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Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics
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Structure of cold nuclear matter at subnuclear densities for the proton fractién5, 0.3, and 0.1 is
investigated by quantum molecular dynami€VD) simulations. We demonstrate that the phases with slab-
like and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assump-
tions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation
functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have
complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative
Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple “pasta”
phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the
effective QMD interaction used in the present work to examine the validity of our results. The resultant energy
per nucleone, of the pure neutron matter, the proton chemipé‘?) in pure neutron matter and the nuclear
surface tensiofg,; are generally reasonable in comparison with other nuclear interactions.
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[. INTRODUCTION be realized as the energetically most favorable and the den-
sity range corresponding to the phases with nonspherical nu-
For the past several decades since the discovery of putlei, vary with nuclear modelg3]. However, the realization
sars, many authors have investigated the properties of denséthe pasta phases as energy minimum states can be seen in
matter which exist inside neutron stars and supernova cores wide range of nuclear models, and the phase diagrams
(see, e.g., Refd.1-3|). These objects have been shown topossess a universal basic feature that, with increasing den-
consist of a variety of material phases whose physical propsity, the shape of the nuclear matter region changes like
erties reflect in many astrophysical phenomena of these olsphere— cylinder — slab — cylindrical hole— spherical
jects. Especially, the properties of nuclear matter under exhole — uniform [9,10]. This feature is also reproduced by
treme conditions, which is one of the essential topics forthe Thomas-Fermi calculations by several groliis-13.
understanding the mechanism of collapse-driven supernovae The phases with these exotic nuclear structures, if they
[4], the structure of neutron star cru$, and its relating were realized in neutron star crusts or supernova cores, bring
phenomena, have been studied actively. This subject is alsmbout many astrophysical consequences. As for those in neu-
interesting as one of the fundamental problems of the comtron star phenomena, it is interesting to note the relevance of
plex fluids of nucleons. nonspherical nuclei to pulsar glitches and cooling of neutron
At subnuclear densities, nuclear matter exhibits the coexstars. Although the question whether the mechanism of pul-
istence of a liquid phase with a gas phase due to the intesar glitches is depicted by vortex pinning model or star
nucleon interaction which has an attractive part. At suffi-quake model has yet to be settled completely, the existence
ciently low temperatures relevant to neutron star interiorspf nonspherical nuclei in neutron star mattétSM) have
and sufficiently below the normal nuclear density, long-rangesignificant effects in both cases. As for the former, while the
Coulomb interactions make the system divide periodicallyforce needed to pin vortices has yet to be clarified com-
into gas and spherical liquid drops, adding a crystalline proppletely even for a bcc lattice of spherical nuclei mainly due
erty to the liquid-gas coexistence. to the uncertain properties of impurities and def¢dtd, the
In the density region where nuclei are about to melt intoeffect of spatial structure of normal nuclear matter on vortex
uniform matter, it is expected that the energetically favorablelynamics cannot be ignored. As for the latter, the existence
configuration of the mixed phase possesses interesting spatiafl pasta phases with slablike and rodlike nuclei would
structures such as rodlike and slablike nuclei and rodlike andhange the elastic properties of inner crust matter from those
spherical bubbles, etc., which are referred to as nucleaof crystalline solid to those of liquid crystal as indicated by
“pasta.” This picture was originally proposed by Ravenhall Pethick and Potekhifil5], which results in significant de-
et al. [6] and Hashimoteet al. [7] independently. Their pre- crease of the maximum elastic energy that can be stored in
dictions were based on free energy calculations with liquicthe inner crust. The presence of nonspherical nuclei would
drop models assuming some specific nuclear shapes. Theakso accelerate the cooling of the corresponding region of
works clarify that the most energetically stable nuclear shapeeutron stars by opening semileptonic weak processes which
is determined by a subtle balance between the nuclear suare unlikely to occur for spherical nuclg].
face and Coulomb energies. Detailed aspects of equilibrium Pasta phases in supernova mat®XM) are expected to
phase diagrams, such as a series of nuclear shapes which afect the neutrino transport and hydrodynamics in super-
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nova cores. Let us first note that the neutrino wavelengthand analyze the structure of matter obtained by the simula-
typically of order 20 fm, are comparable to or even greatetions using two-point correlation functions and Minkowski
than the internuclear spacing, leading to diffractive effects offunctionals in Sec. IV. In Sec. V, we investigate the proper-
the neutrino elastic scattering off such a periodic spatiafies of the effective nuclear interaction used in this work in
structure of nuclear matt¢6]. These effects, induced by the order to examine the validity of our results in terms of
internuclear Coulombic correlations, would reduce the scatbuclear forces. Astrophysical discussions are given in Sec.
tering rates and hence the lepton fractiép. For the bce VI. Summary and conclusions are presented in Sec. VII.
lattice of spherical nuclei, such a reduction was examined by

Horowitz [16] by calculating the associated static structure Il. QUANTUM MOLECULAR DYNAMICS

factor. It is also worth noting that nonspherical nuclei and . _
bubbles are elongated in a specific direction. In such a direc- W& have various types of molecular dynamics methods

tion, the neutrino scattering processes are no longer coherefi’ Nucleons including representative ones such as fermionic
in contrast to the case of roughly spherical nuclei whosdnolecular dynamicé=MD) [21], antisymmetrized molecular
finiteness in any direction yields constructive interference irfdynamics(AMD) [22] and QMD, etc. In the present work,
the scattering. The final point to be mentioned is that théVe choose QMD from them balancing between calculation
changes in the nuclear shape are accompanied by disconfioSt and accuracy. The typical length sdad¢ inter-structure
nuities in the adiabatic index, denoting how hard the equalS | ~10 fm and the density region of m_tgrest is just below
tion of state of the material is. These discontinuities mayth® normal nuclear density,=0.165 fm *. The required
influence the core hydrodynamics during the initial phase oftucléon numbeN in order to reprodgce unit structures in
the collapsd12]. the §|mulat|on box is aboli~ po(nl)® (for slabs. It is t_hus

Though the properties of pasta phases in equilibrium statdesirable that we prepare nucleons of orde_r 10000 if we try
have been investigated actively, the formation and the meltl© réduce boundary effects down to a satisfactory level by
ing processes of these phases have not been discussed exd&pfoducing several unit structures in the box. While it is a
for some limited cases which are based on perturbative aglard task to treat such a large system with, foz example,
proached5,17]. It is important to adopt a microscopic and FMD and AMD whose calculation costs scale-adl”, it is
dynamical approach which allows arbitrary nuclear struc-feasz'ble to do it with QMD whose calculation costs scale as
tures in order to understand these processes of nonsphericaN~- This difference comes from summations in the Slater
nuclei. At finite temperatures, it is considered that not onlydeterminants in the trial wave functions of the former mod-
nuclear surface becomes obscure but also nuclei of vario@s. In QMD, on the other hand, the totdinucleon wave
shapes may coexist. Therefore, it is necessary to incorporafgnction |®) is assumed to be a direct product of single-
density fluctuations without any assumptions on nucleaftcleon statege;):
shape to investigate the properties of pasta phases at finite
temperatures. Although the works done by Williams and |®)=|h1)®|Pp2)® - - - ®|Pp)- (o
Koonin [11] and Lassauet al. [12] do not assume nuclear
structure, these cannot incorporate fluctuations of nucleoifhe single-nucleon state is represented by a Gaussian wave
distributions in a satisfying level because these are based qracket:
the Thomas-Fermi calculation, which is one-body approxi-
mation. In addition, only a single structure is contained in the 1 (r—=R)2 i
simulation box in these works, there are thus possibilities ¢i(r)=(r|¢i)=—mex;{——wL%rPi .
that nuclear shape is strongly affected by boundary effect and (2mL) 4L
some structures are prohibited implicitly. @

In the present work, we study the structure of cold dense N
matter at subnuclear densities in the framework of quanturhereRi(t) and Pi(t) are the centers of position and mo-
molecular dynamic$QMD) [18], which is one of the mo- Mmentum of the packeit respectively, and. is a parameter
lecular dynamicgMD) approaches for nucleon many-body related to the extension of the wave packet in the coordinate
systems(see, e.g., Refl19] for review). MD for nucleons  SPace. . _
method without any assumptions on nuclear structure, is suitructures; the exchange effect would not be so important for
able for incorporating fluctuations of particle distributions. them. This can be seen by comparing the typical values of
Previously, we have reported the first results of our study ofhe exchange energy for the macroscopic scale and of the
nuclear pasta by QMD, which demonstrated that the pastgnergy difference between two successive phases with non-
phases can be formed in a dynamical way for matter Wit@pherlcal nuclei. Suppose there are two identical nu.cleons,
present new results for astrophysically interesting neutroneXchange energy between these particles is calculated as an
rich matter ofx=0.1 in addition to the cases @=0.3 and €Xchange integral:
0.5 reported before.

The plan of this paper is as follows. In Sec. I, we de-
scribe trl?e frameworIF() ol? the QMD model used in the present K:j U(r1=r2)e1(r) @1 (r2) 9o(r2) ¢z (r1)dradra,
study. We then show the results of our simulations in Sec. Il 3)
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whereU is the potential energy. An asymptotic form of the
wave function is given by
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TABLE |. Effective interaction parameter sehcompressibility
K =280 MeV; medium equation of statEOS model in Ref[23]).

