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Scalar susceptibility and chiral symmetry restoration in nuclei
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We study the nuclear modification of the scalar QCD susceptibility, calculated as the derivative of the quark
condensate with respect to the quark mass. We show that it has two origins. One is the low lying nuclear
excitations. At normal nuclear density this part is constrained by the nuclear incompressibility. The other part
arises from the individual nucleon response and it is dominated by the pion cloud contribution. Numerically the
first contribution dominates. The resulting increase in magnitude of the scalar susceptibility at normal density
is such that it becomes close to the pseudoscalar susceptibility, while it is quite different in the vacuum. We
interpret it as a consequence of chiral symmetry restoration in nuclei.
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I. INTRODUCTION

The chiral phase transition is a hot topic of QCD. T
attention has been focused in particular on a baryonic
environment, the simplest one being ordinary nuclei. In vi
of the difficulties of the lattice methods to treat baryon
matter, studies based on models have revealed their inte
In the first stage the order parameter, which is the qu
condensate, was investigated@1,2#. With the realization that
the amount of restoration is large, as the order parameter
decreased by about 35% at ordinary nuclear density, the
terest has also been focused on precursor effects linked t
partial restoration of chiral symmetry in the form of droppin
hadron masses@3–5# or axial-vector correlator mixing@6,7#.
The problem has also been studied in the framework of
fective field theories and chiral perturbation theory@8,9#. The
last topic to attract attention is the question of the susce
bilities in QCD @10,11#. In the broken symmetry phase
where the order parameter introduces a privileged direct
the susceptibility is splitted as in magnetism in the para
susceptibility, along the magnetization axis, and the perp
dicular one. In QCD these are the scalar (xS) and pseudo-
scalar (xPS) susceptibilities related to the fluctuations of t
scalar and pseudoscalar quark density, respectively.

The in-medium QCD susceptibilities have been discus
by Chanfray and Ericson@11#. For the scalar one they use
the linear sigma model which provides the coupling of t
quark scalar density fluctuations to the nucleonic o
through sigma exchange. They ignored the coupling to
pion density fluctuations, expected to have a smaller in
ence. Their approach is basically a dispersive one, with
introduction of the in-medium scalar spectral function.
terms of graphs their effect corresponds to the one of Fig
and the dressing by the pion lines to that of Fig. 2.

The present work uses a totally different approach wh
relies on the very definition of the longitudinal susceptibil
as the derivative of the order parameter with respect to
perturbation responsible for the explicit symmetry breaki
In magnetism it is the external magnetic field. In QCD it
the quark mass and we have the generic definition of
scalar susceptibility:
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xS5
]

]mq
^q̄q&, ~1!

whereq is the quark field. The two methods are known to
equivalent in their principle. However in practice, in the d
persive approach, truncations are made in the intermed
accessible states. In fact, our new derivation incorpora
terms as well as interference effects which were previou
absent. The present study is also free from the specific
tures of the linear sigma model.

In Sec. II, we show how Eq.~1! leads to a natural decom
position of xS into a vacuum contributionxS(vac.), a con-
tribution notedxS

N which is related to thenucleonicexcita-
tions, and a contribution notedxS

nuclear which is related to the
nuclearexcitations. In Sec. III, we use the Fermi gas mod
to estimatexS

nuclear and we compare the result with the on
obtained previously with the linear sigma model@11#. We
conclude thatxS

nuclear depends essentially on the zero m
mentum particle-hole propagator which we relate to
nuclear incompressibility. In Sec. IV, we study the nucleon
contributionxS

N and we find that it is dominated by the pio
cloud, the quark core giving only about 6% ofxS

N . The
model dependence of the pion cloud contribution is mod
ated by the fact that, within a factor of order two, its value
fixed by the leading nonanalytic piece of the sigma term.
Sec. V, we present some numerical estimates based on
results of Secs. II, III, and we discuss their implications co
cerning the restoration of chiral symmetry in nuclei.

