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Nuclear shadowing in deep-inelastic scattering: Numerical solution of the evolution equation
for the Green function

J. Nemchik
Institute of Experimental Physics SAS, Watsonova 47, 04353 Kosice, Slovakia

~Received 13 January 2003; published 18 September 2003!

Within a light-cone QCD formalism based on the Green function technique incorporating color transparency
and coherence length effects, we study nuclear shadowing in deep-inelastic scattering at moderately small
Bjorken xB j . Calculations performed so far were based only on approximations leading to an analytical
harmonic oscillatory form of the Green function. We present for the first time an exact numerical solution of
the evolution equation for the Green function using a realistic form of the dipole cross section and nuclear
density function. We compare numerical results for nuclear shadowing with previous predictions and discuss
differences.
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I. INTRODUCTION

Nuclear shadowing in deep-inelastic scattering~DIS! off
nuclei has been intensively studied during the last two
cades. It can be treated differently depending on the re
ence frame. In the rest frame of the nucleus, this phen
enon looks like nuclear shadowing of the hadron
fluctuations of the virtual photon and occurs due to th
multiple scattering inside the target@1–10#. In the infinite
momentum frame of the nucleus it can be interpreted, h
ever, as a result of parton fusion@11–14# leading to a reduc-
tion of the parton density at low BjorkenxB j . Although these
two physical interpretations are complementary, we w
work in the rest frame of the nucleus, which is more intuiti
and is well suited also for the study of the coherence effe
@15#.

An important phenomenon that controls the dynamics
nuclear shadowing in DIS is the effect of quantum coh
ence. It results from destructive interference of the am
tudes for which the interaction takes place on different bou
nucleons. It can be treated also as the lifetime of theq̄q
fluctuation and estimated by relying on the uncertainty pr
ciple and Lorentz time dilation as

tc5
2n

Q21Mq̄q
2

, ~1!

wheren is the photon energy,Q2 is the photon virtuality, and
Mq̄q is the effective mass of theq̄q pair. It is usually called
coherence time, but we will also use the term cohere
length ~CL!, since light-cone kinematics is assumed,l c
5tc . CL is related to the longitudinal momentum transf
qc51/l c . The effect of CL is naturally incorporated in th
Green function formalism already applied in DIS, Drell-Ya
pair production @15,16#, and vector meson productio
@17,18# ~see also the following section!.

The nuclear shadowing in DIS was studied in Re
@15,16# using correct quantum-mechanical treatment ba
on the Green function formalism. The Green function co
trols then not only the relative transverse motion of theq̄q
pair but also an importance of the higher order multiple sc
terings in the nucleus. The solution of the evolution equat
for the Green function was performed so far analytica
0556-2813/2003/68~3!/035206~13!/$20.00 68 0352
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This analytical solution requires, however, to implement s
eral approximations into a rigorous quantum-mechanical
proach like a constant nuclear density function@see Eq.~21!#
and a specific quadratic form of the dipole cross section@see
Eq. ~20!#. Consequently, obtained in a such way the h
monic oscillator Green function@see Eq.~22!# was used for
the calculation of nuclear shadowing. However, the follo
ing question naturally arises: how accurate is the evalua
of the nuclear shadowing in DIS using this Green functio
In order to clarify this, one should solve the evolution equ
tion for the Green function numerically. It does not bring a
additional assumptions and does not force us to use sup
mentary approximations, which cause the theoretical un
tainties. Therefore the main goal of this paper is to pres
for the first time the predictions of nuclear shadowing in D
at moderately smallxB j based on exact numerical solution
the evolution equation for the Green function. In additio
applying an algorithm described in the Appendix, we pres
also the calculations of nuclear shadowing within the h
monic oscillator Green function approach using quadra
form of the dipole cross section@Eq. ~20!# and a constant
nuclear density function@Eq. ~21!#. We check whether they
correspond to the results already presented in Ref.@15#. Fi-
nally, we analyze and discuss the differences between
exact and approximate predictions for nuclear shadow
Advantages of an exact numerical solution of the tw
dimensional Schro¨dinger equation for the Green functio
@see Eq.~17!# presented in this paper provide a better ba
line for the future study of the QCD dynamics not only
DIS off nuclei but also in further processes occurring in le
ton ~proton!-nucleus collisions.

Calculations of nuclear shadowing presented in Ref.@15#
were performed assuming onlyq̄q fluctuations of the photon
and neglecting higher Fock components containing glu
and sea quarks. Performing realistic calculations, we incl
the effects of higher Fock states as the energy dependen
the dipole cross section,s q̄q(rW,s).1 We use two realistic pa-
rametrizations ofs q̄q(rW,s) @see the following section and

1Here rW represents the transverse separation of theq̄q photon
fluctuation ands is the center of mass energy squared~see the
following section!.
©2003 The American Physical Society06-1
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Eqs. ~5! and ~6!#, where the energy dependence is natura
included. However, we will neglect higher Fock states le
ing to gluon shadowing~GS! @19# assuming only low and
medium values of the photon energyn, as was done also in
Ref. @15#.

The paper is organized as follows. In the following se
tion we present the light-cone dipole phenomenology
nuclear shadowing in DIS together with the Green funct
formalism. Section III, supplemented by the Appendix,
devoted to the description of an algorithm for numerical
lution of the evolution equation for the Green function. N
merical results based on realistic calculations and a comp
son with predictions within harmonic oscillator Gree
function approach are presented in Sec. IV. Finally, in Sec
we summarize our main results and discuss differences
tween realistic and approximate@15,16# calculations of
nuclear shadowing in DIS.

II. LIGHT-CONE DIPOLE PHENOMENOLOGY
FOR NUCLEAR SHADOWING

The main goal of the light-cone~LC! dipole approach to
nuclear shadowing is a possibility to include the nucle
form factor in all multiple scattering terms. Derivation of th
formula for nuclear shadowing can be found in Ref.@20#.
The study of the difference between the correct quantu
mechanical treatment of nuclear shadowing and known
proximations is given in Ref.@15# assuming onlyq̄q Fock
components of the photon and neglecting higher Fock c
ponents containing gluons and sea quarks. The nuclear
shadowing effect was omitted as well because it was
sumed to be beyond the shadowing dynamics. The t
photoabsorption cross section on a nucleus can be form
represented in the form

sg* A~xB j ,Q
2!5Asg* N~xB j ,Q

2!2Ds~xB j ,Q
2!. ~2!

Here the Bjorken variablexB j is given by

xB j5
Q2

2mNn
'

Q2

Q21s
, ~3!

where s is the g* nucleon center of mass~c.m.! energy
squared andmN is mass of the nucleon.sg* N(xB j ,Q

2) in
Eq. ~2! is the total photoabsorption cross section on
nucleon

sg* N~xB j ,Q
2!5E d2r E

0

1

dauC q̄q~rW,a,Q2!u2s q̄q~rW,s!.

