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Nuclear shadowing in deep-inelastic scattering: Numerical solution of the evolution equation
for the Green function
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Within a light-cone QCD formalism based on the Green function technique incorporating color transparency
and coherence length effects, we study nuclear shadowing in deep-inelastic scattering at moderately small
Bjorken xg;. Calculations performed so far were based only on approximations leading to an analytical
harmonic oscillatory form of the Green function. We present for the first time an exact numerical solution of
the evolution equation for the Green function using a realistic form of the dipole cross section and nuclear
density function. We compare numerical results for nuclear shadowing with previous predictions and discuss

differences.
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[. INTRODUCTION This analytical solution requires, however, to implement sev-

eral approximations into a rigorous quantum-mechanical ap-

Nuclear shadowing in deep-inelastic scatteribgS) off  proach like a constant nuclear density functieae Eq(21)]
nuclei has been intensively studied during the last two deand a specific quadratic form of the dipole cross sedtser
cades. It can be treated differently depending on the refef£q. (20)]. Consequently, obtained in a such way the har-
ence frame. In the rest frame of the nucleus, this phenommonic oscillator Green functiofsee Eq.22)] was used for
enon looks like nuclear shadowing of the hadronicthe calculation of nuclear shadowing. However, the follow-
fluctuations of the virtual photon and occurs due to theiring question naturally arises: how accurate is the evaluation
multiple scattering inside the targgt—10. In the infinite  of the nuclear shadowing in DIS using this Green function?
momentum frame of the nucleus it can be interpreted, howtn order to clarify this, one should solve the evolution equa-
ever, as a result of parton fusiphl—14 leading to a reduc- tion for the Green function numerically. It does not bring any
tion of the parton density at low Bjorke; . Although these  additional assumptions and does not force us to use supple-
two physical interpretations are complementary, we willmentary approximations, which cause the theoretical uncer-
work in the rest frame of the nucleus, which is more intuitive tainties. Therefore the main goal of this paper is to present
and is well suited also for the study of the coherence effectfor the first time the predictions of nuclear shadowing in DIS
[15]. at moderately smaltg; based on exact numerical solution of

An important phenomenon that controls the dynamics othe evolution equation for the Green function. In addition,
nuclear shadowing in DIS is the effect of quantum coher-applying an algorithm described in the Appendix, we present
ence. It results from destructive interference of the ampli-also the calculations of nuclear shadowing within the har-
tudes for which the interaction takes place on different boundnonic oscillator Green function approach using quadratic
nucleons. It can be treated also as the lifetime of qlge  form of the dipole cross sectiofEq. (20)] and a constant
fluctuation and estimated by relying on the uncertainty prin-nuclear density functiofEq. (21)]. We check whether they

ciple and Lorentz time dilation as correspond to the results already presented in R&f. Fi-
nally, we analyze and discuss the differences between the
2y exact and approximate predictions for nuclear shadowing.
tc—(?2+—|\/|%q’ @) Advantages of an exact numerical solution of the two-

dimensional Schinger equation for the Green function

wherev is the photon energ®? is the photon virtuality, and [see Eq(17)] presented in this paper provide a better base-
My is the effective mass of theq pair. It is usually called line for the future study of the QCD dynamics not only in
coherence time, but we will also use the term coherenc®IS off nuclei but also in further processes occurring in lep-
length (CL), since light-cone kinematics is assumdg, ton (proton-nucleus collisions.
=t.. CL is related to the longitudinal momentum transfer ~ Calculations of nuclear shadowing presented in IRE3]
q.=1/.. The effect of CL is naturally incorporated in the were performed assuming onlyy fluctuations of the photon
Green function formalism already applied in DIS, Drell-Yan and neglecting higher Fock components containing gluons
pair production [15,16, and vector meson production and sea quarks. Performing realistic calculations, we include
[17,18 (see also the following sectipn the effects of higher Fock states as the energy dependence of

The nuclear shadowing in DIS was studied in Refs.the dipole cross sectiomrg(F,s)." We use two realistic pa-
[15,16 using correct quantum-mechanical treatment basegametrizations ofog,(r,s) [see the following section and
on the Green function formalism. The Green function con-
trols then not only the relative transverse motion of tfie
pair but also an importance of the higher order multiple scat- *Here r represents the transverse separation of ghephoton
terings in the nucleus. The solution of the evolution equatiorfluctuation ands is the center of mass energy squartege the
for the Green function was performed so far analytically.following sectior).
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Egs.(5) and(6)], where the energy dependence is naturallywill write the energy dependence of variables in subsequent
included. However, we will neglect higher Fock states leadformulas also viag; dependence whenever convenient.
ing to gluon shadowindGS) [19] assuming only low and The first ingredient of the photoabsorption cross section

medium values of the photon energy as was done also in on a nucleon4) is the dipole cross sectiomaq(F,s) repre-

Ref. [15]. _ _ _ senting the interaction of@q dipole of transverse separation
. The paper is organl_zed as follqws. In the following SEC " with a nucleon[21]. It is a flavor independent universal
tion we present the light-cone dipole phenomenology for ) N ) . )
nuclear shadowing in DIS together with the Green functionUnction ofr and energy and allows to describe various high
formalism. Section Ill, supplemented by the Appendix, isENErgy processes in azumform way. It is known to V‘?n'Sh
devoted to the description of an algorithm for numerical so-duadraticallyogy(r,s)=r® asr—0 due to color screening
lution of the evolution equation for the Green function. Nu- (Property of color transparen¢@1-23) and cannot be pre-
merical results based on realistic calculations and a comparE-'Ct_ed reliably because of poorly known higher order pertur-
son with predictions within harmonic oscillator Green ative QCD corrections and nonperturbatl\ie effects. There
function approach are presented in Sec. IV. Finally, in Sec. \are two popular parametrizations ofg(r,s), Golec-

we summarize our main results and discuss differences b&iernat-Wisthoff (GBW) presented in Ref.[24] and

tween realistic and approximatgl5,16 calculations of Kopeliovich-Schger-Tarasov(KST) suggested if19]. De-

nuclear shadowing in DIS. tailed discussion and comparison of these two parametriza-
tions can be found, for example, in Ref47,25. Therefore,

Il. LIGHT-CONE DIPOLE PHENOMENOLOGY for completene_ss,_ we present here only the main feature_s (_)f