@i~ exp— ki), (4)

with r=|r;—r,| and x;=(1/4)2mE (i=1,2), whereE;
is the binding energy anch is the nucleon mass. The ex-
change integral reads

K~exfd — (k;+ ky)R]~5X10"% MeV (5)

for the internuclear distanc®=10 fm and E;=8 MeV,
which is extremely smaller than the typical energy difference
per nucleon between the pasta phases of order 0.1(l@&V
NSM, see Fig. 4 in Ref9]); 10 keV (for SNM, see Fig. 4 in
Ref.[10]). Therefore, it is expected that QMD, which is less

elaborate in treating the exchange effect, is not bad approxi

mation for investigating the nuclear pasta. Consequently,
QMD has the advantages over the other models in the
present study. In the future, we will have to confirm the
validity of the results obtained by QMD using other more
elaborate model such as AMD or FMD to treat the exchange
effect more precisely. However, this problem is beyond the
scope of the present work.

Model Hamiltonian

To simulate nuclear matter at subnuclear densities within
the framework of QMD, we use a QMD model Hamiltonian
developed by Maruyamet al. [23], which is constructed so
as to reproduce bulk properties of nuclear matter and prop-
erties of finite nuclei. This model Hamiltonian consists of the
following six terms:

H=T+ Vpayit+ VSkyrme+ Vsym+ Vump + Vcoulombs (6)

where T is the kinetic energyVpqyi is the Pauli potential
introduced to reproduce the Pauli principle effectively,
Vsiyme iS the Skyrme potential which consists of an attrac-
tive two-body term and a repulsive three-body tekf,, is
the symmetry potentialyyp is the momentum-dependent
potential introduced as two Fock terms of the Yukawa inter-
action andVcgyomp iS the Coulomb potential. The expres-
sions of these terms are given as

p2

Cp (MeV) 207
pPo (MeV/c) 120
go (fm) 1.644
a (MeV) —92.86
B (MeV) 169.28
T 1.33333
C, (MeV) 25.0
cl) (Mev) —258.54
c® (MeVv) 375.6
wy (fm~1) 2.35
po (fm™1) 04

L (fm?) 2.1

C, 5
Vsym_z_po e (1=2[ci—cj|)pjj , (10
(1) 1

Vv :V(1)+V(2): ex .
MD MD MD 2p0 i [y ri_Peru
1+|——
oy
c® 1
+
2po i.{7) mp”
fipsr

11

1
Ti+§

eZ
V coulomt™ 2 i % i

Tj+§

1
xfjdsrd3r'|r_r,|m(r)p,-(r'), (12

wherep;; means the overlap between the single-nucleon den-
sities, p;

(r) andpj(r), for theith andjth nucleons given as

PijEf drpi(r)p;(r), (13

T= —
i) 2m;

1 ho\3 (Ri—R))?
Vpaui=5 Col =—— exp — ————
Paul 2 P( QOpo) i,J(Evﬁi) F{ 293

7) o; is the nucleon spin and; is the isospin ¢;=1/2 for
protons and-1/2 for neutronsandCp, qg, Po. @, B, T,
Cs, CV, c® | ui, u, andL are model parameters de-
termined to reproduce the properties of the ground states of
the finite nuclei, especially heavier ones, and the saturation

properties of nuclear matt23]. A parameter set used in this

(P,— pj)2 work is shown in Table I. The single-nucleon densitieq)
- 202 77, O0i0)1 8  andp;(r) are given by
1 (r—Ri)T

.« (=] 2 © -, 14
Vskyrme—z_p()i’%i) p” pl(r) |¢I(r)| (ZWL)a/ZeXF{ 2L ( )

B D ~ — | - 1 (r—R;)2

PN d%r pi(r) -(r)} , (9 (N=—— exg — ——
(1+n)p; T i PP pir) (2a1)32%" ot | 19
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with state of matter, we then cool it down slowly f@(10°
(14 7)Y —10% fm/c, keeping the nucleon density constant with the

(16) frictional relaxation methodEgs. (17)], etc.[24] until the
temperature gets-0.1 MeV or less. Note that no artificial
fluctuations are given in the simulation.

The QMD equations of motion with the friction terms
given by Egs.(17) are solved using the fourth-order Gear
predictor-corrector method in conjunction with multiple time
step algorithm[26]. Integration time stepat are set to be
adaptive in the range &t<0.1-0.2 fm/c depending on the

L="

The modified widthL in p;(r) is introduced in the three-
body term of Skyrme interactiofEq. (9)] to incorporate the
effect of the repulsive density-dependent term.

We adopt QMD equations of motion with friction terms to
simulate the dynamical relaxation:

. OH OH degree of convergence. At each step, the correcting operation
Rizﬁ - §Rﬁv is iterated until the error of positioAr and the relative error
' ' of momentumAp/p become smaller than 16, whereAr
_ IH IH and Ap/p are estimated as the maximum values of correc-
Pi=- (?_Ri_gpa_Pi' (17)  tion among all particles. We mainly use P@entium Il)

equipped with MDGRAPE-2, which accelerates calculations

where the friction coefficientgg andép are positive definite, 0f momentum-independent forces including the long-range
which determine the relaxation time scale. The relaxatiorCoulomb force.
scheme given by Eq¢17) is referred to as the steepest de- Shown in Figs. 1 and 2 are the resultant nucleon distribu-
scent method and it leads to the continuous decreadeda  tions of cold matter ak=0.5 and 0.3, respectively. We can
see from these figures that the phases with rodlike and slab-
dH . oH . JIH IH\? IH\? like nuclei, cylindrical and spherical bubbles, in addition to
H_Ri' 19_Ri+P"<?_Pi_ —&r IR, —ép P, <O0. the phase with spherical nuclei are reproduced in both the
(18) cases ox=0.5 and 0.3. We here would like to mention the
reasons of discrepancies between the present result and the
Even though it is recognized that this method is not efficientresult obtained by Maruyamet al. which says “the nuclear
it is expected that the dynamics given by E¢$7) with  shape may not have these simple symmetr[@8]. One of
ér,€p<<1 deviates slightly in a short period from the physi- the most crucial reasons seems to be the difference in treat-
cally grounded dynamics given by QMD equations of mo-ment of the Coulomb interaction. In the present simulation,
tion without the friction term$equations without the second we calculate the long-range Coulomb interaction in a consis-
terms in the right-hand sides of Eq47)], which we would  tent way using the Ewald method. For the system of interest
like to respect. where the Thomas-Fermi screening length is comparable to
or larger than the size of nuclei, this treatment is more ad-
equate than that which introduces an artificial cutoff distance
lIl. QMD SIMULATIONS OF COLD MATTER AT as in Ref.[23]. The other crucial reason is the difference in
SUBNUCLEAR DENSITIES the relaxation time scalesfm/c; we setr~0(10°~10%) in
. ) the present work, but Maruyamat al. set r~ several
A. QMD simulations for x=0.5 and 0.3 X 10° fm/c [27]. In our simulation, we can reproduce the
We have performed QMD simulations of an infinite bubble phasegsee (d) and (e) of Figs. 1 and 2 with 7
(n,p,e) system with fixed proton fractions=0.5 and 0.3 ~10°® fm/c and the nucleus phasgzee(b) and(c) of Figs. 1
for various nucleon densitiep [the density region is and 4 with 7~O(10%) fm/c. However, the matter in
(0.05-1.0pg]. We set 2048 nucleon$1372 nucleons in the density region corresponding to a nucleus phase is
some cas@scontained in a cubic box on which periodic quenched in an amorphouslike state wheal0® fm/c. In
boundary condition is imposed. Throughout this paper, théhe present work, we take much larger than typical time
numbers of the protongneutron$ with up-spin and with  scalery, ~ O(100) fm/c for nucleons to thermally diffuse in
down-spin are equal. The relativistic degenerate electronthe distance of ~10 fm at p=py andkgT=1 MeV. This
which ensure the charge neutrality are regarded as a unifortemperature is lower than the typical value of the liquid-gas
background and the Coulomb interaction is calculated by th@hase transition temperature in the density region of interest,
Ewald method taking account of the Gaussian charge distriit is thus considered that our results are thermally relaxed in
bution of each wave packétee the Appendjx This method  a satisfying level.
enables us to efficiently sum up contributions of long-range Phase diagrams of matter in the ground state are shown in
interactions in a system with periodic boundary conditionsFigs. 3a and 3b) for x=0.5 and 0.3, respectively. As can
For nuclear interaction, we use the effective Hamiltonian debe seen from these figures, the obtained phase diagrams ba-
veloped by Maruyameet al. (medium EOS model[23]  sically reproduce the sequence of the energetically favored
whose expressions are given in the last section. nuclear shapes predicted by simple discussigfiswhich
We first prepare a uniform hot nucleon gas kT  only take account of the Coulomb and surface effects; this
~20 MeV as an initial condition equilibrated for prediction is that the nuclear shape changes like sphere
~500-2000 fm¢ in advance. In order to realize the ground cylinder — slab — cylindrical hole — spherical hole—
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FIG. 1. (Color) The nucleon distributions of typical phases with simple structures of cold matter @i5; (a) sphere phase, (b}
(Lpox=43.65 fm, N=1372); (b) cylinder phase, 0.22B (Lpn=38.07 fm, N=2048); (c) slab phase, 0} (Lpox=31.42 fm, N
=2048); (d) cylindrical hole phase, 0dp (L= 29.17 fm, N=2048), ande) spherical hole phase, 3§ (Lpox=27.45 fm, N=2048),
wherelL,,, is the box size. The red particles represent protons and the green ones represent neutrons.