~4!

Heres q̄q(rW,s) is the dipole cross section that depends on
q̄q transverse separationrW and the c.m. energy squareds and
C q̄q(rW,a,Q2) is the LC wave function of theq̄q Fock com-
ponent of the photon which depends also on the photon
tuality Q2 and the relative sharea of the photon momentum
carried by the quark. Note that BjorkenxB j is related with
c.m. energy squareds via Eq.~3!. Consequently, hereafter w
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will write the energy dependence of variables in subsequ
formulas also viaxB j dependence whenever convenient.

The first ingredient of the photoabsorption cross sect
on a nucleon~4! is the dipole cross sections q̄q(rW,s) repre-
senting the interaction of aq̄q dipole of transverse separatio
rW with a nucleon@21#. It is a flavor independent universa
function of rW and energy and allows to describe various hi
energy processes in a uniform way. It is known to van
quadraticallys q̄q(r ,s)}r 2 as r→0 due to color screening
~property of color transparency@21–23#! and cannot be pre
dicted reliably because of poorly known higher order pert
bative QCD corrections and nonperturbative effects. Th
are two popular parametrizations ofs q̄q(rW,s), Golec-
Biernat-Wüsthoff ~GBW! presented in Ref. @24# and
Kopeliovich-Scha¨fer-Tarasov~KST! suggested in@19#. De-
tailed discussion and comparison of these two parametr
tions can be found, for example, in Refs.@17,25#. Therefore,
for completeness, we present here only the main feature
both parametrizations because they are used in the rea
calculations of nuclear shadowing in DIS with the resu
shown in Sec. IV.

The GBW model@24# for the dipole cross section pro
vides a very simple parametrization which saturates at la
q̄q separations,

s q̄q~r ,xB j!5s0F12expS 2
r 2

R0
2~xB j!

D G , ~5!

whereR0(xB j)50.395(xB j /x0)l/2 fm and s0523.03 mb;l
50.288;x050.0003. This dipole cross section vanishes}r 2

at small dipole sizes as implied by color transparency~CT!.
It describes well the data for DIS at smallxB j and medium
and largeQ2. However, it cannot be correct at smallQ2

since it predicts energy-independent hadronic cross secti
Besides,xB j is longer a proper variable at smallQ2 and
should be replaced by energy. This problem is removed
the KST parametrization@19# which keeps the form~5! but
contains an explicit dependence on energy,

s q̄q~r ,s!5s0~s!F12expS 2
r 2

R0
2~s!

D G . ~6!

An explicit energy dependence in the parameters0(s) is
introduced in such a way that guarantees the reproductio
the correct hadronic cross sections,

s0~s!5s tot
pp~s!S 11

3R0
2~s!

8^r ch
2 &p

D , ~7!

wheres tot
pp(s)523.6(s/s0)0.07911.432(s/s0)20.45 mb are the

Pomeron and Reggeon parts of thepp total cross section
@26#, and R0(s)50.88(s/s0)2l/2 fm with l50.28 ands0
51000 GeV2 is the energy-dependent radius. In Eq.~7!
^r ch

2 &p50.44 fm2 is the mean pion charge radius square
The main advantage of the KST parametrization~7! is that it
describes well the transition down to the limit of real phot
production,Q250. However, the improvement compared
6-2
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NUCLEAR SHADOWING IN DEEP-INELASTIC . . . PHYSICAL REVIEW C 68, 035206 ~2003!
GBW model@24# at large separations~small values ofQ2)
leads to a worse description of the short-distance part of
dipole cross section which is responsible for the behavio
the proton structure function at largeQ2. To satisfy Bjorken
scaling, the dipole cross section at small dipole sizesr must
be a function of the products r which is not the case for the
KST parametrization~6!. The form of Eq.~6! successfully
describes the data for DIS at smallxB j only up to Q2

'10 GeV2 and does a poor job at larger values ofQ2.
Summarizing, the GBW model is suited better at medi

and large2 Q2*5 –10 GeV2 and at medium small and sma
xB j&0.01, whereas the KST model prefers low and medi
values ofQ2&5 –10 GeV2. Therefore, the difference of th
realistic calculations for nuclear shadowing in DIS usi
these two models for the dipole cross section in the comm
kinematic region of their applicability can be treated as
measure of theoretical uncertainty.

The second ingredient ofsg* N(xB j ,Q
2) in Eq. ~4! is the

perturbative distribution amplitude~‘‘wave function’’! of the
q̄q Fock component of the photon3 and has the following
form for transversely~T! and longitudinally~L! polarized
photons@4,27,28#:

C q̄q
T,L~rW,a,Q2!5

ANC aem

2p
Zqx̄ÔT,LxK0~er !, ~8!

wherex and x̄ are the spinors of the quark and antiqua
respectively;Zq is the quark charge,NC53 is the number of
colors.K0(er ) is a modified Bessel function with

e25a~12a!Q21mq
2 , ~9!

wheremq is the quark mass. The operatorsÔT,L read,

ÔT5mqsW •eW1 i ~122a!~sW •nW !~eW•¹Wr !1~sW 3eW !•¹Wr ,
~10!

ÔL52Qa~12a!~sW •nW !. ~11!

Here¹Wr acts on transverse coordinaterW; eW is the polarization
vector of the photon,nW is a unit vector parallel to the photo
momentum, andsW is the three vector of the Pauli spin m
trices.

Matrix element ~4! contains the LC wave function
squared, which has the following form forT andL polariza-
tions:

uC q̄q
T ~rW,a,Q2!u25

2NCaem

~2p!2 (
f 51

Nf

Zf
2$mf

2K0~e,r !2

1@a21~12a!2#e2K1~er !2% ~12!

2That is, at medium small and small values of dipole sizer
}A1/Q2&0.06–0.09 fm.

3We neglect the nonperturbative effects responsible for the in
action betweenq̄ andq assuming sufficiently large values ofQ2 in
DIS ~see below!.
03520
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uC q̄q
L ~rW,a,Q2!u25

8NCaem

~2p!2 (
f 51

Nf

Zf
2Q2a2~12a!2K0~er !2,

~13!

whereK1 is the modified Bessel function,

K1~z!52
d

dz
K0~z!. ~14!

Note that in the LC formalism the photon wave functio
contains also higher Fock statesuq̄q&, uq̄qG&, uq̄q2G&, etc.
The effects of higher Fock states are implicitly incorporat
into the energy~BjorkenxB j-! dependence of the dipole cros
sections q̄q(rW,s) as is given in Eq.~4!. Note that the energy
dependence of the dipole cross section is naturally inclu
in realistic parametrizations, Eqs.~5! and ~6!.