II. NUCLEAR SUSCEPTIBILITY

Since our aim is to evaluate the modification of the s
ceptibility with respect to its vacuum value, we note^q̄q(r)&

σ

FIG. 1. Modification of thes propagator by the particle-hole
polarization propagator. The cross represents the condensate.
©2003 The American Physical Society09-1
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the in-medium value of the quark condensate and we in
duce

xS~r!5
]

]mq
^q̄q~r!&, ~2!

wherer is the nuclear density.
For a collection of independent nucleons, the in-medi

condensatêq̄q(r)& writes

^q̄q~r!&5^q̄q~vac.!&F12
SNrS

f p
2 mp

2 G . ~3!

HererS is the nucleon scalar density,^q̄q(vac.)& denotes the
vacuum expectation value of the condensate, andSN is the
nucleon sigma term:

SN5^Nu@Q5 ,Q̇5#uN&52mqE dxW ^Nuq̄q~xW !2q̄q~vac.!uN&.

~4!

Using the Gellmann, Oakes, and Renner relation:

f p
2 mp

2 522mq^q̄q~vac.!&, ~5!

the in-medium condensate expression~3! can also be written
in the form

^q̄q~r!&5^q̄q~vac.!&1
SNrS

2mq
. ~6!

The result above follows from the Feynman-Hellman the
rem which relates the condensate to the thermodynam
grand potential per unit volumev5e2mr through

^q̄q~r!&5
1

2 S ]v

]mq
D

m

, ~7!

where the derivative has to be taken at constant bary
chemical potentialm ~which controls the densityr!. As an
illustration in a free Fermi gas, one has after substracting
vacuum energy:

v54E dpW

~2p!3
~Ep2m!Q~m2Ep!, ~8!

with Ep5Ap21M2. The medium contribution to the con
densate is obtained as

σ

π

FIG. 2. Modification of thes propagator by the in-medium 2p
propagator. The cross represents the condensate.
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^q̄q~r!&2^q̄q~vac.!&5
1

2 S ]v

]M D
m

]M

]mq
5rS

SN

2mq
, ~9!

where the scalar density is defined by

rS54E dpW

~2p!3

M

Ep
Q~m2Ep!, ~10!

while the ordinary density is

r54E dpW

~2p!3
Q~m2Ep!5

2

3p2
pF

3 , ~11!

with pF
25m22M2.

Note that in Eq.~9! the contribution of thed function
from the derivative of the Heaviside function vanishes.
will not be the case for the susceptibility. Starting from E
~6!, one gets

xS~r!5
]

]mq
^q̄q~vac.!&1rS

]

]mq
S SN

2mq
D1

SN

2mq

]rS

]mq
,

~12!

which contains the following three contributions.
~1! The derivative of̂ q̄q(vac.&, which is the vacuum sus

ceptibility xS(vac.). Its evaluation would require a nonpe
turbative QCD model, which is outside the scope of th
work. So we focus on the differencexS(r)2xS(vac.).

~2! The derivative of SN/2mq , which is in fact the
nucleon scalar susceptibilityxS

N .1 This follows from the re-
lation between the sigma term and the condensate:

SN52mqE dxW ^Nuq̄q~xW !2q̄q~vac.!uN&. ~13!

Thus,

xS
N5

]

]mq
E dxW ^Nuq̄q~xW !2q̄q~vac.!uN&5

]

]mq
S SN

2mq
D .

~14!

Therefore this second term, which writesrSxS
N , can be in-

terpreted as the individual nucleon contribution to t
nuclear susceptibility.

~3! The derivative ofrS which gives the third term, noted
xS

nuclear:

xS
nuclear5

SN

2mq

]rS

]mq
. ~15!

We shall see that it represents the effect of the nuclear e
tations by contrast to the second term which is due to
nucleon excitations.

1This quantity has not the same dimension asxS due to the nor-
malization volume of infinite nuclear matter.
9-2



w

e
rm
id

h
i

is

fo
m

s

t
s

a-
e

d
d
e

es

d.
tain
-

ion

e
ma
ity
o-
h as

he

ct

e

SCALAR SUSCEPTIBILITY AND CHIRAL SYMMETRY . . . PHYSICAL REVIEW C68, 035209 ~2003!
In summary, we are going to study separately the t
terms of the quantity

xS~r!2xS~vac.!5rSxS
N1xS

nuclear. ~16!

