PHYSICAL REVIEW C 68, 035209 (2003

Scalar susceptibility and chiral symmetry restoration in nuclei
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We study the nuclear modification of the scalar QCD susceptibility, calculated as the derivative of the quark
condensate with respect to the quark mass. We show that it has two origins. One is the low lying nuclear
excitations. At normal nuclear density this part is constrained by the nuclear incompressibility. The other part
arises from the individual nucleon response and it is dominated by the pion cloud contribution. Numerically the
first contribution dominates. The resulting increase in magnitude of the scalar susceptibility at normal density
is such that it becomes close to the pseudoscalar susceptibility, while it is quite different in the vacuum. We
interpret it as a consequence of chiral symmetry restoration in nuclei.
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. INTRODUCTION J
= ' 1
Xs amq(QQ) (1)

The chiral phase transition is a hot topic of QCD. The
attention has been focused in particular on a baryonic richvhereqis the quark field. The two methods are known to be
environment, the simplest one being ordinary nuclei. In viewequivalent in their principle. However in practice, in the dis-
of the difficulties of the lattice methods to treat baryonic persive approach, truncations are made in the intermediate
matter, studies based on models have revealed their interesiccessible states. In fact, our new derivation incorporates
In the first stage the order parameter, which is the quarkerms as well as interference effects which were previously
condensate, was investigate2]. With the realization that absent. The present study is also free from the specific fea-
the amount of restoration is large, as the order parameter h&gres of the linear sigma model.
decreased by about 35% at ordinary nuclear density, the in- In Sec. Il, we show how Ed1) leads to a natural decom-
terest has also been focused on precursor effects linked to tip@sition of x5 into a vacuum contributiorys(vac.), a con-
partial restoration of chiral symmetry in the form of dropping tribution notedxg‘ which is related to theucleonicexcita-
hadron masse8-5] or axial-vector correlator mixing6,7].  tions, and a contribution notegl’“*® which is related to the
The problem has also been studied in the framework of efnuclearexcitations. In Sec. Ill, we use the Fermi gas model
fective field theories and chiral perturbation thef8y9]. The g estimatexguc'ea’ and we compare the result with the one
last topic to attract attention is the question of the susceptigptained previously with the linear sigma modél]. We
bilities in QCD [10,11). In the broken symmetry phase, conclude thaty2'“*® depends essentially on the zero mo-
where the olrd'(_ar parameter |ntrc_>duces a pnvﬂgged directionynentum particle-hole propagator which we relate to the
the susceptibility is splitted as in magnetism in the parallel,,clear incompressibility. In Sec. IV, we study the nucleonic
susceptibility, along the magnetization axis, and the perpersqnyipytion Y and we find that it is dominated by the pion
dicular one. In QCD. t'h('ase are the scalg) and 'pseudo- cloud, the quark core giving only about 6% Qﬁ. The
scalar (ypg) susceptibilities related to_the quctua_tlons of the model dependence of the pion cloud contribution is moder-
scalar a_md psgudoscalar quark Q(a_r_1§|ty, respectlvely_. ted by the fact that, within a factor of order two, its value is
b Thﬁ |nf—med|ucrjn Q.CD SUSCGpthI:]ItIeS hlave beenhdlscusze xed by the leading nonanalytic piece of the sigma term. In
thy CI antray an Erlgscl)mﬁ]. Eort (_edscatsr one tlley u??h Sec. V, we present some numerical estimates based on the

€ linear sigma model Which provides the coupling ot IN€,qq, 15 of Secs. 11, 111, and we discuss their implications con-

quark scalar density fluctuations to the nucleonic ON€%.0ning the restoration of chiral symmetry in nuclei
through sigma exchange. They ignored the coupling to the 9 y y '

pion density fluctuations, expected to have a smaller influ- Il. NUCLEAR SUSCEPTIBILITY

ence. Their approach is basically a dispersive one, with the

introduction of the in-medium scalar spectral function. In  Since our aim is to evaluate the modification of the sus-
terms of graphs their effect corresponds to the one of Fig. lgeptibility with respect to its vacuum value, we th_ﬁil(p))

and the dressing by the pion lines to that of Fig. 2.

