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Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics
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Structure of cold nuclear matter at subnuclear densities for the proton fractionx50.5, 0.3, and 0.1 is
investigated by quantum molecular dynamics~QMD! simulations. We demonstrate that the phases with slab-
like and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assump-
tions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation
functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have
complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative
Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple ‘‘pasta’’
phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the
effective QMD interaction used in the present work to examine the validity of our results. The resultant energy
per nucleonen of the pure neutron matter, the proton chemicalmp

(0) in pure neutron matter and the nuclear
surface tensionEsurf are generally reasonable in comparison with other nuclear interactions.

DOI: 10.1103/PhysRevC.68.035806 PACS number~s!: 21.65.1f, 26.50.1x, 26.60.1c, 61.20.Ja
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I. INTRODUCTION

For the past several decades since the discovery of
sars, many authors have investigated the properties of d
matter which exist inside neutron stars and supernova c
~see, e.g., Refs.@1–3#!. These objects have been shown
consist of a variety of material phases whose physical pr
erties reflect in many astrophysical phenomena of these
jects. Especially, the properties of nuclear matter under
treme conditions, which is one of the essential topics
understanding the mechanism of collapse-driven superno
@4#, the structure of neutron star crusts@5#, and its relating
phenomena, have been studied actively. This subject is
interesting as one of the fundamental problems of the c
plex fluids of nucleons.

At subnuclear densities, nuclear matter exhibits the co
istence of a liquid phase with a gas phase due to the in
nucleon interaction which has an attractive part. At su
ciently low temperatures relevant to neutron star interio
and sufficiently below the normal nuclear density, long-ran
Coulomb interactions make the system divide periodica
into gas and spherical liquid drops, adding a crystalline pr
erty to the liquid-gas coexistence.

In the density region where nuclei are about to melt in
uniform matter, it is expected that the energetically favora
configuration of the mixed phase possesses interesting sp
structures such as rodlike and slablike nuclei and rodlike
spherical bubbles, etc., which are referred to as nuc
‘‘pasta.’’ This picture was originally proposed by Ravenh
et al. @6# and Hashimotoet al. @7# independently. Their pre
dictions were based on free energy calculations with liq
drop models assuming some specific nuclear shapes. T
works clarify that the most energetically stable nuclear sh
is determined by a subtle balance between the nuclear
face and Coulomb energies. Detailed aspects of equilibr
phase diagrams, such as a series of nuclear shapes whic
0556-2813/2003/68~3!/035806~20!/$20.00 68 0358
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be realized as the energetically most favorable and the d
sity range corresponding to the phases with nonspherical
clei, vary with nuclear models@8#. However, the realization
of the pasta phases as energy minimum states can be se
a wide range of nuclear models, and the phase diagr
possess a universal basic feature that, with increasing
sity, the shape of the nuclear matter region changes
sphere→ cylinder → slab→ cylindrical hole→ spherical
hole → uniform @9,10#. This feature is also reproduced b
the Thomas-Fermi calculations by several groups@11–13#.

The phases with these exotic nuclear structures, if t
were realized in neutron star crusts or supernova cores, b
about many astrophysical consequences. As for those in
tron star phenomena, it is interesting to note the relevanc
nonspherical nuclei to pulsar glitches and cooling of neut
stars. Although the question whether the mechanism of p
sar glitches is depicted by vortex pinning model or s
quake model has yet to be settled completely, the existe
of nonspherical nuclei in neutron star matter~NSM! have
significant effects in both cases. As for the former, while t
force needed to pin vortices has yet to be clarified co
pletely even for a bcc lattice of spherical nuclei mainly d
to the uncertain properties of impurities and defects@14#, the
effect of spatial structure of normal nuclear matter on vor
dynamics cannot be ignored. As for the latter, the existe
of pasta phases with slablike and rodlike nuclei wou
change the elastic properties of inner crust matter from th
of crystalline solid to those of liquid crystal as indicated
Pethick and Potekhin@15#, which results in significant de
crease of the maximum elastic energy that can be store
the inner crust. The presence of nonspherical nuclei wo
also accelerate the cooling of the corresponding region
neutron stars by opening semileptonic weak processes w
are unlikely to occur for spherical nuclei@8#.

Pasta phases in supernova matter~SNM! are expected to
affect the neutrino transport and hydrodynamics in sup
©2003 The American Physical Society06-1
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nova cores. Let us first note that the neutrino waveleng
typically of order 20 fm, are comparable to or even grea
than the internuclear spacing, leading to diffractive effects
the neutrino elastic scattering off such a periodic spa
structure of nuclear matter@6#. These effects, induced by th
internuclear Coulombic correlations, would reduce the sc
tering rates and hence the lepton fractionYL . For the bcc
lattice of spherical nuclei, such a reduction was examined
Horowitz @16# by calculating the associated static structu
factor. It is also worth noting that nonspherical nuclei a
bubbles are elongated in a specific direction. In such a di
tion, the neutrino scattering processes are no longer cohe
in contrast to the case of roughly spherical nuclei who
finiteness in any direction yields constructive interference
the scattering. The final point to be mentioned is that
changes in the nuclear shape are accompanied by disc
nuities in the adiabatic index, denoting how hard the eq
tion of state of the material is. These discontinuities m
influence the core hydrodynamics during the initial phase
the collapse@12#.

Though the properties of pasta phases in equilibrium s
have been investigated actively, the formation and the m
ing processes of these phases have not been discussed e
for some limited cases which are based on perturbative
proaches@5,17#. It is important to adopt a microscopic an
dynamical approach which allows arbitrary nuclear str
tures in order to understand these processes of nonsphe
nuclei. At finite temperatures, it is considered that not o
nuclear surface becomes obscure but also nuclei of var
shapes may coexist. Therefore, it is necessary to incorpo
density fluctuations without any assumptions on nucl
shape to investigate the properties of pasta phases at
temperatures. Although the works done by Williams a
Koonin @11# and Lassautet al. @12# do not assume nuclea
structure, these cannot incorporate fluctuations of nucl
distributions in a satisfying level because these are base
the Thomas-Fermi calculation, which is one-body appro
mation. In addition, only a single structure is contained in
simulation box in these works, there are thus possibilit
that nuclear shape is strongly affected by boundary effect
some structures are prohibited implicitly.

In the present work, we study the structure of cold de
matter at subnuclear densities in the framework of quan
molecular dynamics~QMD! @18#, which is one of the mo-
lecular dynamics~MD! approaches for nucleon many-bod
systems~see, e.g., Ref.@19# for review!. MD for nucleons
including QMD, which is a microscopic and dynamic
method without any assumptions on nuclear structure, is s
able for incorporating fluctuations of particle distribution
Previously, we have reported the first results of our study
nuclear pasta by QMD, which demonstrated that the pa
phases can be formed in a dynamical way for matter w
proton fractionsx50.3 and 0.5@20#. In this paper, we
present new results for astrophysically interesting neutr
rich matter ofx50.1 in addition to the cases ofx50.3 and
0.5 reported before.

The plan of this paper is as follows. In Sec. II, we d
scribe the framework of the QMD model used in the pres
study. We then show the results of our simulations in Sec
03580
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and analyze the structure of matter obtained by the sim
tions using two-point correlation functions and Minkows
functionals in Sec. IV. In Sec. V, we investigate the prop
ties of the effective nuclear interaction used in this work
order to examine the validity of our results in terms
nuclear forces. Astrophysical discussions are given in S
VI. Summary and conclusions are presented in Sec. VII.

II. QUANTUM MOLECULAR DYNAMICS

We have various types of molecular dynamics metho
for nucleons including representative ones such as fermio
molecular dynamics~FMD! @21#, antisymmetrized molecula
dynamics~AMD ! @22# and QMD, etc. In the present work
we choose QMD from them balancing between calculat
cost and accuracy. The typical length scalel of inter-structure
is l;10 fm and the density region of interest is just belo
the normal nuclear densityr050.165 fm23. The required
nucleon numberN in order to reproducen unit structures in
the simulation box is aboutN;r0(nl)3 ~for slabs!. It is thus
desirable that we prepare nucleons of order 10 000 if we
to reduce boundary effects down to a satisfactory level
reproducing several unit structures in the box. While it is
hard task to treat such a large system with, for exam
FMD and AMD whose calculation costs scale as;N4, it is
feasible to do it with QMD whose calculation costs scale
;N2. This difference comes from summations in the Sla
determinants in the trial wave functions of the former mo
els. In QMD, on the other hand, the totalN-nucleon wave
function uF& is assumed to be a direct product of sing
nucleon statesuf i&:

uF&5uf1& ^ uf2& ^ •••^ ufN&. ~1!

The single-nucleon state is represented by a Gaussian w
packet:

f i~r !5^r uf i&5
1

~2pL !3/4
expF2

~r2Ri !
2

4L
1

i

\
r•Pi G ,

~2!

whereRi(t) and Pi(t) are the centers of position and mo
mentum of the packeti, respectively, andL is a parameter
related to the extension of the wave packet in the coordin
space.