FIG. 2. (Color) Same as Fig. 1 ax=0.3; (a) sphere phase, o} (Ly,=49.88 fm, N=2048); (b) cylinder phase, 0.18 (Lpox
=41.01 fm, N=2048); (c) slab phase, 0.3% (Lpox=32.85fm, N=2048); (d) cylindrical hole phase, Oy (Lypx=29.17 fm, N
=2048) and(e) spherical hole phase, 0.55(L.=28.26 fm, N=2048). The red particles represent protons and the green ones represent
neutrons.
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(a) x=0.5

coexist. SP&C (S,CH)

SP l C (CS) S l CH SH uniform
(i) 0*.1 ?2 O*.S (’;.4 0?5 0*.6 0*.7 0*.8 O*.Q 1?0 P/I:,’J

K0

(b) x=0.3

coexist. SP&C (S,CH)

SP JC (CS)s* CH SH uniform
é) 0A.1 OA.2 OA.S OA.4 0¢.5 0’?6 0’?7 0’?8 0’?9 1¢.0 P/Q,

KE SP: sphere  CH: cylindrical hole
C :cylinder SH: spherical hole
S :slab (, ): intermediate phase

FIG. 3. Phase diagrams of cold matter>xat 0.5 (a) and x
=0.3(b). Matter is unstable against phase separation in the density
region shown ag;<0, wherex is the isothermal compressibility.
The symbols SP, C, S, CH, and SH stand for nuclear shapes, i.e.,

sphere, cylinder, slab, cylindrical hole and spherical hole, respec- FIG. 4. (Color) The nucleon distribution of sphere phase in cold
tively. The parenthesesA(B) show intermediate phases between o : :
I . matter atx=0.1. The nucleon density and the sizd_,,, of the
A-phase andB-phase suggested in this work. These have compli-_. . — -
; simulation box arep=0.07%, and L,,=96.08 fm. The red par-
cated structures different from those of bdtiphase and® phase. icles renresent protons and the areen ones represent Neutrons
Simulations have been carried out at densities denoted by smatlliC P P 9 P '

circles.

the QMD equations of motion with friction terni$7). These

. _ . . . . simulations are performed by Fujitsu VPP 5000 equipped
uniform, with increasing density. Comparing Figga3and with MDGRAPE-2.

3(b), we can see that the phase diagram shifts towards the Some resultant nucleon distributions are shown in Figs. 4

lower density side with Qecreasmg_whlch Is due to the and 5, which correspond to the sphere phase and the cylinder
tendency that the saturation density is lowered as the neutror}1 : g .
ase, respectively. As can be seen in Fig. 4, dripped neu-

excess increases. It is remarkable that the density depef- Co . !
) "t -trons spread over the whole region in the simulation box,
dence of the nuclear shape, except for spherical nuclei and, . . .
. ) . o . Which lead to smaller density contrast compared with that for

bubbles, is quite sensitive, and phases with intermediat

: . - e cases 0x=0.5 and 0.3 depicted in Figs. 1 and 2, respec-
nuclear shapes which are not simple as shown in Figs. 1 ar}lvely
2 are observed in two density regions: one is between the The results obtained fox=0.1 are summarized in the

cylinder phase and the slab phase, the other is between th ase diagram shown in Fig. 6. A striking feature is that the

slab phase and the cylindrical hole phase. We note that the& ide density region from-0.25, to ~0.525, is occupied

phases are different from coexistence phases with nuclei dg an intermediate phase. The structure of matter seems to
simple shapes, which will be referred to as “intermediate y P : - )
phases.” change rather continuously from that consisting of branching

B. QMD simulations for x=0.1

We have also performed QMD simulations of matter with
proton fractionx=0.1 as a more realistic condition for the
neutron star matter. In this case, we have to deal with a larger
system than in the cases »#£0.5 and 0.3 because enough
number of protons for reproducing several nuclei in a simu-
lation box are required to obtain significant results; protons
play an important role in generating the long-range order due
to their electric charge. We have investigated the neutron-
rich matter atx=0.1 with 10976 nucleons, in which 1098
protons and 9878 neutrons are contained. Following basi-
cally the same procedure that was used for the cases of
=0.5 and 0.3see Sec. Il A for detaj| we tried to obtain the
ground-state matter. However, in the present case, we
quickly relax from the initial state atgT~20 MeV to the
state akgT~10 MeV, at which matter is still uniform, with
a NoseHoover-like thermostaf28,29 which will be dis- FIG. 5. (Colon The proton distribution of cylinder phase in cold
cussed in another papgR5]. After the relaxation aksT  matter atx=0.1. The nucleon density and the sizel Of the
~10 MeV for ~4000-7000 fmé, we then cool down the simulation box arey=0.2p, andL,.,=69.29 fm. Neutrons which
system with a relaxation time scate-O(10% fm/c using  spread over the whole space are not depicted in this figure.
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X=0.1 <=0

SP C (C,L) uniform
i "N . a0 & 4 "N L L L + p/R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
K, <0

&:(r)

SP: sphere
C : cylinder
U :uniform (,): intermediate phase

FIG. 6. Phase diagram of cold matterxat 0.1. Matter is un-
stable against phase separation in the density region showr as
<0, wherek is the isothermal compressibility. The symbols SP,
andU stand for shapes of nuclear matter region, i.e., sphere, cylin- F|G. 7. Two-point correlation functions of density fluctuations
der, and uniform, respectively. The density at which the areacalculated forx=0.5. The solid lines show the two-point correla-
averaged mean curvature of nuclear surface is zero is denoted yn function for nucleon density distributions; the dotted lines, that

(H)=0. However, slab phase is not observed in our results even gbr proton density distributions; the dashed lines, that for neutron
such a density. The parenthesés &) show intermediate phases density distributions.

betweenA phase an® phase. These have complicated structures _
different from those of bottA phase an® phase. Simulations have We construct the nucleon density distributje®(x) from
been carried out at densities denoted by small circles. a dataset of the centers of position of the nucleons by the
) ) ) ) following procedure. We first set 84for x=0.5 and 0.3 or
rodlike nuclei connected to each otljebtained in the lower 128 (for x=0.1) grid points in the simulation box and then
density region of the intermediate phase denoted®yJ)]  distribute particle numbers on each grid point using the
to that consisting of branching bubbles connected to eacBloud-in-cell methodsee, e.g., Ref30]). Next, we carry out
other [higher density region of the intermediate phasethe smoothing procedure in the discrete Fourier space with a
(C,U)]. However, in the present neutron-rich case, the pastgaussian smoothing function corresponding to the distribu-
phase with slablike nuclei cannot be obtained as far as Wgon of the wave packet given by ECQ) The density distri-
have investigated, which will be discussed at the end of thgyytions p@(x)=3N_,n"| ¢ (x)|2, where n{’=0 or 1
following section. It is also noted that the density at whichygjects on particle type in the discrete real space can be
matter turns into uniform is lower than those in the cases opptained by the inverse Fourier transformation. The Fourier

matter becoming more neutron rich as the saturation density The resultant two-point correlation functiongy(r)

decreases. &pp(r), and &,,(r) at various densities below,, at which
matter becomes uniform at zero temperaturexfel0.5, 0.3
IV. ANALYSIS OF THE STRUCTURE OF MATTER and 0.1 are plotted in Figs. 7, 8, and 9, respectively. We can

see the general tendency, which is common for the different
S values ofx, that the amplitude o;;(r) decreases with in-

To analyze the spatial distribution of nucleons, we calcureasing the density. It is noted that even though the change
late two-point correlation functior;; for nucleon density jn the amplitude ofg;(r) is quite noticeable, the smallest
field p® (i=N,p,n; whereN stands for nucleons;i is  zero pointr=r, of &;(r) takes similar values at various

A. Two-point correlation functions

here defined as densities especially fox=0.5 and 0.3. This feature means
1 1 that the typical length scales of the nuclear structures, i.e.,
& :_f er_j d3x8,(X) 8(X+1) the internuclear distance and the nuclear radius, remain com-
Am v parable at subnuclear densities fren®.1p, to py,, Which is
= (5, 8(X+ 1))y 0+ (20) consistent with the results obtained by the previous works

(see, e.g., Ref$8-10,13). This behavior just beloys,,, will
be discussed further concerning a problem about the proper-
) . . ) "~ ties of the transition to uniform matter.
the direction ofr, and i(x) is the fluctuation of the density \ye 150 note that a strong attractive force acting between
field p'(x) given by a proton and a neutron leads to the good agreement of the
0 —i zero points of,, and¢,,, even forx=0.3 and 0.1 as well as
(X)— D) T pp . o
LS 21) for x=0.5 although the zero point, of &,, is ~0.3 fm
p® ' (=0.5 fm) larger than that of,, for x=0.3 (0.1) at each
density. This shows that the phases of the density fluctuations
with of protons and neutrons correlate so strongly with each other
at zero temperature that they almost coincide.
)= l (22) As can be seen py comparirgg,N(r) for different values
V of the proton fractionx, the amplitude decreases and the

where(- - '>X,Qr denotes an average over the positioand

Si(X)=
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FIG. 10. Two-point correlation functiogiyy(r) of the nucleon
density fluctuationéy(r) is calculated fox= 0.5 and for densities
aroundp,,, from 0.62%, to 0.75%,.