The present work uses a totally different approach which
relies on the very definition of the longitudinal susceptibility
as the derivative of the order parameter with respect to the
perturbation responsible for the explicit symmetry breaking.
In magnetism it is the external magnetic field. In QCD it is
the quark mass and we have the generic definition of the FIG. 1. Modification of thes propagator by the particle-hole
scalar susceptibility: polarization propagator. The cross represents the condensate.
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FIG. 2. Modification of theo propagator by the in-mediumm2
propagator. The cross represents the condensate.
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the in-medium value of the quark condensate and we introwhile the ordinary density is

duce

xs(p)= (7—mq<qq (p)), 2

wherep is the nuclear density.

For a collection of independent nucleons, the in- medlumfro

condensatéqq(p)) writes

pX
1 NPs .
f2 2

T

(qa(p))=(qq(vac)) €)

Herepg is the nucleon scalar densitygg(vac.)) denotes the
vacuum expectation value of the condensate, AQds the
nucleon sigma term:

= (NIFQs. Qs1IN)=2m, | dX(NIda(0) - Ga(vac)IN).
(4)

Using the Gellmann, Oakes, and Renner relation:
f2m? = —2my(qa(vac)), (5)

the in-medium condensate expressi@nhcan also be written
in the form

(6)

The result above follows from the Feynman-Hellman theo-

_ _ 1l{dw| M Iy 9
(qa(p))—(aa(vac))= 5| = Jam, sz’ ©)
where the scalar density is defined by
df) M
ps=4f amiE, O E: (10
dp 2
”:4f (2mp T T 5P an

with p2=pu?—M?2.

Note that in Eq.(9) the contribution of thes function

m the derivative of the Heaviside function vanishes. It
will not be the case for the susceptibility. Starting from Eq.
(6), one gets

EN Ips
2mq amq
(12

2N>

Jd J
xs(p)= Tm(QQ(VaC-)HPsa—%(Z—%

which contains the following three contributions.

(1) The derivative of qq(vac,, which is the vacuum sus-
ceptibility xg(vac.). Its evaluation would require a nonper-
turbative QCD model, which is outside the scope of this
work. So we focus on the differenggy(p) — xs(vac.).

(2) The derivative ofENIqu, which is in fact the
nucleon scalar suscepublln;yS ! This follows from the re-
lation between the sigma term and the condensate:

sy=2m, [ GUNGI0 -GNy (19

Thus,

J [ 2
XS amjdx(l\”qq()() qq(vac)|N>— (Zr:q)

(14

rem which relates the condensate to the thermodynamical

grand potential per unit volume=e— up through

: (@)

dw
(@a(p))= 2(

where the derivative has to be taken at constant baryonic

chemical potentia. (which controls the density). As an

illustration in a free Fermi gas, one has after substracting the

vacuum energy:

>

_ dp
w_4f (2m)3

(Ep_/-L)®(/-L_Ep): (8)

with Ep,=
densate is obtained as

Jp?+MZ. The medium contribution to the con-

Therefore this second term, which writpgy%, can be in-
terpreted as the individual nucleon contribution to the
nuclear susceptibility.

(3) The derivative ofpg which gives the third term, noted
nuclear.
S .

2N dps

nuclear_
2mg dmyg

s (15

We shall see that it represents the effect of the nuclear exci-
tations by contrast to the second term which is due to the
nucleon excitations.

