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We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order(fourth order) of
chiral perturbation theory. Charge dependence is included up to next-to-leading order of the isospin-violation
scheme. The accuracy for the reproduction of the nucleon-nucleonsNNd data below 290-MeV lab energy is
comparable to the one of phenomenological high-precision potentials. SinceNN potentials of order three and
less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary
and sufficient for aNN potential reliable up to 290 MeV. The new potential provides a promising starting point
for exact few-body calculations and microscopic nuclear structure theory(including chiral many-body forces
derived on the same footing).
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The theory of nuclear forces has a long history. Based
upon the Yukawa idea[1], first field-theoretic attempts[2,3]
to derive the nucleon-nucleonsNNd interaction focused on
pion-exchange, resulting in theNN potentials by Gartenhaus
[4] and by Signellet al. [5]. However, even qualitatively,
these potentials barely agreed with empirical information on
the nuclear force. So, these “pion theories” of the 1950s are
generally judged as failures—for reasons we understand to-
day: pion dynamics is constrained by chiral symmetry, a cru-
cial point that was unknown in the 1950s.

Historically, the experimental discovery of heavy mesons
[6] in the early 1960s saved the situation. The one-boson-
exchange model[7,8] emerged which is still the most eco-
nomical and quantitative phenomenology for describing the
nuclear force[9,10]. The weak point of this model, however,
is the scalar-isoscalar “sigma” or “epsilon” boson, for which
the empirical evidence remains controversial. Since this bo-
son is associated with the correlated(or resonant) exchange
of two pions, a vast theoretical effort that occupied more
than a decade was launched to derive the 2p-exchange con-
tribution of the nuclear force, which creates the intermediate
range attraction. For this, dispersion theory as well as field
theory were invoked producing the Paris[11,12] and the
Bonn [8,13] potentials.

The nuclear force problem appeared to be solved; how-
ever, with the discovery of quantum chromodynamics
(QCD), all “meson theories” had to be relegated to models
and the attempts to derive the nuclear force started all over
again.

The problem with a derivation from QCD is that this
theory is nonperturbative in the low-energy regime charac-
teristic of nuclear physics, which makes direct solutions im-
possible. Therefore, during the first round of new attempts,
QCD-inspired quark models[14] became popular. These

models were able to reproduce qualitatively some of the
gross features of the nuclear force. However, on a critical
note, it has been pointed out that these quark-based ap-
proaches were nothing but another set of models and, thus,
did not represent any fundamental progress. Equally well,
one may then stay with the simpler and much more quanti-
tative meson models.

A major breakthrough occurred when the concept of an
effective field theory was introduced and applied to low-
energy QCD. As outlined by Weinberg in a seminal paper
[15], one has to write down the most general Lagrangian
consistent with the assumed symmetry principles, particu-
larly the (broken) chiral symmetry of QCD. At low energy,
the effective degrees of freedom are pions and nucleons
rather than quarks and gluons; heavy mesons and nucleon
resonances are “integrated out.” So, in a certain sense we are
back to the 1950s, except that we are smarter by 40 years of
experience: broken chiral symmetry is a crucial constraint
that generates and controls the dynamics and establishes a
clear connection with the underlying theory, QCD.

The chiral effective Lagrangian is given by an infinite
series of terms with increasing number of derivatives and/or
nucleon fields, with the dependence of each term on the pion
field prescribed by the rules of broken chiral symmetry[16].
Applying this Lagrangian toNN scattering generates an un-
limited number of Feynman diagrams, which may suggest
again an untractable problem. However, Weinberg showed
[16] that a systematic expansion of the nuclear potential ex-
ists in terms ofsQ/Lxdn, whereQ denotes a momentum or
pion mass,Lx<1 GeV is the chiral symmetry breaking
scale, andnù0. For a given ordern, the number of contrib-
uting terms is finite and calculable; these terms are uniquely
defined and the prediction at each order is model indepen-
dent. By going to higher orders, the amplitude can be calcu-
lated to any desired accuracy. The scheme just outlined has
become known as chiral perturbation theorysxPTd.

Following the first initiative by Weinberg[16], pioneering
work was performed by Ordóñez, Ray, and van Kolck
[17,18] who constructed aNN potential in coordinate space
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based uponxPT at next-to-next-to-leading order(NNLO; n
=3). The results were encouraging and many researchers[19]
became attracted to the new field. Kaiseret al. [20] presented
the first model-independent prediction for theNN amplitudes
of peripheral partial waves at NNLO. Epelbaumet al. [21]
developed the first momentum-spaceNN potential at NNLO.