FOR NUCLEAR SHADOWING both parametrizations because they are used in the realistic

calculations of nuclear shadowing in DIS with the results
The main goal of the light-coné.C) dipole approach to shown in Sec. IV.
nuclear shadowing is a possibility to include the nuclear The GBW model[24] for the dipole cross section pro-
form factor in all multiple scattering terms. Derivation of the vides a very simple parametrization which saturates at large
formula for nuclear shadowing can be found in Rgf0].  qq separations,
The study of the difference between the correct quantum-
mechanical treatment of nuclear shadowing and known ap- r2
proximations is given in Ref[15] assuming onlygq Fock ‘qu(r'XBJ):UO[l_eXp( TR )
components of the photon and neglecting higher Fock com- )
ponents containing gluons and sea quarks. The nuclear anWhereRo(xBj)=0.3956<Bj/xo)”z fm and o= 23.03 mb;\
shadowing effect was omitted as \_NeII becau_se it was as-. 0.288:x,=0.0003. This dipole cross section vanisha2
sumed to be beyond the shadowing dynamics. The totaly gmai dipole sizes as implied by color transpare(@y).
photoabsorpt_lon cross section on a nucleus can be formally yascribes well the data for DIS at sma(i; and medium
represented in the form and largeQ?. However, it cannot be correct at sm&¥?
A 2 A PN ’ ) since it predicts energy-independent hadronic cross sections.
o7 "(xg},Q%)=Ac” "(xg},Q%) —~Ao(xp;,Q%).  (2) Besides,xg; is longer a proper variable at smal)® and
should be replaced by energy. This problem is removed by
the KST parametrizatiofil9] which keeps the forng5) but
contains an explicit dependence on energy,

: ©)

Here the Bjorken variablgg; is given by

L@@ 5
o 2mer T @2y’ r’

. (6)

aaq(r,s):ao(s)[l—exp( - R2(5)

s
where s is the y* nucleon center of mas&.m,) energy of
squared andny is mass of the nuc|eonr7*N(XBj,Q2) in An explicit energy dependence in the paramaig(s) is

Eq. (2) is the total photoabsorption cross section on aintroduced in such a way that guarantees the reproduction of

nucleon the correct hadronic cross sections,
N ) , (1 -y - 3Rj(s)
o N(Xgj,Q%)=| d°r | da|¥qy(r,a,Q%)|%ogqy(r,s). oo(8)=o(s)| 1+ (7)
0 ot 8<r2 > ’
(4) ch/m

. _ . whereoh(s) = 23.6(s/s) > "%+ 1.432(s/s0) %4 mb are the
Hereogy(r,s) is the dlpgle cross section that depends on thegmeron and Reggeon parts of the total cross section
qq transverse separatiorand the c.m. energy squarsdnd  [26], and Ry(s)=0.88(s/s,) M2 fm with A=0.28 ands,
‘Paq(F,a,Qz) is the LC wave function of thgq Fock com- =1000 GeV is the energy-dependent radius. In Eg)
ponent of the photon which depends also on the photon virér§h>7,=0.44 fi? is the mean pion charge radius squared.
tuality Q2 and the relative share of the photon momentum The main advantage of the KST parametrizaiidnis that it
carried by the quark. Note that Bjorkes; is related with  describes well the transition down to the limit of real photo-
c.m. energy squaresivia Eq.(3). Consequently, hereafter we production,Q?=0. However, the improvement compared to
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GBW model[24] at large separation@mall values ofQ?) and

leads to a worse description of the short-distance part of the

dipole cross section which is responsible for the behavior of ) 8Ncaenm N )

the proton structure function at larg#. To satisfy Bjorken | ¥gq(F,@,Q?)[?=———"—+ > Z3Q2a’(1— a)?Ko(er)?,

scaling, the dipole cross section at small dipole sizeuist (2m)” =1

be a function of the produc r which is not the case for the (13

KST parametrizatior(6). The form of Eq.(6) successfully

describes the data for DIS at smadk; only up to Q?

~10 Ge\? and does a poor job at larger values@f. q
Summarizing, the GBW model is suited better at medium Ky(2)=— —Ko(2). (14)

and largé Q°=5-10 GeV and at medium small and small dz

Xg;=0.01, whereas the KST model prefers low and medium ) ] )

values OfQ255—10 Ge\; Therefore, the difference of the Note that in the LC formahsm_the Bhoton_\/\/ave function

realistic calculations for nuclear shadowing in DIS usingContains also higher Fock stat@g), |qqG), [qq2G), etc.

these two models for the dipole cross section in the common he effects of higher Fock states are implicitly incorporated

kinematic region of their applicability can be treated as ainto the energyBjorkenxg;-) dependence of the dipole cross

measure of theoretical uncertainty. sectionogy(f,S) as is given in Eq(4). Note that the energy
The second ingredient ny*N(XBj ,Q?) in Eq. (4) is the fjepen_de_nce of the (_Jlipqle cross section is naturally included

perturbative distribution amplitudéwave function”) of the N realistic parametrizations, Eq) and (6). _

qq Fock component of the photdrand has the following In Eq. (2) the second term\ o, represents the shadowing

form for transversely(T) and longitudinally (L) polarized correction and has the following form

photons[4,27,28:

whereK; is the modified Bessel function,

Ao(xg},Q%)
\NC o —n
T L, > _ em ) 1 o o
\I,aq (r!anz)_ 20 ZqXOT LXKO(Er)a (8) = ERef dzbf le pA(bizl) J’Z dzsz(b,Zz)
— 1

where y and;are the spinors of the quark and antiquark, 1
respectivelyZ, is the quark charge\lc=3 is the number of X o da A(zy,23,@) (19
colors.Ky(er) is a modified Bessel function with

€= a(l-a)QP+m, @ "
. ST L A(211221a)
wherem, is the quark mass. The operat@s$'- read,
~ - - = 2 * (7 AP
OT=my5 6+i(1—2a)(5-f)(E-V,)+(GX6)-V,, —f d°ry Wy(f2,@,Q%oq(r2,9)
(10
©L=2Qa(1—a)(5'~ﬁ) (11) X f dzrlGaq(Fz,Zz§F1,21)0'aq(r1,S)q’aq(Fl,a,Qz)-

(16)
HereV, acts on transverse coordinateé is the polarization
vector of the photond is a unit vector parallel to the photon In Eqg. (15) pa(b,z) represents the nuclear density function
momentum, andr is the three vector of the Pauli spin ma- defined at the point with longitudinal coordinatand impact
trices. parametel.