IThis quantity has not the same dimensionyasdue to the nor-
malization volume of infinite nuclear matter.
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In summary, we are going to study separately the two

terms of the quantity K-
( )_ (VaC.): N+ nuclear. (16) ! N
Xslp)— Xs! PsXsT Xs / Nor A AN
lil. NUCLEAR EXCITATION CONTRIBUTION (€Y (b)
We first examine the terny2'®®® in Eq. (16). We use FIG. 3. Nucleon sigma term in the model.

the free Fermi gas, for which the scalar nucleon density is

given in Eq.(10). Taking its derivative with respect to the contribution of the pion cloud of the nucleon which comes
quark mass at constant chemical potential, we get two terménto play as two pions exchange, as shown in Figp).3The
the second one arising from the derivative of the Heavisideesult is

function:
= 2 2 _NO T_ 2 gS mf" S 2/
dps EN dp P M EN—EN‘FEN—fﬂ.mﬂ,_ZJF? dX<N|¢ (X)|N>
T _3®(Ep_;u)__25(Ep_M) . me
gmg Mg (2m)®| E; E; (22)
17

] ] o In the context of our previous woilk 1], the pionic con-
The first term in Eq(17) represents the polarization through yipytion 37 did not appear naturally and thus was ignored.

nucleon—antinucleonNN) excitations of a relativistic Fermi To make the Comparison meaningfuL we should then retain

gas submitted to a scalar perturbatisee the AppendixAs  only the sigma exchange paf] and insert it in our expres-
it vanishes in the nonrelativistic limit we shall neglect this gjon (19) which leads to

NN contribution.

From the second term in E@L7), we obtain m“ffT gi .
nuclear(a_): - —4th(0,0)
32 2 peM? 2mg m;
nuclear_ N __pF . (18)
AN (@(vac))® &
=2———— —11,,(0,0). (22)
In the nonrelativistic limit w=M) the parenthesis in the fa m;

above equation reduces t02M pg / 72 which is actually the
particle-hole polarization propagatbr,,(q) of the nonrela-
tivistic free Fermi gas taken in the static situation, i.e., fo
0Jo=0, and taking the limit of vanishing three momentum

This is essentially the result of the sigma model calculation
r[see Eq.(20)], provided we replace the fullls by the free
Fermi gas expressioll,;,. The present derivation is more

(G—0). We have then satisfactory in the sense that it does not rely on the sigma
model to derive the coupling between the quark density
S. 9 32 A OMp. 32 fluctuations and t_he nucleon ones. I_n particular, it incorpo-
Xguc'earz 2_N oPs _NZth(O’O)z - SF _Nz rates other couplings than through sigma exchange, such as
Mg IMq  2my T 2mg the two pion exchange ter@ of 3. Moreover the inter-

(19 ferences between the various componentS.qfare auto-
matically incorporated in the crossed termsfcﬁ. One of
these interferences, which is tRg 2§ term, is illustrated in
Fig. 4.

On the other hand talking also about the limitations of the
present work, it applies to a free Fermi dés generalization

In the sigma model the scalar susceptibility is related tds in progresy while our previous approach did not restrict
the o propagator[11]. In the medium this propagator is to this situation. In the dressing of the sigma line pi
modified by the particle-hole insertions, which gave states, the fulph propagator entered. The latter is to some

extent constrained by nuclear phenomenolfgi] and the

The presence dfl ,, indicates that the origin of this term lies
in the nuclear excitations.

A. Comparison with 2@ gbtained in the sigma model

qq(vac))? g2 =
Xnuclear: ZM 9 I140,0), (20)

° oo

_ _ - 0) \
wherellg is the full scalar particle-hole polarization propa- i
gator andg,, is the sigma nucleon coupling constant. In order x = >,<
to link the two expressions gf2'*@" we first need to evalu- K
ate the nucleon sigma ter®, within the linear sigma il
model. It is built up of two pieces. The first one corresponds M
to the exchange of a sigma between the condensate and the
nucleon as illustrated in Fig.(8. The second one is the FIG. 4. Interference betwean and 27 exchange.
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argument goes as follows. At normal nuclear density there |$he nucleonic excitations, which Contr@E(Bag), are much

no distinction between the scalar and ordinary density operaigher than the nuclear ones. What is interesting however is
tors. Now, at ordinary density, theh propagatodl, is the  the positive sign of this term. Its origin is rather obvious:
response of the system to a perturbation which couples to thghen its mass increases the quark becomes less relativistic.
nucleon density. In other words it is the nuclear compressThjs tends to increase the scalar charge of the nucleon as the

ibility, with the relation: quark scalar densitgq involves the difference of the large
9 and small components of the quark spinor.
I,=- _p' (23) Another important. poi.nt is thazg(Bag) only includes f[he
K valence quark contribution and not those from the pion or