In Eq. ~2! the second term,Ds, represents the shadowin
correction and has the following form

Ds~xB j ,Q
2!

5
1

2
ReE d2bE

2`

`

dz1 rA~b,z1!E
z1

`

dz2rA~b,z2!

3E
0

1

da A~z1 ,z2 ,a! ~15!

with

A~z1 ,z2 ,a!

5E d2r 2 C q̄q* ~rW2 ,a,Q2!s q̄q~r 2 ,s!

3E d2r 1Gq̄q~rW2 ,z2 ;rW1 ,z1!s q̄q~r 1 ,s!C q̄q~rW1 ,a,Q2!.

~16!

In Eq. ~15! rA(b,z) represents the nuclear density functio
defined at the point with longitudinal coordinatez and impact
parameterbW .

The shadowing term in Eq.~2! is illustrated in Fig. 1. At
the pointz1 the initial photon diffractively produces theq̄q
pair (g* N→q̄qN) with transverse separationrW1. The q̄q
pair then propagates through the nucleus along arbit
curved trajectories, which are summed over, and arrive
the pointz2 with a transverse separationrW2. The initial and
final separations are controlled by the LC wave function
the q̄q Fock component of the photonC q̄q(rW,a,Q2). During
propagation through the nucleus theq̄q pair interacts with
bound nucleons via dipole cross sections q̄q(r ,s) which de-
pends on the local transverse separationrW. The Green func-
tion Gq̄q(rW2 ,z2 ;rW1 ,z1) describes the propagation of theq̄q
pair from z1 to z2.

The Green functionGq̄q(rW2 ,z2 ;rW1 ,z1) satisfies the time-
dependent two-dimensional Schro¨dinger equation,

r-
6-3
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i
d

dz2
Gq̄q~rW2 ,z2 ;rW1 ,z1!

5F e22D r 2

2na~12a!
1Vq̄q~z2 ,rW2 ,a!GGq̄q~rW2 ,z2 ;rW1 ,z1! ~17!

with the boundary condition

Gq̄q~rW2 ,z2 ;rW1 ,z1!uz25z1
5d2~rW12rW2!. ~18!

In Eq. ~17! the LaplacianD r acts on the coordinater ande is
given by Eq.~9!.

The Green functionGq̄q(rW2 ,z2 ;rW1 ,z1) includes the phase
shift between initial and final photons which is due to tran
verse and also longitudinal motion of the quarks. One
see the presence of the CL~1! in the kinetic term of the
evolution Schro¨dinger equation~17!, where the role of time
is played by the longitudinal coordinatez2. A part
D r /@2na(12a)# of this kinetic term takes care of the vary
ing effective mass of theq̄q pair, Mq̄q

2 5(mq
21kT

2)/a(1
2a), and provides a proper phase shift. This is what
overall kinetic term consists of when the transverse mom
tum squared of the quark is replaced bykT

2→D r . This dy-
namically varying effective mass controls CL defined by t
Green function. The static partQ21mq

2/a(12a) of the CL
is connected with the longitudinal motion and is included
the Green function as well via the last phase shift factor@see
Eq. ~22! below#. Consequently, the longitudinal momentu
transfer is known and all the multiple interactions are
cluded.

The imaginary part of the LC potentialVq̄q(z2 ,rW2 ,a) in
Eq. ~17! is responsible for attenuation of theq̄q photon fluc-
tuation in the medium, while the real part represents the
teraction between theq and q̄. Because we are going t
calculate the nuclear shadowing in DIS at medium and la
Q2, one can safely neglect thisq̄-q interaction as was don
also in Ref.@15#.

In the LC Green function approach@15–18# the physical
photon ug* & is decomposed into different Fock state
namely, the bare photonug* &0 , uq̄q&, uq̄qG&, etc. As we

qq

γ
q

q

r r2

z

1

1

*

z1 2

γ *

2  12  G  (r  , z  ; r  , z  )

FIG. 1. A cartoon for the shadowing termDs in Eq. ~2!. Propa-
gation of theq̄q pair through the nucleus is described by the Gre
function Gq̄q(rW2 ,z2 ;rW1 ,z1) which results from the summation ove
different paths of theq̄q pair.
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mentioned above, the higher Fock states containing glu
describe the energy dependence of the photoabsorption c
section on a nucleon. Besides, those Fock components
also to GS as far as nuclear effects are concerned. Howe
these fluctuations are heavier and have a shorter coher
time ~lifetime! than the lowestuq̄q& state. Therefore, at me
dium energies onlyuq̄q& fluctuations of the photon matte
Consequently, GS related to the higher Fock states will
dominated at high energies. Because we will calculate
nuclear shadowing at moderately smallxB j ~medium values
of n) we can neglect the GS for our purposes. This is s
ported also by the main goal of this paper which is based
comparison of the realistic calculations for nuclear shado
ing with the results obtained within the harmonic oscillato
Green function approach and presented in Ref.@15# where
GS was neglected as well.

One can describe a propagation of a noninteractingq̄q
pair in a nuclear medium by the Green function satisfyi
the evolution Eq.~17!. The LC potentialVq̄q(z2 ,rW,a) in this
case acquires only an imaginary part which represents
sorption in the medium,

ImVq̄q~z2 ,rW,a!52
s q̄q~rW,s!

2
rA~b,z2!. ~19!

The analytical solution of Eq.~17! is known only for the
harmonic oscillator potentialV(r )}r 2. Consequently, one
should use the dipole approximation

s q̄q~r ,s!5C~s!r 2, ~20!

and uniform nuclear density

rA~b,s!5r0Q~RA
22b22z2!, ~21!

in order to to obtain the Green function in an analytical for
In Eq. ~21! RA is the nuclear radius. The solution in this ca
is the harmonic oscillator Green function@29#,

Gq̄q~rW2 ,z2 ;rW1 ,z1!

5
b~a!

2p isin~v Dz!
expH ib~a!

sin~vDz!
@~r 1

21r 2
2!cos~vDz!

22rW1•rW2#J expF2
i e2Dz

2na~12a!G , ~22!

whereDz5z22z1 and

v5
b~a!

na~12a!
, ~23!

where

b2~a!52 irA~b,z!na~12a!C~s!. ~24!