Matrix element (4) contains the LC wave function The shadowing term in Ed2) is illustrated in Fig. 1. At
squared, which has the following form f@randL polariza-  the pointz,; the initial photon diffractively produces thgg
tions: pair (y*N—qqgN) with transverse separatiory. The qq

pair then propagates through the nucleus along arbitrary
N —_ 5 curved trajectories, which are summed over, and arrives at
" (272 z«l Zi{miKo(e,r) the pointz, with a transverse separatign. The initial and

(2m) final separations are controlled by the LC wave function of

+a?+(1-a)?]e¥K (er)? (12 theqq Fock component of the phOtOI’iaq(F,a,Qz). During

propagation through the nucleus thg pair interacts with
bound nucleons via dipole cross sectiog,(r,s) which de-
?That is, at medium small and small values of dipole size, Pe€Nnds on the local transverse separafioithe Green func-

_ZNCaem

«/1/Q?<0.06—0.09 fm. tion Ggy(r2,22:71,2;) describes the propagation of tiog
3We neglect the nonperturbative effects responsible for the interpair fromz; to z,.

action betweem andq assuming sufficiently large values @ in The Green functiorGg,(f,,2,:71,2;) satisfies the time-

DIS (see below: dependent two-dimensional ScHioger equation,
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mentioned above, the higher Fock states containing gluons
describe the energy dependence of the photoabsorption cross
section on a nucleon. Besides, those Fock components lead
also to GS as far as nuclear effects are concerned. However,
these fluctuations are heavier and have a shorter coherence
time (lifetime) than the lowestqq) state. Therefore, at me-
dium energies onlyqq) fluctuations of the photon matter.
Consequently, GS related to the higher Fock states will be
dominated at high energies. Because we will calculate the
nuclear shadowing at moderately smal, (medium values
of v) we can neglect the GS for our purposes. This is sup-
ported also by the main goal of this paper which is based on

FIG. 1. A cartoon for the shadowing terfvir in Eq. (2). Propa-  comparison of the realistic calculations for nuclear shadow-
gation of theqq pair through the nucleus is described by the Greening with the results obtained within the harmonic oscillatory
function Gaq(r”z,zz;Fl_,zl) which results from the summation over Green function approach and presented in R&5] where
different paths of thejq pair. GS was neglected as well.

One can describe a propagation of a noninteractjgg
pair in a nuclear medium by the Green function satisfying
the evolution Eq(17). The LC potentiaNg,(2,,1, «) in this

i_Gaq('?z,Zz;Fl,Zl)

dz, case acquires only an imaginary part which represents ab-
5 sorption in the medium,
€ _Arz
= mJFVaq(Zz,fz,a) Gqy(2,22:71,21) (17) ) oa(F2S)
IMVgy(22,7, @)= —TpA(b,zz). (19

with the boundary condition
The analytical solution of Eq(17) is known only for the
N N N R H H H 2
Gaq(rzyzzirl,zlﬂzz:zl:52(f1—f2)- (18) harmonic oscnlat_or potentlav_(r)Ofr . Consequently, one
should use the dipole approximation

In Eq. (17) the Laplaciam\, acts on the coordinateande is

given by Eq.(9). oqy(r,8)=C(s)r?, (20
The Green functioiGg,(2,2,;11,2;) includes the phase

shift between initial and final photons which is due to trans-

verse and also longitudinal motion of the quarks. One can

see the presence of the GIL) in the kinetic term of the pA(b,s)=po®(Ri—b2—22), (21

evolution Schrdinger equatio(17), where the role of time _ o _
is played by the longitudinal coordinate,. A part inorder to to obtain the Green function in an analytical form.

A, /[2va(1l— a)] of this kinetic term takes care of the vary- N EQ.(21) Ra is the nuclear radius. The solution in this case
ing effective mass of thaq pair, M%q=(m§+ k%)/a(l is the harmonic oscillator Green functi¢f9],

—a), and provides a proper phase shift. This is what the

overall kinetic term consists of when the transverse momenGg,(f2,2,:71,2;)

tum squared of the quark is replaced Ib’y—»A,. This dy-

and uniform nuclear density

namically varying effective mass controls CL defined by the  —___ ?(“) exp: _'b(a) [(r?+r2)coq wAz)
Green function. The static pa@®+mZ/ a(1— a) of the CL 2misin(w Az) ~ | sif(wAz)
is connected with the longitudinal motion and is included in i €Az
the Green function as well via the last phase shift fatsee —2f- Fz]] exp{ S ——— (22
Eg. (22) below]. Consequently, the longitudinal momentum 2va(l-a)
transfer is known and all the multiple interactions are in- _
cluded whereAz=2z,—z, and

The imaginary part of the LC potentiddg,(z,,1,,a) in
Eq. (17) is responsible for attenuation of tiyg photon fluc- . b(a) 23
tuation in the medium, while the real part represents the in- va(l—a)’

teraction between the and q. Because we are going to

calculate the nuclear shadowing in DIS at medium and larg&here

Q?, one can safely neglect thisq interaction as was done

also in Ref.[15]. b%(a)=—ipa(b,z) va(l—a)C(s). (24)
In the LC Green function approa¢ti5—18 the physical

photon |y*) is decomposed into different Fock states, The energy-dependent fact@(s) in Eq. (20) and the

namely, the bare photofy*),, [0q), [qqG), etc. As we mean nuclear density, in Eq. (21) can be adjusted by the
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procedure described in Ref16]. According to this proce-
dure the factolC(s) is fixed by demanding that calculations
employing the approximation Eq20) reproduce correctly
the results based on the realistic cross sedigven by KST

J dzbf d2r|«1r;dL(r,a,Q2)|2(1—exp[—%C(s)rzTA(b)

PHYSICAL REVIEW C 68, 035206 (2003

parametrization Eq(6) or by GBW model Eq.(5)] in the
high-energy limitl >R, when the Green function takes the
simple form[see Eq.(30) below]. Consequently, the factor
C(s) is fixed by the relation,