lomb interaction. Therefore, the two-point correlation func-
tions énn, €pp @and €y, are almost the same at larger values
of r=ry. At smaller values of, &, is slightly smaller than
&, because the repulsive Coulomb interaction among pro-
) _ ] _ ~ tons tends to reduce the proton density inhomogeneity espe-
FIG. 8. Two-point correlation functlon_s of _de_nsny fluctuations cially in the smaller scale. For asymmetric matter=(0.3
calculated f(.)rx:.O.S.; (a). for nucleon density dIS.tI’Ibl:Itloln?{b.) for and 0.1, on the contrary, the amplitude af,, is much
proton density distributiong) for neutron density distributions. smaller than that ngp de to the dripped neutrons which

o . ~ distribute rather uniformly outside the nuclei.
value of the smallest zero poing increases with decreasing

x. This behavior means that, as matter becomes more neutron - )
rich, not only the nucleon density distribution gets smoother B. Transition to uniform matter

but also the spatial structure becomes larger. Let us here examine the properties of the transition from
~ Letus then examing;; for each value of the proton frac- the phase with spherical bubbles to uniform matter stor
tion. For symmetric matterx=0.5), protons and neutrons =0 5. For this purpose, two-point correlation function of the
are equivalent except for the mass difference and the Cotpycleon density fluctuation is useful. In Fig. 10, we thus plot

the two-point correlation function of the nucleon density
SR ESLALL AL AL L B fluctuation &yn(r) for several densities around the melting
densityp,. To computeéyn(r), we use a 1372-nucleon sys-
tem cooled down until the temperature get§.05 MeV by
QMD equations of motior{17) with friction terms.

For uniform phaseéyn(r) should be zero except for the
contribution of short-range correlation. The behavior of
Enn(r) shows thatp, lies between 04, and 0.72b, at x
=0.5[see also Fig. @)] above which long-range correlation
disappears. It is noted that the smallest valuer sfr; at
which &yn(r)=0 keeps around 8 fm even at densities just
below p,,. This means that, fox=0.5, the phase with
spherical bubbles whose radii are arougdsuddenly disap-
pear rather than shrink gradually and the system turns into
uniform with increasing the density because the quamjty
nearly corresponds to the half wave-length of the inhomoge-
neous density profile. The discontinuous change in the den-
sity profile indicates that the transition between the phase
with spherical bubbles and the uniform phase is of first order.
This conclusion is also obtained in the previous calculations
for which the spatial structure of the nuclear matter region
and/or the shape of the density profile are assumed
[8-10,13,31 In the present work, we have confirmed the
first-order nature by QMD simulations without these as-
FIG. 9. The same as Fig. 8 far=0.1. sumptions as several authors have done so without the as-

€4(r)
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sumptions by the Thomas-Fermi approximatjdd,12]. Thus x>0 for the sphere and the spherical hole phases and
For the cases 0k=0.3 and 0.1, we could not see the the coexistence phase of spheres and cylindersyan for
significant sign of the first-order nature of the transition be-the other ideal pasta phases, i.e., the cylinder, the slab, and
tween the mixed phase and the uniform phase because thige cylindrical hole phases which consist of infinitely long
amplitude oféyn(r) is quite small just below,. Further  rods, infinitely extending slabs, and infinitely long cylindri-
study is necessary to determine the properties of the transgal holes, respectively. We introduce the area-averaged mean

tion for these cases of asymmetric matter. curvature (H)y=(1/A) fHdA and the Euler characteristic
densityy/V as normalized quantities, wheyeis the volume
C. Minkowski functionals of the whole space.

To extract the morphological characteristics of the nuclear
shape changes and the intermediate phases, we introduce the 1. Minkowski functionals for x=0.5 and 0.3

Minkowski functionals(see, e.g., Refl32], and references  \ye calculate the normalized Minkowski functionals, i.e.,

therein; a concise review is provided by RE83]) as geo- q y61ume fraction, the surface area densityV, the area-

metrical and topological measures of the nuclear surface. Le&veraged mean curvatutél), and the Euler characteristic
us consider a homogeneous bady R in thed-dimensional density y/V for x=0.5 and 0.3 by the following procedure.

E}l:clledjanl space, whefe is ctjh?_ CIZSS OffSUCh, bodigezs. '\Igor' As described in Sec. IV A, we first construct proton and
phological measures are defined as functional®— nucleon density distributions® (r) ==} n{P| ¢(r)|? and

which satisfy the following three general properties. 2 wheren,((p)=0 or 1 is the isospin pro-

_ <N
(1) Motion invariance.The functional is independent of P(X)._Ek:1|¢k(x) .
the position and the direction of the body, i.e., jection on the proton state. We set a threshold proton density

pp. and then calculatd (pp, ) =V(pp.w)/A(ppw), Where

o(K)=¢(gK), (23)  V(pp,w) andA(pp ) are the volume and the surface area of
the regions in whichp®(r)=p, 1. We find out the value
whereg denotes any translations and rotations. Pp,th= p;’th where @2/dpf,ym)f(p;,‘,th)=0 and define the re-

(2) Additivity. The functional of the union of two bodies gions in whichp(m(r)zp’,;th as nuclear regions. For spheri-
should behave like a volume. The contribution of the overa| nuclei, for examplep’ , corresponds to a point of inflec-
lapping region should be subtracted, i.e., tion of a radial density distribution. In the most phase-

separating region, the values @f, distribute in the range of
P(KiUKo)= (K +o(Ko) —e(KiNK2), (24 apout 0.07-0.09 fm 2 in both cases ox=0.5 and 0.3,
whereK K, e R. where py, is the threshold nucleon density corresponding to

(3) Continuity. If the body is approximated with pixels, Pp.n- We then calculate, A, f[HdA andy for the identified
the functional of the approximate body converges to that oftuclear surface. We evaluateby counting the number of

the original body when the pixels get smaller, i.e., pixels at w_h_ichp(")(r) is higher tharpy ,, A by the triangle
decomposition methodfHdA by the algorithm shown in

lim (K, =¢(K) as limK,=K, (25)  Ref.[32] in conjunction with a calibration by correction of
n— n—o surface area, ang by the algorithm of Ref[32] and by that

of counting deficit angle$34], which confirm that both of
whereK is a convex body an{K} is a sequence of convex them give the same results.
bodies. We have plotted the resultapt dependence ofi, A/V,
Hadwiger’s theorem in integral geometry states that thereH), and y/V for the isodensity surface gf,=pZ, in Figs.
are justd+1 independent functionals which satisfy the 11 and 12. In addition to the values of A/V, and(H) for
above properties; they are known as Minkowski functionalsie isodensity surface giy=pZ , we have also investigated
In three-dimensional space, four Minkowski functionals arey, J«o o1 the isodensity surfaces @f,= p;,+0.05 to ex-

related to the volume, the surface area, the integral meagire the extent of the uncertainties of these quantities

curvature gngl the Euler charactgnshc._ . which stem from the arbitrariness in the definition of the
In classifying nuclear shapes including those of the inter-

: . ) . . ; uclear surface. As shown in Fig. 11, these uncertainties are
mediate phases obtained in our simulations, the mtegra%

A d the Euler ch terist tul. whi t most=0.1 foru and=0.25 fm~* for A/V. For(H), we
mean curvature and the Euler characlerstic are usetul, Whicg,, 4 ot observe remarkable differences from the values for
will be discussed later. Both are described by surface inte-

.
grals of the following local quantities: the mean curvatureth~ Pth (they were smaller .thf_in 0.'015 fif). We could not
H=(k,+ k,)/2 and the Gaussian CUVatu@= k., i.e see these kinds of uncertainties Vv, except for the den-
- 1 2 112, 1.C.y

JHdA and y=(1/2)7 [ ,«GdA, wherex; and «, are the sities near belovpr,.

principal curvatures andA is the area element of the surface e ?c?nssh?rmrr]elgszgalh}r{otzte ﬁﬁg:gnﬁfﬁmﬁ%;eigugﬁﬁr
of the bodyK. The Euler characteristig is a purely topo- 9 y

. . o cases ok=0.5 and 0.3. This feature reflects the incompress-
logical quantity and is given by ible nature of nuclear matter. It is interesting to see the den-
sity dependence of the nuclear surface denafty because
this quantity is directly related to the surface energy density,
+ (number of cavitieps (26)  which is one of the key factors in determining the nuclear

x= (number of isolated regiois (number of tunnels
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FIG. 11. Density dependence of the volume fractioand the
surface area density/V of cold matter atx=0.5[(a) and(c)] and Pth/Po
x=0.3[(b) and (d)]. The crosses show the results fa§= p3, and
the open triangles and squares show the results pfge pj, FIG. 13. Volume fractioru (upper paneland surface area den-
—0.05, and pj,+0.05,, respectively. sity A/V (lower panel as functions of the threshold densipy,

calculated forx=0.5 and various nucleon densitips
shape. Figures 1&8) and 11d) show that, as the nucleon

density increases)\/V increases at a nearly constant rateeffects(see, e.g., Ref$7,35)).

