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Effect of shear viscosity on spectra, elliptic flow, and Hanbury Brown-Twiss radii
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Here we calculate the first correction to the thermal distribution function of an expanding gas due to shear
viscosity. With this modified distribution function we estimate viscous corrections to spectra, elliptic flow, and
Hanbury Brown—TwisgHBT) radii in hydrodynamic simulations of heavy ion collisions using the blast wave
model. For reasonable values of the shear viscosity, viscous corrections become of the order of 1 when the
transverse momentum of the particle is larger than 1.7 GeV. This places a boundmnrémge accessible to
hydrodynamics for this observable. Shear corrections to elliptic flow caupg®;) to veer below the ideal
results forpy~0.9 GeV. Shear corrections to the longitudinal HBT radRisare large and negative. The
reduction ofRf can be traced to the reduction of the longitudinal pressure. Viscous corrections cause the
longitudinal radius to deviate from theith; scaling which is observed in the data and which is predicted by
ideal hydrodynamics. The correction to the sideward raBiss small. The correction to the outward radius
Ré is also negative and tends to maRg/Rg~1.
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[. INTRODUCTION and transverse momentuf®,9]. However ideal hydrody-
namics failed in several respects. First, abpye-1.5 GeV
One of the most exciting results of the Relativistic Heavythe observed elliptic flow does not increase further as pre-
lon Collider (RHIC) is the observation of collective motion. dicted by hydrodynamics. Additionally, the single-particle
In particular, the experiments have measured a large elliptispectra deviate from hydrodynamic predictions ab@4e

flow in noncentral collision§l1-5]. Elliptic flow is quantified ~1.5 GeV. Second, the observed Hanbury Brown-Twiss
with the second harmonic of the azimuthal distribution of (HBT) radii are significantly smaller than that predicted by
produced particles, ideal hydrodynamic$10—-132. In particular, the longitudinal
radiusR, is 50% smaller than the ideal hydrodynamic result.
m d3N Further, the ratio between the outwarB4) and sideward
qubcos(Zg{;)W (Rg) radii is observed to be=1 while ideal hydrodynamics
va(Pr)=(COg2¢))p = = N , predictsRy/Rg~1.3[10].
J The domain of applicability of hydrodynamics can be an-
-7 dypdpd¢ swered quantitatively by calculating the first viscous correc-

(1)  tion to ideal hydrodynamic results. The effect of viscosity is
twofold. First, viscosity changes the solution to the equations
where ¢ is measured relative to the reaction plang(pr) of motion. Second, viscosity changes the local thermal dis-
rises strongly as a function of transverse momentum up tdribution function. This effect was first investigated in heavy
pr~1.5 GeV. One interpretation of the observed flow is thation physics by Dumitr13]. The purpose of this work is to
hydrodynamic pressure is built up from the rescattering oftonsider the effect of a modified thermal distribution func-
produced secondaries and pressure gradients subsequeritbn on spectra, elliptic flow, and HBT radii. Thus this work
drive collective motion. A strong hydrodynamic response isdelineates the boundaries of the hydrodynamic description as
possible if the sound attenuation lendgth=%»/(e+p) is  applied to relativistic heavy ion collisions.
significantly smaller than the expansion ratez. (In the for-
mulal's=37/(e+p), 7 is the shear viscosity is the en-
ergy density, ang is the pressurg.Estimates based upon
perturbation theory givé's~ = and indeed 30 times the per-
turbative 2-2 cross sections are needed to obtain the observed First consider a baryon-free viscous boost invariant ex-
elliptic flow [6]. However, these perturbative estimates arepansion with a vanishing bulk viscosity, but a nonzero shear
uncertain. In an example of a strongly coupled gauge theoryiscosity, . Note that throughout this work we denote the
where calculations are possibl€4 SUSY YM), I'sisin  space-time rapidity ags and the viscosity as. Unlike for
fact approximately two to four times smaller compared toideal hydrodynamics where entropy is conserved, the en-
perturbation theory7] (see also Sec.)ll tropy per unit space-time rapiditys increases as a function
Ideal hydrodynamicsI{s=0) has been used to simulate of r=./t?>—2% [14-17,

heavy ion reactions and readily reproduce the observed ellip-

II. VISCOUS CORRECTIONS TO A BOOST INVARIANT
EXPANSION

tic flow and its dependence on centrality, mass, beam energy, 4
d(rs) 37 -
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For hydrodynamics to be valid, the entropy produced over 4
the time scale of the expansiatito wit, 7(5 7/7T)] must be 37 « [oe\~1 ap Je
[ d to the total ent This leads to the T's=5—+ | |etp—2T|=| +ciT| =
small compared to the total entropys). This leads to the S“e+p  etplaT aT st o7
requirement that n n n
n(ap
I's - —(—) 1 )
— <L 3 c2\an,

where k is the thermal conductivity. For the GM gas§

1

where we have defined treund attenuation length N A
=3, p=3e=nT andI's reduces tos 5/(e+p) as before.