In the 1990s, unrelated, parallel research based upon
boson-exchange and phenomenological potentials showed
that, for conclusive few-body calculations and meaningful
microscopic nuclear structure predictions, the inputNN po-
tential must be of the highest precision; i.e., it must repro-
duce theNN data below about 300-MeV lab energy with a
x2/datum<1. The family of high-precisionNN potentials
[9,10,22,23] was developed which fulfills this requirement.
Due to the outstanding accuracy of theseNN potentials, it
was possible to pin down cases of few-body scattering and of
nuclear structure that clearly require three-nucleon forces
(3NF) for their microscopic explanation. Famous examples
are theAy puzzle ofN-d scattering[24] and the ground state
of 10B [25].

One important advantage ofxPT is that it makes specific
predictions for many-body forces. For a given order ofxPT,
both 2N and 3N forces are generated on the same footing. At
next-to-leading order(NLO), all 3NF cancel[16,26]; how-
ever, at NNLO and higher orders, well-defined, nonvanishing
3NF terms occur[26,27]. Since 3NF show up first at NNLO,
they are generally small. Therefore, it is only possible to
demonstrate their relevance when the 2NF is of high preci-
sion (and, of course, of the same order).

NN potentials based uponxPT at NNLO are poor in quan-
titative terms; they reproduce theNN data below 290-MeV
lab energy with ax2/datum of more than 20. Clearly, there is
a strong need for more precision, implying that going to
higher order is necessary.

It is the purpose of this note to present the firstNN poten-
tial that is based consistently onxPT at next-to-next-to-next-
to-leading order(N3LO; fourth order). We will show that, at
this order, the accuracy is comparable to the one of the high-
precision phenomenological potentials. Thus, theNN poten-
tial at N3LO is the first to meet the requirements for a reli-

TABLE I. Low-energy constants applied in the N3LO NN po-
tential (column “NN” ). The ci belong to the dimension-twopN
Lagrangian and are in units of GeV−1, while thedi are associated
with the dimension-three Lagrangian and are in units of GeV−2. The
column “pN” shows values determined frompN data.

NN pN

c1 −0.81 −0.81±0.15a

c2 2.80 3.28±0.23b

c3 −3.20 −4.69±1.34a

c4 5.40 3.40±0.04a

d1+d2 3.06 3.06±0.21b

d3 −3.27 −3.27±0.73b

d5 0.45 0.45±0.42b

d14−d15 −5.65 −5.65±0.41b

aTable 1, Fit 1 of Ref.[35].
bTable 2, Fit 1 of Ref.[36].
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FIG. 1. np phase parameters below 300-MeV lab energy for
partial waves withJø2. The solid line is the result at N3LO. The
dotted and dashed lines are the phase shifts at NLO and NNLO,
respectively, as obtained by Epelbaumet al. [37]. The solid dots
show the Nijmegen multienergynp phase shift analysis[38], and
the open circles are the VPI single-energynp analysis SM99[39].
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able input potential for exact few-body and microscopic
nuclear structure calculations(including chiral 3NF consis-
tent with the chiral 2NF).

In xPT, theNN amplitude is uniquely determined by two
classes of contributions: contact terms and pion-exchange
diagrams. At N3LO, there are two contacts of order
Q0fOsQ0dg, seven ofOsQ2d, and 15 ofOsQ4d, resulting in a
total of 24 contact terms, which generate 24 parameters that
are crucial for the fit of the partial waves with orbital angular
momentumLø2 [28].

Now, turning to the pion contributions: At leading order
fLO,OsQ0d, n=0g, there is only the well-known static one-
pion exchange(OPE). Two-pion exchange(TPE) starts at
NLO sn=2d, and there are further TPE contributions in any
higher order. While TPE at NNLO was known for a while
[17,20,21], TPE at N3LO has been calculated only recently
by Kaiser [29]. All 2p exchange contributions up to N3LO
are summarized in a pedagogical and systematic fashion in
Ref. [30] where the model-independent results forNN scat-
tering in peripheral partial waves are also shown. We use the
analytic expressions published in Ref.[30], except for one
small modification. Since our iterated OPE is not identical to
Eq. (24) of Ref. [20], we have changed the relativistic 1/MN
corrections contained in Eqs.(21)–(24) of Ref. [30] such that
they match our iterated OPE. The details will be published
elsewhere[31].

Finally, there is also three-pion exchange, which shows up
for the first time at N3LO (two loops). In Ref. [32], it was
demonstrated that the 3p contributions at this order are neg-
ligible, which is why we leave them out.