until p~0.3po, and then its increasing rate becomes rather e also plotu and A/V for the nucleon density distribu-
smaller around the density region of the slab phase, and ftjon p(r) as functions of the threshold densjty, evaluated
nally it begins to decrease in the density region of the cylin—4t various values op. The results fox=0.5 and 0.3 are
drical hole phase or the spherical hole phase. This generahown in Figs. 13 and 14, respectively. Features of nuclear

behavior can be understood from the density dependence ghape changes can be seen in the behavior of the curves of
the surface energy density obtained by simple arguments,

which only allow for the nuclear surface and the Coulomb

[ T T T T I T T T T I T T T T ]
x=05 x=0.3
F \ \ T T AF \ \ T 0.1p,
A (@) 17 (b) - 02 3
— N 1F lab ] <o A
T of x s ar X”ﬁxxx sla ] . 0.35p, |
£ f x ] x 0.4p, -
= r X;J b % Po ]
% 0F %%, . 5 0.5p, 1
Vi E X E XX 0.6p0 ]
—0.1 - X «1F X N 0.7p0 1
L x][ X ! ]
T Y T N s O B B SRR ]
AN DR .
2x10-4 | (C) cylindrical  — - (d) Cy“ﬂglrécal - -
—~ r (cylinder hole 17 1cylinder l ' 1 - ]
mE X 1 slab X ] Pxxd ! slab :X i ! .
e | N ‘ | | é ]
| ~ 4
T I A E
L | X% [ I S — ]
—2x107* |- ™7 o spherical| <o * spherical—| } ]
| sphere x% hole | |SPhere hole - E
T B T I | T T IR | 1
0.2 0.4 0.6 0.2 0.4 0.6
0/, 15
FIG. 12. Density dependence of the area-averaged mean curva- pth/po
ture (H) and the Euler characteristic densjpyVV of cold matter at
x=0.5[(a) and(c)] andx=0.3[(b) and(d)]. FIG. 14. The same as Fig. 13 far=0.3.
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A/V. Peaks in the highes, region are attributed to nucleons |
in the nuclear matter regions and broad bumps in the lower 45 |-dripped neutrons x=0.1
pu region around 0.05—0g} observed fox=0.3 are due to —— p=0.25p, 1
the dripped neutrons outside nuclailV in the intermediate - 1
P region in which its slope is nearly constant mainly comes %
from contribution of nuclear surfaces. As the nucleon density E
p increases, the higher, peak becomes more clear and the :
position of the center of the peak finally coincides wittin >
the uniform phase. This feature shows that the nuclear matter
regions become more uniform with increasing density. When
the dispersion of the internucleon distance is small, large  -0.005 -
surface area caused by the Gaussian density distribution of g
each nucleon can be picked up with a single valugpf As o 0.2 0.4 0.6 0.8 1 12
can be seen in Fig. 14, the lowpy, bump, in turn, disap-
pears with increasing. This is because, gs increases, the
dripped neutron gas becomes more inhomogeneous and FIG. 15. Euler characteristic density as a functiorpgfcalcu-
tends to distribute close to the nuclear surface leading to tted for x=0.1 andp=0.25,. The contribution of the nuclear
lower proton fraction in the nuclear matter regions. It is alsosurface can be observed as the plateau region.

noted that, as the nucleon density increases, the slope in the

intermediatepy, region changes from negative to positive at\yorks. We can give following two reasons for the discrep-
the density corresponding to the phase of slablike nuclejncy,

: C—

nucleons in nuclei

nuclear surface

Pw/ Po

(0.4p for x=0.5 and 0.3p, for x=0.3), which is consis- (1) These previous calculations are based on the Thomas-
tent with what is expected from the sign ¢H) for the  Fermj approximation which cannot sufficiently incorporate
nuclear surfacgsee Figs. 1&) and 12b)]. fluctuations of nucleon distributions. This shortcoming may

Let us then focus ofH) and/V to classify the nuclear regyit in favoring nuclei of smoothed simple shapes than in
shape. The behavior ¢H) shows that it decreases almost the real situation.
monotonically from positive to negative with increasipg (2) There is a strong possibility that some highly con-
until the matter turns into uniform. The densities correspondnected structures which have two or more substructures in a
ing to (H)=0 are about 0.4 and 0.8§ for x=0.5 and 0.3, period are neglected in these works because only one struc-
respectively; these values are consistent with the density regre is contained in a simulation box.
gions of the phase with slablike nucleee Fig. 3 As men- It is not unnatural that the phases with highly connected
tioned previouslyx/V is actually positive in the density re- nyclear and bubble regions are realized as the most energeti-
gions corresponding to the phases with spherical nucleigally stable statf36,37. It is considered that, for example, a
coexistence of spherical and cylindrical nuclei, and sphericabhase with perforated slablike nuclei, which has negative
holes because of the existence of isolated regions. As fog/v, could be more energetically stable than that with ex-
those corresponding to the phases with cylindrical nucleitremely thin slablike nuclei. The thin planar nucleus costs
planar nuclei and cylindrical holeg/V=0. The fact that the  surface-surface energy which stems from the fact that nucle-
values ofx/V are not exactly zero for nucleon distributions ons bound in the nucleus feel its surfaces of both sides. The
shown as the slab phase in Figs. 1 and 2 reflects the impesurface-surface energy brings about an extra energy increase
fection of these “slabs,” which is due to the small nuclear in addition to the contribution of the surface energy. We have
parts connecting the neighboring slabs. However, we can say examine the existence of the intermediate phases by more
that the behaviors of/V plotted in Figs. 1&) and 12d)  extensive simulations with larger nucleon numbers and with
show thaty/V is negative in the density region of the inter- |onger relaxation time scales in the future.
mediate phases, even if we take into account the imperfec-
tion of the obtained nuclear shapes and the uncertainties of
the definition of the nuclear surface. This means that the
intermediate phases consist of nuclear surfaces which are In the case ok=0.1, the criterion for identification of the
saddlelike at each point on average and they consist dfodensity surface corresponding to the nuclear surface using
highly connected nuclear and gas regions due to a lot othe second derivative of(pp n)/A(pp,1n) does not work at
tunnels[see Eq.(26)]. Using the quantitiegH) and x/V, higher densities. We thus use another method to calculate the
the sequence of the nuclear shapes with increasingormalized Minkowski functionals of the nuclear surface for
the density can be described as followg§H)>0,x/V  x=0.1.

2. Minkowski functionals for x=0.1

>0)—((H)>0,x/V=0)—(H)>0,x/V<0)—({(H)=0,x/V=0) In Fig. 15, we have plotted thpy, dependence of the
—((H)<0,)/V<0)— ({(H)<0,x/V=0) — ((H)<0x/V>0)— Euler characteristic density/V atp=0.2%, as an example.
uniform. We can see that this curve consists of three components: the

Let us now consider the discrepancy from the results opeaks of the lowepy, region, the plateau region, and the
previous works which do not assume nuclear structurgeaks of the highepy, region, which are due to dripped
[11,12]; the intermediate phases cannot be seen in theseeutrons(thus these peaks cannot be observedxfe0.5),
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FIG. 16. Density dependence of the normalized Minkowski
functionals for cold matter at=0.1. creasing even at just beloy,. As a result,x/V remains

negative until matter becomes uniforifizurther discussion

nuclear surfaces and nucleons in nuclei, respectively. Thesgill be given in Sec. Wi
components can also be seen at the other valugsloiver Let us then consider the phase with slablike nuclei, which
than p,,,. However, we have to mention that the higher thehave not been obtained in the simulations %c£0.1. If it
density becomes, the smaller the plateau region gets, whiolere realized by using a longer relaxation time scale, it is
means that the density contrast between the dripped neutr@xpected to be obtained at=0.32—0.34p, according to the
gas region and the nuclear matter region becomes obscurgehaviors of théH) and xy/V. However, we cannot see any
Here, we take the mean values of the normalized Minkowskgigns from Fig. 160) that A/V stops increasing in this den-
functionals in the plateau region as those for the nucleagity region unlike the behaviors d&/V in the cases ok
surface, which are plotted as crosses in Fig. 16. The erroe 0.5 and 0.3. Here, we would like to mention that, accord-
bars shown in this figure are the standard deviations of thes@g to the Landau-Peierls argument, thermal fluctuations are
quantities in the plateau region. Consistency between thigffective at destroying the long-range order of one-
method and the one using the second derivative oflimensional layered lattice of slablike nuclei rather than that
V(pp,w)/Alpp,m) has been confirmed for=0.3. of triangular lattice of rodlike nuclei and of the bcc lattice of