The energy-dependent factorC(s) in Eq. ~20! and the
mean nuclear densityr0 in Eq. ~21! can be adjusted by the

n

6-4
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procedure described in Ref.@16#. According to this proce-
dure the factorC(s) is fixed by demanding that calculation
employing the approximation Eq.~20! reproduce correctly
the results based on the realistic cross section@given by KST
od
ke

e
f.

gy
e
th

le

03520
parametrization Eq.~6! or by GBW model Eq.~5!# in the
high-energy limitl c@RA when the Green function takes th
simple form @see Eq.~30! below#. Consequently, the facto
C(s) is fixed by the relation,
E d2bE d2r uC q̄q
T,L~rW,a,Q2!u2H 12expF2

1

2
C~s!r 2TA~b!G J

E d2r uC q̄q
T,L~rW,a,Q2!u2C~s!r 2

5

E d2bE d2r uC q̄q
T,L~rW,a,Q2!u2H 12expF2

1

2
s q̄q~r ,s!TA~b!G J

E d2r uC q̄q
T,L~rW,a,Q2!u2s q̄q~r ,s!

, ~25!
ap-

ns
not

case
gy

d

se
m-
lism

a

where

TA~b!5E
2`

`

dzrA~b,z! ~26!

is the nuclear thickness calculated with the realistic Wo
Saxon form of the nuclear density with parameters ta
from Ref. @30#. This procedure is performed separately forT
andL polarized photons and for each value ofa. The value
for the mean nuclear densityr0 in Eq. ~21! is determined in
a similar way using relation

E d2b@12exp~2s0r0ARA
22b2!#

5Ed2bF12expS 2
1

2
s0TA~b! D G . ~27!

The value ofr0 turns out to be practically independent of th
cross sections0 from 1 to 50 mb as was checked in Re
@16,25#.

We would like to emphasize that only in the high-ener
limit, l c@RA , it is possible to resum the whole multipl
scattering series in an eikonal formula. Correspondingly,
transverse separationr betweenq̄ andq does not vary during
propagation through the nucleus~Lorentz time dilation!.
Then the total photoabsorption cross section on a nuc
reads@21#

sg* A~s,Q2!52E d2bE d2r E
0

1

dauC q̄q~rW,a,Q2!u2

3H 12expF2
1

2
s q̄q~r ,s!TA~b!G J

[2E d2bH 12 K expF2
1

2
s q̄q~r ,s!TA~b!G L J .

~28!
-
n

e

us

Note that the averaging of the whole exponential in Eq.~28!
makes this expression different from the Glauber eikonal
proximation wheres(r ,s) is averaged in the exponent,

sGlauber
g* A ~s,Q2!

52E d2bH 12expF2
1

2
sg* N~s,Q2!TA~b!G J . ~29!

The difference is known as Gribov’s inelastic correctio
@31#. In the case of DIS the Glauber approximation does
make sense~because of a small value ofsg* p, which is at
most of the order of 100mb for real photons! and the whole
cross section is due to the inelastic shadowing.

The eikonal formula~28! for the total photoabsorption
cross section on a nucleus can be obtained as a limiting
of the Green function formalism. Indeed, in the high-ener
limit, n→` the kinetic term in Eq.~17! can be neglected an
the Green function reads

Gq̄q~rW2 ,z2 ;rW1 ,z1!un→`

5d~rW22rW1!expF2
1

2
s q̄q~r 2 ,s!E

z1

z2
dzrA~b,z!G . ~30!

After substitution of this expression into Eqs.~2!, ~15!, and
~16! one arrives at the result, Eq.~28!.

For smaller energies whenl c;RA , one has to take into
account the variation of the transverse sizer during propa-
gation of theq̄q pair through the nucleus. This transver
size variation is naturally included using correct quantu
mechanical treatment based on the Green function forma
presented above.

The overall total photoabsorption cross section on
6-5
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nucleus is given as a sum ofT and L polarizations,sg* A

5sT
g* A1e8sL

g* A , assuming that the photon polarizatione8
51. If one takes into account onlyq̄q Fock component of
C

qs

on

-

fi

in
rk

03520
the photon the full expression after summation over all fl
vors, colors, helicities, and spin states has the following fo
@32#:
sg* A~xB j ,Q
2!5Asg* N~xB j ,Q

2!2Ds~xB j ,Q
2!

5AE d2r E
0

1

das q̄q~r ,s!S uC q̄q
T ~rW,a,Q2!u21uC q̄q

L ~rW,a,Q2!u2

2
3aem

~2p!2 (
f 51

Nf

Zf
2ReE d2bE

2`

`

dz1E
z1

`

dz2E
0

1

daE d2r 1E d2r 2rA~b,z1!rA~b,z2!

3s q̄q~r 2 ,s!s q̄q~r 1 ,s!H @a21~12a!2#e2
rW1•rW2

r 1r 2
K1~er 1!K1~er 2!

1@mf
214Q2a2~12a!2#K0~er 1!K0~er 2!J Gq̄q~rW2 ,z2 ;rW1 ,z1!. ~31!
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Here uC q̄q
T,L(rW,a,Q2)u2 are the absolute squares of the L

wave functions for theq̄q fluctuation ofT and L polarized
photons summed over all flavors with the form given by E
~12! and ~13!, respectively.

In the high-energy limit after substitution of expressi
~30! for the Green function into Eq.~31! one arrives at the
following results, which corresponds to Eq.~28! after inclu-
sion of a sum ofT andL polarizations:

sg* A~xB j ,Q
2!

52E d2bE d2r

3E
0

1

daH 12expF2
1

2
s q̄q~r ,s!TA~b!G J

3
2NCaem

~2p!2 (
f 51

Nf

Zf
2$@a21~12a!2#e2K1

2~er !

1@mf
214Q2a2~12a!2#K0

2~er !%. ~32!

At photon polarization parametere851 the structure func-
tion ratio F2

A(xB j ,Q
2)/F2

N(xB j ,Q
2) can be expressed via ra

tio of the total photoabsorption cross sections

F2
A~xB j ,Q

2!

F2
N~xB j ,Q

2!
5

sT
g* A~xB j ,Q

2!1sL
g* A~xB j ,Q

2!

sT
g* N~xB j ,Q

2!1sL
g* N~xB j ,Q

2!
, ~33!

where the numerator on the right-hand side~rhs! is given by
Eq. ~31!, whereas denominator can be expressed as the
term of Eq.~31! divided by the mass numberA.

Finally, we would like to emphasize thatq̄q Fock com-
ponent of the photon represents the higher twist shadow
correction @16#. This correction vanishes at large qua
.

rst

g

masses as 1/mf
2 . It is not so for the higher Fock states co

taining gluons and leading to GS. GS represents the lea
twist shadowing correction@19,33#. Besides, a steep energ
dependence of the dipole cross sections q̄q(r ,s) @see Eqs.~5!
and ~6!# especially at smaller dipole sizesr causes a steep
energy rise of both corrections.