, o sigma clouds. The argument about the energy of the corre-
where the nuclear incompressibiliyis related to the energy sponding excitations may not apply to the pion cloud contri-

per particleE/A by bution in view of the small pion mass. It is therefore inter-
d ( dE esting to evaluate the corresponding susceptibility.
2

B. Pionic contribution to x4

Its experimental value at th_e satura_tion den#@yis in the The nucleon sigma commutator is largely influenced by
range 200—-300 MeV12]. This value is compatible with the e presence of the pion cloud. If the nucleon remains unex-

free Fermi gas value computed at the same density. EVefiteq after pion emission and in the heavy baryon limit, the

though this agreement may result from a cancellation be(‘:orresponding contributioB 7, is equal to[15]

tween several many-body influences, such as the effective

mass and residual interaction effects, it justifies to some ex- mi
tent the use of the free Fermi gas model. Eﬁ,’:?f dx{N|$2(X)|N)
IV. NUCLEON SCALAR SUSCEPTIBILITY xg 3m727 Ja 2 ro q4 )
PPl j dg———5F(a), (@7
For a structureless nucleon, one has of coye 0 but 167\ 1=/ Jo (g°+m3)

we do not make such a restriction. In genegal# 0 because

Fhe true nucleon responds to a scalar_ perturbgtion by adjus\where(ﬁ is the pion field andE(q) the =NN form factor.
ing its internal structure. One can estimate this response Ugyi this explicit expression oE 7, it is straightforward to

ing models, for instance the MIT bag model, but it could alsocalculate the derivatives with respectri (or m2) involved
be extracted from lattice calculations when the latter are pectty &

done at realistic quark mass values. In the corresponding susceptibility:

A. Valence quark contribution to x&§ d 30 2(gq(vac))? d 3§

N = =

The scalar susceptibility of a free nucleon has been intro- xs(m) dmg 2mj f4 dm? m2

duced by Guichoret al.[13] in another context, concerning
; ; : = 2 2 e 4

a pure nuclear physics problem, that is, the question of satu- 3(qq(vac))-{ ga q )
ration of nuclear matter. In his quark-meson coupling model - pry ﬂ 0 dq(q2+m2)3F (9).
the saturation follows from the response of the nucleon to a m &
scalar field. In the bag model the total scalar charge of the (28

bag, defined as
For a monopole form factdf (q) =A2/(A%+q?), we find

Qs [ dx@acoin) 2
' om’ (qa(vac))®(ga|’ A |*
depends on the quark mass. The linear term in the quark Xs(m)=— — 2 |\ \=
. 647 4 f.] \A+m,_
mass expansion ds: m
=—4%x10 2 MeV ™%, (29

Qs(my)=Qs(0) + x&(Bagmg+ - - -, (26)

defines the susceptibility of the bag. It is found to bewhere the numerical value correspondsAe5m, .. This
x5(Bag)=0.5R=2.5x10 % MeV !, where the numerical value is about 15 times larger than the susceptibility due to
value corresponds to a bag radiusFo£ 0.8 fm. It turns out  the quark bag structure estimated in the preceding section.
that this susceptibility due to the quark structure can stabilize A rough estimate of the pionic contribution can be ob-
the scalar nuclear field and provide a mechanism for saturdained if the form factof(q) is omitted in Eq.(28), which
tion[14]. In our case, however, its contribution to the nuclearcorresponds to the limi\—ce. In this casexg(w) can be
susceptibility is negligible(see Sec. Y with respect to the written in terms of the leading nonanalytical term of the
one due to the nuclear excitations. This is not a surprise sinceigma termEk‘NA according to
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Ny 20Avac))? d SN (GA(vac))®
.
where _
9 2 FIG. 5. Pionic contribution to the nucleon susceptibility.
Ek,NAz—%(?—A> m3=-23 MeV. (31)

nuclear one. So it is dressed by particle-hole insertions. To
lowest order in the density, the contribution of this graph to