1

fd2r|‘lf%(’]L(F,a,Q2)|2C(S)r2

debf d2r|‘P%aL(r”,a,Q2)|2[1—ex;{— :

5 Tqq(r,8)Ta(b)

|

fd2r|\P%g]L(F,a,Q2)|205q(r,s)

where

Tuo)= [ dzpuin2 (26

, (29

Note that the averaging of the whole exponential in &8)
makes this expression different from the Glauber eikonal ap-
proximation wheres(r,s) is averaged in the exponent,

is the nuclear thickness calculated with the realistic WOOdUéT;\uber(S,QZ)
Saxon form of the nuclear density with parameters taken

from Ref.[30]. This procedure is performed separately Tor
andL polarized photons and for each valueaaf The value
for the mean nuclear densipg in Eq. (21) is determined in
a similar way using relation

| bi1-expt - oopo RE—D7)

=Jd2b 1—exr<

The value ofpg turns out to be practically independent of the
cross sectionry from 1 to 50 mb as was checked in Ref.
[16,25.

2

ooTal b)) } . (@7

We would like to emphasize that only in the high-energy

limit, [;>R,, it is possible to resum the whole multiple

scattering series in an eikonal formula. Correspondingly, theG

transverse separatiorbetweeng andq does not vary during
propagation through the nucleu&orentz time dilation.

Then the total photoabsorption cross section on a nucleus

reads[21]

* A 2y _ 2 2 (* e 2y12
a?’ (s,Q%) ZJ d bf d rJO da|\I'qq(r,a,Q )|

)

ogg(r.s)Ta(b)

X

1
1- exr{ - E(Taq(r ,S)TA(b)

2Jd2b[1—<exr{—l

2

i

(28

(29

|

The difference is known as Gribov's inelastic corrections
[31]. In the case of DIS the Glauber approximation does not

make sensébecause of a small value of”"P, which is at
most of the order of 10@.b for real photonsand the whole
cross section is due to the inelastic shadowing.

The eikonal formula(28) for the total photoabsorption
cross section on a nucleus can be obtained as a limiting case
of the Green function formalism. Indeed, in the high-energy
limit, »— the kinetic term in Eq(17) can be neglected and
the Green function reads

= 2] de{ 1— exp[ - %O'Y*N(S,QZ)TA(b)

qa(2,22:F1,20) ] e

. (30

. 1 2]
= 5(r2—r1)ex;{ - Eaaq(rz,s) Ll dzpa(b,z)

After substitution of this expression into Eq®), (15), and
(16) one arrives at the result, E(28).

For smaller energies whdn~R,, one has to take into
account the variation of the transverse sizéuring propa-
gation of theqq pair through the nucleus. This transverse
size variation is naturally included using correct quantum-
mechanical treatment based on the Green function formalism
presented above.

The overall total photoabsorption cross section on a
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nucleus is given as a sum df and L polarizations,c”"»  the photon the full expression after summation over all fla-

_UT Atle oy *A assuming that the photon polarizatieh ~ VO'S: colors, helicities, and spin states has the following form

=1. If one takes into account onlyg Fock component of [32]:

o A(xg;,Q%) =Ad? N(xgj,Q?) — Ao(xg},Q?)

_Af d2r f daogy(r.s) (|x1r T(1,Q2) |2+ | WE (F,a,Q?)|2

3
em 2 zZRef dzbf dzlf dzzf daf dzrlf 021 ypa(b.2) pa(0,2,)

(2m? S

ri-ro
Xo-aq(rZ!S)o.aq(rlrs)[[a2+(1_a)2]62 r1r2

Ki(erp)Kq(ery)

+[mZ+4Q%a?(1— a)Z]KO(erl)KO(erz)] Gaq(F2.22:F1,21). (31

Here |\If L(F,a,Q?)|? are the absolute squares of the LC masses as t‘d2 It is not so for the higher Fock states con-
wave functlons for theq fluctuation of T andL polarized taining gluons and leading to GS. GS represents the leading
photons summed over all flavors with the form given by Egstwist shadowing correctiofl9,33. Besides, a steep energy
(12) and(13), respectively. dependence of the dipole cross sectigg(r,s) [see Eqs(5)

In the high-energy limit after substitution of expressionand (6)] especially at smaller dipole sizeéscauses a steep
(30) for the Green function into Eg31) one arrives at the energy rise of both corrections.
following results, which corresponds to E@8) after inclu-
sion of a sum ofT andL polarizations:

lll. ALGORITHM FOR NUMERICAL SOLUTION OF THE

oV*A(xB,-,QZ) EVOLUTION EQUATION FOR THE GREEN
FUNCTION
:Zf dzbf dr As we mentioned in the preceding section, an explicit
analytical expression for the Green function
1 1 Ggy(M2,25;71,21) (22) can be found only for the quadratic
— I qg\l2,22,11,21
x fo d“[ 1 ex;{ 2 7qq(1S)Ta(b) ] form (20) of the dipole cross section and for uniform nuclear
density function(21). It was already analyzed in Refs.
2N a [15,16 that such an approximation should have a reasonable
C™em 2 27,22 . . . .
(2m)? 2 ZH[a?+(1-a)?]e*K](er) accuracy, especially for heavy nuclei. We also discussed in
) the preceding section that the higher accuracy can be
+[M2+4Q%2(1— a)2|KZ(er)}. (32)  achieved taking into account the fact that expres$ia in

the high-energy limit can be easily calculated using realistic

At photon polarization parameter =1 the structure func- Parametrizations of the dipole cross secfisee Eqs(5) and

tion ratio FA(xg; ,Q%)/FN(xg;,Q%) can be expressed via ra- (6)] and a realistic nuclear density functign(b,z) [30].
jo 2 B] l .
tio of the total photoabsorption cross sections Consequently, one needs to know the full Green function

only in the transition region from nonshadowings(~0.1)
EA 2 *A 2 *A 2 to a fully developed shadowing given by Eg8). Therefore
F2(Xg}, Q%) Ui (X, Q HUZ* (X, Q ), 33  the value of the energy-dependent fac@(s) in Eq. (20)
FO(xs;.Q%) o N(xgj,Q?)+ay M(xg;,Q%) was fixed[15,16 separately foff andL photon polarizations
[see EQg.(25)] in a such way that the asymptotic nuclear
where the numerator on the right-hand sides) is given by  shadowing in DIS is the same for the realistic parametriza-
Eq. (31), whereas denominator can be expressed as the firibns of the dipole cross section Eq$) and (6) and for
term of Eq.(31) divided by the mass numbé. approximation(20). Correspondingly, the valug, of the
Finally, we would like to emphasize thgg Fock com-  uniform nuclear density21) was fixed in an analogical way
ponent of the photon represents the higher twist shadowings given by Eq(27) and described shortly in the preceding
correction [16]. This correction vanishes at large quark section. Such a procedure for determination of the factor
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C(s) andp, was applied also in Reff17,18 with respect to 1 2 1 g
incoherent and coherent production of vector mesons off nu- id—gl(Fz,zz;zl) = —| -
clei. % Mgy ars 20