4 The shear vi_scqsity in the GM. gas ig~1.264(T/ o) [23].
37 Thereforel's is directly proportional to the mean free path,
F=s1 @ 1
Irs= 0.421;. (8)
0

I's is approximately the mean free path and therefore the

conditionI's/7<<1 is just the statement that the mean freeln order to achieve a reasonable agreement with the mea-
path be small compared to the system size. The name “sourglired elliptic flow, GM required a transport opacity of
attenuation length” follows from the dispersion relation for a y~20—40. This transport opacity was reached when the
sound pulsew=cck+ 3 iT'sk? wherecZ=(dp/de) is the cross section waso~10—20 mb and the number of par-
squared speed of sound. In the remainder of this section,ticles wasdN/d 7~ 1000 at proper time,=0.1fm. The ini-
gather estimates fdr, in the quark gluon plasm@GP. For tial density of particles isi=(dN/d#)/(7,7R?). Substitut-
similar estimates in the hadron gas, see RES]. ing R~5.5fm we obtain

The shear viscosity has been determined in the perturba-
tive QGP only to leading log accura¢y9,20. To leading
In(g~Y) the shear viscosity with two light flavor is given by
7=86.473(19)[T%In(g™)]. With the entropy of the QGP,
s=37(m%/15)T%, and settingas—3 and Ing H)—1 the  This is smaller by a factor of 3 or more than even the AdS/
sound attenuation length in perturbation theory is CFT estimate assuming thaf ~ 1. The physical mechanism
for such a small viscosity remains unclear.

The sound attenuation length is uncertain. In what follows
we takeI's/7=% and calculate viscous corrections to the
observed spectra, elliptic flow, and HBT radii. In summary,
Estimates of evolution time scales giv&~ 1. The value of Perturbation theory find$’s/7~0.18, strongly coupled su-
I'./7 is sensitive to the value afs. persymm_etnc field theory find¥¢/7~0.11, and phenom-

This perturbative estimate df is clearly uncertain and €nology findsl's/7~0.03.
assumes thatrg~1/2 and that In§™!) is a large number.

Recently the shear viscosity was evaluated in a strongly Ill. VISCOUS CORRECTIONS TO THE DISTRIBUTION
coupled gauge theorjy=4 SUSY YM using the AdS/CFT FUNCTION

correspondencéd?7]. The shear viscosity is given by
=(w/8)N2T® [7] and the entropy is given bys
=(w?/2)N?T® [21]. Thus in this strongly coupled field

I

T

=0.02-0.04. 9
GM

T, 1
-S| =0.18=. (5)
7T
pert

Viscosity modifies the thermal distribution function. The
formal procedure for determining the viscous corrections to
the thermal distribution function is given in Refd.9,24]. In

theoryl's is general, for a multicomponent gas the viscous correction is
different for each component. For simplicity, we will con-
(5) - 1 , (6) sider a single-component gas of “pions” withm,
T ) pagcer S7TT =140 MeV. The basic form of the viscous correction can be