; ; ; Ne, o -2 -1
This approximation leads tgg(7)=—8.6X10"- MeV™ -, the nuclear susceptibility is

which is about double the value obtained with the form

factor. — 2 4 2
. - . ))em
There is also a contribution to the nucleon sigma term due ) hucleai2r 3M _‘T<%
to intermediaterA statedsee Fig. )]. In the narrow width f2m? 42l f;

approximation, it reads

EWA: 3m§r (%>ZE(QWNA)2J'wdq
N1en\ e 9\ g/ Jo

do’dg  ¢° i
Xf S1L(q%d)F%(a). (33

(2m)* (g?=m?)

Here the subscript in II, indicates the spin longitudinal
character. In the static limit the domain whéié¢q’,§) has a

F2(@), (32  nonvanishing value is pushed to zero energy. In this case the
pions do not carry energy so the integral ogémwhich then
involves onlyII(q,q) reduces to

4 4
X( 2 - 2+ 3 -
20(wgt Ay 2wg(wgtAg)

with wq=q2+mZ andA,=M,—My+q%/2M, . The cor-
responding contribution to the susceptibili)ég(wA), is ob- dao dgo 20\ ImIT, (wd)
[ Sen@on= [ 52 aof - 2]

tained from the derivative of the above expression with re-

spect tomi. The presence of the large energy denominator

M, — My makes it less sensitive to the pion mass. Numeri- 1

cally with the ratiog s /9, nn=\72/5, we findxg'(wA) =f dw( ——ImHL(wcj))

=—1.4x10"? MeV~ L. The overall susceptibility of a free .

nucleon due to the pion cloud is thus about5.4

X10-2 Mev- 1, ~p [ doR(0@=ps@). @9
Our conclusion on the nucleon scalar polarizability is that,

as the electric one, it is dominated by the pion cloud. WithinWhere R, (@)= — Il (wG)/7p is the nuclear longitudi-

a factor of 2, it can be expressed in a model independent w L . P
in terms of the leading nonanalytic part of the nucleon sigmeWal spin-isospin response afglits integral over energy. For

term. In this context, it is legitimate to wonder why the pi—aa free Fermi gas, one has
onic susceptibility)('g(w) which is so dominant in this prob- 3 1 3
lem does not also dominate the nuclear saturation problem SL(Q)=®(q—2pF)+(2pF—Q)[— a _<i) }
where instead it is totally ignored. The answer lies in the

chiral properties of the scalar field responsible for the nuclear (35
attraction that we have studied in REI6]. We have stressed

that this field has to be chiral invariant rather thanthe  Ignoring the Pauli blocking effect, the quantig (q) re-
chiral partner of the pion. It couples derivatively to the pion.duces to unity, which leads to
Therefore, in the long wavelength and static limit, the pion

cloud is weakly coupled to this nuclear scalar field. nucleacz77_(Eq(vac.)>2 d (Eﬁ

2t Pame

™ qg—w2+i77

=pxS(m). (36)

2
mz

C. Interpretation of the pion cloud contribution

in the sigma model This is exactly the nucleonic polarizability arising from the

It is interesting to look at the nuclear susceptibility pion cloud multiplied by the density. In fact, a mere com-
psxS(7) in the framework of the sigma model. The sigma, parison of the many-body graph of Fig. 2 with the one of
which transmits the quark fluctuations, is dressed not only byrig. 5 which represents the free nucleon susceptibility leads
the particle-hole excitations but also by the two pions excito this conclusion. To leading order the evaluation of the
tations, as shown in Fig. 5. Since we are interested in thauclear QCD scalar susceptibility arising from the ter-
modification of the susceptibility with respect to its vacuum mediate states does not need any calculation as it is simply
value, at least one of the pions in this graph has to be aelated to the nucleon one, if Pauli blocking is ignored.
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V. NUMERICAL ESTIMATES In summary, we have found that the two QCD suscepti-