For an accurate fit of the low-energypp and np data,
charge dependence is important. We include charge depen-
dence up to next-to-leading order of the isospin-violation

scheme(NLØ, in the notation of Ref.[33]). Thus, we include
the pion mass difference in OPE and the Coulomb potential
in pp scattering, which takes care of the LØ contributions. At
order NLØ we have pion mass difference in the NLO part of
TPE, pg exchange[34], and two charge-dependent contact
interactions of orderQ0 which make possible an accurate fit
of the three different1S0 scattering lengthsapp, ann, andanp.

Chiral perturbation theory is a low-momentum expansion.
It is valid only for momentaQ!Lx<1 GeV. To enforce
this, we multiply all expressions(contacts and irreducible
pion exchanges) with a regulator function,

expF− S p

L
D2n

− Sp8

L
D2nG , s1d

wherep andp8 denote, respectively, the magnitudes of the
initial and final nucleon momenta in the center-of-mass
frame. We useL=0.5 GeV throughout. The exponent 2n
is chosen to be sufficiently large so that the regulator
generates powers which are beyond the ordersn=4d at
which our calculation is conducted. Thus, we usenù3 for
LO contributions andnù2 for NLO and higher order.

The contact terms plus irreducible pion-exchange expres-
sions at N3LO, multiplied by the above regulator, define the
NN potential at N3LO. This potential is applied in a
Lippmann-Schwinger equation to obtain theT matrix from
which phase shifts andNN observables are calculated. The
corresponding homogenous equation determines the proper-
ties of the two-nucleon bound state(deuteron).

The peripheral partial waves ofNN scattering withLù3
are exclusively determined by OPE and TPE because the
N3LO contacts contribute toLø2 only. OPE and TPE at
N3LO depend on the axial-vector coupling constantgA (we
use gA=1.29), the pion decay constantfp=92.4 MeV, and
eight low-energy constants(LEC) that appear in the
dimension-two and dimension-threepN Lagrangians(cf.

TABLE II. x2/datum for the reproduction of the 1999np data-
base[40] below 290 MeV by variousnp potentials.

Bin (MeV) No. of data N3LOa NNLOb NLOb AV18c

0–100 1058 1.06 1.71 5.20 0.95
100–190 501 1.08 12.9 49.3 1.10
190–290 843 1.15 19.2 68.3 1.11
0–290 2402 1.10 10.1 36.2 1.04

aThis work.
bReference[37].
cReference[22].

TABLE III. x2/datum for the reproduction of the 1999pp data-
base[40] below 290 MeV by variouspp potentials.

Bin (MeV) No. of data N3LOa NNLOb NLOb AV18c

0–100 795 1.05 6.66 57.8 0.96
100–190 411 1.50 28.3 62.0 1.31
190–290 851 1.93 66.8 111.6 1.82
0–290 2057 1.50 35.4 80.1 1.38

aThis work.
bSee footnote[41].
cReference[22].

TABLE IV. Scattering lengthssad and effective rangessrd in
units of femtometer.(app

C and rpp
C refer to thepp parameters in the

presence of the Coulomb force.aN andrN denote parameters deter-
mined from the nuclear force only and with all electromagnetic
effects omitted.)

N3LOa Experimentb

1S0

app
C −7.8188 −7.8196±0.0026

rpp
C 2.795 2.790±0.014

app
N −17.083

rpp
N 2.876

ann
N −18.900 −18.9±0.4

rnn
N 2.838 2.75±0.11

anp −23.732 −23.740±0.020
rnp 2.725 2.77±0.05

3S1

at 5.417 5.419±0.007
rt 1.752 1.753±0.008

aThis work.
bSee Table XIV of Ref.[10] for references.
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Ref. [30]). In the fitting process, we varied three of them,
namely,c2, c3, andc4. We found that the other LEC are not
very effective in theNN system and, therefore, we kept them
at the values determined frompN (cf. Table I). The most
influential constant isc3, which has to be chosen on the low
side(slightly more than one standard deviation below itspN
determination) for an optimal fit of theNN data. As com-
pared to a calculation that strictly uses thepN values forc2
andc4, our choices for these two LEC lower the3F2 and1F3
phase shifts bringing them into closer agreement with the
phase shift analysis. The otherF waves and the higher partial
waves are essentially unaffected by our variations ofc2 and
c4. Overall, the fit of allJù3 waves(that are not shown in
Fig. 1) is excellent.