III. NUCLEAR EXCITATION CONTRIBUTION

We first examine the termxS
nuclear in Eq. ~16!. We use

the free Fermi gas, for which the scalar nucleon density
given in Eq.~10!. Taking its derivative with respect to th
quark mass at constant chemical potential, we get two te
the second one arising from the derivative of the Heavis
function:

]rS

]mq
5

SN

mq
4E dpW

~2p!3 F p2

Ep
3

Q~Ep2m!2
M2

Ep
2

d~Ep2m!G .

~17!

The first term in Eq.~17! represents the polarization throug
nucleon-antinucleon (N̄N) excitations of a relativistic Ferm
gas submitted to a scalar perturbation~see the Appendix!. As
it vanishes in the nonrelativistic limit we shall neglect th
N̄N contribution.

From the second term in Eq.~17!, we obtain

xS
nuclear5

SN
2

2mq
2 S 2

2

p2

pFM2

m D . ~18!

In the nonrelativistic limit (m.M ) the parenthesis in the
above equation reduces to22MpF /p2 which is actually the
particle-hole polarization propagatorPph(q) of the nonrela-
tivistic free Fermi gas taken in the static situation, i.e.,
q050, and taking the limit of vanishing three momentu
(qW→0). We have then

xS
nuclear[

SN

2mq

]rS

]mq
.

SN
2

2mq
2
Pph~0,0W !.2

2MpF

p2

SN
2

2mq
2

.

~19!

The presence ofPph indicates that the origin of this term lie
in the nuclear excitations.

A. Comparison with xS
nuclear obtained in the sigma model

In the sigma model the scalar susceptibility is related
the s propagator@11#. In the medium this propagator i
modified by the particle-hole insertions, which gave

xS
nuclear52

^q̄q~vac.!&2

f p
2

gs
2

ms
4

PS~0,0W !, ~20!

wherePS is the full scalar particle-hole polarization prop
gator andgs is the sigma nucleon coupling constant. In ord
to link the two expressions ofxS

nuclear, we first need to evalu-
ate the nucleon sigma termSN within the linear sigma
model. It is built up of two pieces. The first one correspon
to the exchange of a sigma between the condensate an
nucleon as illustrated in Fig. 3~a!. The second one is th
03520
o

is
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e
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contribution of the pion cloud of the nucleon which com
into play as two pions exchange, as shown in Fig. 3~b!. The
result is

SN5SN
s1SN

p5 f pmp
2 gS

ms
2

1
mp

2

2 E dxW ^Nuf2~xW !uN&.

~21!

In the context of our previous work@11#, the pionic con-
tribution SN

p did not appear naturally and thus was ignore
To make the comparison meaningful, we should then re
only the sigma exchange partSN

s and insert it in our expres
sion ~19! which leads to

xS
nuclear~s!5

mp
4 f p

2

2mq
2

gs
2

ms
4

Pph~0,0W !

52
^q̄q~vac.!&2

f p
2

gs
2

ms
4

Pph~0,0W !. ~22!

This is essentially the result of the sigma model calculat
@see Eq.~20!#, provided we replace the fullPS by the free
Fermi gas expressionPph . The present derivation is mor
satisfactory in the sense that it does not rely on the sig
model to derive the coupling between the quark dens
fluctuations and the nucleon ones. In particular, it incorp
rates other couplings than through sigma exchange, suc
the two pion exchange termSN

p of SN . Moreover the inter-
ferences between the various components ofSN are auto-
matically incorporated in the crossed terms ofSN

2 . One of
these interferences, which is theSN

sSN
p term, is illustrated in

Fig. 4.
On the other hand talking also about the limitations of t

present work, it applies to a free Fermi gas~its generalization
is in progress!, while our previous approach did not restri
to this situation. In the dressing of the sigma line byph
states, the fullph propagator entered. The latter is to som
extent constrained by nuclear phenomenology@11# and the

N or ∆
(a) (b)

FIG. 3. Nucleon sigma term in thes model.

σ

π
FIG. 4. Interference betweens and 2p exchange.
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argument goes as follows. At normal nuclear density ther
no distinction between the scalar and ordinary density op
tors. Now, at ordinary density, theph propagatorPr is the
response of the system to a perturbation which couples to
nucleon density. In other words it is the nuclear compre
ibility, with the relation:

Pr52
9r

K
, ~23!

where the nuclear incompressibilityK is related to the energy
per particleE/A by

K5
d

dr S r2
d

dr

E

AD . ~24!