III. ALGORITHM FOR NUMERICAL SOLUTION OF THE
EVOLUTION EQUATION FOR THE GREEN

FUNCTION

As we mentioned in the preceding section, an expl
analytical expression for the Green functio
Gq̄q(rW2 ,z2 ;rW1 ,z1) ~22! can be found only for the quadrati
form ~20! of the dipole cross section and for uniform nucle
density function ~21!. It was already analyzed in Refs
@15,16# that such an approximation should have a reasona
accuracy, especially for heavy nuclei. We also discusse
the preceding section that the higher accuracy can
achieved taking into account the fact that expression~28! in
the high-energy limit can be easily calculated using realis
parametrizations of the dipole cross section@see Eqs.~5! and
~6!# and a realistic nuclear density functionrA(b,z) @30#.
Consequently, one needs to know the full Green funct
only in the transition region from nonshadowing (xB j;0.1)
to a fully developed shadowing given by Eq.~28!. Therefore
the value of the energy-dependent factorC(s) in Eq. ~20!
was fixed@15,16# separately forT andL photon polarizations
@see Eq.~25!# in a such way that the asymptotic nucle
shadowing in DIS is the same for the realistic parametri
tions of the dipole cross section Eqs.~5! and ~6! and for
approximation~20!. Correspondingly, the valuer0 of the
uniform nuclear density~21! was fixed in an analogical way
as given by Eq.~27! and described shortly in the precedin
section. Such a procedure for determination of the fac
6-6
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C(s) andr0 was applied also in Refs.@17,18# with respect to
incoherent and coherent production of vector mesons off
clei.

In order to remove the above mentioned uncertainties,
should solve the evolution equation for the Green funct
numerically for arbitrary parametrization of the dipole cro
section and for realistic nuclear density function. Howev
the tax for this general solution is that one does not obta
nice analytical form for the Green function. First we prese
an algorithm for the exact numerical solution of the evo
tion equation. Using this algorithm we will calculate th
nuclear shadowing in DIS and study how the new res
change in comparison with predictions@15#, based on the
above mentioned approximations leading to harmonic os
lator Green function~22!.

In the process of numerical solution of the Schro¨dinger
equation~17! for the Green functionGq̄q(rW2 ,z2 ;rW1 ,z1) it is
not very convenient to treat the initial condition~18! with
two-dimensionald function on the rhs In order to remov
this problem one should use the following substitutions:

g1~rW2 ,z2 ;z1!5E d2r 1K0~er 1!s q̄q~r 1 ,s!Gq̄q~rW2 ,z2 ;rW1 ,z1!

~34!

and

rW2

r 2
g2~rW2 ,z2 ;z1!

5E d2r 1K1~er 1!s q̄q~r 1 ,s!
rW1

r 1
Gq̄q~rW2 ,z2 ;rW1 ,z1!. ~35!

Consequently, after some algebra with Eq.~17! one can in-
troduce new functionsg1(rW2 ,z2 ;z1) andg2(rW2 ,z2 ;z1) which
satisfy now the following evolution equations
e

e
at

e

03520
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d

dz2
g1~rW2 ,z2 ;z1!5H 1

2m q̄q
F e22

]2

]r 2
2

2
1

r 2

]

]r 2
G

1Vq̄q~z2 ,rW2 ,a!J g1~rW2 ,z2 ;z1!

~36!

and

i
d

dz2
g2~rW2 ,z2 ;z1!5H 1

2m q̄q
F e22

]2

]r 2
2

2
1

r 2

]

]r 2
1

1

r 2
2G

1Vq̄q~z2 ,rW2 ,a!J g2~rW2 ,z2 ;z1!

~37!

with the boundary conditions

g1~rW2 ,z2 ;z1!uz25z1
5K0~er 2!s q̄q~r 2 ,s! ~38!

and

g2~rW2 ,z2 ;z1!uz25z1
5K1~er 2!s q̄q~r 2 ,s!. ~39!

In Eqs.~36! and ~37! the quantity

m q̄q5na~12a! ~40!

plays the role of the reduced mass of theq̄q pair. Conse-
quently, expression~31! for total photoabsorption cross se
tion on a nucleus now reads
sg* A~xB j ,Q
2!5Asg* N~xB j ,Q

2!2Ds~xB j ,Q
2!

5AE d2r E
0

1

das q̄q~r ,s!~ uC q̄q
T ~rW,a,Q2!u21uC q̄q

L ~rW,a,Q2!u2!

2
3aem

~2p!2 (
f 51

Nf

Zf
2ReE d2bE

2`

`

dz1E
z1

`

dz2E
0

1

daE d2r 2rA~b,z1!rA~b,z2!

3s q̄q~r 2 ,s!$@a21~12a!2#e2K1~er 2!g2~rW2 ,z2 ;z1!1@mf
214Q2a2~12a!2#K0~er 2!g1~rW2 ,z2 ;z1!%.

~41!
to
ar

olu-
ill
ar-
There are several approaches for solving the tim
dependent one-dimensional Schro¨dinger equation~see, for
example, Refs.@34–37#!. One cannot adopt directly thes
approaches for our purposes because one needs to tre
time-dependent two-dimensional Schro¨dinger equation@see
Eq. ~17!#. Therefore, we will consider a modification of th
method based on the Crank-Nicholson algorithm@38#. De-
tails of this method for numerical solution of Eqs.~36! and
~37! are presented in the Appendix.
-

the

IV. NUMERICAL RESULTS

As we mentioned above, the main goal of this paper is
present for the first time the realistic predictions for nucle
shadowing based on exact numerical solutions of the ev
tion equation for the Green function. These predictions w
be confronted with approximate results obtained using h
monic oscillatory form of the Green function~22!. The pro-
posed algorithm~see Appendix! for numerical solution of the
6-7
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evolution equation for the Green function gives a possibi
to calculate nuclear shadowing for arbitrary LC potent
Vq̄q(z,rW,a) and nuclear density function. It allows to pe
form an independent cross-check whether the results ca
lated using quadratic form of the imaginary pa
ImVq̄q(z,rW,a)521/2rA(b,z)Cr2 (C'3), of the LC poten-
tial and uniform density functionrA(b,z)5r050.16 fm23

correspond to predictions for nuclear shadowing taken fr
Ref. @15# calculated using Green function of the form~22!.
Therefore, we calculate nuclear shadowing for calcium a
lead as was done in Ref.@15#.

In order to realize one-to-one comparison with the res
from Ref. @15# we made several assumptions. As was m
tioned in Sec. II, we neglect the real part of the LC poten
Vq̄q(z2 ,rW2 ,a) in the Schro¨dinger equation4 ~17! analyzing
DIS at medium and large values ofQ2. We neglect also the
effects of nuclear antishadowing assuming that they are
yond the shadowing dynamics. The corresponding value
Bjorken xB j cover medium and medium large values,xB j

P(0.001,0.1). For this reason we omit the effects of G
which are important at smallxB j ~largen). Although gluons
can give some small~not negligible! contribution to nuclear
shadowing at lower limit (xB j;0.001) of investigated inter
val of xB j , for simplicity we do not include them in calcu
lations as was done also in Ref.@15#.