It is also noted that we mainly focus on the macrosco
structures; the exchange effect would not be so important
them. This can be seen by comparing the typical values
the exchange energy for the macroscopic scale and of
energy difference between two successive phases with
spherical nuclei. Suppose there are two identical nucleo
i 51 and 2, bound with each other in different nuclei. T
exchange energy between these particles is calculated a
exchange integral:

K5E U~r12r2!w1~r1!w1* ~r2!w2~r2!w2* ~r1!dr1dr2 ,

~3!
6-2
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whereU is the potential energy. An asymptotic form of th
wave function is given by

w i;exp~2k i r !, ~4!

with r 5ur12r2u and k i5(1/\)A2mEi ( i 51,2), whereEi
is the binding energy andm is the nucleon mass. The ex
change integral reads

K;exp@2~k11k2!R#;531026 MeV ~5!

for the internuclear distanceR.10 fm and Ei.8 MeV,
which is extremely smaller than the typical energy differen
per nucleon between the pasta phases of order 0.1 keV~for
NSM, see Fig. 4 in Ref.@9#!; 10 keV~for SNM, see Fig. 4 in
Ref. @10#!. Therefore, it is expected that QMD, which is le
elaborate in treating the exchange effect, is not bad appr
mation for investigating the nuclear pasta. Consequen
QMD has the advantages over the other models in
present study. In the future, we will have to confirm t
validity of the results obtained by QMD using other mo
elaborate model such as AMD or FMD to treat the excha
effect more precisely. However, this problem is beyond
scope of the present work.

Model Hamiltonian

To simulate nuclear matter at subnuclear densities wi
the framework of QMD, we use a QMD model Hamiltonia
developed by Maruyamaet al. @23#, which is constructed so
as to reproduce bulk properties of nuclear matter and p
erties of finite nuclei. This model Hamiltonian consists of t
following six terms:

H5T1VPauli1VSkyrme1Vsym1VMD1VCoulomb, ~6!

where T is the kinetic energy,VPauli is the Pauli potential
introduced to reproduce the Pauli principle effective
VSkyrme is the Skyrme potential which consists of an attra
tive two-body term and a repulsive three-body term,Vsym is
the symmetry potential,VMD is the momentum-dependen
potential introduced as two Fock terms of the Yukawa int
action andVCoulomb is the Coulomb potential. The expre
sions of these terms are given as

T5 (
i , j (Þ i )

Pi
2

2mi
, ~7!

VPauli5
1

2
CPS \

q0p0
D 3

(
i , j (Þ i )

expF2
~Ri2Rj !

2

2q0
2

2
~Pi2Pj !

2

2p0
2 Gdt it j

ds is j
, ~8!

VSkyrme5
a

2r0
(

i , j (Þ i )
r i j

1
b

~11t!r0
t (

i
F (

j (Þ i )
E d3rr ĩ~r !r j̃~r !G t

, ~9!
03580
e

i-
y,
e

e
e

in

p-

,
-

-

Vsym5
Cs

2r0
(

i , j (Þ i )
~122uci2cj u!r i j , ~10!

VMD5VMD
(1) 1VMD

(2) 5
Cex

(1)

2r0
(

i , j (Þ i )

1

11FPi2Pj

\m1
G2 r i j

1
Cex

(2)

2r0
(

i , j (Þ i )

1

11FPi2Pj

\m2
G2 r i j , ~11!

VCoulomb5
e2

2 (
i , j (Þ i )

S t i1
1

2D S t j1
1

2D
3E E d3r d3r 8

1

ur2r 8u
r i~r !r j~r 8!, ~12!

wherer i j means the overlap between the single-nucleon d
sities,r i(r ) andr j (r ), for the i th and j th nucleons given as

r i j [E d3rr i~r !r j~r !, ~13!

s i is the nucleon spin andt i is the isospin (t i51/2 for
protons and21/2 for neutrons! andCP, q0 , p0 , a, b, t,
Cs, Cex

(1) , Cex
(2) , m1 , m2, andL are model parameters de

termined to reproduce the properties of the ground state
the finite nuclei, especially heavier ones, and the satura
properties of nuclear matter@23#. A parameter set used in thi
work is shown in Table I. The single-nucleon densitiesr i(r )
andr ĩ(r ) are given by

r i~r !5uf i~r !u25
1

~2pL !3/2
expF2

~r2Ri !
2

2L G , ~14!

r ĩ~r !5
1

~2pL̃ !3/2
expF2

~r2Ri !
2

2L̃
G , ~15!

TABLE I. Effective interaction parameter set~incompressibility
K5280 MeV; medium equation of state~EOS! model in Ref.@23#!.

CP ~MeV! 207
p0 (MeV/c) 120
q0 ~fm! 1.644
a ~MeV! 292.86
b ~MeV! 169.28
t 1.33333
Cs ~MeV! 25.0
Cex

(1) ~MeV! 2258.54
Cex

(2) ~MeV! 375.6
m1 (fm21) 2.35
m2 (fm21) 0.4
L (fm2) 2.1
6-3
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with

L̃5
~11t!1/t

2
L. ~16!

The modified widthL̃ in r̃ i(r ) is introduced in the three
body term of Skyrme interaction@Eq. ~9!# to incorporate the
effect of the repulsive density-dependent term.

We adopt QMD equations of motion with friction terms
simulate the dynamical relaxation:

Ṙi5
]H
]Pi

2jR

]H
]Ri

,

Ṗi52
]H
]Ri

2jP

]H
]Pi

, ~17!

where the friction coefficientsjR andjP are positive definite,
which determine the relaxation time scale. The relaxat
scheme given by Eqs.~17! is referred to as the steepest d
scent method and it leads to the continuous decrease inH as

dH
dt

5Ṙi•
]H
]Ri

1Ṗi•
]H
]Pi

52jRS ]H
]Ri

D 2

2jPS ]H
]Pi

D 2

<0.

~18!

Even though it is recognized that this method is not efficie
it is expected that the dynamics given by Eqs.~17! with
jR ,jP!1 deviates slightly in a short period from the phys
cally grounded dynamics given by QMD equations of m
tion without the friction terms@equations without the secon
terms in the right-hand sides of Eqs.~17!#, which we would
like to respect.

III. QMD SIMULATIONS OF COLD MATTER AT
SUBNUCLEAR DENSITIES

A. QMD simulations for xÄ0.5 and 0.3

We have performed QMD simulations of an infini
(n,p,e) system with fixed proton fractionsx50.5 and 0.3
for various nucleon densitiesr @the density region is
(0.05–1.0)r0]. We set 2048 nucleons~1372 nucleons in
some cases! contained in a cubic box on which period
boundary condition is imposed. Throughout this paper,
numbers of the protons~neutrons! with up-spin and with
down-spin are equal. The relativistic degenerate electr
which ensure the charge neutrality are regarded as a uni
background and the Coulomb interaction is calculated by
Ewald method taking account of the Gaussian charge di
bution of each wave packet~see the Appendix!. This method
enables us to efficiently sum up contributions of long-ran
interactions in a system with periodic boundary conditio
For nuclear interaction, we use the effective Hamiltonian
veloped by Maruyamaet al. ~medium EOS model! @23#
whose expressions are given in the last section.

We first prepare a uniform hot nucleon gas atkBT
;20 MeV as an initial condition equilibrated fo
;500–2000 fm/c in advance. In order to realize the groun
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state of matter, we then cool it down slowly forO(103

2104) fm/c, keeping the nucleon density constant with t
frictional relaxation method@Eqs. ~17!#, etc. @24# until the
temperature gets;0.1 MeV or less. Note that no artificia
fluctuations are given in the simulation.

The QMD equations of motion with the friction term
given by Eqs.~17! are solved using the fourth-order Ge
predictor-corrector method in conjunction with multiple tim
step algorithm@26#. Integration time stepsDt are set to be
adaptive in the range ofDt,0.120.2 fm/c depending on the
degree of convergence. At each step, the correcting opera
is iterated until the error of positionDr and the relative error
of momentumDp/p become smaller than 1026, whereDr
and Dp/p are estimated as the maximum values of corr
tion among all particles. We mainly use PCs~Pentium III!
equipped with MDGRAPE-2, which accelerates calculatio
of momentum-independent forces including the long-ran
Coulomb force.

Shown in Figs. 1 and 2 are the resultant nucleon distri
tions of cold matter atx50.5 and 0.3, respectively. We ca
see from these figures that the phases with rodlike and s
like nuclei, cylindrical and spherical bubbles, in addition
the phase with spherical nuclei are reproduced in both
cases ofx50.5 and 0.3. We here would like to mention th
reasons of discrepancies between the present result an
result obtained by Maruyamaet al. which says ‘‘the nuclear
shape may not have these simple symmetries’’@23#. One of
the most crucial reasons seems to be the difference in tr
ment of the Coulomb interaction. In the present simulati
we calculate the long-range Coulomb interaction in a con
tent way using the Ewald method. For the system of inter
where the Thomas-Fermi screening length is comparabl
or larger than the size of nuclei, this treatment is more
equate than that which introduces an artificial cutoff distan
as in Ref.@23#. The other crucial reason is the difference
the relaxation time scalest fm/c; we sett;O(103–104) in
the present work, but Maruyamaet al. set t ; several
3103 fm/c @27#. In our simulation, we can reproduce th
bubble phases@see ~d! and ~e! of Figs. 1 and 2# with t
;103 fm/c and the nucleus phases@see~b! and~c! of Figs. 1
and 2# with t;O(104) fm/c. However, the matter in
the density region corresponding to a nucleus phase
quenched in an amorphouslike state whent&103 fm/c. In
the present work, we taket much larger than typical time
scalet th ; O(100) fm/c for nucleons to thermally diffuse in
the distance ofl;10 fm at r.r0 and kBT.1 MeV. This
temperature is lower than the typical value of the liquid-g
phase transition temperature in the density region of inter
it is thus considered that our results are thermally relaxed
a satisfying level.