intuited without calculation. First writé(p) = f,+ 6f, where
which is two to four times smaller than the correspondingfo(pw/T)=1/(e’¥T—1) is the equilibrium thermal distribu-
perturbative estimate depending. tion function anddf is the first viscous correctiondf is
Finally, | compare these theoretical estimated gto the linearly proportional to the spatial gradients in the system,
value abstracted from Monte Carlo simulations of RHIC col-which have no time derivatives in the rest frame and are
lisions performed by Gyulassy and Moln&BM) [6]. GM  therefore formed with the differential operat®,=(g,,
modeled the heavy ion reaction as a gas of massless classicali,u,)d”. For a baryon-free fluid, these gradients ®rgT,
particles suffering only 2-2 elastic collisions with a con- V,u¢ and (V,ugz), where (V,ug=V us+Vgu,
stant cross section in the center of mass system frame; %Aaﬁvyuy. V T can be converted into spatial derivatives
do/dQ = oy/4m. When particle number is conservdd, is  V Uz using the ideal equations of motion and the condition
given by a more complicated formula which reflects the couthat T#"u,=eu* [24]. V ,u® leads ultimately to a bulk vis-
pling between the energy and number densit&s, cosity and will be neglected in what follows. Finally,
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(V ,up) leads to a shear viscosity. #f/f, is restricted to be  Substituting Eq.(13) into Eq. (12) and using the identities
a polynomial of degree less than 3p#f, then the functional  u*(V ,ug)=uf(V uz=A**(V ug)=0, we find 2a,= 7.
form of the viscous correction is completely determined, To determine the coefficierd,, contract both sides of Eq.
(13) with
C
f=fo| 1+ ——p P Valp) |- (10 1
2T E(APPAT L AN ARBA ), (14
For a Boltzmann gas this is the form of the viscous correc-
tion adopted in this work. The factor of 2 i@/2T° 1S N- and evaluate the resulting expression in the local rest frame.
serted for later convenience. For Bose and Fermi gases th@e result for the viscosity is
ideal distribution function in Eq(10) is replaced withf ,(1
+1f,) [19]. The correction described here is precisely the 6 C 4
“first approximation” of Ref.[24] and the “one-parameter = — — —pf (1+f4)|p*. (15)
ansatz” for a variational solution of Ref19]. The “one- 0T3) (27)°E ° °
parameter ansatz” reproduces the full result to the 15% level.
The coefficientC in Eq. (10) can be reexpressed in terms For a Boltzmann gasf,(1+f,) is to be replaced with
of the sound attenuation Iength Indeed, Subsutuﬂt@ de- fo(pu/T):e_pU/T and the integra's can be performed ana-

termine the stress energy tensor lytically. Comparing the resulting expression to the entropy
& of an ideal Boltzmann gatsee, e.g., Refl25]) we find C
P = pls. For a massless Bose gas, the integrals can again be
TEr=TE'+ p(VFU") = “prf, (11 7 . gas, g J
o (VAU f (277)3Ep P (1D performed analytically and C=[#*/(902(5))](#/s)

~1.04(n/s). For a massive Bose gas, the integral was per-
we find formed numerically andC varies monotonously between
these two limiting cases. Therefore up to a few percent, we
Vi) = i haveC= y/s, and the viscous correctioff is
273

dp
f (2m)°E PP pepPt(1+1f,) (Vaupg).
(12

3T
of =g = fo(1+fo)p PV up).
The quantity in square brackets is a fourth-rank symmetric T

tensor and consequently can be written in termsAdf’

— LY _ Y w
g*"—u*u” andu®. Thus, IV, VISCOUS CORRECTIONS TO A BJORKEN

c d3 EXPANSION
— vhanh
o13) (2m)%E PP pepPTo(1+ o) Before considering the viscous corrections to more gen-
eral hydrodynamic expansions, let us consider a simple
= ay(uru"u®uP) +a, (A*"u“uf + permutations Bjorken expansion of infinitely large nuclei without trans-
verse flow. At mid space-time rapidity the stress energy ten-
+ay(AFYAYB+ ARIAVP+ ARPAVY) (13)  sor at timer, is given by[17]
|
t X y z
t /e 0 0 0
27
X[ 0 p+=— 0 0
P 37
TE + p(VHu")= 2 , 16
37,
4
z\ 0 0 0 _-n
37

where T4” denotes the ideal stress energy tensor The difference between the longitudinal and transverse
diag(e,p,p,p), Thus, the longitudinal pressure is reduced bypressures is reflected in tipg spectrum of thermal distribu-
the expansiof??=p— % 7/ r,, while the transverse pressure tion. Since the transverse pressufB”j is increased by

is increased by the expansi@t*=p+ 2 5/7,. 2yl7,, the particles are pushed out to largef. Armed
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FIG. 1. (&) The p, distribution of particles with coordinate-space rapidigy=0, with and without viscous correctiongh) The z
distribution of particles with momentum-space rapidjty: 0, with and without viscous corrections. The curves are drawn for a Bjorken
expansion without transverse flow gf=7 fm for a Boltzmann gas with temperatufe= 160 MeV, m= 140 MeV. The transverse momen-
tum is fixed,p;=400 MeV. The viscous correction is linearly proportionalltg/ 7, .

with the modified thermal distribution function, the Cooper- We have already noted that the longitudinal pressure is
Frye formula[26] gives the thermal spectrum of particles in reduced by the expansiofi??=p— 3 »/r. The reduction in
the transverse plane at proper timg, the longitudinal pressure is ultimately responsible for a re-
duction in the longitudinal radius measured by Hanbury
Brown-Turiss interferometry. Since the longitudinal pres-
sure is reduced due to the expansion, the distributiqu), iat

mid space-time rapidity /s=0) is narrower. This is illus-
trated in Fig. 1a) for a fixed transverse momentuip;
=400 MeV.