We use an algorithm for numerical solution of the Sch¨-
dinger equation for the Green function described in Sec.
and the Appendix. Numerical solution of Schro¨dinger equa-
tion allows us to use realistic nuclear density function a
realistic parametrizations of the dipole cross secti
s q̄q(r ,s). These parametrizations naturally incorporate
energy (xB j2) dependence ofs q̄q(r ,s) which was not in-
cluded so far in calculations~see Ref.@15#!.5 We took the
nuclear density function in Woods-Saxon form@30#. The re-
alistic calculations of nuclear shadowing were performed
two different parametrizations of the dipole cross secti
GBW @24# given by Eq.~5! and KST@19# given by Eq.~6!.

Nuclear shadowing effects were studied viaxB j behavior
of the ratio of proton structure functions~33! divided by the
mass numberA. The proton structure functionsF2

N(xB j ,Q
2)

andF2
A(xB j ,Q

2) were calculated perturbatively~we fixed the
quark masses atmq50.3 GeV, ms50.45 GeV, andmc
51.5 GeV) via total photoabsorption cross sectio
sg* N(xB j ,Q

2) and sg* A(xB j ,Q
2) given by Eqs.~4! and

~41!, respectively. The results of calculations are shown
Fig. 2. The dashed curves represent the predictions base
the harmonic oscillator Green function~22! approach corre-
sponding to a constant nuclear density functionr0
50.16 fm23 and quadratic form of the dipole cross secti
~20! with a constant factorC(s)'3. The dotted curves cor

4Consequently, the real part ofVq̄q(z2 ,rW2 ,a) is neglected as wel
in differential equations~36! and ~37!.

5The energy dependence of dipole cross section was included
via the energy-dependent factorC(s) in approximation~20!. The
factor C(s) was determined by the procedure described shortly
Sec. II and presented in detail in Refs.@16,25,17#.
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respond to calculations using the same quadratic form of
dipole cross section but realistic nuclear density function
the Woods-Saxon form@30#. The thin and thick solid curves
correspond to realistic calculations based on the exact
merical solution of the evolution equation~17! for the Green
function using GBW~5! and KST~6! parametrizations of the
dipole cross section, respectively.

At low xB j&0.001 one should expect a saturation
nuclear shadowing at a level given by Eqs.~28! or ~32!. For
parametrization~20! of the dipole cross section with consta
C(s)'3 @15#, this saturation level is fixed at some valu
depending onQ2 and the nuclear mass numberA ~see the
dashed and dotted lines in Fig. 2!. However, it is not so for
realistic parametrizations, Eqs.~5! and~6!, where the satura-
tion level is not fixed exactly due to energy~Bjorken xB j-!
dependence of the dipole cross sections q̄q(r ,s).

In the process of realistic calculations of nuclear shado
ing ~41!, we tested the correctness of tremendous comp
tions based on the numerical evaluations of the functionsg1
and g2 from differential equations~36! and ~37! in a such
way that in the high-energy limit the results for nuclear sha
owing must be the same as obtained from expression~32!.

Results presented in Fig. 2 show quite a large deviation
the predictions within the harmonic oscillator Green functi
approach~dashed lines! from realistic calculations performe
for both parametrizations of the dipole cross section~thin
and thick solid lines!. This deviation depends onQ2 and the
nuclear mass numberA as a result of quadratic form of th
dipole cross section@see Eq.~20! with C(s)'3] and appli-
cation of the constant nuclear density function,r0
50.16 fm23. There is even non-negligible difference b
tween predictions using constant and realistic form of
nuclear density function~compare dashed and dotted lines!.
It allows to make the conclusion that the form of nucle
density function is also important for model prediction
Note that the dashed curves correspond to predictions
sented in Ref.@15#. It is another cross-check for correctne
of calculations using the above presented algorithm for
merical solution of the evolution equation for the Gre
function.

As one can see from Fig. 2 at small and medium values
Q2 (Q252 and 6 GeV2), the approximate calculations de
picted by the dashed lines agree better with realistic calc
tions using KST parametrization@19# of the dipole cross sec
tion expressed by Eq.~6!. At large Q2518 GeV2 and at
xB j&0.005, however, the dashed lines seem to be in be
agreement with realistic calculations using GBW parame
zation @24# given by Eq.~5!. This fact confirms the discus
sion presented in Sec. II that the GBW model is suited be
at medium and largeQ2*5 –10 GeV2 and at medium smal
and smallxB j&0.01 whereas the KST model prefers low a
medium values ofQ2&10 GeV2.

Nevertheless, calculations of nuclear shadowing us
harmonic oscillator Green function can be improved by d
termination of the energy-dependent factorC(s) in approxi-
mation ~20! by the procedure mentioned shortly above
Sec. II and described in detail in Refs.@16,25# for calculation
of nuclear shadowing in DIS and in@17,18# for calculation of
nuclear transparency for coherent and incoherent vector

ly

n
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FIG. 2. Nuclear shadowing for calcium and lead. The dashed curves are calculated using harmonic oscillator Green function
~22! corresponding to constant nuclear density~21! and dipole cross section~20! with C(s)'3 @15#. The dotted curves are calculated for th
same quadratic form of the dipole cross section but for realistic nuclear density function of the Woods-Saxon form@30#. The thin and thick
solid curves correspond to exact numerical solution of the evolution equation for the Green function using GBW@24# and KST @19#
parametrizations of the dipole cross section, respectively.
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son production off nuclei. That procedure allows to evalu
the factorC(s) for each c.m. energy squareds depending on
the values ofQ2 andA. As a result, at fixedQ2 the parameter
C(s) rises withs as a consequence of energy- (xB j-! depen-
dent realistic dipole cross section given by Eqs.~5! and ~6!.
Thus, the value of C(s) at s corresponding toxB j
P(0.001,0.01) exceeds the fixed valueC(s)'3 used in the
predictions in Ref.@15#. This fact should lead to a large
nuclear shadowing atxB jP(0.001,0.01) in comparison with
what is shown in Fig. 2 by the dashed lines.

As we mentioned above in Sec. II, the difference betwe
the thin and thick solid lines in Fig. 2 can be treated a
measure of the theoretical uncertainty in the kinematic
03520
e

n
a
-

gion where both the realistic parametrizations GBW~5! and
KST ~6! are applicable. Therefore, it would be very use
for the future realistic calculations to connect advantages
both parametrizations in the modified model for dipole cro
section which can be then safely used for all dipole si
covering perturbative as well as nonperturbative regions.

V. SUMMARY AND CONCLUSIONS

We present a rigorous quantum-mechanical appro
based on the light-cone QCD Green function formalis
which naturally incorporates the interference effects of
and CL. Within this approach@15,16,20# we study nuclear
6-9
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shadowing in deep-inelastic scattering at moderately sm
Bjorken xB j .