In order to remove the above mentioned uncertainties, one
should solve the evolution equation for the Green function
numerically for arbitrary parametrization of the dipole cross
section and for realistic nuclear density function. However,
the tax for this general solution is that one does not obtain a
nice analytical form for the Green function. First we present
an algorithm for the exact numerical solution of the evolu-2
tion equation. Using this algorithm we will calculate the
nuclear shadowing in DIS and study how the new results L
change in comparison with predictiofi$5], based on the 'd_2292(r2’22’21):|7 €
above mentioned approximations leading to harmonic oscil- qd
lator Green functior(22).

In the process of numerical solution of the Salinger +Vﬁq(221'?2:a)]gZ(FZvZZ;Zl)
equation(17) for the Green functiorGg,(r,,2,;f1,2;) it is
not very convenient to treat the initial conditiq@8) with (37)
two-dimensionals function on the rhs In order to remove
this problem one should use the following substitutions:  with the boundary conditions

+qu(221F2.a)] 01(12,25:21)
(36)

nd

gl(f)Z!ZZ;Zl):J' dzrlKo(erl)O'Eq(rl,S)Gaq(Fz,Zz;Fl,zl) gl(r2122;21)|22221:KO(ErZ)O-aq(rZ!S) (38)
34
39 and
and
P 92(72,22,21)|7,-2, = K1(€T2) ogy(T2,9). (39
—02(M2.22:21)

2 In Egs.(36) and(37) the quantity

L
:f d2r1K1(fr1)0‘aq(f1:S)aGaq(rzizz?r1a21)- (39 pag=va(l—a) (40)
Consequently, after some algebra with Etj7) one can in- plays the role of the reduced mass of #e pair. Conse-

troduce new functiong,(r»,z,;z;) andg,(f,,z,;z;) which  quently, expressiof31) for total photoabsorption cross sec-
satisfy now the following evolution equations tion on a nucleus now reads

o A(Xg;, Q%) =Ac? N(xgj,Q?) — Ao (xg},Q?)
1
=Af d?r fodaaaq(r,s)(|\1f§q(r*,a,Q2)|2+I‘Ifgq(r*,a,Qz)lz)

3dem

Nf ) 0 1
- > szef dzbf dzlf dzzf daf d?r ,pa(b,21) pa(b,z,)
(2m)2 =1 e PR

X an(VZ:S){[az+(1_ a)?]€%K (€1 5)9a(2,25:21) +[MF+4Q%a*(1— a)?]Ko( € 2)91(F2,22;21)}-
(41)

There are several approaches for solving the time- IV. NUMERICAL RESULTS
dependent one-dimensional Sotlimger equation(see, for . . . .
example, Refs[34—37). One cannot adopt directly these S We mentioned above, the main goal of this paper is to
approaches for our purposes because one needs to treat f&sent for the first time the realistic predictions for nuclear
time-dependent two-dimensional Sctimger equatiofsee ~ shadowing based on exact numerical solutions of the evolu-
Eg. (17)]. Therefore, we will consider a modification of the tion equation for the Green function. These predictions will
method based on the Crank-Nicholson algoritf88]. De-  be confronted with approximate results obtained using har-
tails of this method for numerical solution of Eq86) and  monic oscillatory form of the Green functid22). The pro-

(37) are presented in the Appendix. posed algorithnisee Appendixfor numerical solution of the
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evolution equation for the Green function gives a possibilityrespond to calculations using the same quadratic form of the
to calculate nuclear shadowing for arbitrary LC potentialdipole cross section but realistic nuclear density function of
Vg4(z,7, @) and nuclear density function. It allows to per- the Woods-Saxon forrf80]. The thin and thick solid curves
form an independent cross-check whether the results calcgorrespond to realistic calculations based on the exact nu-
lated using quadratic form of the imaginary part, merical solution of the evolution equati¢h?) for the Green
IMVey(2,7, @) = —1/2pa(b,z)Cr? (C~3), of the LC poten- function using GBW(5) and KST(6) parametrizations of the
tial and uniform density functiopa(b,z)=p,=0.16 fm 3  dipole cross section, respectively.

correspond to predictions for nuclear shadowing taken from At low xg;=0.001 one should expect a saturation of
Ref. [15] calculated using Green function of the fo@2). ~ Nuclear shadowing at a level given by E¢23) or (32). For

Therefore, we calculate nuclear shadowing for calcium an(H)arametrizatiomZO) of the dipole cross section with constant
lead as was done in RefL5]. C(s)~3 [15], this saturation level is fixed at some value

H 2
In order to realize one-to-one comparison with the resultd€Pending orQ” and the nuclear mass numbkr(see the

from Ref.[15] we made several assumptions. As was mendashed and dotted lines in Figl. However, it is not so for

tioned in Sec. I, we neglect the real part of the LC potentialr.e alistic parametrizations, Eq®) and(6), wher'e the satura-

Veo(22,F2,@) in the Schidinger equatioh (17) analyzing gon Ie\éel 'S noft Exegl e>TactIy due to energgjorken Xg;-)
qq\“2:12; i tingy

DIS at medium and large values @f. We neglect also the ependence of the dipole cross sectiq(r,s).