Phase diagrams of matter in the ground state are show
Figs. 3~a! and 3~b! for x50.5 and 0.3, respectively. As ca
be seen from these figures, the obtained phase diagram
sically reproduce the sequence of the energetically favo
nuclear shapes predicted by simple discussions@7# which
only take account of the Coulomb and surface effects;
prediction is that the nuclear shape changes like sphere→
cylinder → slab → cylindrical hole → spherical hole→
6-4
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FIG. 1. ~Color! The nucleon distributions of typical phases with simple structures of cold matter atx50.5; ~a! sphere phase, 0.1r0

(Lbox543.65 fm, N51372); ~b! cylinder phase, 0.225r0 (Lbox538.07 fm, N52048); ~c! slab phase, 0.4r0 (Lbox531.42 fm, N
52048); ~d! cylindrical hole phase, 0.5r0 (Lbox529.17 fm, N52048), and~e! spherical hole phase, 0.6r0 (Lbox527.45 fm, N52048),
whereLbox is the box size. The red particles represent protons and the green ones represent neutrons.

FIG. 2. ~Color! Same as Fig. 1 atx50.3; ~a! sphere phase, 0.1r0 (Lbox549.88 fm, N52048); ~b! cylinder phase, 0.18r0 (Lbox

541.01 fm, N52048); ~c! slab phase, 0.35r0 (Lbox532.85 fm, N52048); ~d! cylindrical hole phase, 0.5r0 (Lbox529.17 fm, N
52048) and~e! spherical hole phase, 0.55r0 (Lbox528.26 fm, N52048). The red particles represent protons and the green ones rep
neutrons.
035806-5
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uniform, with increasing density. Comparing Figs. 3~a! and
3~b!, we can see that the phase diagram shifts towards
lower density side with decreasingx, which is due to the
tendency that the saturation density is lowered as the neu
excess increases. It is remarkable that the density de
dence of the nuclear shape, except for spherical nuclei
bubbles, is quite sensitive, and phases with intermed
nuclear shapes which are not simple as shown in Figs. 1
2 are observed in two density regions: one is between
cylinder phase and the slab phase, the other is between
slab phase and the cylindrical hole phase. We note that t
phases are different from coexistence phases with nucle
simple shapes, which will be referred to as ‘‘intermedia
phases.’’

B. QMD simulations for xÄ0.1

We have also performed QMD simulations of matter w
proton fractionx50.1 as a more realistic condition for th
neutron star matter. In this case, we have to deal with a la
system than in the cases ofx50.5 and 0.3 because enoug
number of protons for reproducing several nuclei in a sim
lation box are required to obtain significant results; proto
play an important role in generating the long-range order
to their electric charge. We have investigated the neutr
rich matter atx50.1 with 10 976 nucleons, in which 109
protons and 9878 neutrons are contained. Following b
cally the same procedure that was used for the casesx
50.5 and 0.3~see Sec. III A for detail!, we tried to obtain the
ground-state matter. However, in the present case,
quickly relax from the initial state atkBT;20 MeV to the
state atkBT;10 MeV, at which matter is still uniform, with
a Nosé-Hoover-like thermostat@28,29# which will be dis-
cussed in another paper@25#. After the relaxation atkBT
;10 MeV for ;4000–7000 fm/c, we then cool down the
system with a relaxation time scalet;O(104) fm/c using

FIG. 3. Phase diagrams of cold matter atx50.5 ~a! and x
50.3 ~b!. Matter is unstable against phase separation in the den
region shown askT,0, wherekT is the isothermal compressibility
The symbols SP, C, S, CH, and SH stand for nuclear shapes,
sphere, cylinder, slab, cylindrical hole and spherical hole, resp
tively. The parentheses (A,B) show intermediate phases betwe
A-phase andB-phase suggested in this work. These have com
cated structures different from those of bothA phase andB phase.
Simulations have been carried out at densities denoted by s
circles.
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the QMD equations of motion with friction terms~17!. These
simulations are performed by Fujitsu VPP 5000 equipp
with MDGRAPE-2.

Some resultant nucleon distributions are shown in Figs
and 5, which correspond to the sphere phase and the cyli
phase, respectively. As can be seen in Fig. 4, dripped n
trons spread over the whole region in the simulation b
which lead to smaller density contrast compared with that
the cases ofx50.5 and 0.3 depicted in Figs. 1 and 2, respe
tively.

The results obtained forx50.1 are summarized in the
phase diagram shown in Fig. 6. A striking feature is that
wide density region from;0.25r0 to ;0.525r0 is occupied
by an intermediate phase. The structure of matter seem
change rather continuously from that consisting of branch

ity

e.,
c-

i-

all

FIG. 4. ~Color! The nucleon distribution of sphere phase in co
matter atx50.1. The nucleon densityr and the sizeLbox of the
simulation box arer50.075r0 and Lbox596.08 fm. The red par-
ticles represent protons and the green ones represent neutrons

FIG. 5. ~Color! The proton distribution of cylinder phase in col
matter atx50.1. The nucleon densityr and the sizeLbox of the
simulation box arer50.2r0 andLbox569.29 fm. Neutrons which
spread over the whole space are not depicted in this figure.
6-6
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STRUCTURE OF COLD NUCLEAR MATTER AT . . . PHYSICAL REVIEW C 68, 035806 ~2003!
rodlike nuclei connected to each other@obtained in the lower
density region of the intermediate phase denoted by (C,U)]
to that consisting of branching bubbles connected to e
other @higher density region of the intermediate pha
(C,U)]. However, in the present neutron-rich case, the pa
phase with slablike nuclei cannot be obtained as far as
have investigated, which will be discussed at the end of
following section. It is also noted that the density at whi
matter turns into uniform is lower than those in the cases
x50.5 and 0.3, which is consistent with the tendency of
matter becoming more neutron rich as the saturation den
decreases.

IV. ANALYSIS OF THE STRUCTURE OF MATTER

A. Two-point correlation functions

To analyze the spatial distribution of nucleons, we cal
late two-point correlation functionj i i for nucleon density
field r ( i ) ( i 5N,p,n; where N stands for nucleons!. j i i is
here defined as

j i i 5
1

4pE dV r

1

VE d3xd i~x!d i~x1r !

[^d i~x!d i~x1r !&x,Vr
, ~20!

where^•••&x,Vr
denotes an average over the positionx and

the direction ofr , andd i(x) is the fluctuation of the density
field r ( i )(x) given by

d i~x![
r ( i )~x!2 r̄ ( i )

r̄ ( i )
, ~21!

with

r̄ ( i )[
Ni

V
. ~22!

FIG. 6. Phase diagram of cold matter atx50.1. Matter is un-
stable against phase separation in the density region shown akT

,0, wherekT is the isothermal compressibility. The symbols SP,C,
andU stand for shapes of nuclear matter region, i.e., sphere, cy
der, and uniform, respectively. The density at which the ar
averaged mean curvature of nuclear surface is zero is denote
^H&50. However, slab phase is not observed in our results eve
such a density. The parentheses (A,B) show intermediate phase
betweenA phase andB phase. These have complicated structu
different from those of bothA phase andB phase. Simulations hav
been carried out at densities denoted by small circles.
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We construct the nucleon density distributionr ( i )(x) from
a dataset of the centers of position of the nucleons by
following procedure. We first set 643 ~for x50.5 and 0.3! or
1283 ~for x50.1) grid points in the simulation box and the
distribute particle numbers on each grid point using
cloud-in-cell method~see, e.g., Ref.@30#!. Next, we carry out
the smoothing procedure in the discrete Fourier space wi
Gaussian smoothing function corresponding to the distri
tion of the wave packet given by Eq.~2!. The density distri-
butions r ( i )(x)5(k51

N nk
( i )ufk(x)u2, where nk

( i )50 or 1
projects on particle typei, in the discrete real space can b
obtained by the inverse Fourier transformation. The Fou
transformations are performed using theFFT algorithm.

The resultant two-point correlation functionsjNN(r ),
jpp(r ), and jnn(r ) at various densities belowrm at which
matter becomes uniform at zero temperature forx50.5, 0.3
and 0.1 are plotted in Figs. 7, 8, and 9, respectively. We
see the general tendency, which is common for the differ
values ofx, that the amplitude ofj i i (r ) decreases with in-
creasing the density. It is noted that even though the cha
in the amplitude ofj i i (r ) is quite noticeable, the smalles
zero point r 5r 0 of j i i (r ) takes similar values at variou
densities especially forx50.5 and 0.3. This feature mean
that the typical length scales of the nuclear structures,
the internuclear distance and the nuclear radius, remain c
parable at subnuclear densities from;0.1r0 to rm, which is
consistent with the results obtained by the previous wo
~see, e.g., Refs.@8–10,13#!. This behavior just belowrm will
be discussed further concerning a problem about the pro
ties of the transition to uniform matter.