Its experimental value at the saturation densityr0 is in the
range 200–300 MeV@12#. This value is compatible with the
free Fermi gas value computed at the same density. E
though this agreement may result from a cancellation
tween several many-body influences, such as the effec
mass and residual interaction effects, it justifies to some
tent the use of the free Fermi gas model.

IV. NUCLEON SCALAR SUSCEPTIBILITY xS
N

For a structureless nucleon, one has of coursexS
N50 but

we do not make such a restriction. In general,xS
NÞ0 because

the true nucleon responds to a scalar perturbation by ad
ing its internal structure. One can estimate this response
ing models, for instance the MIT bag model, but it could a
be extracted from lattice calculations when the latter
done at realistic quark mass values.

A. Valence quark contribution to xS
N

The scalar susceptibility of a free nucleon has been in
duced by Guichonet al. @13# in another context, concernin
a pure nuclear physics problem, that is, the question of s
ration of nuclear matter. In his quark-meson coupling mo
the saturation follows from the response of the nucleon t
scalar field. In the bag model the total scalar charge of
bag, defined as

QS5E dxW ^Nuq̄q~xW !uN&, ~25!

depends on the quark mass. The linear term in the qu
mass expansion ofQS :

QS~mq!5QS~0!1xS
N~Bag!mq1•••, ~26!

defines the susceptibility of the bag. It is found to
xS

N(Bag).0.5R.2.531023 MeV21, where the numerica
value corresponds to a bag radius ofR50.8 fm. It turns out
that this susceptibility due to the quark structure can stabi
the scalar nuclear field and provide a mechanism for sat
tion @14#. In our case, however, its contribution to the nucle
susceptibility is negligible~see Sec. V! with respect to the
one due to the nuclear excitations. This is not a surprise s
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the nucleonic excitations, which controlxS
N(Bag), are much

higher than the nuclear ones. What is interesting howeve
the positive sign of this term. Its origin is rather obviou
when its mass increases the quark becomes less relativ
This tends to increase the scalar charge of the nucleon a
quark scalar densityq̄q involves the difference of the larg
and small components of the quark spinor.

Another important point is thatxS
N(Bag) only includes the

valence quark contribution and not those from the pion
sigma clouds. The argument about the energy of the co
sponding excitations may not apply to the pion cloud con
bution in view of the small pion mass. It is therefore inte
esting to evaluate the corresponding susceptibility.

B. Pionic contribution to xS
N

The nucleon sigma commutator is largely influenced
the presence of the pion cloud. If the nucleon remains un
cited after pion emission and in the heavy baryon limit, t
corresponding contributionSN

p is equal to@15#

SN
p5

mp
2

2 E dxW ^Nuf2~xW !uN&

5
3mp

2

16p2 S gA

f p
D 2E

0

`

dq
q4

~q21mp
2 !2

F2~q!, ~27!

wheref is the pion field andF(q) the pNN form factor.
With this explicit expression ofSN

p , it is straightforward to
calculate the derivatives with respect tomq ~or mp

2 ) involved
in the corresponding susceptibility:

xS
N~p!5

d

dmq

SN
p

2mq
5

2^q̄q~vac.!&2

f p
4

d

dmp
2

SN
p

mp
2

52
3^q̄q~vac.!&2

4p2f p
4 S gA

f p
D 2E

0

`

dq
q4

~q21mp
2 !3

F2~q!.

~28!

For a monopole form factorF(q)5L2/(L21q2), we find

xS
N~p!52

9mp
3

64p

^q̄q~vac.!&2

f p
4 S gA

f p
D 2S L

L1mp
D 4

52431022 MeV21, ~29!

where the numerical value corresponds toL55mp . This
value is about 15 times larger than the susceptibility due
the quark bag structure estimated in the preceding sectio

A rough estimate of the pionic contribution can be o
tained if the form factorF(q) is omitted in Eq.~28!, which
corresponds to the limitL→`. In this case,xS

N(p) can be
written in terms of the leading nonanalytical term of th
sigma termSN

LNA according to
9-4
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xS
N~p!5

2^q̄q~vac.!&2

f p
4

d

dmp
2

SN
LNA

mp
2

5
^q̄q~vac.!&2

f p
4 mp

4
SN

LNA ,

~30!

where

SN
LNA52

9

64p S gA

f p
D 2

mp
3 .223 MeV. ~31!