We have now all inaredients to proceed to the numericaP“itieS’ namely the scalar and pseudoscalar ones, undergo a
9 P strong modification in the nuclear medium in such a way

evaluation of the in-medium modification of the scalar sus-
ceptibility. To fix the idea, we shall usE =45 MeV and they become close to each other already at normal nuclear

- 1 . o matter density. It is a spectacular consequence of partial chi-
K=230 Me\.f ; At normal densﬂy t'he pontrlbutlon of the ral restoration which may have consequences in processes
nuclear excitations to the susceptibility is then

involving higher densities.

Xguclear(po) = _8.2X10° MeV2.
APPENDIX

Turning now to the nucleonic participation to the scalar sus-
ceptibility, we have to take into account the Pauli blockinge g of nucleon antinucleon excitations. For this we can

which reduces the pionic cloud contribution froaN inter- - ¢ongiger a relativistic free Fermi gas described by a Hamil-
mediate states by about 25% at normal density, bringing thﬁ)nianHo and add a perturbatich

in-medium nucleon susceptibility to the effective vaIk@
=—4.9x10"? MeV~ 1. We multiply it by the nuclear den-
sity which givespox§=—6.8x 10" MeV?. This number is xwz)\f dr@p:)\j dfpg(F), (A1)
smaller than the nuclear excitation contribution. Altogether
the scalar susceptibility of nuclear matter at normal density is
which changes the nucleon mass by the ama@aMeE \. If
xs(po) = xs(vac)—8.9x 10°MeV?. (37) we note|\) the ground state of the system in presence of the
perturbation then, by the Feynman Hellman theorem, we

It is interesting to give a scale to compare this nuclear modilave

fication of the scalar susceptibility. The susceptibility of the

vacuumysg(vac.) is not known but due to the large mass of 9

the scalar meson, it is certainly much smaller than the pseu- XO\'f dPps(MMr=0=V 2=(Nps(0)[M)]x=0
doscalar susceptibilitypg(vac). The latter is actually domi-

Here we want to interpret the first term in EQ.7) in

nated by the Goldstone boson, i.e., the pion, which allows its 1
evaluation. Chanfray and Ericson gave the following expres- =2(\= 0|WE0— HOW|>\ =0),
sion[11]:
(A2)
2(qq(vac))? > N ,
xpsvac)=— ——————=-1.3x10° MeV>. (38)  where we assum@[\)=1 for simplicity andV is the volume

f2m2 . .
A of the gas. To simplify we note

From this we infer that(i) xsyac) can reasonably be ne-

glected on the right hand sid®RHS) of Eq. (37); (i) at p i<)\| O] :% (A3)
=po the nuclear scalar susceptibility is comparable to the gx M 1Ps A=0TON

vacuum pseudoscalar susceptibilitypg(vac). Moreover

Chanfray and Ericson have sholl] that xps(p) follows 0 ihe canonical field expansion, the partWfwhich

the density evolution of the quark condensate, i.e., at normal — . )

density it has decreased by 35%, which brings it toProduces thé\N intermediate states is

xps(po)=—9%X10° MeV2. This is nearly equal to the value
xs(po) =—8.9x 10°MeV? which we get when we neglect 1

. . . — = — =2 _Aaht VAT R

Xs(vac) iN EQ. (37). This implies that the scalar and pseudo- ~ Wny f dp;e-[u(Pv(=p)bi(p)d’(—p)]+h.c.