Calculations of nuclear shadowing performed so far w
based only on the efforts to solve the evolution equation
the Green function analytically. Analytical harmonic oscill
tory form of the Green function~22! could be obtained only
taking into account additional approximations such as a c
stant nuclear density function~21! and the dipole cross sec
tion of the quadratic form~20!. It brings additional theoreti-
cal uncertainties in predictions for nuclear shadowing.
order to remove these uncertainties we solve the evolu
equation for the Green function numerically.

We perform for the first time the exact numerical soluti
of the evolution equation for the Green function using tw
realistic parametrizations of the dipole cross section~GBW
@24# and KST@19#! and realistic nuclear density function o
the Woods-Saxon form@30#. This exact numerical solution
does not require to put any additional approximations. A
lyzing only medium and large values ofQ2, we neglect the
real part of the LC potentialVq̄q(z2 ,rW2 ,a) in the time-
dependent two-dimensional Schro¨dinger equation~17! re-
sponsible for interaction betweenq̄ and q. We neglect also
the nuclear antishadowing effect as was done in Ref.@15#
assuming that it is beyond the shadowing dynamics. P
forming calculations at medium and medium large values
xB jP(0.001,0.1) we neglect for simplicity also the contrib
tion of the higher Fock states leading to effects of GS. Thi
supported also by the one-to-one comparison of the real
calculations with the predictions from Ref.@15#, where GS is
neglected as well.

In order to compare the realistic calculations with data
nuclear shadowing, the effects of GS should be taken
account especially atxB j&0.001. The same path integr
technique@19# can be applied in this case. However, t
calculations of GS~see Ref.@39#, for example! were per-
formed so far using analogical approximations as alre
mentioned above, like a constant nuclear density func
and the quadratic form@see Eq.~20!# of the dipole gluon-
gluon-nucleon cross section,sgg(r ,s)59/4s q̄q(r ,s) plus
further assumptions that simplify the final expression for G
Moreover, the GS was calculated from the shadowing of
uq̄qG& Fock component of a longitudinally polarized photo
at sufficiently largeQ2 where the three-body Green functio
Gq̄qG , is assumed to be factorized as a product of two-bo
ones@19#. Using the algorithm presented above one can c
culate GS exactly for the general case of nuclear shadow
for a three-parton system, i.e., one can solve numerically
Schrödinger equation for the Green functionGq̄qG describing
propagation of theq̄qG system through a nuclear medium
We are going to calculate numerically the gluon contribut
to nuclear shadowing in a forthcoming paper.

We present analogical numerical results of nuclear sh
owing in DIS with correct quantum-mechanical treatment
multiple interaction of the virtual photon fluctuations and
the nuclear form factor, as was done in Refs.@15,16#. We
found quite large differences~see Fig. 2! between realistic
predictions and the approximate results obtained within h
monic oscillator Green function approach~22!. At small and
medium values ofQ2 the approximate predictions agree be
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ter with realistic calculations using KST parametrization@19#
of the dipole cross section Eq.~6!. At large Q2, however,
they seem to be in better agreement with realistic calcu
tions using GBW parametrization@24# given by Eq.~5!. It
confirms the fact that the GBW model is well suited at m
dium and largeQ2 and at medium small and smallxB j ,
whereas the KST model prefers low and medium values
Q2. Therefore, the future realistic calculations require to
vise existing parametrizations for dipole cross section in
der to be used for whole region of dipole sizes.

In conclusion, the universality of the LC dipole approa
based on the Green function formalism allows us to ap
the presented algorithm for the exact numerical solution
the evolution equation for the Green function also for calc
lations of other processes such as Drell-Yan production, v
tor meson production, etc., including the effects of glu
shadowing at high energies as well.
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APPENDIX: DESCRIPTION OF THE METHOD FOR
NUMERICAL SOLUTION OF THE TIME-DEPENDENT

SCHRÖDINGER EQUATION

We treat here only differential equation~36! for the func-
tion g1(rW2 ,z2 ;z1) and describe in detail the method for i
numerical solution. This method is then analogically app
cable for numerical solution of Eq.~37! for the function
g2(rW2 ,z2 ;z1).

Looking at Eq.~36!, one needs to solve numerically th
following time-dependent Schro¨dinger equation:6

i
d

dt
g1~rW,t !5Ĥg1~rW,t !, ~A1!

whereĤ is the Hamiltonian operator defined by

Ĥ5
1

2m q̄q
F e22

]2

]r 2
2

1

r

]

]r G1Vq̄q~r ,t !. ~A2!

Here the complex LC potentialVq̄q(r ,t) is assumed to have
only the imaginary part responsible for absorption ofq̄q
photon fluctuation in the nuclear medium@see discussion in
Sec. II and Eq.~19!#,

Vq̄q~r ,t !52
i

2
s q̄q~r ,s!rA~b,t !, ~A3!

whereb is the nuclear impact parameter andr is the trans-
verse separation betweenq̄ andq at the pointz2. The longi-

6We put r 2[r andz2 plays the role of timet.
6-10
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tudinal coordinatez2 plays the role of timet for the q̄q pair
propagation from the pointz1. In Eq. ~A2! the quantitym q̄q
is expressed by Eq.~40!.

Ignoring for a moment the fact thatĤ is an operator, Eq
~A1! has the formal solution,

g1~rW,t !5exp~2 i tĤ !g1~rW,0!, ~A4!

whereg1(rW,0) is the function att50. Thus, if one knows
g1(rW,0), one can formally calculate the behavior at all futu
times using Eq.~A4!. Unfortunately, this formal solution is
not of much practical use since the Taylor expansion of
exponential factor in Eq.~A4! involves a very large~infinite!
number of terms. However, it does suggest a way to proc
numerically. Let us consider a formal solution applying ov
a very small time interval. After time discretization in ste
Dt using Eq.~A4! we obtain

g1~rW,t1Dt !5exp~2 iDtĤ !g1~rW,t !. ~A5!

Consequently, at sufficiently small time intervalsDt the
higher order terms in Taylor expansion of the exponen
factor in Eq.~A4! are small enough and can be neglect
Then we can include only the term linear inĤ,

exp~2 iDtĤ !'12 iDtĤ. ~A6!

However, this way of approximating the exponential facto
not correct with regard to maintaining unitarity@38#. In order
to settle this problem, one should use an approach that s
fies unitarity writing the exponential factor in Eq.~A5! in
what is known as the Cayley form

exp~2 iDtĤ !'

12
1

2
iDtĤ

11
1

2
iDtĤ

. ~A7!