Due to boost invariance thp, distribution at»;=0 is
directly related to thez distribution aty=0 [16]. Specifi-
Here dX , is the oriented space-time volume. Substitutingcally, for fixed transverse momentuN/dyds; is a func-
into Eq. (17) (see Appendix Bwe obtain the ratio between tion of |y— %4, which leads to the relation
the viscous correction{dN=dN®/d?p;dy) and the ideal
spectrum ¢ N(@=dN©/d?p,dy),

d?N 1
d’prdy (2m)®

f ptd% , f, (179

d2N©@  g2ND 1
-|- =
d’prdy d’prdy (27

)SJ pudS fot oF. (170

dN

my dodn 0.7 (29

LY
—Todyd y:O-

It follows that thez distribution at mid momentum-space
rapidity is narrower as indicated in Fig(k). The width of
this z distribution is related to the longitudinal radius that is
measured by HBT interferometfgee, e.g., Ref.27)).
Using the asymptotic expansion for the modified Bessel To understand this result analytically we must calculate
functions, we have for |arge transverse momenta the width of thez distribution for a simple Bjorken expan-
sion of a Boltzmann gas at proper timg. Let us quickly
pT>2 recall the definitions of the HBT radii. The source function
T/

’710

K| or
AN T | (pr\® [mg)21( 30T
dN© 47, a —(my)

sdN T
dN© 47,

(18 S(x,K) for on shell pion emission is defined such that

As promised, the larger transverse pressure drives push the
corrected spectrum out to higher transverse momenta. For a
Bjorken expansion without transverse flow, this formula also
indicates at what transverse momentum the hydrodynamighere E,=K°=./KZ+m?2. Averages with respect to
description ofpt spectra is applicable. Fdt;/7,~1/5 and  the source function are defined as {a)x
T=200 MeV, the ratio between the ideal spectrum and the= [d*x a S(x,K)/fd*x S(x,K). To a good approximation
correction becomes of the order of 1 fpf'®~800 MeV. (see, e.g., Ref27]), certain spatial and temporal variances
We shall see in the following section that this upper boundof the source function can be determined from the Bose-
on the domain of hydrodynamics is significantly larger, Einstein correlations between pion pairs at small relative mo-
pTr#~1.5 GeV, once the transverse expansion is included imenta. For a boost invariant and rotationally invariant
the flow profile. source, we can assume without loss of generality that the pair

N[,
EKWZI d XS(X,K), (20)
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momentum points in the direction [i.e., K= (K*,KY,K?) value. Including the transverse expansion reduces the vis-
=(K+,0,0)]. Then the following variances can be deter- cous correction to 50%. Nevertheless, the viscous correction

mined from HBT measurements: to the longitudinal radius remains large unldsg r, is sig-
L nificantly smaller than 0.1. This formula and some caveats
RE(Kp)=((x—vkt)), (2)  are discussed further in the following section.
R&(KD) =Yk (22 V. VISCOUS CORRECTIONS WITH TRANSVERSE
EXPANSION
5 -
RE(Kp)=(Z)k,, (23 To go further and illustrate the effect of viscosity on the

_ observed spectra, elliptic flow, and HBT radii of hydrody-
wherev =K+ /Ek and, for examplex=x—(x). Comparing namical models of the heavy ion collision, | generalize the
Egs.(18) and(20), we see that in this work the source func- blast wave model to include the viscous corrections of Eq.
tion is confined to a freeze-out surface and therefore the ay<10). The blast wave model provides a simple parametriza-

erages are understood to mean tion of the flow of full ideal hydrodynamic simulations
which assume boost invarian¢8,9]. The corrections de-
@ scribed below are therefore indicative of similar corrections
K#d2  af(x,K) - X g )
to these simulations. This is the reason for adopting the blast

