribution by
modifying the contact term will lead to an effective mass
which will depend on an unphysical parameter, which is
unacceptable sinceMef f is an observable quantity that
should not depend on the choice of representation.
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V. CONCLUDING REMARKS

In an approach based on the relativistic chiral Lagrangian,
we have shown that it is impossible to have a representation-
invariant in-medium pion mass by considering the pion-
nucleon contact interactions alone. We have also demon-
strated that the representation invariance cannot be obtained
by subsuming the nucleon-exchange effects(as represented
by the Born term) into the contact term. Only by explicitly
including the Born contribution, together with the contact
term, does the effective mass become invariant under redefi-
nitions of the interpolating nucleon field.

As a physical observable, the effective mass should be
independent of the choice of all interpolating fields of the
Lagrangian. The relativistic chiral Lagrangian employed in
the present work at tree level provides a suitable model for
studying effects of nucleon field transformations. It would be
interesting to obtain analogous results within the framework
of nonrelativisticxPT, which up to now has been applied
only in connection with meson field transformations[6–9].
In contrast to the relativistic approach with the pion-nucleon
Lagrangians[Eqs.(7) and(8)] in the original representation,

or with their counterparts[Eqs. (23) and (8)] in the new
representation, the nonrelativistic heavy-baryon formalism
using the standard dimensional regularization would allow
for a one-to-one correspondence between the loop and small
momentum expansions[17,26,19]. Another line of develop-
ment would be to consider consequences of simultaneous
changes of meson and nucleon field variables.

To make our argument as transparent as possible, we
adopted in the present paper the mean-field approximation
limited to leading order in the nuclear density and considered
s-wave interactions only. Nevertheless, our main
conclusion—that in calculating in-medium meson properties
it is necessary to include the meson-nucleon Born contribu-
tion explicitly in addition to the contact interaction—follows
from quite general field-theoretical considerations and
should therefore hold in more realistic models as well.
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