We also note that a strong attractive force acting betw
a proton and a neutron leads to the good agreement of
zero points ofjpp andjnn even forx50.3 and 0.1 as well as
for x50.5 although the zero pointr 0 of jnn is ;0.3 fm
(&0.5 fm) larger than that ofjpp for x50.3 ~0.1! at each
density. This shows that the phases of the density fluctuat
of protons and neutrons correlate so strongly with each o
at zero temperature that they almost coincide.

As can be seen by comparingjNN(r ) for different values
of the proton fractionx, the amplitude decreases and t

n-
-
by
at

s

FIG. 7. Two-point correlation functions of density fluctuation
calculated forx50.5. The solid lines show the two-point correla
tion function for nucleon density distributions; the dotted lines, th
for proton density distributions; the dashed lines, that for neut
density distributions.
6-7
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WATANABE, SATO, YASUOKA, AND EBISUZAKI PHYSICAL REVIEW C 68, 035806 ~2003!
value of the smallest zero pointr 0 increases with decreasin
x. This behavior means that, as matter becomes more neu
rich, not only the nucleon density distribution gets smoot
but also the spatial structure becomes larger.

Let us then examinej i i for each value of the proton frac
tion. For symmetric matter (x50.5), protons and neutron
are equivalent except for the mass difference and the C

FIG. 8. Two-point correlation functions of density fluctuatio
calculated forx50.3; ~a! for nucleon density distributions;~b! for
proton density distributions;~c! for neutron density distributions.

FIG. 9. The same as Fig. 8 forx50.1.
03580
on
r

u-

lomb interaction. Therefore, the two-point correlation fun
tions jNN , jpp andjnn are almost the same at larger valu
of r *r 0. At smaller values ofr, jpp is slightly smaller than
jnn because the repulsive Coulomb interaction among p
tons tends to reduce the proton density inhomogeneity e
cially in the smaller scale. For asymmetric matter (x50.3
and 0.1!, on the contrary, the amplitude ofjnn is much
smaller than that ofjpp due to the dripped neutrons whic
distribute rather uniformly outside the nuclei.

B. Transition to uniform matter

Let us here examine the properties of the transition fr
the phase with spherical bubbles to uniform matter forx
50.5. For this purpose, two-point correlation function of t
nucleon density fluctuation is useful. In Fig. 10, we thus p
the two-point correlation function of the nucleon dens
fluctuation jNN(r ) for several densities around the meltin
densityrm. To computejNN(r ), we use a 1372-nucleon sys
tem cooled down until the temperature gets;0.05 MeV by
QMD equations of motion~17! with friction terms.

For uniform phase,jNN(r ) should be zero except for th
contribution of short-range correlation. The behavior
jNN(r ) shows thatrm lies between 0.7r0 and 0.725r0 at x
50.5 @see also Fig. 3~a!# above which long-range correlatio
disappears. It is noted that the smallest value ofr 5r 0 at
which jNN(r )50 keeps around 8 fm even at densities ju
below rm. This means that, forx50.5, the phase with
spherical bubbles whose radii are aroundr 0 suddenly disap-
pear rather than shrink gradually and the system turns
uniform with increasing the density because the quantityr 0
nearly corresponds to the half wave-length of the inhomo
neous density profile. The discontinuous change in the d
sity profile indicates that the transition between the ph
with spherical bubbles and the uniform phase is of first ord
This conclusion is also obtained in the previous calculatio
for which the spatial structure of the nuclear matter reg
and/or the shape of the density profile are assum
@8–10,13,31#. In the present work, we have confirmed th
first-order nature by QMD simulations without these a
sumptions as several authors have done so without the

FIG. 10. Two-point correlation functionjNN(r ) of the nucleon
density fluctuation.jNN(r ) is calculated forx50.5 and for densities
aroundrm from 0.625r0 to 0.75r0.
6-8
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STRUCTURE OF COLD NUCLEAR MATTER AT . . . PHYSICAL REVIEW C 68, 035806 ~2003!
sumptions by the Thomas-Fermi approximation@11,12#.
For the cases ofx50.3 and 0.1, we could not see th

significant sign of the first-order nature of the transition b
tween the mixed phase and the uniform phase because
amplitude ofjNN(r ) is quite small just belowrm. Further
study is necessary to determine the properties of the tra
tion for these cases of asymmetric matter.

C. Minkowski functionals

To extract the morphological characteristics of the nucl
shape changes and the intermediate phases, we introduc
Minkowski functionals~see, e.g., Ref.@32#, and references
therein; a concise review is provided by Ref.@33#! as geo-
metrical and topological measures of the nuclear surface.
us consider a homogeneous bodyKPR in thed-dimensional
Eucledian space, whereR is the class of such bodies. Mo
phological measures are defined as functionalsw:R→R
which satisfy the following three general properties.

~1! Motion invariance.The functional is independent o
the position and the direction of the body, i.e.,

w~K !5w~gK!, ~23!

whereg denotes any translations and rotations.
~2! Additivity. The functional of the union of two bodie

should behave like a volume. The contribution of the ov
lapping region should be subtracted, i.e.,

w~K1øK2!5w~K1!1w~K2!2w~K1ùK2!, ~24!

whereK1 ,K2PR.
~3! Continuity. If the body is approximated with pixels

the functional of the approximate body converges to tha
the original body when the pixels get smaller, i.e.,

lim
n→`

w~Kn!5w~K ! as lim
n→`

Kn5K, ~25!

whereK is a convex body and$Kn% is a sequence of conve
bodies.

Hadwiger’s theorem in integral geometry states that th
are just d11 independent functionals which satisfy th
above properties; they are known as Minkowski functiona
In three-dimensional space, four Minkowski functionals a
related to the volume, the surface area, the integral m
curvature and the Euler characteristic.

In classifying nuclear shapes including those of the int
mediate phases obtained in our simulations, the inte
mean curvature and the Euler characteristic are useful, w
will be discussed later. Both are described by surface in
grals of the following local quantities: the mean curvatu
H5(k11k2)/2 and the Gaussian curvatureG5k1k2, i.e.,
*]KHdA and x[(1/2)p*]KGdA, wherek1 and k2 are the
principal curvatures anddA is the area element of the surfac
of the bodyK. The Euler characteristicx is a purely topo-
logical quantity and is given by

x5~number of isolated regions!2~number of tunnels!

1~number of cavities!. ~26!
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Thusx.0 for the sphere and the spherical hole phases
the coexistence phase of spheres and cylinders, andx50 for
the other ideal pasta phases, i.e., the cylinder, the slab,
the cylindrical hole phases which consist of infinitely lon
rods, infinitely extending slabs, and infinitely long cylindr
cal holes, respectively. We introduce the area-averaged m
curvature ^H&[(1/A)*HdA and the Euler characteristi
densityx/V as normalized quantities, whereV is the volume
of the whole space.

1. Minkowski functionals for xÄ0.5 and 0.3

We calculate the normalized Minkowski functionals, i.e
the volume fractionu, the surface area densityA/V, the area-
averaged mean curvature^H&, and the Euler characteristi
densityx/V for x50.5 and 0.3 by the following procedure
As described in Sec. IV A, we first construct proton a
nucleon density distributionsr (p)(r )5(k51

N nk
(p)ufk(r )u2 and

r(x)5(k51
N ufk(x)u2, wherenk

(p)50 or 1 is the isospin pro-
jection on the proton state. We set a threshold proton den
rp,th and then calculatef (rp,th)[V(rp,th)/A(rp,th), where
V(rp,th) andA(rp,th) are the volume and the surface area
the regions in whichr (p)(r )>rp,th . We find out the value
rp,th5rp,th* where (d2/drp,th

2 ) f (rp,th* )50 and define the re-
gions in whichr (p)(r )>rp,th* as nuclear regions. For spher
cal nuclei, for example,rp,th* corresponds to a point of inflec
tion of a radial density distribution. In the most phas
separating region, the values ofr th* distribute in the range of
about 0.0720.09 fm23 in both cases ofx50.5 and 0.3,
wherer th* is the threshold nucleon density corresponding
rp,th* . We then calculateu, A, *HdA andx for the identified
nuclear surface. We evaluateu by counting the number o
pixels at whichr (p)(r ) is higher thanrp,th* , A by the triangle
decomposition method,*HdA by the algorithm shown in
Ref. @32# in conjunction with a calibration by correction o
surface area, andx by the algorithm of Ref.@32# and by that
of counting deficit angles@34#, which confirm that both of
them give the same results.

We have plotted the resultantr dependence ofu, A/V,
^H&, andx/V for the isodensity surface ofr th5r th* in Figs.
11 and 12. In addition to the values ofu, A/V, and^H& for
the isodensity surface ofr th5r th* , we have also investigate
those for the isodensity surfaces ofr th5r th* 60.05r0 to ex-
amine the extent of the uncertainties of these quanti
which stem from the arbitrariness in the definition of t
nuclear surface. As shown in Fig. 11, these uncertainties
at most.0.1 for u and.0.25 fm21 for A/V. For ^H&, we
could not observe remarkable differences from the values
r th5r th* ~they were smaller than 0.015 fm21). We could not
see these kinds of uncertainties inx/V, except for the den-
sities near belowrm.