Figure 16 shows the resultant normalized Minkowskispherical ones. Thus, the melting temperature of the planar
functionals for the nuclear surface at various valuespof phase would be lower than the other phases, which leads to a
below p,,. The qualitative behaviors afl and (H) for x  longer time scale for formation of the slablike nuclei by the
=0.1 are the same as those f0+=0.5 and 0.3; ap in-  thermal diffusion. Therefore, a further investigation with a
creasesu increases andH) decreasegfrom positive to  longer relaxation time scale is necessary to determine
negative almost monotonically in the density region of whether or not the phase with slablike nuclei is really pro-
0.1pg<p=p,- However, in the behaviors &/V and y/V, hibited in such neutron-rich matter in the present model.
qualitative differences can be observed between the present In Fig. 17, we have also plottadandA/V for the density
case and the cases ¥ 0.5 and 0.3. As can be seen in Fig. distributionp(r) as functions opy, as in Figs. 13 and 14. In
16(b), A/V increases almost linearly until just belqwy, . comparison with Fig. 14, the contribution of the dripped neu-

The absence of the phases with cylindrical bubbles androns is shown more clearly in this case. We can see that the
with spherical bubbles in the phase diagranxef0.1 (Fig.  peak in the lowerpy, region due to the dripped neutrons
6) is well characterized by the behavior pfV shown in Fig.  combines to the peak in the highey, region. This behavior
16(d). In the cases ok=0.5 and 0.3,x/V increases from stems from the fact that a part of the dripped neutrons at
negative to positive with increasing density in the densitylower densities are absorbed into nuclear matter region with
region higher than that of the slab phase. However,xfor increasing the density at fixed finally, all the neutrons are
=0.1, we cannot observe the tendency tR&Y starts in- contained there in the uniform phase. We can also expect
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from the p, dependence oA/V that the phase with slablike o ey
nuclei might be obtained around g where the slope of - .
the plateau region is close to zero. L
15
V. PROPERTIES OF THE EFFECTIVE NUCLEAR s
INTERACTION = |
)
Let us here examine the effective nuclear interaction used & | T ]
in this work. The structure of matter at subnuclear densites ~ § '°[ S 7
is affected by the properties of neutron-rich nuclei and of the o /,af/.f'” ' |
pure neutron gas resulted from the nuclear interaction. Key 3 T /{;‘.j‘./ '// . 1
guantities are the energy per nuclegnof the pure neutron ;»: i /’},-:‘/”/"“ P = QWD |
matter, the proton chemical potentjaf in the pure neutron e ]
matter, and the nuclear surface tensig,;. 5 / w LoaR
There is a tendency, especially in the case of neutron star 4 SLy4 |
matter, that higher the,,, lower is the density,, at which j// " TR ]
matter becomes uniform. This is because larggetends to —-— SkM |
favor uniform nuclear matter without dripped neutron gas I 1 T v C ]
regions than mixed phases with dripped neutron gas regions. % o005 o1 o1
In the neutron star matter, there is also a tendency that the p, (fm=2)

lower 1{”, the smallerp,,,. This is because- u{”) repre-

sents the degree to which the neutron gas outside the nuclei FIG. 18. The neutron density, dependence of the energy per
favors the presence of protons in itself. The quanfty,; nhucleone, of the pure neutron matter. The solid squares show the
controls the size of the nuclei and bubbles, and hence thesult of the present QMD model Hamiltonig28]. The dotted line

sum of the Coulomb and surface energies. With increasingenoted by SLy4 is the result from Ré41] and the broken lines as
Eus @nd so this energy sum,, gets lowered. marked by the other Skyrme interactiofPS21, 1, FPS, and
It is important to check whether or not the effective SkM) are the results summarized by Pethick, Ravenhall, and Lorenz

nuclear force given by Eq$6)—(12) yields unrealistic values [40]. The open '_stars and triangles denote the valges obtained by
of these quantities. I, , |M§)O)|a and E, for the present Akmal, Eandharlpande, aqd RavenH&8], and by Friedman and
S ; . - Pandharipandg39], respectively.

model are unrealistically small in comparison with those for
the other models, our results which have reproduced the
pasta phases might be quite limited for the present modgiresent studyturns into uniform.
Hamiltonian. Next, we calculate the proton chemical potenidf” in

In order to evaluatee,, we perform simulations with the pure neutron matter. We use the cold neutron matter pre-
1372 neutrons in a periodic box. This system is cooled dowipared for the above calculation ef as an initial condition.
by the QMD equations of motion with friction ternijsee  We insert a proton into this pure neutron matter, and then
Egs. (17)] until the temperature becomesl keV. The re- minimize the total energy by the frictional relaxation method
sultant values ok, are plotted in Fig. 18. We note that our with fixing the positions and momenta of the other neutrons.
results forp,=0.2, 0.6, and 14, (the result forp,=1.0py  The position of the inserted proton is chosen randomly in the
is not plotted in Fig. 18 coincide with the results for zero- simulation box, and its momentum is chosen randomly from
proton ratio plotted in Fig. 9 of Ref23]. P<30 MeV/c. We evaluate,ugo) as the difference in the

The values ofe, for the present model behave like those total energy between that before the insertion of the proton
for the SkM Skyrme interaction especially in the densityand that after the optimization of the position and the mo-
region of p,<0.13 fm 3; they are close to the result of the mentum of the proton.
variational chain summation obtained by Akmal, Pandhari- In Fig. 19, we plotﬂg’) for the present model Hamil-
pande, and Ravenhdl8] at p,=p,. The steep rise i@, in  tonian. As can be seen from this figure, the result for the
the higher neutron density regiop=0.1 fm~3) compared  present model Hamiltonian generally reproduces the data of
to those obtained from the Hartree-Fock theory using varioughe other results obtained from the Hartree-Fock theory using
Skyrme interactions would help neutron-rich matter, whichthe various Skyrme interactions at densifes0.1 fm 3. At
have larger dripped neutron density @f=0.1 fm 3, to be  lower densities 0p=0.025 fm 3, errors are quite large and
uniform. Therefore, we can say that this behaviorepffor  data scatter significantly. This is because density fluctuations
the present QMD model Hamiltonian suppresses the densityy pure neutron matter obtained by QMD would be unrealis-
region in which the pasta phases are the most energeticaltically large at such low densities due to the fixed width of
favorable in neutron star matter and in the cas@sD.1in  the wave packets in this model. However, it is noted that
the present study. We also note tlagtat lower neutron den- even in such a density region, our data are generally consis-
sities of p,=<0.1 fm 3 is relatively small. This, in turn, tent with the other results mentioned above.
would lead to increase the density at which matter with Finally, we turn to the surface tension, which affects en-
lower dripped neutron densife.g., the case of=0.3 inthe  ergetically favorable nuclear shape most directly among the
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FIG. 19. The neutron density dependence of the proton chemic
potential,uéo) in the pure neutron matter. The solid squares showd

the result of the present QMD Hamiltonia®3]. The broken lines
as marked by the Skyrme interactiof/&?S21, 1, FPS, and Sk
are the results summarized by Pethick, Ravenhall, and Ld¥z
and the solid line is the result of &jerg[42]. The crosses denote
the values obtained by Siemens and Pandharippdile

three quantities discussed here. We have calcul&gg
from the energy change induced by the change in the area
planar nuclear matter. We use nucleon gas with proton fra

tions x=0.1, 0.2, 0.3, and 0.5 composed of 1372 nucleons

In the calculation ofEg,;, the Coulomb interaction is ex-
cluded.

c
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FIG. 20. The nucleon density profiles projected onzlagis for
sample 1 ofx=0.1. (The z coordinate is shifteg.

(decreasedby 1% with the total volume of the box kept
constan{sample 2(sample 3]. We further cool them down
until kgT~0.1 keV. The resultant nucleon density profiles
for the sample 1 ox=0.1 projected on theaxis is shown in

Fig. 20. As can be seen from this figurle,=92.32 fm is
much larger than the thickness of the sldd20 fm, and
thus the volume of the dripped neutron gas region is almost
the same among the three kinds of samples because the vol-
me change in the nuclear matter region is negligible. It is
Iso noted thatl is much larger than the surface thickness
suf=5 fm, which ensures that the surfaces at both sides of
the slab are separated well. Therefore, we can say that the
energy difference between samples 2 and 3 is just due to the
difference in the surface area of the planar nuclear matter.
Following the spirit of Ravenhall, Bennett, and Pethick
(hereafter RBIP[44] and by using the sample 1, we define
the proton fractionx;, in the nuclear matter region as an
gyeraged value for the region of the width=s® fm in the
central part of the slab, where the proton and neutron density
profiles ripple around constant values.

" We extractE,; from the total energ¥, of sample 2 and

E; of sample 3 as follows:

In order to prepare slablike nuclear matter, we first cool

down the above nucleon gas frorkgT~20 MeV to
~0.2 MeV using Egs(17) in a shallow trapping harmonic
potential

k
V(z)= Ez2, (27
wherek=0.01 MeV fm 2. We here impose periodic bound-
ary condition in thex andy directions, and open one in tlze
direction. The box sizé, , in the x andy directions is set
20.26 fm.