: . . In the process of realistic calculations of nuclear shadow-
effects of nuclear antishadowing assuming that they are bqhg (41), we tested the correctness of tremendous computa-

yond the shadowing dynamics. The corresponding values Qfns hased on the numerical evaluations of the functipns
Bjorken xg; cover medium and medium large values;  anq g, from differential equation$36) and (37) in a such
€(0.001,0.1). For this reason we omit the effects of GSyay that in the high-energy limit the results for nuclear shad-
which are important at smag; (large v). Although gluons  owing must be the same as obtained from expres&an
can give some smalhot negligible contribution to nuclear Results presented in Fig. 2 show quite a large deviation of
shadowing at lower limitXg;~0.001) of investigated inter- the predictions within the harmonic oscillator Green function
val of xg;, for simplicity we do not include them in calcu- approachdashed linesfrom realistic calculations performed
lations as was done also in R¢L5]. _ for both parametrizations of the dipole cross sectitiin

We use an algorithm for numerical solution of the Sehro and thick solid lines This deviation depends d@? and the
dinger equation for the Green function descrlbed in Sec. |||nuc|ear mass humbek as a result of quadratic form of the
and the Appendix. Numerical solution of Scnoger equa-  dipole cross sectiofsee Eq.(20) with C(s)~3] and appli-
tion allows us to use realistic nuclear density function andeation of the constant nuclear density functiop,
realistic parametrizations of the dipole cross section—q 16 fni3. There is even non-negligible difference be-
ogy(r,s). These parametrizations naturally incorporate theween predictions using constant and realistic form of the
energy &gj—) dependence Obgq(r,s) which was not in-  pyclear density functioficompare dashed and dotted lines
cluded so far in calculationésee Ref[15]).° We took the |t allows to make the conclusion that the form of nuclear
nuclear density function in Woods-Saxon fo[80]. The re-  density function is also important for model predictions.
alistic calculations of nuclear shadowing were performed ajote that the dashed curves correspond to predictions pre-
two different parametrizations of the dipole cross sectiongented in Ref[15]. It is another cross-check for correctness
GBW [24] given by Eq.(5) and KST[19] given by Eq.(6).  of calculations using the above presented algorithm for nu-

Nuclear shadowing effects were studied ig behavior  merical solution of the evolution equation for the Green
of the ratio of proton structure functiori83) divided by the  fynction.
mass numbeA. The proton structure functiors)(xg;,Q?) As one can see from Fig. 2 at small and medium values of
andF’z*(xBj ,Q?) were calculated perturbativelye fixed the Q2 (Q2=2 and 6 GeV), the approximate calculations de-
quark masses am,=0.3 GeV, m;=0.45 GeV, andm, picted by the dashed lines agree better with realistic calcula-
=1.5GeV) via total photoabsorption cross sectionstions using KST parametrizatidd 9] of the dipole cross sec-
o7 M(xg;,Q%) and 07" A(xg;,Q?) given by Egs.(4) and tion expressed by Eq6). At large Q?=18 Ge\? and at
(41), respectively. The results of calculations are shown inXs;=0.005, however, the dashed lines seem to be in better
Fig. 2. The dashed curves represent the predictions based @greement with realistic calculations using GBW parametri-
the harmonic oscillator Green functi@@2) approach corre- zation[24] given by Eq.(5). This fact confirms the discus-
sponding to a constant nuclear density functipn ~ Sion presented in Sec. Il that the GBW model is suited better
—0.16 fm 2 and quadratic form of the dipole cross sectionat medium and larg@?=5-10 GeV and at medium small

(20) with a constant facto€(s)~3. The dotted curves cor- and smalkg;=0.01 whereas the KST model prefers low and
medium values 0f)’<10 Ge\~.

Nevertheless, calculations of nuclear shadowing using

“Consequently, the real part ¥, (z,,7,,a) is neglected as well harmonlp oscillator Green function can be mproved by de-
in differential equation€36) and (37). termination of the energy-dependent fadf{fs) in approxi-

*The energy dependence of dipole cross section was included onfpation (20) by the procedure mentioned shortly above in
via the energy-dependent fact@(s) in approximation(20). The ~ Sec. Il and described in detail in Ref46,25 for calculation
factor C(s) was determined by the procedure described shortly inof nuclear shadowing in DIS and [i7,18 for calculation of
Sec. Il and presented in detail in Ref$6,25,17. nuclear transparency for coherent and incoherent vector me-
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FIG. 2. Nuclear shadowing for calcium and lead. The dashed curves are calculated using harmonic oscillator Green function approach
(22) corresponding to constant nuclear denty) and dipole cross sectid@0) with C(s)~3 [15]. The dotted curves are calculated for the
same quadratic form of the dipole cross section but for realistic nuclear density function of the Woods-Sax@0foftme thin and thick
solid curves correspond to exact numerical solution of the evolution equation for the Green function using2&Bakid KST[19]
parametrizations of the dipole cross section, respectively.

son production off nuclei. That procedure allows to evaluategion where both the realistic parametrizations GB&)Yand

the factorC(s) for each c.m. energy squarsdlepending on
the values ofQ? andA. As a result, at fixe? the parameter
C(s) rises withs as a consequence of energyg-) depen-
dent realistic dipole cross section given by E@g.and (6).
Thus, the value ofC(s) at s corresponding toXg;

€(0.001,0.01) exceeds the fixed valG¢s)~3 used in the

predictions in Ref[15]. This fact should lead to a larger

nuclear shadowing atg; € (0.001,0.01) in comparison with
what is shown in Fig. 2 by the dashed lines.

KST (6) are applicable. Therefore, it would be very useful
for the future realistic calculations to connect advantages of
both parametrizations in the modified model for dipole cross
section which can be then safely used for all dipole sizes
covering perturbative as well as nonperturbative regions.