As shown in Fig. 11, the volume fractionu of the nuclear
regions increases almost monotonically underrm in both
cases ofx50.5 and 0.3. This feature reflects the incompre
ible nature of nuclear matter. It is interesting to see the d
sity dependence of the nuclear surface densityA/V because
this quantity is directly related to the surface energy dens
which is one of the key factors in determining the nucle
6-9
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WATANABE, SATO, YASUOKA, AND EBISUZAKI PHYSICAL REVIEW C 68, 035806 ~2003!
shape. Figures 11~c! and 11~d! show that, as the nucleo
density increases,A/V increases at a nearly constant ra
until r;0.3r0, and then its increasing rate becomes rat
smaller around the density region of the slab phase, an
nally it begins to decrease in the density region of the cy
drical hole phase or the spherical hole phase. This gen
behavior can be understood from the density dependenc
the surface energy density obtained by simple argume
which only allow for the nuclear surface and the Coulom

FIG. 11. Density dependence of the volume fractionu and the
surface area densityA/V of cold matter atx50.5 @~a! and~c!# and
x50.3 @~b! and ~d!#. The crosses show the results forr th5r th* and
the open triangles and squares show the results forr th5r th*
20.05r0 andr th* 10.05r0, respectively.

(a) (b)

(c) (d)

slab

slab

slab

slab{ {{

cylindrical
holecylindrical

hole

spherical
hole

spherical
holesphere sphere

cylinder cylinder

(f
m

  )
(f

m
  )

-1
-3

FIG. 12. Density dependence of the area-averaged mean c
ture ^H& and the Euler characteristic densityx/V of cold matter at
x50.5 @~a! and ~c!# andx50.3 @~b! and ~d!#.
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effects~see, e.g., Refs.@7,35#!.
We also plotu andA/V for the nucleon density distribu

tion r(r ) as functions of the threshold densityr th evaluated
at various values ofr. The results forx50.5 and 0.3 are
shown in Figs. 13 and 14, respectively. Features of nuc
shape changes can be seen in the behavior of the curve

va-

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

FIG. 13. Volume fractionu ~upper panel! and surface area den
sity A/V ~lower panel! as functions of the threshold densityr th

calculated forx50.5 and various nucleon densitiesr.
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FIG. 14. The same as Fig. 13 forx50.3.
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STRUCTURE OF COLD NUCLEAR MATTER AT . . . PHYSICAL REVIEW C 68, 035806 ~2003!
A/V. Peaks in the higherr th region are attributed to nucleon
in the nuclear matter regions and broad bumps in the lo
r th region around 0.05–0.1r0 observed forx50.3 are due to
the dripped neutrons outside nuclei.A/V in the intermediate
r th region in which its slope is nearly constant mainly com
from contribution of nuclear surfaces. As the nucleon den
r increases, the higherr th peak becomes more clear and t
position of the center of the peak finally coincides withr in
the uniform phase. This feature shows that the nuclear ma
regions become more uniform with increasing density. Wh
the dispersion of the internucleon distance is small, la
surface area caused by the Gaussian density distributio
each nucleon can be picked up with a single value ofr th . As
can be seen in Fig. 14, the lowerr th bump, in turn, disap-
pears with increasingr. This is because, asr increases, the
dripped neutron gas becomes more inhomogeneous
tends to distribute close to the nuclear surface leading
lower proton fraction in the nuclear matter regions. It is a
noted that, as the nucleon density increases, the slope in
intermediater th region changes from negative to positive
the density corresponding to the phase of slablike nu
(0.4r0 for x50.5 and 0.35r0 for x50.3), which is consis-
tent with what is expected from the sign of^H& for the
nuclear surface@see Figs. 12~a! and 12~b!#.

Let us then focus on̂H& andx/V to classify the nuclear
shape. The behavior of^H& shows that it decreases almo
monotonically from positive to negative with increasingr
until the matter turns into uniform. The densities correspo
ing to ^H&.0 are about 0.4 and 0.35r0 for x50.5 and 0.3,
respectively; these values are consistent with the density
gions of the phase with slablike nuclei~see Fig. 3!. As men-
tioned previously,x/V is actually positive in the density re
gions corresponding to the phases with spherical nuc
coexistence of spherical and cylindrical nuclei, and spher
holes because of the existence of isolated regions. As
those corresponding to the phases with cylindrical nuc
planar nuclei and cylindrical holes,x/V.0. The fact that the
values ofx/V are not exactly zero for nucleon distribution
shown as the slab phase in Figs. 1 and 2 reflects the im
fection of these ‘‘slabs,’’ which is due to the small nucle
parts connecting the neighboring slabs. However, we can
that the behaviors ofx/V plotted in Figs. 12~c! and 12~d!
show thatx/V is negative in the density region of the inte
mediate phases, even if we take into account the imper
tion of the obtained nuclear shapes and the uncertaintie
the definition of the nuclear surface. This means that
intermediate phases consist of nuclear surfaces which
saddlelike at each point on average and they consis
highly connected nuclear and gas regions due to a lo
tunnels@see Eq.~26!#. Using the quantitieŝH& and x/V,
the sequence of the nuclear shapes with increa
the density can be described as follows:~^H&.0,x/V
.0!→~^H&.0,x/V50!→~^H&.0,x/V,0!→(^H&50,x/V50!
→~^H&,0,x/V,0!→(^H&,0,x/V50) → ~^H&,0,x/V.0!→
uniform.

Let us now consider the discrepancy from the results
previous works which do not assume nuclear struct
@11,12#; the intermediate phases cannot be seen in th
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works. We can give following two reasons for the discre
ancy.

~1! These previous calculations are based on the Thom
Fermi approximation which cannot sufficiently incorpora
fluctuations of nucleon distributions. This shortcoming m
result in favoring nuclei of smoothed simple shapes than
the real situation.

~2! There is a strong possibility that some highly co
nected structures which have two or more substructures
period are neglected in these works because only one s
ture is contained in a simulation box.

It is not unnatural that the phases with highly connec
nuclear and bubble regions are realized as the most ener
cally stable state@36,37#. It is considered that, for example,
phase with perforated slablike nuclei, which has negat
x/V, could be more energetically stable than that with e
tremely thin slablike nuclei. The thin planar nucleus co
surface-surface energy which stems from the fact that nu
ons bound in the nucleus feel its surfaces of both sides.
surface-surface energy brings about an extra energy incr
in addition to the contribution of the surface energy. We ha
to examine the existence of the intermediate phases by m
extensive simulations with larger nucleon numbers and w
longer relaxation time scales in the future.

2. Minkowski functionals for xÄ0.1

In the case ofx50.1, the criterion for identification of the
isodensity surface corresponding to the nuclear surface u
the second derivative ofV(rp,th)/A(rp,th) does not work at
higher densities. We thus use another method to calculate
normalized Minkowski functionals of the nuclear surface f
x50.1.

In Fig. 15, we have plotted ther th dependence of the
Euler characteristic densityx/V at r50.25r0 as an example.
We can see that this curve consists of three components
peaks of the lowerr th region, the plateau region, and th
peaks of the higherr th region, which are due to drippe
neutrons~thus these peaks cannot be observed forx50.5),

{

{

dripped neutrons

nucleons in nuclei

nuclear surface

FIG. 15. Euler characteristic density as a function ofr th calcu-
lated for x50.1 andr50.25r0. The contribution of the nuclea
surface can be observed as the plateau region.
6-11
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WATANABE, SATO, YASUOKA, AND EBISUZAKI PHYSICAL REVIEW C 68, 035806 ~2003!
nuclear surfaces and nucleons in nuclei, respectively. Th
components can also be seen at the other values ofr lower
than rm. However, we have to mention that the higher t
density becomes, the smaller the plateau region gets, w
means that the density contrast between the dripped neu
gas region and the nuclear matter region becomes obs
Here, we take the mean values of the normalized Minkow
functionals in the plateau region as those for the nuc
surface, which are plotted as crosses in Fig. 16. The e
bars shown in this figure are the standard deviations of th
quantities in the plateau region. Consistency between
method and the one using the second derivative
V(rp,th)/A(rp,th) has been confirmed forx50.3.

Figure 16 shows the resultant normalized Minkows
functionals for the nuclear surface at various values or
below rm. The qualitative behaviors ofu and ^H& for x
50.1 are the same as those forx50.5 and 0.3; asr in-
creases,u increases and̂H& decreases~from positive to
negative! almost monotonically in the density region o
0.1r0&r&rm. However, in the behaviors ofA/V andx/V,
qualitative differences can be observed between the pre
case and the cases ofx50.5 and 0.3. As can be seen in Fi
16~b!, A/V increases almost linearly until just belowrm.

The absence of the phases with cylindrical bubbles
with spherical bubbles in the phase diagram ofx50.1 ~Fig.
6! is well characterized by the behavior ofx/V shown in Fig.
16~d!. In the cases ofx50.5 and 0.3,x/V increases from
negative to positive with increasing density in the dens
region higher than that of the slab phase. However, fox
50.1, we cannot observe the tendency thatx/V starts in-

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

-0.2

0

0.2

0.1 0.2 0.3 0.4 0.5
-0.0006

-0.0004

-0.0002

0

0.0002

FIG. 16. Density dependence of the normalized Minkow
functionals for cold matter atx50.1.
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creasing even at just belowrm. As a result,x/V remains
negative until matter becomes uniform.~Further discussion
will be given in Sec. V.!