This approximation leads toxS
N(p).28.631022 MeV21,

which is about double the value obtained with the fo
factor.

There is also a contribution to the nucleon sigma term
to intermediatepD states@see Fig. 3~b!#. In the narrow width
approximation, it reads

SN
pD5

3mp
2

16p2 S gA

f p
D 2 4

9 S gpND

gpNN
D 2E

0

`

dq

3S q4

2vq
2~vq1Dq!2

1
q4

2vq
3~vq1Dq!

D F2~q!, ~32!

with vq5Aq21mp
2 andDq5MD2MN1q2/2MD . The cor-

responding contribution to the susceptibility,xS
N(pD), is ob-

tained from the derivative of the above expression with
spect tomp

2 . The presence of the large energy denomina
MD2MN makes it less sensitive to the pion mass. Nume
cally with the ratiogpND /gpNN5A72/5, we findxS

N(pD)
.21.431022 MeV21. The overall susceptibility of a free
nucleon due to the pion cloud is thus about25.4
31022 MeV21.

Our conclusion on the nucleon scalar polarizability is th
as the electric one, it is dominated by the pion cloud. Wit
a factor of 2, it can be expressed in a model independent
in terms of the leading nonanalytic part of the nucleon sig
term. In this context, it is legitimate to wonder why the p
onic susceptibilityxS

N(p) which is so dominant in this prob
lem does not also dominate the nuclear saturation prob
where instead it is totally ignored. The answer lies in t
chiral properties of the scalar field responsible for the nuc
attraction that we have studied in Ref.@16#. We have stressed
that this field has to be chiral invariant rather thans, the
chiral partner of the pion. It couples derivatively to the pio
Therefore, in the long wavelength and static limit, the pi
cloud is weakly coupled to this nuclear scalar field.

C. Interpretation of the pion cloud contribution
in the sigma model

It is interesting to look at the nuclear susceptibili
rSxS

N(p) in the framework of the sigma model. The sigm
which transmits the quark fluctuations, is dressed not only
the particle-hole excitations but also by the two pions ex
tations, as shown in Fig. 5. Since we are interested in
modification of the susceptibility with respect to its vacuu
value, at least one of the pions in this graph has to b
03520
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t,
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a

nuclear one. So it is dressed by particle-hole insertions.
lowest order in the density, the contribution of this graph
the nuclear susceptibility is

xS
nuclear,2p53

2^q̄q~vac.!&2

f p
2 ms

4

ms
4

4 f p
2 S gA

f p
D 2

3E dq0dqW

~2p!4

qW 2

~q22mp
2 !3

PL~q0,qW !F2~q!. ~33!

Here the subscriptL in PL indicates the spin longitudina
character. In the static limit the domain whereP(q0,qW ) has a
nonvanishing value is pushed to zero energy. In this case
pions do not carry energy so the integral overq0 which then
involves onlyP(q0,qW ) reduces to

E dq0

2p
PL~q0 ,qW !5E dq0

2p E dvS 2
2v

p D ImPL~vqW !

q0
22v21 ih

5E dvS 2
1

p
ImPL~vqW ! D

5rE dvRL~vqW !5rSL~q!, ~34!

whereRL(vqW )52ImPL(vqW )/pr is the nuclear longitudi-
nal spin-isospin response andSL its integral over energy. Fo
a free Fermi gas, one has

SL~q!5Q~q22pF!1Q~2pF2q!F3

2

q

2pF
2

1

2 S q

2pF
D 3G .

~35!

Ignoring the Pauli blocking effect, the quantitySL(q) re-
duces to unity, which leads to

xS
nuclear,2p5

^q̄q~vac.!&2

2 f p
4

r
d

dmp
2 S SN

p

mp
2 D 5rxS

N~p!. ~36!

This is exactly the nucleonic polarizability arising from th
pion cloud multiplied by the density. In fact, a mere com
parison of the many-body graph of Fig. 2 with the one
Fig. 5 which represents the free nucleon susceptibility le
to this conclusion. To leading order the evaluation of t
nuclear QCD scalar susceptibility arising from the 2p inter-
mediate states does not need any calculation as it is sim
related to the nucleon one, if Pauli blocking is ignored.