V. SUMMARY AND CONCLUSIONS

We present a rigorous quantum-mechanical approach
As we mentioned above in Sec. Il, the difference betweerbased on the light-cone QCD Green function formalism

the thin and thick solid lines in Fig. 2 can be treated as avhich naturally incorporates the interference effects of CT

measure of the theoretical uncertainty in the kinematic reand CL. Within this approachl5,16,2Q we study nuclear
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shadowing in deep-inelastic scattering at moderately smater with realistic calculations using KST parametrizatji@g]
Bjorken xg; . of the dipole cross section E@6). At large Q?, however,
Calculations of nuclear shadowing performed so far werdhey seem to be in better agreement with realistic calcula-
based only on the efforts to solve the evolution equation fotions using GBW parametrizatiof24] given by Eq.(5). It
the Green function analytically. Analytical harmonic oscilla- confirms the fact that the GBW model is well suited at me-
tory form of the Green functiof22) could be obtained only dium and largeQ? and at medium small and smat;,
taking into account additional approximations such as a conwhereas the KST model prefers low and medium values of
stant nuclear density functiof21) and the dipole cross sec- Q2. Therefore, the future realistic calculations require to re-
tion of the quadratic forng20). It brings additional theoreti- Vise existing parametrizations for dipole cross section in or-
cal uncertainties in predictions for nuclear shadowing. Inder to be used for whole region of dipole sizes.
order to remove these uncertainties we solve the evolution In conclusion, the universality of the LC dipole approach
equation for the Green function numerically. based on the Green function formalism allows us to apply
We perform for the first time the exact numerical solutionthe presented algorithm for the exact numerical solution of
of the evolution equation for the Green function using twothe evolution equation for the Green function also for calcu-
realistic parametrizations of the dipole cross sectiGBW  lations of other processes such as Drell-Yan production, vec-
[24] and KST[19]) and realistic nuclear density function of tor meson production, etc., including the effects of gluon
the Woods-Saxon formi30]. This exact numerical solution shadowing at high energies as well.
does not require to put any additional approximations. Ana-

lyzing only medium and large values @, we neglect the ACKNOWLEDGMENTS
real part of the LC potentiaVqy(2,,f,,@) in the time- _ ) )
dependent two-dimensional Schiroger equation(17) re- We are grateful to Alexander Tarasov for stimulating dis-

sponsible for interaction betwe@nandg. We neglect also  cussions. This work was supported in part by the Slovak
the nuclear antishadowing effect as was done in IRES] Funding Agency, Grant No. 2/2099/22 and Grant No. 2/1169/
assuming that it is beyond the shadowing dynamics. Perl.

forming calculations at medium and medium large values of

Xgj € (0.001,0.1) we neglect for simplicity also the contribu-  APPENDIX: DESCRIPTION OF THE METHOD FOR

tion of the higher Fock states leading to effects of GS. This is NUMERICAL SOLUTION OF THE TIME-DEPENDENT

supported also by the one-to-one comparison of the realistic SCHRODINGER EQUATION
calculations with the predictions from Réi5]|, where GS is ) , )
neglected as well. We treat here only differential equati®86) for the func-

In order to compare the realistic calculations with data orfion 91(F2,22;21) and describe in detail the method for its
nuclear shadowing, the effects of GS should be taken int§umerical solution. This method is then analogically appli-
account especially atg;<0.001. The same path integral cable for numerical solution of Eq37) for the function
technique[19] can be applied in this case. However, the92(72,22;21)- ,
calculations of GS(see Ref[39], for exampl¢ were per- Looking at Eq.(36), one needs to solve numerically the
formed so far using analogical approximations as alreadyo!lowing time-dependent Schdinger equatiorf:
mentioned above, like a constant nuclear density function q
and the quadratic forr{lsee_ Eq.(20)] of the dipole gluon- i— gy (F,H)=Hg,(F.1), (A1)
gluon-nucleon cross sectionyyg(r,s)=9/4ogy(r,s) plus dt
further assumptions that simplify the final expression for GS.

I\ioreover, the GS was calculated from the shadowing of thevhereH is the Hamiltonian operator defined by
[qqG) Fock component of a longitudinally polarized photon

at sufficiently largeQ? where the three-body Green function, R 1 92
Ggya . IS assumed to be factorized as a product of two-body H= ——| e——— = — |+ Vgy(r,t). (A2)
ones[19]. Using the algorithm presented above one can cal- Mg r

culate GS exactly for the general case of nuclear shadowin ) )

for a three-parton system, i.e., one can solve numerically théJ|ere the complex LC potentiadg,(r,t) is assumed to have
Schralinger equation for the Green functi@y, describing only the imaginary part responsible for absorption omf
propagation of th&qG system through a nuclear medium. photon fluctuation in the nuclear mediysee discussion in
We are going to calculate numerically the gluon contributionS€¢: !l and Eq(19)],

to nuclear shadowing in a forthcoming paper.

We present analogical numerical results of nuclear shad-
owing in DIS with correct quantum-mechanical treatment of
multiple interaction of the virtual photon fluctuations and of
the nuclear form factor, as was done in Rdfs5,16. We  whereb is the nuclear impact parameter ands the trans-
found quite large differencesee Fig. 2 between realistic verse separation betweerandq at the pointz,. The longi-
predictions and the approximate results obtained within har-
monic oscillator Green function approa2®). At small and
medium values of? the approximate predictions agree bet- ®we putr,=r andz, plays the role of time.

Vaq(r,t):—IEO'aq(r,S)pA(b,t), (A3)
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tudinal coordinatez, plays the role of time for the'qq pair d gq(r+Ar)—gq(r,t) gi(m+1,n)—gs(m,n)

propagation from the poirg;. In Eq. (A2) the quantityuqy g_rgl(r’t)~ Ar - Ar

is expressed by Eq40). (A10)
Ignoring for a moment the fact that is an operator, Eq.

(A1) has the formal solution, and

01(F,t) = exp(—itH)g1(7,0), (Ad) ,
J d | gy(r+Ar)—gq(r,t)

where g, (f,0) is the function at=0. Thus, if one knows —2gl(r,t)%5 Ar
g,(r,0), one can formally calculate the behavior at all future
times using Eq(A4). Unfortunately, this formal solution is g (r+Ar, 1) —2g,(r, 1) +g1(r—Ar,t)
not of much practical use since the Taylor expansion of the = 5

exponential factor in EqA4) involves a very largéinfinite) (Ar)

number of terms. However, it does suggest a way to proceed
numerically. Let us consider a formal solution applying over
a very small time interval. After time discretization in steps (Ar)?
At using Eq.(A4) we obtain

_ g1(m+1,n)—2g;(m,n)+g;(m—-1,n)

(A11)

g1(F,t+At) =exp(—iAtH)gy(F,t). (A5)
If one replaces in Eq(A9) the Hamiltonian operator by
Consequently, at sufficiently small time intervals the  Eg. (A2), converting everything to finite-deference form us-
higher order terms in Taylor expansion of the exponentiaing also Eqs(A10) and(All), and rearranging a few terms
factor in Eq.(A4) are small enough and can be neglected.one obtains the following expression