(a)= (24 wave model here. The blast wave model also has been used
J K#d2 ,f(x,K) to fit experimental data. The model provides a good descrip-
s

tion of spectra and elliptic flo2,9,29 and provides a fair
The assumption of a sharp freeze-out surface is clearl escrlpuonf of lHBan\;ldllﬂf]m Smglhl/la, MT<?_5 Ge\é[go]_th
unrealistic. In general there is a transition region from hydro- owevedr, or darge TM € mode %esRno rzp;eo uc(tja" €
dynamics to the Knudsen limit. Within ideal hydrodynamicssggogg T?lpek?l ePce ONl7 jelen n .t o ?n Sdral ”f th
this transition region cannot be determined. Within viscou ,31. The blast wave model remains simply a model of the

hydrodynamics, viscous terms become largel(2) and sig- tIow ft|_eldst an_d uItlmatf?Iy:ifull viscous simulation is needed
nal the transition. o estimate viscous effects.

Armed with these formulas, the computationRf for a In the blagt wave.model Of. central colhspns cpnadergd
. . L : here, a hot pion gas is expanding in a boost invariant fashion
boost invariant expansion is straightforward. We have )
and freezes out at a proper timg. In the transverse plane,

the temperature is constari,=160 MeV, and the matter
f Keds ,f(x,K)Z? distribution is uniform up to a radiu®,. The transverse
RE(KT)E<~22)KTE (25)  velocity rises linearly as a function of the radius;
j KA, F(x,K) =u°(r/Rp). Summarizing, the hydrodynamic field¥ @nd
u#) are parametrized as

Substitutingf =f,+ &f, expanding to first order idf, and T r &) =T.O(R.—r 28
performing the integralésee Appendix B we find the vis- (0. 75.1, ) =ToO(Ro=1), (283
cous correctionsR? :

"
ur(ro,ns,r,d)):uo—@(Ro—r), (28b)
K mT (0]
SR? 3(_>
ORL ) bme AT u?=0, (280
(RH© 1| 4T K (mT>
AT u7=0, (280)
o121 K3($) uo=+/1+(u")?. (289
.
(?) 8 mr -1 ’ 26 The blast wave parameters are adjusted so that model with
K2 T the ideal thermal distribution can approximately reproduce
the spectra and HBT radii. Similar blast wave model fits
where the R?)(® is the ideal longitudinal radiug28], have appeared ubiquitously in the heavy ion literatisee,
e.g., Ref.[29]). Then with the model parameters fixed, the
T Ky(x) viscous correction is calculated and compared to the ideal
RZ)(O)_ 2_ (27) 4
(RD™=15 my Ky(x) results. The model parameters for central collisions are re-

corded in Table I.
For the relevant range ah; /T, the Bessel function expres- With the hydrodynamic fields specified, the viscous tensor
sion in square brackets is large6 —8. Accordingly, viscous (V“uf) can be computed in a simple but lengthy calculation
corrections to the longitudinal radius are quite largewhich is worked out in Appendix A. One technical point
(>100%) and tend to reduce the radius relative to its ideashould be noted. In the viscous teng®“u”) time deriva-
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TABLE I. Table of parameters used in the blast wave modelfrom ideal hydrodynamic results fqyr~1.5 GeV. Further
described in the text. for py~1.5 GeV, the single-particle spectra start to deviate
strongly from the hydrodynamic resulfsee, e.g., Ref.8)).
Viscosity provides a simple explanation for the observed

Central[(0-5%)] Noncentral[ (16 —-24%]

T, (MeV) 160 160 breakdown of thegp spectrum in this momentum range.

R, (fm) 10 75 Next we examine the effect of viscosity on elliptic flow.

7o (fm) 7.0 5.25 In noncentral collisions the radial velocity is given a small

u° 0.55 0.55 elliptic component to reproduce the observed elliptic flow:
o . .

u, 0 0.1

U (70,751 8) = o[ 1+ U508 26) 10 (R, 1),

tives of the velocity appear. These time derivatives are con- (29)

verted into spatial derivatives using the ideal equations OfI'he functional form of all other hydrodynamic fields is kept
motion which are sufficient to leading order in the wscosﬂyt he same. Here we simulate the STAFS—24% centrality