FIG. 5. Pionic contribution to the nucleon susceptibility.
9-5
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V. NUMERICAL ESTIMATES

We have now all ingredients to proceed to the numer
evaluation of the in-medium modification of the scalar s
ceptibility. To fix the idea, we shall useSN.45 MeV and
K.230 MeV21. At normal density the contribution of th
nuclear excitations to the susceptibility is then

xS
Nuclear~r0!528.23105 MeV2.

Turning now to the nucleonic participation to the scalar s
ceptibility, we have to take into account the Pauli blocki
which reduces the pionic cloud contribution frompN inter-
mediate states by about 25% at normal density, bringing
in-medium nucleon susceptibility to the effective valuex̃S

N

.24.931022 MeV21. We multiply it by the nuclear den
sity which givesr0x̃S

N.26.83104 MeV2. This number is
smaller than the nuclear excitation contribution. Altogeth
the scalar susceptibility of nuclear matter at normal densit

xS~r0!5xS~vac.!28.93105MeV2. ~37!

It is interesting to give a scale to compare this nuclear mo
fication of the scalar susceptibility. The susceptibility of t
vacuumxS(vac.) is not known but due to the large mass
the scalar meson, it is certainly much smaller than the ps
doscalar susceptibilityxPS~vac!. The latter is actually domi-
nated by the Goldstone boson, i.e., the pion, which allows
evaluation. Chanfray and Ericson gave the following expr
sion @11#:

xPS~vac!52
2^q̄q~vac.!&2

f p
2 mp

2
.21.33106 MeV2. ~38!

From this we infer that~i! xS(vac.) can reasonably be ne
glected on the right hand side~RHS! of Eq. ~37!; ~ii ! at r
5r0 the nuclear scalar susceptibility is comparable to
vacuum pseudoscalar susceptibilityxPS(vac). Moreover
Chanfray and Ericson have shown@11# that xPS(r) follows
the density evolution of the quark condensate, i.e., at nor
density it has decreased by 35%, which brings it
xPS(r0).293105 MeV2. This is nearly equal to the valu
xS(r0).28.93105MeV2 which we get when we neglec
xS(vac.) in Eq. ~37!. This implies that the scalar and pseud
scalar susceptibilities, which are so different in the vacuu
become nearly equal at normal nuclear density, a feature
mally expected only near the chiral phase transition. As
evaluation uses the value of the free nucleon sigma term,
convergence ofxS(r0) andxPS(r0) toward a common value
must be taken with a grain of salt due to the possible med
renormalization:SN→S̃N(r0), which we have not taken
into account in this work. However, this manifestation of t
restoration of chiral symmetry is so spectacular that we
not expect it to be totally destroyed by these renormaliza
effects. A systematic investigation of this problem, as well
the extension of this study at larger densities, deserves
ther work.
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In summary, we have found that the two QCD suscep
bilities, namely the scalar and pseudoscalar ones, under
strong modification in the nuclear medium in such a w
they become close to each other already at normal nuc
matter density. It is a spectacular consequence of partial
ral restoration which may have consequences in proce
involving higher densities.

APPENDIX

Here we want to interpret the first term in Eq.~17! in
terms of nucleon antinucleon excitations. For this we c
consider a relativistic free Fermi gas described by a Ham
tonianH0 and add a perturbation,2

lW5lE drWc̄c5lE drWrS~rW !, ~A1!

which changes the nucleon mass by the amountdM5l. If
we noteul& the ground state of the system in presence of
perturbation then, by the Feynman Hellman theorem,
have

]

]l
^lu E drWrs~rW !ul&l505V

]

]l
^lurS~0!ul&ul50

52^l50uW
1

E02H0
Wul50&,

~A2!

where we assumêlul&51 for simplicity andV is the volume
of the gas. To simplify we note

]

]l
^lurS~0!ul&ul505

]rS

]l
. ~A3!

From the canonical field expansion, the part ofW which
produces theNN̄ intermediate states is

WNN̄5E dpW
1

2Ep
@ ū~pW !v~2pW !b†~pW !d†~2pW !#1h.c.