Then we can include only the term linearkh
exp(—iAtH)~1—iAtH. (A6)  gy(m+1n+ 1)+h(m)[Zi)\—Z,uqq(Ar)ZV(m,n-l—l)
However, this way of approximating the exponential factor is

1
not correct with regard to maintaining unitar[ty8]. In order —€(Ar)?—2— —}gl(m,nJr 1)+h(m)g;(m—1n+1)
to settle this problem, one should use an approach that satis- m

fies unitarity writing the exponential factor in EGA5) in
what is known as the Cayley form =—gi(m+ 1,n)+h(m)[Zi)\+2,uqq(Ar)2V(m,n)
1. 1
. 17glAtH + E(Ar)2+2+ —|gy(m,n) —h(m)gy(m—1n),
exp—iAtH)~ ————. (A7) m
1+ iAth (A12)

Using this approximation and EqA4) to propagate the Where the functiorh(m) is given by
function g4(r,t) forward in time, we obtain

1 h __m
1- EiAtH (M= (A13)
g1(Ft+AL)~ Tgl(r,t)- (A8)
1+ EiAtH and
This expression will be the basis for numerical approach. Z(Ar)zﬂﬁq
From Eq.(A8) we first obtain N=—"737 (A14)
1 . R 1 - R
1+ SiAtH g,(M 1+ A =] 1= SiAtH| g (F,0). with the reduced mass @fq pair defined by Eq(40).
(A9) The algorithm very effective for solving the time-

dependent Schdinger equation in one dimension is known
Given Eq.(A9), a natural way to proceed is to discretize as the Crank-Nicholson method described in detail in Refs.
also space into units of sizer and write the functioy, as  [38,40. However, in order to solve EqA12) one should
g4(r,t)=g,(mAr,nAt). Then one can express the first and modify this method for the more complicated case of two
second derivatives included in the Hamiltonian oper&@) dimensional Schidinger equation. We begin by defining a
in the usual finite-difference form shorthand for the rhs of E¢A12),
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Q(m,n)=—-g4(m+1n)+ h(m)[znnL Zuaq(Ar)ZV(m,n)

+ €2(Ar)?+2+ % g,(m,n)—h(m)g;(m—1,n),

(A15)

in order to rewrite Eq(A12) as
gy(m+1n+ 1)+h(m)[Zi)\—Z,uqq(Ar)ZV(m,nJr 1)

—€e?(Ar)2—2— %}gl(m,nnL 1)+h(m)g;(m—1,n+1)

=Q(m,n). (A16)

PHYSICAL REVIEW C 68, 035206 (2003

= (1) Current function 191 (T,n)
position time step

(2) Calculate e(m,n) and f(m,n) startingt
left end and moving to right

m=M

(3) Calculate function at next time steg (m,n+1
starting at right end and moving to left

|
|

m=0

1
For convenient numerical procedure, one should write!

g:(m+1,n+1) as a function of jusy;(m,n+ 1) in the fol-
lowing form

gi(m+1n+1)=e(m,n)g;(mn+21)+f(m,n),
(A17)

and so one can calculatg;(m+1,n+1) directly from
g:(m,n+1).

If one inserts Eq(A17) into Eqg. (A16) and does a little
arithmetic, one can find that the facta&m,n) andf(m,n)
must be given by the following implicit relations

e(m,n)=h(m)| 2+ %+2,uaq(Ar)2V(m,n+ 1)+ €2(Ar)?

—2iN— (A18)

e(m—1,n)
and

f(m—=1,)

f(m,n)=Q(m,n)+h(m)m.

(A19)

One supposes that a propagatiorggfpair in the nuclear

medium is confined to some region of space so that spatial

index runs fromm=0 to m=M and imposes the boundary
conditions g;(0,n)=g,(M,n)=0. The expressionsA18)
and(A19) for the factorse(m,n) andf(m,n) can be applied

only in the interior of the system. Consequently, from the

boundary condition for the functiogy atm=0 together with
Egs. (A15) and (A17), one can find that at this end of the
system

e(1n)=h(1)[3+2ugq(Ar)>V(1n+1)+ e*(Ar)?—2i\]
(A20)

and

f(1,0)=Q(1n). (A21)

— - (4) Repeat

FIG. 3. Schematic description of the Cranck-Nicholson algo-
rithm.

For the first time stepn=0, the factor«2(1,0), e(1,0),
andf(1,0) can be explicitly calculated from the initial func-

tion, g;(m,0)= oge(MATr,s)Ko(emAr), which is assumed
to be given as an initial conditiofsee also Eq(38)]. Using

known values ofe(1,0) andf(1,0), one can calculate then

the factorse(2,0) andf(2,0) from the implicit expressions

(A18) and (A19) and continue so for all values ofl along

the system. Hence, we traverse the system fnom0 tom

=M, to calculatee(m,0) andf(m,0) for all m.
For the further purposes, EGA17) can be rearranged in

the following form:

gi(m+1n+1)—Ff(m,n)
e(m,n)

gi(mn+1)= (A22)

As was mentioned above, at the end of the systemM the
function g; vanishes. Consequently, one can write

g1(M,n+1)—f(M—1,n)

gi(M—1n+1)= oM =1n)
__f(M—l,n) A23
~ e(M—-1n)’ (A23)

sincegq(M,n)=0 for all values ofn. One can thus use Eq.
(A23) to obtaing;(M —1,1), which is the value of the new
function one spatial unit in from the “right” boundaryn
=M. Then one can use E@¢A22) to calculate the function
g, at m=M-2M-3, etc.,, as one traverses the system
backward from large to small values ot

Finally, the algorithm can be summarized in the following
way (see also the schematic description in Fig. 3

(1) One begins with the initial functiog,;(m,0) given by
Eq. (38).
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(2) The system is traversed from small to large values oimandg;(m,1) is calculated using EgA23) initially and Eq.
m and the functiong(m,0) andf(m,0) are calculated using (A22) thereafter. This completes one iteration and yields the
Egs. (A20) and (A21) initially and Egs.(A18) and (A19)  functiong; atn=1 (t=At).
thereatter. (4) Steps(2) and(3) are repeated to obtain the functign

(3) The system is traversed from large to small values ofas a function of timerf=1).
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