Let us then consider the phase with slablike nuclei, wh
have not been obtained in the simulations forx50.1. If it
were realized by using a longer relaxation time scale, i
expected to be obtained atr.0.32–0.34r0 according to the
behaviors of thêH& andx/V. However, we cannot see an
signs from Fig. 16~b! that A/V stops increasing in this den
sity region unlike the behaviors ofA/V in the cases ofx
50.5 and 0.3. Here, we would like to mention that, acco
ing to the Landau-Peierls argument, thermal fluctuations
effective at destroying the long-range order of on
dimensional layered lattice of slablike nuclei rather than t
of triangular lattice of rodlike nuclei and of the bcc lattice
spherical ones. Thus, the melting temperature of the pla
phase would be lower than the other phases, which leads
longer time scale for formation of the slablike nuclei by t
thermal diffusion. Therefore, a further investigation with
longer relaxation time scale is necessary to determ
whether or not the phase with slablike nuclei is really p
hibited in such neutron-rich matter in the present model.

In Fig. 17, we have also plottedu andA/V for the density
distributionr(r ) as functions ofr th as in Figs. 13 and 14. In
comparison with Fig. 14, the contribution of the dripped ne
trons is shown more clearly in this case. We can see that
peak in the lowerr th region due to the dripped neutron
combines to the peak in the higherr th region. This behavior
stems from the fact that a part of the dripped neutrons
lower densities are absorbed into nuclear matter region w
increasing the density at fixedx; finally, all the neutrons are
contained there in the uniform phase. We can also exp

i

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

FIG. 17. Volume fractionu ~upper panel! and surface area den
sity A/V ~lower panel! as functions of the threshold densityr th

calculated forx50.1 and various nucleon densitiesr.
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from ther th dependence ofA/V that the phase with slablike
nuclei might be obtained around 0.3r0, where the slope of
the plateau region is close to zero.

V. PROPERTIES OF THE EFFECTIVE NUCLEAR
INTERACTION

Let us here examine the effective nuclear interaction u
in this work. The structure of matter at subnuclear densi
is affected by the properties of neutron-rich nuclei and of
pure neutron gas resulted from the nuclear interaction. K
quantities are the energy per nucleonen of the pure neutron
matter, the proton chemical potentialmp

(0) in the pure neutron
matter, and the nuclear surface tensionEsurf.

There is a tendency, especially in the case of neutron
matter, that higher theen , lower is the densityrm at which
matter becomes uniform. This is because largeren tends to
favor uniform nuclear matter without dripped neutron g
regions than mixed phases with dripped neutron gas regi
In the neutron star matter, there is also a tendency that
lower mp

(0) , the smallerrm. This is because2mp
(0) repre-

sents the degree to which the neutron gas outside the n
favors the presence of protons in itself. The quantityEsurf
controls the size of the nuclei and bubbles, and hence
sum of the Coulomb and surface energies. With increas
Esurf and so this energy sum,rm gets lowered.

It is important to check whether or not the effectiv
nuclear force given by Eqs.~6!–~12! yields unrealistic values
of these quantities. Ifen , ump

(0)u, and Esurf for the present
model are unrealistically small in comparison with those
the other models, our results which have reproduced
pasta phases might be quite limited for the present mo
Hamiltonian.

In order to evaluateen , we perform simulations with
1372 neutrons in a periodic box. This system is cooled do
by the QMD equations of motion with friction terms@see
Eqs. ~17!# until the temperature becomes;1 keV. The re-
sultant values ofen are plotted in Fig. 18. We note that ou
results forrn50.2, 0.6, and 1.0r0 ~the result forrn51.0r0
is not plotted in Fig. 18! coincide with the results for zero
proton ratio plotted in Fig. 9 of Ref.@23#.

The values ofen for the present model behave like tho
for the SkM Skyrme interaction especially in the dens
region ofrn&0.13 fm23; they are close to the result of th
variational chain summation obtained by Akmal, Pandha
pande, and Ravenhall@38# at rn.r0. The steep rise inen in
the higher neutron density region (rn*0.1 fm23) compared
to those obtained from the Hartree-Fock theory using vari
Skyrme interactions would help neutron-rich matter, wh
have larger dripped neutron density ofrn*0.1 fm23, to be
uniform. Therefore, we can say that this behavior ofen for
the present QMD model Hamiltonian suppresses the den
region in which the pasta phases are the most energeti
favorable in neutron star matter and in the case ofx50.1 in
the present study. We also note thaten at lower neutron den-
sities of rn&0.1 fm23 is relatively small. This, in turn,
would lead to increase the density at which matter w
lower dripped neutron density~e.g., the case ofx50.3 in the
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present study! turns into uniform.
Next, we calculate the proton chemical potentialmp

(0) in
the pure neutron matter. We use the cold neutron matter
pared for the above calculation ofen as an initial condition.
We insert a proton into this pure neutron matter, and th
minimize the total energy by the frictional relaxation meth
with fixing the positions and momenta of the other neutro
The position of the inserted proton is chosen randomly in
simulation box, and its momentum is chosen randomly fr
P<30 MeV/c. We evaluatemp

(0) as the difference in the
total energy between that before the insertion of the pro
and that after the optimization of the position and the m
mentum of the proton.

In Fig. 19, we plotmp
(0) for the present model Hamil

tonian. As can be seen from this figure, the result for
present model Hamiltonian generally reproduces the dat
the other results obtained from the Hartree-Fock theory us
the various Skyrme interactions at densitiesr&0.1 fm23. At
lower densities ofr&0.025 fm23, errors are quite large an
data scatter significantly. This is because density fluctuati
in pure neutron matter obtained by QMD would be unrea
tically large at such low densities due to the fixed width
the wave packets in this model. However, it is noted t
even in such a density region, our data are generally con
tent with the other results mentioned above.

Finally, we turn to the surface tension, which affects e
ergetically favorable nuclear shape most directly among

FIG. 18. The neutron densityrn dependence of the energy pe
nucleonen of the pure neutron matter. The solid squares show
result of the present QMD model Hamiltonian@23#. The dotted line
denoted by SLy4 is the result from Ref.@41# and the broken lines as
marked by the other Skyrme interactions~FPS21, 18, FPS, and
SkM! are the results summarized by Pethick, Ravenhall, and Lor
@40#. The open stars and triangles denote the values obtaine
Akmal, Pandharipande, and Ravenhall@38#, and by Friedman and
Pandharipande@39#, respectively.
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three quantities discussed here. We have calculatedEsurf
from the energy change induced by the change in the are
planar nuclear matter. We use nucleon gas with proton f
tions x50.1, 0.2, 0.3, and 0.5 composed of 1372 nucleo
In the calculation ofEsurf, the Coulomb interaction is ex
cluded.

In order to prepare slablike nuclear matter, we first c
down the above nucleon gas fromkBT;20 MeV to
;0.2 MeV using Eqs.~17! in a shallow trapping harmonic
potential

V~z!5
k

2
z2, ~27!

wherek50.01 MeV fm22. We here impose periodic bound
ary condition in thex andy directions, and open one in thez
direction. The box sizeLx,y in the x and y directions is set
20.26 fm.

When the temperature reaches;0.2 MeV, we remove the
trapping potential and, except for the case withx50.5, we
change the boundary condition in thez direction from open
to periodic. The box size in thez direction Lz is chosen so
that at least all nucleons dripped outside the nuclear ma
region can be contained in the box:Lz592.32 fm (x
50.1), 79.12 fm (x50.2), and 82.85 fm (x50.3). After we
relax the system for;7000 fm/c, we prepare three kinds o
samples: one has nothing changed~sample 1! and the others
have the area of thexy side of the simulation box increase

FIG. 19. The neutron density dependence of the proton chem
potentialmp

(0) in the pure neutron matter. The solid squares sh
the result of the present QMD Hamiltonian@23#. The broken lines
as marked by the Skyrme interactions~FPS21, 18, FPS, and SkM!
are the results summarized by Pethick, Ravenhall, and Lorenz@40#,
and the solid line is the result of Sjo¨berg @42#. The crosses denot
the values obtained by Siemens and Pandharipande@43#.
03580
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~decreased! by 1% with the total volume of the box kep
constant@sample 2~sample 3!#. We further cool them down
until kBT;0.1 keV. The resultant nucleon density profil
for the sample 1 ofx50.1 projected on thez axis is shown in
Fig. 20. As can be seen from this figure,Lz592.32 fm is
much larger than the thickness of the slabd.20 fm, and
thus the volume of the dripped neutron gas region is alm
the same among the three kinds of samples because the
ume change in the nuclear matter region is negligible. I
also noted thatd is much larger than the surface thickne
dsurf.5 fm, which ensures that the surfaces at both side
the slab are separated well. Therefore, we can say tha
energy difference between samples 2 and 3 is just due to
difference in the surface area of the planar nuclear ma
Following the spirit of Ravenhall, Bennett, and Pethi
~hereafter RBP! @44# and by using the sample 1, we defin
the proton fractionxin in the nuclear matter region as a
averaged value for the region of the width of.5 fm in the
central part of the slab, where the proton and neutron den
profiles ripple around constant values.