When the temperature reache$.2 MeV, we remove the
trapping potential and, except for the case with0.5, we
change the boundary condition in tkelirection from open
to periodic. The box size in thedirectionL, is chosen so

Ex—Ej

ESUI’f_ Z(Sz_ 53) ’ (28)
whereS, (S;) is the area of thay side of sample 2sample

3) given by 20.26x 1.01 fn? (20.26x 0.99 fnf). The fac-

tor 2 in the denominator represents, of course, the contribu-
tion of the two sides of the planar nuclear matter. As shown
in Fig. 21, all the results plotted in this figure almost coincide
with each other ax;,=0.5, where uncertainty in the nuclear
surface tension is rather small. These results deviate signifi-
cantly at lowerx;,, and the values oEg, of the present
calculation lie between those obtained by Baym, Bethe, and
Pethick(hereafter BBP[2] and by RBH44], which is based

on the Hartree-Fock calculation using a Skyrme interaction,
atx;,~0.15-0.35. Thus we can say that, in comparison with

that at least all nucleons dripped outside the nuclear mattehe result by RBP taken to be standard here, the contribution

region can be contained in the box,=92.32 fm
=0.1), 79.12 fm k=0.2), and 82.85 fmxX=0.3). After we
relax the system for- 7000 fmic, we prepare three kinds of
samples: one has nothing changedmple 1 and the others
have the area of they side of the simulation box increased

of Eg,; Of the present QMD model tends to favor uniform
nuclear matter rather than the inhomogeneous pasta phases
for lower x;, of <3.5.

Now let us discuss the fact that the intermediate phases
with a negative value ofy/V are obtained instead of the
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L L B B B I Xx~0.1, in which the dripped neutron densip;, grows
=0.1 fm 3 just before matter turns into uniform, the present
QMD model can be taken as a conservative one in reproduc-
ing the pasta phases. lés, u{”), andEg,, act to suppress
the density region of the pasta phases compared to other
1 Skyrme-Hartree-Fock results.

(3) For intermediate cases. At intermediate proton fraction
of x~0.3, €, of the present model acts to favor the inhomo-
geneous pasta phases rather than the uniform phadégnd
acts in the opposite way in comparison with other Skyrme-
r T Hartree-Fock results.

0.1

|

E . (MeV/fm?)

VI. ASTROPHYSICAL DISCUSSIONS

T T
| |
O
=
)

|

Here we would like to discuss astrophysical consequences
of our results. Pethick and Potekhin have pointed out that
elastic properties of pasta phases with rodlike and slablike
nuclei are similar to those of liquid crystals, which stems
from the similarity in the geometrical structurgks). It can
T T T also be said that the intermediate phases observed in the
0 0.1 0.2 0.3 0.4 0.5 present work are “spongelike{or “rubberlike” for (H)

Xin <0) phases because these have both highly connected
nuclear and bubble regions shown @8/<0. The elastic
properties of the spongelike intermediate phases are qualita-

solid squares are the values of the present QMD Hamiltof2&h tl\(]ely different from those of the IIqUId_CryStal_m.(e p.aSta .
the solid curve is the RBP result from their Hartree-Fock calcula—p "?‘Ses because the former do not havg any directions in
tions [44], and the dotted curve is the BBP resi, which the re_stonng force QOes not _act, while the latter hav_e.
Our results imply that the intermediate phases occupy a sig-
nificant fraction of the density region in which nonspherical
uclei can be seefsee Figs. 3 and)6According to Figs. 3
nd 6, we expect that the maximum elastic energy that can be
stored in the neutron star crust and supernova inner core is
higher than that in the case where all nonspherical nuclei
have simple pasta structures. Besides, the cylinder and the
slab phases, which are liquid-crystal-like, lie between the
spongelike intermediate phases or the crystalline solidlike
(0) - . phase, and the releasing of the strain energy would, in con-
|p”], which increases typically by o(réj)e_r 10 MeV @8 sequence, concentrate in the domain of these liquid-crystal-
increases. The smal;,and the largés,,”| in neutron-rich  jixe phases. The above effects of the intermediate phases
matter would help nuclear matter regions and neutron gashould be taken into account in considering the crust dynam-
regions mix each other at the cost of small surface energyg of starquakes and hydrodynamics of the core collapse,
below p,,. As a result, the structures with a negativeV  etc. if these phases exist in neutron star matter and supernova
could be favored. According to Fig. 19, the quantit§’  matter. In the context of pulsar glitch phenomena, the effects
obtained for the present model Hamiltonian is consistenbf the spongelike nuclei on the pinning rate and the creep
with those for the other Skyrme-Hartree-Fock calculations inyelocity of superfluid neutron vortices also have yet to be
the relevant region of,<0.08 fm 3. It is thus possible that investigated.
a result which shows the structure of matter changes from For neutrino cooling of neutron stars, some version of the
negativey/V to uniform without undergoing “swiss cheese” direct URCA process which is suggested by Lorenal.[8],
structure will be obtained by another calculation for neutron-that this might be allowed in the pasta phases, would be
rich matter using some framework without assuming nucleaguppressed in the intermediate phases. This is due to the fact
shape. that the proton spectrum at the Fermi surface is no longer
In closing this section, we summarize the consequences @ontinuous in the spongelike nuclei. An important topic
the resultantk,,, ,ugo) andEg for the present QMD Hamil- which we would like to mention is about the effects of the
tonian. intermediate phases on neutrino trapping in supernova cores.
(1) For symmetric matter Xx=x;,=0.5). According to The nuclear parts connect over a wide region which is much
Equf at x;,=0.5, the present model is consistent with thelarger than that characterized by the typical neutrino wave-
other results, and is an appropriate effective interaction fotength ~20 fm. Thus the neutrino scattering processes are
the study of the pasta phasesxat0.5. no longer coherent in contrast to the case of the spherical
(2) For neutron-rich cases. For neutron-rich cases such asuclei, and this may, in consequence, reduce the diffusion

0.001

T T
Ll

FIG. 21. The nuclear surface energy per unit atta surface
tension vs the proton fractior;, in the nuclear matter region. The

bubble phases in a wide density region o 0.1. In con-
sidering this problem, we should note the general tendenc
that |,uf)°)| increases andtg ; decreases as matter becomes
neutron rich(see Figs. 19 and 21The density dependence
of A/V monotonically increases uniil,, as shown in Fig. 16
would partly stem from the small value & . The appar-
ently lower melting density,, in this case than in the cases
of x=0.5 and 0.3, even thoudh,;is small, is due to a large
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time scale of neutrinos as in the case of pasta phases wiflure neutron matter, and the nuclear surface tenBigp.
simple structures. This reduction softens the supernova mafhese quantities show that the present QMD interaction has
ter and would thus act to enhance the amount of the re|eaSQ‘ﬁ§nerally reasonable properties at subnuclear densities
gravitational energy. It would be interesting to estimate theamong other nuclear interactions. It is thus concluded that
neutrino opacity of the spongelike phases and the pastgur results are not exceptional ones in terms of nuclear
phases. forces.

Finally, we would like to mention the thermal fluctuations  Qur results which suggest the existence of the highly con-
with long wavelengths leading to displacements of pasta nunected intermediate phases as well as the simple pasta phases
clei, which cannot be incorporated into the simulations usingrovide a vivid picture that matter in neutron star inner crusts
a finite-size box. Even if we succeed in reproducing theand supernova inner cores has a variety of material phases.
phase with slablike nuclei in neutron-rich matter in the futureThe stellar region that we have tried to understand through-
study, we should be reminded of the above effect of thermabut this paper is relatively tiny, but there are quite rich prop-

fluctuations to consider the real situation of matter in inneferties that stem from the fancy structures of dense matter.
crusts of neutron stars. Following the discussions in Refs.

[9,10,395 by a liquid-drop model, it is likely that the exten-
sion of slablike nuclei is limited to a finite length scale of ACKNOWLEDGMENTS
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with cylindrical bubbles, and with spherical bubbles can be

formed dynamically from hot uniform matter within the time

scale ofr~0(10°~10*) fm/c in the proton-rich cases of APPENDIX: THE EWALD SUM FOR PARTICLES
=0.5 and 0.3. We also demonstrate that the pasta phase with WITH
cylindrical nuclei can be formed dynamically within the time A GAUSSIAN CHARGE DISTRIBUTION

scale of 7~O(10) fm/c for the neutron-rich case of In calculating a long-range interaction, such as the Cou-

=0.1. Our results imply the existence of at least the phas?omb interaction, it is necessary to sum up all contributions

with cylindrical nuclei in neutron star crusts because theyof particles at a sufficiently far distance. The Ewald sum is a

cool down keeping the local thermal equilibrium after pmto'familiar technique for efficiently computing the long-range

neutron stars are fO”T‘ed' and their cooling time scal_e, Wh'CQontributions in a system with the periodic boundary condi-
is macroscopic one, is much larger than the relaxation time (see, e.g., Refd26,45; recent mathematically careful

scale of our simulations. L discussion relating to the conditional convergence of the
In addition to these pasta phases with simple structureg o iomb energy can be seen, e.g., in R4B]). The basic