scalar susceptibilities, which are so different in the vacuum, P

become nearly equal at normal nuclear density, a feature nor- o-p ~ ~

mally expected only near the chiral phase transition. As our = —f dpE—[bT(p)dT(— p)]+h.c., (A4)
evaluation uses the value of the free nucleon sigma term, this P

convergence ofs(pg) and xps(po) toward a common value

must be taken with a grain of salt due to the possible mediurwhereb,d are, respectively, the destruction operators of the
renormalization: 3\ — 3 (po), Which we have not taken nucleon and antinucleon. So thé-N contribution to the

into account in this work. However, this manifestation of theRHS of Eq.(A2) is

restoration of chiral symmetry is so spectacular that we do

not expect it to be totally destroyed by these renormalization—

effects. A systematic investigation of this problem, as well as ?n the general case, one should start with a space dependent
the extension of this study at larger densities, deserves fuperturbation and let it tend to a constant at the end. ForNtNe

ther work. contribution this step is not necessary.
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Ips 1 wherelmq) denotes the nuclear ground state in presence of
N ——Inn= VO\ 0|WNNE Ho WyniA=0) the quark mass terrfA9), then the Feynman-Hellman theo-
rem gives
= 2<>\—0|J dp—*&'ﬁb( 5)d(—p) ! 1 1
v E, " PUTPE T, nuclear_ ( 2(mq=0[Wg—p-W|m,=0). (A1)
Xf p E—dT( B )bT(5")[\=0) To compute this quantity using the Fermi gas approximation
P we need to know the matrix eleme(W|W|N) for the ph
2 p2[ 1 excitations and NN|W|vac) for the NN excitations. There
= Vj dﬁ—z(ﬁ)(pm(ﬁ)bT(ﬁ)lp) is no problem with the first one since we know it from the
E P nucleon sigma ternt . On the other hand, the second one
is essentially unknown.XVe can quantify this problem by
j c;|p—<p|bT )b(P)|p)—C. introducing theNN andNN scalar form factors in the stan-
dard way:
2 — —
_ 24 J%%—cw, (A5) m(N(p’)[TU(0) +dd(0)[N(p))
0 ’ T
(2m) : =S"[(p—p")?T(p')u(p),

where we have used - _
my(N(p")N(p)[uu(0) +dd(0)|vac)

=S (p+p")2Ta(p v (p). (A12)

0(pe—p). (AB) From the definition of the nucleon sigma term

(A=0[b"(B)b(B)|\=0)=48(0)6(pr—p)

T (2m)°

1 o _
The infinite termC., is independent of the density so it drops EN:WW(ONJ dfmg[uu(f)+dd(F)]|N(0)),
out when we substract the vacuum contribution. Since per- (A13)
turbation (A1) is equivalent to a changéM =\ of the

nucleon mass, we can write we getS'N(0)=3 and by the crossing rul&"N and SNN

dps| M aps _EN 4 prd»pz . are the same function. So we can write
IMgl\g IMg IN G Mg (27)% )0 pE_ﬁ (N(p")N(p)[Tu(0)+dd(0)|vac)

which is the first term in Eq(17). In other terms the deriva- _ 2 BP
tive of the scalar density at fixed density is entirely due to the - m—qg[(p+ ") Ju(p")u(p), (Al4)

NN excitations.

Note that this does not allow us to say that the term  Where we have defineg(x) = S""(x)/S"N(0). A straightfor-
ward calculation then leads to the following expressitar

2N Ips (A8) the NN contribution to the nuclear susceptibility:
2mg dMg |y
_ ﬁ, 4 p?
— nuclear _ 2
in Eq. (15 is the nuclear susceptibility due tdN excita- xs  (NN)= (2 )3f dp|9(4Ep)|
tions. To reach such a conclusion, we should start with a
perturbation of the form 3N ps
~lg(amM?) P52 = (A15)
_ q ?Maly
mqf difuu(r)+dd(r)J=myW, (A9)

which differs from Eq.(A8) by the factor|g(4M2)|2 This

which is the true mass term of QCD. Defining the nuclearfaCtor is probably very small because the transiti@euum
susceptibility(per unit volumeé as — NN through the one-body quark operatan+ dd is sup-
pressed as compared to the elastic transiieaN.

1
|
Xgucear o P <mq|f dr[uu(r)-i-dd(r |mq>|m =0>

(A10) SAfter substraction of the vacuum contribution.
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