We extractEsurf from the total energyE2 of sample 2 and
E3 of sample 3 as follows:

Esurf5
E22E3

2~S22S3!
, ~28!

whereS2 (S3) is the area of thexy side of sample 2~sample
3! given by 20.26231.01 fm2 (20.26230.99 fm2). The fac-
tor 2 in the denominator represents, of course, the contr
tion of the two sides of the planar nuclear matter. As sho
in Fig. 21, all the results plotted in this figure almost coinci
with each other atxin50.5, where uncertainty in the nuclea
surface tension is rather small. These results deviate sig
cantly at lowerxin , and the values ofEsurf of the present
calculation lie between those obtained by Baym, Bethe,
Pethick~hereafter BBP! @2# and by RBP@44#, which is based
on the Hartree-Fock calculation using a Skyrme interacti
at xin;0.15–0.35. Thus we can say that, in comparison w
the result by RBP taken to be standard here, the contribu
of Esurf of the present QMD model tends to favor unifor
nuclear matter rather than the inhomogeneous pasta ph
for lower xin of &3.5.

Now let us discuss the fact that the intermediate pha
with a negative value ofx/V are obtained instead of th

al

FIG. 20. The nucleon density profiles projected on thez axis for
sample 1 ofx50.1. ~The z coordinate is shifted.!
6-14
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bubble phases in a wide density region forx50.1. In con-
sidering this problem, we should note the general tende
that ump

(0)u increases andEsurf decreases as matter becom
neutron rich~see Figs. 19 and 21!. The density dependenc
of A/V monotonically increases untilrm as shown in Fig. 16
would partly stem from the small value ofEsurf. The appar-
ently lower melting densityrm in this case than in the case
of x50.5 and 0.3, even thoughEsurf is small, is due to a large
ump

(0)u, which increases typically by order 10 MeV asrn

increases. The smallEsurf and the largeump
(0)u in neutron-rich

matter would help nuclear matter regions and neutron
regions mix each other at the cost of small surface ene
below rm. As a result, the structures with a negativex/V
could be favored. According to Fig. 19, the quantitymp

(0)

obtained for the present model Hamiltonian is consist
with those for the other Skyrme-Hartree-Fock calculations
the relevant region ofrn&0.08 fm23. It is thus possible tha
a result which shows the structure of matter changes f
negativex/V to uniform without undergoing ‘‘swiss cheese
structure will be obtained by another calculation for neutro
rich matter using some framework without assuming nucl
shape.

In closing this section, we summarize the consequence
the resultanten , mp

(0) andEsurf for the present QMD Hamil-
tonian.

~1! For symmetric matter (x5xin50.5). According to
Esurf at xin50.5, the present model is consistent with t
other results, and is an appropriate effective interaction
the study of the pasta phases atx50.5.

~2! For neutron-rich cases. For neutron-rich cases suc

FIG. 21. The nuclear surface energy per unit area~the surface
tension! vs the proton fractionxin in the nuclear matter region. Th
solid squares are the values of the present QMD Hamiltonian@23#,
the solid curve is the RBP result from their Hartree-Fock calcu
tions @44#, and the dotted curve is the BBP result@2#.
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x;0.1, in which the dripped neutron densityrn grows
*0.1 fm23 just before matter turns into uniform, the prese
QMD model can be taken as a conservative one in reprod
ing the pasta phases. Itsen , mp

(0) , andEsurf act to suppress
the density region of the pasta phases compared to o
Skyrme-Hartree-Fock results.

~3! For intermediate cases. At intermediate proton fract
of x;0.3, en of the present model acts to favor the inhom
geneous pasta phases rather than the uniform phase andEsurf
acts in the opposite way in comparison with other Skyrm
Hartree-Fock results.

VI. ASTROPHYSICAL DISCUSSIONS

Here we would like to discuss astrophysical consequen
of our results. Pethick and Potekhin have pointed out t
elastic properties of pasta phases with rodlike and slab
nuclei are similar to those of liquid crystals, which stem
from the similarity in the geometrical structures@15#. It can
also be said that the intermediate phases observed in
present work are ‘‘spongelike’’~or ‘‘rubberlike’’ for ^H&
,0) phases because these have both highly conne
nuclear and bubble regions shown asx/V,0. The elastic
properties of the spongelike intermediate phases are qua
tively different from those of the liquid-crystal-like past
phases because the former do not have any direction
which the restoring force does not act; while the latter ha
Our results imply that the intermediate phases occupy a
nificant fraction of the density region in which nonspheric
nuclei can be seen~see Figs. 3 and 6!. According to Figs. 3
and 6, we expect that the maximum elastic energy that ca
stored in the neutron star crust and supernova inner cor
higher than that in the case where all nonspherical nu
have simple pasta structures. Besides, the cylinder and
slab phases, which are liquid-crystal-like, lie between
spongelike intermediate phases or the crystalline solid
phase, and the releasing of the strain energy would, in c
sequence, concentrate in the domain of these liquid-crys
like phases. The above effects of the intermediate pha
should be taken into account in considering the crust dyn
ics of starquakes and hydrodynamics of the core collap
etc. if these phases exist in neutron star matter and super
matter. In the context of pulsar glitch phenomena, the effe
of the spongelike nuclei on the pinning rate and the cre
velocity of superfluid neutron vortices also have yet to
investigated.

For neutrino cooling of neutron stars, some version of
direct URCA process which is suggested by Lorenzet al. @8#,
that this might be allowed in the pasta phases, would
suppressed in the intermediate phases. This is due to the
that the proton spectrum at the Fermi surface is no lon
continuous in the spongelike nuclei. An important top
which we would like to mention is about the effects of th
intermediate phases on neutrino trapping in supernova co
The nuclear parts connect over a wide region which is m
larger than that characterized by the typical neutrino wa
length ;20 fm. Thus the neutrino scattering processes
no longer coherent in contrast to the case of the spher
nuclei, and this may, in consequence, reduce the diffus

-
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time scale of neutrinos as in the case of pasta phases
simple structures. This reduction softens the supernova m
ter and would thus act to enhance the amount of the rele
gravitational energy. It would be interesting to estimate
neutrino opacity of the spongelike phases and the p
phases.

Finally, we would like to mention the thermal fluctuation
with long wavelengths leading to displacements of pasta
clei, which cannot be incorporated into the simulations us
a finite-size box. Even if we succeed in reproducing
phase with slablike nuclei in neutron-rich matter in the futu
study, we should be reminded of the above effect of ther
fluctuations to consider the real situation of matter in inn
crusts of neutron stars. Following the discussions in R
@9,10,35# by a liquid-drop model, it is likely that the exten
sion of slablike nuclei is limited to a finite length scale
;O(102–103) fm in the temperature regions typical for ne
tron star crusts and supernova cores.

VII. SUMMARY AND CONCLUSION

We have performed QMD simulations for matter wi
fixed proton fractionsx50.5, 0.3, and 0.1 at various dens
ties below the normal nuclear density. Our calculations w
out any assumptions on the nuclear shape demonstrate
the pasta phases with rodlike nuclei, with slablike nuc
with cylindrical bubbles, and with spherical bubbles can
formed dynamically from hot uniform matter within the tim
scale oft;O(103–104) fm/c in the proton-rich cases ofx
50.5 and 0.3. We also demonstrate that the pasta phase
cylindrical nuclei can be formed dynamically within the tim
scale of t;O(104) fm/c for the neutron-rich case ofx
50.1. Our results imply the existence of at least the ph
with cylindrical nuclei in neutron star crusts because th
cool down keeping the local thermal equilibrium after pro
neutron stars are formed, and their cooling time scale, wh
is macroscopic one, is much larger than the relaxation t
scale of our simulations.

In addition to these pasta phases with simple structu
our results obtained here also suggest the existence of i
mediate phases which have complicated nuclear shapes
have systematically analyzed the structure of matter w
two-point correlation functions and with morphological me
sures ‘‘Minkowski functionals,’’ and have demonstrated ho
structure changes with increasing density. Making use o
topological quantity called Euler characteristic, which is o
of the Minkowski functionals, it has been found that t
intermediate phases can be characterized as those with n
tive Euler characteristic. This means that the intermed
phases have spongelike~or rubberlike for̂ H&,0) structures
which have both highly connected nuclear and bubble
gions. The elastic properties of the spongelike intermed
phases are qualitatively different from those of the liqu
crystal-like pasta phases.

We have also investigated the properties of the effec
QMD interaction used in the present work in order to exa
ine the validity of our results. Important quantities that affe
the structure of matter are the energy per nucleonen of the
pure neutron matter, the proton chemical potentialmp

(0) in
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pure neutron matter, and the nuclear surface tensionEsurf.
These quantities show that the present QMD interaction
generally reasonable properties at subnuclear dens
among other nuclear interactions. It is thus concluded t
our results are not exceptional ones in terms of nucl
forces.

Our results which suggest the existence of the highly c
nected intermediate phases as well as the simple pasta p
provide a vivid picture that matter in neutron star inner cru
and supernova inner cores has a variety of material pha
The stellar region that we have tried to understand throu
out this paper is relatively tiny, but there are quite rich pro
erties that stem from the fancy structures of dense matte
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APPENDIX: THE EWALD SUM FOR PARTICLES
WITH

A GAUSSIAN CHARGE DISTRIBUTION

In calculating a long-range interaction, such as the C
lomb interaction, it is necessary to sum up all contributio
of particles at a sufficiently far distance. The Ewald sum i
familiar technique for efficiently computing the long-rang
contributions in a system with the periodic boundary con
tion ~see, e.g., Refs.@26,45#; recent mathematically carefu
discussion relating to the conditional convergence of
Coulomb energy can be seen, e.g., in Ref.@46#!. The basic
idea of the Ewald sum is that the contributions of particles
a long distance in real space can be calculated as cont
tions in the neighborhood in Fourier space: the contributio
of particles in a short distance are summed up in real sp
and those of particles in a long distance are summed u
Fourier space.