52E dpW
sW •pW

Ep
@b†~pW !d†~2pW !#1h.c., ~A4!

whereb,d are, respectively, the destruction operators of
nucleon and antinucleon. So theN-N̄ contribution to the
RHS of Eq.~A2! is

2In the general case, one should start with a space depen

perturbation and let it tend to a constant at the end. For theNN̄
contribution this step is not necessary.
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]rS

]l
uNN̄5

2

V
^l50uWNN̄

1

E02H0
WNN̄ul50&

5
2

V
^l50u E dpW

sW •pW

Ep
b~pW !d~2pW !

1

E02H0

3E dpW 8
sW .pW 8

Ep8
d†~2pW 8!b†~pW 8!ul50&

5
2

VE dpW
p2

Ep
2 S 1

22Ep
D ^rub~pW !b†~pW !ur&

5
1

VE dpW
p2

Ep
3 ^rub†~pW !b~pW !ur&2C`

5
4

~2p!3E0

pF
dpW

p2

Ep
3

2C` , ~A5!

where we have used

^l50ub†~pW !b~pW !ul50&54d~0W !u~pF2p!

5
4V

~2p!3
u~pF2p!. ~A6!

The infinite termC` is independent of the density so it drop
out when we substract the vacuum contribution. Since p
turbation ~A1! is equivalent to a changedM5l of the
nucleon mass, we can write

]rS

]mq
U

NN̄

5
]M

]mq

]rS

]l U
NN̄

5
SN

mq

4

~2p!3E0

pF
dpW

p2

Ep
3

, ~A7!

which is the first term in Eq.~17!. In other terms the deriva
tive of the scalar density at fixed density is entirely due to
NN̄ excitations.

Note that this does not allow us to say that the term

SN

2mq

]rS

]mq
U

NN̄

~A8!

in Eq. ~15! is the nuclear susceptibility due toNN̄ excita-
tions. To reach such a conclusion, we should start wit
perturbation of the form

mqE drW@ ūu~rW !1d̄d~rW !#5mqW, ~A9!

which is the true mass term of QCD. Defining the nucle
susceptibility~per unit volume! as

xS
nuclear5

1

2V

]

]mq
^mqu E drW@ ūu~rW !1d̄d~rW !#umq&umq50 ,

~A10!
03520
r-

e

a

r

whereumq& denotes the nuclear ground state in presence
the quark mass term~A9!, then the Feynman-Hellman theo
rem gives

xS
nuclear5S 1

2VD2^mq50uW
1

E2H0
Wumq50&. ~A11!

To compute this quantity using the Fermi gas approximat
we need to know the matrix element^NuWuN& for the ph

excitations and̂ NN̄uWuvac.& for the NN̄ excitations. There
is no problem with the first one since we know it from th
nucleon sigma termSN . On the other hand, the second o
is essentially unknown. We can quantify this problem
introducing theNN andNN̄ scalar form factors in the stan
dard way:

mq^N~p8!uūu~0!1d̄d~0!uN~p!&

5SNN@~p2p8!2#ū~p8!u~p!,

mq^N~p8!N̄~p!uūu~0!1d̄d~0!uvac.&

5SNN̄@~p1p8!2#ū~p8!v~p!. ~A12!

From the definition of the nucleon sigma term

SN5
1

^N~0!uN~0!&
^N~0!u E drWmq@ ūu~rW !1d̄d~rW !#uN~0!&,

~A13!

we getSNN(0)5SN and by the crossing ruleSNN̄ and SNN

are the same function. So we can write

^N~p8!N̄~p!uūu~0!1d̄d~0!uvac.&

5
SN

mq
g@~p1p8!2#ū~p8!u~p!, ~A14!

where we have definedg(x)5SNN(x)/SNN(0). A straightfor-
ward calculation then leads to the following expression3 for
the NN̄ contribution to the nuclear susceptibility:

xS
nuclear~NN̄!5

SN
2

2mq
2

4

~2p!3E0

pF
dpW ug~4Ep

2!u2
p2

Ep

'ug~4M2!u2
SN

2mq

]rS

]mq
U

NN̄

, ~A15!

which differs from Eq.~A8! by the factorug(4M2)u2. This
factor is probably very small because the transitionvacuum

→NN̄ through the one-body quark operatorūu1d̄d is sup-
pressed as compared to the elastic transitionN→N.

3After substraction of the vacuum contribution.
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