The most important sets of fit parameters are the ones
associated with the 24 contact terms that rule the partial
waves withLø2. In addition, we have two charge-dependent
contacts, which bring the number of contact parameters to
26. Since we treated three LEC as semifree, the total number
of parameters of the N3LO potential is 29.

In the optimization procedure, we fit first phase shifts, and
then we refine the fit by minimizing thex2 obtained from a
direct comparison with the data. The phase shifts at N3LO
for np scattering below 300-MeV lab energy are displayed in
Fig. 1. The x2/datum for the fit of thenp data below
290 MeV is shown in Table II, and the corresponding one for
pp is given in Table III. Obviously, thex2 tables show the

quantitative improvement of theNN interaction order by or-
der in a dramatized fashion. Even though there is consider-
able improvement when going from NLO to NNLO, it is
clearly seen that N3LO is needed to achieve an accuracy
comparable to the phenomenological high-precision Argonne
V18 potential[22].

At this point, a clarifying word is in place concerning how
to properly view the aspect of accuracy when working with
xPT. One great advantage ofxPT is that it allows us to
estimate the theoretical uncertainty at any given order. Since
xPT is an expansion inQ/Lx, one may estimate the theoret-
ical uncertainty at ordern by calculatingsQ/Lxdn+1, where
Q,L=500 MeV in our case. Thus, for NLO the relative
uncertainty issQ/Lxd3=13%, for NNLO sQ/Lxd4=6%, and
for N3LO sQ/Lxd5=3%. These uncertainties are well reflected
in the phase shift plots of Fig. 1. In the case of thex2/datum
shown in Tables II and III, one needs to keep in mind that the
x2 is by definition thesquareof the theoretical error over the
experimental error. Thus, deviations of the predictions from
the experimental values are blown up quadratically. This
may explain why the changes in thex2, order by order, ap-
pear more dramatic. Neutron-proton data carry experimental
errors that are typically around 4% which is why at N3LO a
x2/datum<1 can be achieved. Proton-proton data have char-
acteristically smaller experimental errors thannp data result-
ing in largerx2.

The low-energy parameters are shown in Table IV and
deuteron properties in Table V. The agreement between
N3LO and experiment is excellent throughout. The results for
the deuteron radius are remarkable. AllNN potentials of the
past(Table V includes two representative examples, namely,
CD-Bonn[10] and AV18[22]) predict the new empirical
value for the deuteron radius(that is obtained by using the
isotope-shift method[43]) too small [42]. In contrast, our
N3LO potential predicts the radius slightly too large. Table V
also includes the prediction of the triton binding energy as
obtained in a charge-dependent 34-channel Faddeev calcula-
tion. Note that this calculation includes only 2N forces and
that for a complete calculation the 3NF of NNLO and N3LO
need to be included.

In conclusion, we have developed the firstNN potential at
fourth order ofxPT [44]. This potential is as quantitative as
some so-called high-precision phenomenological potentials.
Due to its basis inxPT, the many-body forces associated
with this two-body force are well defined[26,27]. Thus, we
have a promising starting point for exact few-body calcula-
tions and microscopic nuclear structure theory.

This work was supported by the U.S. National Science
Foundation under Grant No. PHY-0099444 and by three
Spanish foundations: the Ministerio de Ciencia y Tecnología
under Contract No. BFM2001-3563, the Junta de Castilla y
León under Contract No. SA-109/01, and the Ramón Areces
Foundation.

TABLE V. Two- and three-nucleon bound-state properties.
(Deuteron binding energyBd; asymptoticSstateAS; asymptoticD/S
stateh; deuteron radiusrd; quadrupole momentQ; D-state probabil-
ity PD; triton binding energyBt.)

N3LOa CD-Bonn [10] AV18 [22] Empiricalb

Deuteron
BdsMeVd 2.224575 2.224575 2.224575 2.224575(9)
ASsfm−1/2d 0.8843 0.8846 0.8850 0.8846(9)
h 0.0256 0.0256 0.0250 0.0256(4)
rdsfmd 1.978c 1.970c 1.971c 1.97535(85)
Qsfm2d 0.285d 0.280d 0.280d 0.2859(3)
PDs%d 4.51 4.85 5.76

Triton
BtsMeVde 7.855 8.00 7.62 8.48

aThis work.
bSee Table XVIII of Ref.[10] for references.
cWith meson-exchange currents(MEC) and relativistic corrections
(RC) [42].
dIncluding MEC and RC in the amount of 0.010 fm2.
eAs obtained in a charge-dependent 34-channel Faddeev calculation
applying only 2N forces.
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