Using this approximation and Eq.~A4! to propagate the
function g1(rW,t) forward in time, we obtain

g1~rW,t1Dt !'

12
1

2
iDtĤ

11
1

2
iDtĤ

g1~rW,t !. ~A8!

This expression will be the basis for numerical approa
From Eq.~A8! we first obtain

F11
1

2
iDtĤGg1~rW,t1Dt !5F12

1

2
iDtĤGg1~rW,t !.

~A9!

Given Eq.~A9!, a natural way to proceed is to discretiz
also space into units of sizeDr and write the functiong1 as
g1(r ,t)[g1(mDr ,nDt). Then one can express the first a
second derivatives included in the Hamiltonian operator~A2!
in the usual finite-difference form
03520
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]

]r
g1~r ,t !'

g1~r 1Dr !2g1~r ,t !

Dr
5

g1~m11,n!2g1~m,n!

Dr
~A10!

and

]2

]r 2
g1~r ,t !'

]

]r Fg1~r 1Dr !2g1~r ,t !

Dr G
5

g1~r 1Dr ,t !22g1~r ,t !1g1~r 2Dr ,t !

~Dr !2

5
g1~m11,n!22g1~m,n!1g1~m21,n!

~Dr !2
.

~A11!

If one replaces in Eq.~A9! the Hamiltonian operator by
Eq. ~A2!, converting everything to finite-deference form u
ing also Eqs.~A10! and ~A11!, and rearranging a few term
one obtains the following expression

g1~m11,n11!1h~m!F2il22m q̄q~Dr !2V~m,n11!

2e2~Dr !2222
1

mGg1~m,n11!1h~m!g1~m21,n11!

52g1~m11,n!1h~m!F2il12m q̄q~Dr !2V~m,n!

1e2~Dr !2121
1

mGg1~m,n!2h~m!g1~m21,n!,

~A12!

where the functionh(m) is given by

h~m!5
m

11m
~A13!

and

l5
2~Dr !2m q̄q

Dt
~A14!

with the reduced mass ofq̄q pair defined by Eq.~40!.
The algorithm very effective for solving the time

dependent Schro¨dinger equation in one dimension is know
as the Crank-Nicholson method described in detail in Re
@38,40#. However, in order to solve Eq.~A12! one should
modify this method for the more complicated case of tw
dimensional Schro¨dinger equation. We begin by defining
shorthand for the rhs of Eq.~A12!,
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V~m,n![2g1~m11,n!1h~m!F2il12m q̄q~Dr !2V~m,n!

1e2~Dr !2121
1

mGg1~m,n!2h~m!g1~m21,n!,

~A15!

in order to rewrite Eq.~A12! as

g1~m11,n11!1h~m!F2il22m q̄q~Dr !2V~m,n11!

2e2~Dr !2222
1

mGg1~m,n11!1h~m!g1~m21,n11!

5V~m,n!. ~A16!

For convenient numerical procedure, one should w
g1(m11,n11) as a function of justg1(m,n11) in the fol-
lowing form

g1~m11,n11!5e~m,n!g1~m,n11!1 f ~m,n!,
~A17!

and so one can calculateg1(m11,n11) directly from
g1(m,n11).

If one inserts Eq.~A17! into Eq. ~A16! and does a little
arithmetic, one can find that the factorse(m,n) and f (m,n)
must be given by the following implicit relations

e~m,n!5h~m!F21
1

m
12m q̄q~Dr !2V~m,n11!1e2~Dr !2

22il2
1

e~m21,n!G ~A18!

and

f ~m,n!5V~m,n!1h~m!
f ~m21,n!

e~m21,n!
. ~A19!

One supposes that a propagation ofq̄q pair in the nuclear
medium is confined to some region of space so that sp
index runs fromm50 to m5M and imposes the boundar
conditions g1(0,n)5g1(M ,n)50. The expressions~A18!
and~A19! for the factorse(m,n) and f (m,n) can be applied
only in the interior of the system. Consequently, from t
boundary condition for the functiong1 at m50 together with
Eqs. ~A15! and ~A17!, one can find that at this end of th
system

e~1,n!5h~1!@312m q̄q~Dr !2V~1,n11!1e2~Dr !222il#
~A20!

and

f ~1,n!5V~1,n!. ~A21!
03520
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For the first time step,n50, the factorsV(1,0), e(1,0),
and f (1,0) can be explicitly calculated from the initial func
tion, g1(m,0)5s q̄q(mDr ,s)K0(emDr ), which is assumed
to be given as an initial condition@see also Eq.~38!#. Using
known values ofe(1,0) andf (1,0), one can calculate the
the factorse(2,0) and f (2,0) from the implicit expressions
~A18! and ~A19! and continue so for all values ofm along
the system. Hence, we traverse the system fromm50 to m
5M , to calculatee(m,0) and f (m,0) for all m.

For the further purposes, Eq.~A17! can be rearranged in
the following form:

g1~m,n11!5
g1~m11,n11!2 f ~m,n!

e~m,n!
. ~A22!

As was mentioned above, at the end of the systemm5M the
function g1 vanishes. Consequently, one can write

g1~M21,n11!5
g1~M ,n11!2 f ~M21,n!

e~M21,n!

52
f ~M21,n!

e~M21,n!
, ~A23!

sinceg1(M ,n)50 for all values ofn. One can thus use Eq
~A23! to obtaing1(M21,1), which is the value of the new
function one spatial unit in from the ‘‘right’’ boundary,m
5M . Then one can use Eq.~A22! to calculate the function
g1 at m5M22,M23, etc., as one traverses the syste
backward from large to small values ofm.

Finally, the algorithm can be summarized in the followin
way ~see also the schematic description in Fig. 3!.

~1! One begins with the initial functiong1(m,0) given by
Eq. ~38!.

  

M2

     
(3) Calculate  function  at  next  time  step

1 2 3 .....

(4) Repeat

left  end  and  moving  to  right

m=0 m=M

m=MM1m=0

1

g  (m,n+1)1

starting  at  right  end  and  moving  to  left

  at

.....

(2) Calculate   e(m,n)  and   f(m,n)  starting

(1) Current  function     g  (m,n)

position              time step

FIG. 3. Schematic description of the Cranck-Nicholson alg
rithm.
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~2! The system is traversed from small to large values
m and the functionse(m,0) andf (m,0) are calculated using
Eqs. ~A20! and ~A21! initially and Eqs.~A18! and ~A19!
thereafter.

~3! The system is traversed from large to small values
v.

tt

. C

v

Eu

v.

03520
f

f

m andg1(m,1) is calculated using Eq.~A23! initially and Eq.
~A22! thereafter. This completes one iteration and yields
function g1 at n51 (t5Dt).

~4! Steps~2! and~3! are repeated to obtain the functiong1
as a function of time (n>1).
ion,
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