Let us consider a system consisting of charged partic
which have a Gaussian charge distribution and a unifo
background charge which cancels the total charge of cha
particles. TheseN particles are assumed to be in a cub
simulation box with volumeV5Lbox

3 on which periodic
boundary condition is imposed.

If every particlei with total chargeZi is surrounded by a
Gaussian charge distribution with total charge2Zi , the elec-
trostatic interaction of particlei turns into a screened shor
range interaction. Thus the total Coulomb energyUCoul of
this system can be decomposed as follows~see Fig. 22!:

UCoul5Ushort-range1U12Uself, ~A1!
6-16
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FIG. 22. Schematic picture o
charge distribution in the Ewald
sum for particles with a Gaussia
charge distribution.
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whereUshort-rangeis the sum of the Coulomb energy betwe
an unscreened charged particlei and the other charged pa
ticles with screening charges,U1 is that between an un
screened charged particlei and compensating charges th
cancel the screening Gaussian charges, andUself is the sum of
spurious self-interactions between a charged particlei and its
compensating chargei.

Charge densities of the real charged particlesr(r ) and of
the screening chargesrs(r ) can be written as

r~r !5(
n

(
i 51

N

Zi S a

p D 3/2

e2aur2(r i1Lboxn)u2[(
n

(
i 51

N

r (n,i )~r !,

~A2!

rs~r !52(
n

(
i 51

N

Zi S aEwald

p D 3/2

e2aEwaldur2(r i1Lboxn)u2

[(
n

(
i 51

N

rs,(n,i )~r !, ~A3!

where a and aEwald are the reciprocals of the widths o
charge distributions for a charged particle and a screen
charge, respectively, andn denotes a position vector of
periodic image normalized byLbox. Thus a distribution of
screened chargesrscreenedis

rscreened~r ![r~r !1rs~r !. ~A4!

The electrostatic potentialfshort-range(r ) due to rscreened(r )
can be obtained as
03580
g

fshort-range~r !5(
n

(
i 51

N

Zi H 2
erfc@Aaur2~r i1Lboxn!u#

ur2~r i1Lboxn!u

1
erfc@AaEwaldur2~r i1Lboxn!u#

ur2~r i1Lboxn!u J 1C,

~A5!

because a solution of the Poisson equation

2
1

r

d2

dr2
@rf~r !#54pFZS a

p D 3/2

e2ar2G ~A6!

is

f~r !5Z
erf~Aar !

r
1const, ~A7!

where erf(x) and erfc(x) are the error function and th
complementary error function, respectively, and they are
fined as erf(x)[(2/Ap)*0

xexp(2s2)ds and erfc(x)[1
2erf(x). Here, we determine the constantC so that the av-
erage value offshort-rangein the simulation boxV be zero:

E
V
fshort-range~r ! d3r5(

i 51

N

Zi S 2
p

a
1

p

aEwald
D1CV50.

~A8!

Thus,fshort-range(r ) leads to
fshort-range~r !5(
n

(
i 51

N

Zi H 2
erfc@Aaur2~r i1Lboxn!u#

ur2~r i1Lboxn!u
1

erfc@AaEwaldur2~r i1Lboxn!u#
ur2~r i1Lboxn!u J 2S 2

p

a
1

p

aEwald
D ravr,

~A9!

where the average charge densityravr of the charged particles is defined as

ravr[(
i 51

N
Zi

V
. ~A10!
6-17



a

WATANABE, SATO, YASUOKA, AND EBISUZAKI PHYSICAL REVIEW C 68, 035806 ~2003!
The total Coulomb energyUshort-rangebetween an unscreened real charged particlei and the other charged particles with
screening charge can be calculated as

Ushort-range5
1

2 (
i 51

N H E d3rE d3r 8r (n50,i )~r !(
n8

( 8
j

Zj H 2
erfc@Aaur2~r j1Lboxn!u#

ur2~r j1Lboxn!u
1

erfc@AaEwaldur2~r j1Lboxn!u#
ur2~r j1Lboxn!u J

2S 2
p

a
1

p

a Ewald
D ravrJ

5
1

2 (
n

( 8
i , j

ZiZj

ur i2~r j1Lboxn!u H erfcSA aaEwald

a1aEwald
r i2~r j1Lboxn! D 2erfcSAa

2
r i2~r j1Lboxn! D J

2
V

2 S 2
p

a
1

p

aEwald
D ravr

2 , ~A11!
g

ty.

-

where the primes on the summations mean the termsi 5 j at
n50 are excluded.

Next, we calculateU1, which is the sum of the Coulomb
energy between an unscreened charged particlei and a
charge densityr1(r ) which consists of the compensatin
charges and the background charge:

r1~r !52rs~r !2ravr

5(
n

(
j 51

N

Zj S aEwald

p D 3/2

e2aEwaldur2(r j 1Lboxn)u22ravr.

~A12!

Fourier transforming the charge distributionr1(r ) yields

r1~k!5
1

VEV
d3re2 ik•rr1~r !

5
1

V (
j 51

N

Zje
2 ik•r jexpS 2

k2

4aEwald
D2ravrdk .

~A13!

Using r1(k) and the Poisson equation@¹2f1(r )
524pr1(r )# in the Fourier form

k2f1~k!54pr1~k!, ~A14!

we can at once obtain the electrostatic potentialf1 due to the
charge densityr1:

f1~r !5(
k

f1~k!eik•r

5
1

V (
kÞ0

(
j 51

N
4pZj

k2
eik•(r2r j )expS 2

k2

4aEwald
D .

~A15!

The term with k50 is canceled due to charge neutrali
Thus the Coulomb energyU1 is given by
03580
U15
1

2 (
i 51

N E d3rZi S a

p D 3/2

e2aur2r i u
2
f1~r !

5
1

2 (
kÞ0

(
i , j

4pZiZj

Vk2
eik•(r i2r j )expF2

k2

4 S 1

aEwald
1

1

aD G .
~A16!

FIG. 23. The total Coulomb energy per particleeCoul ~in units of
MeV! and thex component of the Coulomb forcef 1,x ~in units of
MeV/fm! acting on a particle obtained from Eqs.~A1!, ~A11!,
~A16!, and ~A18! as a function ofAaEwald. We use 1024 protons
distributed randomly in a box ofLbox539.59 fm~i.e., rp50.1r0).
The results shown in~a! and ~b! are calculated for the same con
figuration of particle positions$r i% but for different values of the
width a of the Gaussian distribution;~a! a50 ~point charge! and~b!
a51/2L with L52.1 fm2.
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We have to subtract a sum of spurious self-interacti
Uself,i between a charged particlei and its compensating
charge fromU1. According to Eq.~A7!, an electrostatic po-
tential fGauss due to a Gaussian compensating charge
fGauss(r)5Zierf(AaEwald r )/r , thus the self-interaction o
particle i reads

Uself,i[E Zi S a

p D 3/2

e2ar2
fGauss~r !d3r

52S a

p D 1/2

Zi
2A aEwald

a1aEwald
, ~A17!

and hence,

Uself5
1

2 (
i 51

N

Uself,i5
1

Ap
A aaEwald

a1aEwald
(
i 51

N

Zi
2 . ~A18!

Finally, the total Coulomb energy can be calculated by E
~A1!, ~A11!, ~A16!, and ~A18!. The positive background
charge does not appear explicitly because the average v
of fshort-rangewithin the simulation box is set to be zero.

The total Coulomb energy per particleeCoul and thex
component of the Coulomb forcef 1,x acting on a particle for
various values ofaEwald are plotted in Fig. 23. In this calcu
c

et

ys

e

E

03580
s

is

s.

lue

lation, we use 1024 positive charged particles~protons! dis-
tributed randomly in a simulation box ofLbox539.59 fm
~i.e., rp50.1r0), which is imposed periodic boundary con
dition. Figures 23~a! and 23~b! show the results for poin
charges and for Gaussian charge distributions, respectiv
which are calculated for the same configuration of the p
ticle positions$r i%. The width of the Gaussian charge distr
butions is set to bea51/2L with L52.1 fm2, which corre-
sponds to the width of the wave packets in the QMD mo
used in this work.

We note that there are plateau regions ofeCoul and f 1,x

whose values do not depend onaEwald. These constant val
ues give the convergent results to be obtained. We note
the range ofAaEwald of the plateau regions become larg
with increasingkmax, wherekmax is the cutoff radius in the
unit of 2p/Lbox for the summation in Fourier space. As ca
be seen from Fig. 23,aEwald dependences ofeCoul and f 1,x for
the present QMD model with a finite width of the Gaussi
charge distributions are weaker than those for the po
charges. These features are also confirmed for different
ton number densities of 0.2 and 0.3r0. In our simulations,
aEwald is set 13 or 14, which is considered to be large enou
to calculate the total Coulomb energy per particle in ac
racy less thanO(1) keV, which is the typical value of the
energy difference between successive pasta phases in ne
star matter obtained by previous works.
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