%uer dr'(;?é"tshgggner?'chheLeaaésgosmug?(?::etg?] eg(lls';(?nscheaofelsnte lea of the Ewald sum is that the contributions of particles in
late p whl V Pl u PES. long distance in real space can be calculated as contribu-

have :;ystematlcglly analyzed the structure of matter W't}-{ions in the neighborhood in Fourier space: the contributions
two—pomt_ correlat.lon funcUons and with morphological mea- particles in a short distance are summed up in real space
sures “Minkowski functionals,” and have demonstrated howand those of particles in a long distance are summed up in

structure changes with increasing density. Making use of -
topological quantity called Euler characteristic, which is one ouner space. _ .
’ Let us consider a system consisting of charged particles

ionft t?ri lzj/liintkow; ki functri]ogals,h itr hattsrikzjesn fcil;nd t\r)v"iitthtrr]":’which have a Gaussian charge distribution and a uniform
ermediate phases can be characterized as those .e%aéckground charge which cancels the total charge of charged

phases have spongeliker rubberlike for{fH)<0) structures Ei{jrl;t(l:;isanTEgimwi?r? r?/(c:)lli Sm:{f:?_sgsun;idv\t,ﬂifﬁ Ilr?o;léblc
which have both highly connected nuclear and bubble re; e box P
gions. The elastic properties of the spongelike intermediat(lff,\)oundaIry cond_moh IS imposed. .

phases are qualitatively different from those of the liquid- It cvery partlclel_wn.h tqtal chargezi is surrounded by a
crystal-like pasta phases. Gaussian charge distribution with total chargé, , the elec-

We have also investigated the properties of the eﬁectivérOStaﬂC interaction of particleturns into a screened short-

QMD interaction used in the present work in order to exam-ange Interaction. Thus the total Coulomb enetgy,, of

ine the validity of our results. Important quantities that af“fectth'S system can be decomposed as foll¢see Fig. 2p
the structure of matter are the energy per nuclegpwof the
pure neutron matter, the proton chemical potentigl in Ucou=Ushort-rangs™ Ur — User, (A1)
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short range

screening charge

charged particle

.

X

FIG. 22. Schematic picture of
u, charge distribution in the Ewald
sum for particles with a Gaussian
charge distribution.

background charge

compensating charge

wherelUsnort-rangelS the sum of the Coulomb energy between N erfd \/5|r—(ri +Lpo|]
an unscreened charged particland the other charged par-  dnortrangél) = > >, Zi{ - — L

ticles with screening chargeg(, is that between an un- noi=1 [r=(ri+ Loo)|
screened charged particleand compensating charges that
cancel the screening Gaussian charges/gpgds the sum of

N erfd Vagyal r_(ri+Lboxn)|]] ic

spurious self-interactions between a charged paritiated its [r=(ri+ Lo
compensating charge (AB)
Charge densities of the real charged partiglesg and of
the screening charggs(r) can be written as because a solution of the Poisson equation
N 3/2 N
a 2 1 d? a\3?
ry= Z:| — e_alr_(ri+Lb0xn)| = a(r), - — . —ar?
p(r) 2 .21 .(W) ; Elp(m)( ) - Slreni=4nz| | e (AB)
(A2)
ry= —2 2 Z YEwald 3lze*f’lealdf*(fﬁ'—box”)\z i
ps(1) = = R N erf(\/ar)
¢(r)zzf+const, (A7)
N
= . A .
En: Z‘l Ps,(ni)(F)s A3 here erf&) and erfck) are the error function and the

_ . complementary error function, respectively, and they are de-
where a and agyqq are the reciprocals of the widths of fined as erf)=(2/\/m) Jexp(-s)ds and erfck)=1
charge distributions for a charged particle and a screening. grf(x). Here, we determine the constadtso that the av-

charge, respectively, and denotes a position vector of a erage value Ofhgorirangel the simulation boxv be zero:
periodic image normalized bl,,,. Thus a distribution of

screened charggsreenedS

N
f ¢short-rang£:r) dsf:z Z| — I"' +CV=0.
Pscreenehil ) =p(r) + ps(r). (A4) \ =1 a  Qpwald 8)
The electrostatic potentiabgnor-rangkl) due to pgereenchil)
can be obtained as Thus, dshort-rangl’) leads to
|
N
s 0= S 2| erfd Valr —(ri+ Lp|] erfo[JaEwa.d|r—<ri+Lboxn>|]] o, )
shortrang e |r = (ri+ Lpo)| |r = (ri+Lpo)| a agpad "
(A9)
where the average charge dengsity, of the charged particles is defined as
N
Z:
Paerz vl (A10)
i=1
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The total Coulomb energyfsnor.rangeP€tween an unscreened real charged partieled the other charged particles with a
screening charge can be calculated as

1 § “dsrfdsr,p N> ' Z‘—e”dﬁlr—(rﬁLboxn)u erfd Jagya f—<ri+Lb°Xn)|]}
2 (n=0,) j

Ushort-rang e_i |r—(rj+Lboxn)| |I’—(I’j+Lb0xn)|
’7T+ a
a  aEgwald Pawr

1 | B%ewaid \[
_E ; Z (r +Lboxn)| {erﬁ( at aEwaId (r +|—boxn)) erfC( I (r +Lb0xn))}
o

Paw (A1)

a  appaqd

where the primes on the summations mean the térajsat 1 N
n=0 are excluded. Z/llzz E

Next, we calculaté{;, which is the sum of the Coulomb
energy between an unscreened charged partictnd a 1 4nz,2, K2/ 1 1
charge densityp,(r) which consists of the compensating == ek (ri "i)exp{— _( +Z
charges and the background charge: 2 ] Qgwad @

P1(r)= _ps(r)_Pavr (A16)

@ 32 )
:E E ( Ewald) e~ @Ewald" — (j + Lbox)| —Pavr-
no =

(A12)

Fourier transforming the charge distributipp(r) yields

L[ qareikr
Pl(k):v vd re pa(r)

y L
12 k2 . :

[ . ik- I'J _ c] 0.05 (T ' [ 1 1 [ . T 1T 1T [ T 1T T T ]

Vv JZ]_ Zje eX[{ 4aEwaId> Pavr5k ' Q)S EL R . TR E

0 oot —

(A13) : ]

-0.05 |- -

Using pi(k) and the Poisson equatiofVZ¢,(r) B N -—

=—4mp4(r)] in the Fourier form -0.1 f (b) Gaussian ... Kk =7

{ (a=1/2L, L=2.1) ----k..=10 ]

K2y (K)=4mp,(K), (A14) -0.15 f lﬁm..,x:ﬁ =

we can at once obtain the electrostatic potenfiatiue to the 02 b b L

charge density;:

Vg, (fm™)
¢1(r>=; Pr(k)e

FIG. 23. The total Coulomb energy per partielg,, (in units of
N MeV) and thex component of the Coulomb fordg , (in units of
1 2 2 ik (1) ’{ k? ) MeV/fm) acting on a particle obtained from EgAl), (All),
= i’ex|
\ =

(A16), and (A18) as a function ofyagyae We use 1024 protons
distributed randomly in a box df,,,=39.59 fm(i.e., p,=0.1po).
(Al15) The results shown iita) and (b) are calculated for the same con-
figuration of particle positiongr;} but for different values of the
The term withk=0 is canceled due to charge neutrality. width a of the Gaussian distributioiia) a=0 (point charggand(b)
Thus the Coulomb energy; is given by a=1/2L with L=2.1 fr?.

k#0 4apyalg
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We have to subtract a sum of spurious self-interactiongation, we use 1024 positive charged partidlpsotons dis-
User; between a charged particieand its compensating tributed randomly in a simulation box dfy.,=39.59 fm
charge fromi4;. According to Eq.(A7), an electrostatic po- (i.e., p,=0.1p,), which is imposed periodic boundary con-
tential ¢gauss due to a Gaussian compensating charge isfition. Figures 283) and 23b) show the results for point
doaustr) =Zierf(\agua r)/r, thus the self-interaction of charges and for Gaussian charge distributions, respectively,

particlei reads which are calculated for the same configuration of the par-
)32 ticle positions{r;}. The width of the Gaussian charge distri-
use”,-zf Zi(—) e’arzcﬁeausgr)de’r butions is set to ba=1/2L with L=2.1 fn?, which corre-
™ sponds to the width of the wave packets in the QMD model

used in this work.

—> a 1/22_2 | @Ewaid (A17) We note that there are plateau regionsegf, and f,,
T "'Va+agpad whose values do not depend es,4. These constant val-
ues give the convergent results to be obtained. We note that
and hence, the range ofyagyaq Of the plateau regions become larger

with increasingkmax, Wherekay is the cutoff radius in the
1 N 1 e N unit of 27/L,, for the summation in Fourier space. As can
User== >, Usej =—— | —Ewld N 72 (a18)  be seen from Fig. 23yg,,qdependences @, andfy, for
231 Jm YV atapnad=1 the present QMD model with a finite width of the Gaussian
charge distributions are weaker than those for the point
Finally, the total Coulomb energy can be calculated by Egscharges. These features are also confirmed for different pro-
(A1), (Al11), (A16), and (A18). The positive background ton number densities of 0.2 and Pg3 In our simulations,
charge does not appear explicitly because the average valug.,,,qis set 13 or 14, which is considered to be large enough
of Psnort-rangeWithin the simulation box is set to be zero. to calculate the total Coulomb energy per particle in accu-

The total Coulomb energy per partick,, and thex
component of the Coulomb fordg , acting on a particle for
various values ofrgy,q are plotted in Fig. 23. In this calcu-

racy less tharD(1) keV, which is the typical value of the
energy difference between successive pasta phases in neutron
star matter obtained by previous works.
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