The spectrum of particles emerging from the freeze- -Oubin \which corresponds to an impact parameter bir)
oriented three-volume is calculated by employing the~6.8 fm [3]. In the model, the radius and lifetime param-

fCoopejr-Frye f_orr|T|1uI_a eq(1.7) ht'frhese dl?te%r_als zre . perl eters R, and 7,) are scaled downward from the central val-
evant detals are relegated to Appendix A The ideal specic Y [he ratlo of the rms radii betweers 6.8 fm and
9 PP P€Central AuAu collisions. This scaling d®, and r, approxi-

trum of this blast wave model is typical of blast and is in
mates the impact parameter dependence of ideal hydrody-
rough agreement with pion data at RHI(See, e.g., Ref. namic solutiong8]. The noncentral parameters are recorded

[29] for fits to data of this typg.In Fig. 2, the solid line in Table I. As before, once the flow fields are specified, the
shows the ratio of the viscous correction to the ideal spec-

ayB
trum. The dashed line shows the Bjorken regeit. (18)] viscous correction is found by dlﬁerentlatlr@ u”). The

without transverse flow. The viscous correction becomeéUII form of the correction is given in Appendix A.
' The elliptic flow as a function of transverse momentum

comparable to ideal results far~1.7 GeV indicating the . : . !
breakdown of the hydrodynamic descriptionpafspectra for v2(pr) is defined by Eq(1). Expanding to first order,

the flow profile considered here. Settihig/ 7, to 0.1 extends d2N@
the domain of applicability to 2.3 GeV. The analytic Bjorken j d—d<;b
result[Eq. (18)] qualitatively explains the shape of Fig. 2. va(pr)=vP(pp)| 1- pT2 p(TO)
Quantitatively however, the transverse expansion alleviates J' b d°N
some of the longitudinal shear and pushes the region of ap- prdprde
plicability hydrodynamics to somewhat larger transverse mo- NG
mentum. o _ _ J' deb cog2)
Indeed, viscous effects are implicated in the heavy ion prdprde¢
data forpr=~1.5 GeV. The observed elliptic flow deviates J dZN(O) ' (30)
49 o dprds prdprdé
zls 2f
b .
Yor, =15 f s %
na ; = 018~ b = 6.8 fm (16-24% Central)
E 0.16]~
0.5 , [ STAR Data
F 0.14/
ong/ 0.12F
'0'5? 1,=7.0fm o.1§
.1; Ro =10.0 fm 0.08}
g T, = 160 MeV 0.065-
15E uf=0.55¢ i
) ST AR IR RPN A IR 0.04¢
0 0.5 1 15 2 25 0.02- .
Pr (GeV) : T R B R
OO 02 04 06 08 1 12 14 16

FIG. 2. (Color onling The solid line shows the ratio between the p-(GeV)
viscous correction §dN=dN®)/d?p;dy) and the ideal spectrum
(dN©@=dN©/d?p;dy). The dashed line shows the Bjorken result ~ FIG. 3. Elliptic flow v, as a function ofo; for different values
without transverse flow given in E¢L8). The band indicates where of I's/7,. The data points are four-particle cumulant data from the
the hydrodynamic description of the: spectrum in the blast wave STAR Collaboratiori3]. Only statistical errors are shown. The dif-
model cannot be reliably calculated. The viscous correction is linference between the ideal and viscous curves is linearly propor-
early proportional td"g/ 7, . tional tol'g/ 7.
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o]

EF ET
. E = £ i
o© 7 |deal o© T 1 FIG. 4. (a) Ideal blast wave fit
© e © e o 4 I to the experimental HBT radii
e o L3 i JA{ i . Ro, Rs, andR, shown in(b) as a
S5E 5 e A function of transverse momentum
E E i ’ T Ky. The solid symbols are from
4F 4f %
g F ? % the STAR Collaboratiorf11] and
3 1. =7.0fm 3* £ the open symbols are from the
oF —Ro F: 10 Loe R, * PHENIX Collaboration[12]. For
P --Rs o m rOmRg clarity, the experimental points
1 R, U, =055¢ 1FA AR have been slightly shifted horizon-
i T, =160 MeV g L tally
b Lo [ T S B E ‘ ‘ ‘ ‘ ‘ ‘ '
% 01 02 03 04 05 06 07 % 01 0z 03 04 05 06 07
(a) Py (GeV) (b) pr(GeV)
wherev(zo)(pT) denotes the elliptic flow as a function pf; Several observations are immediate. First, as discussed in
calculated as in Eq(1) but with the ideal distribution Sec. IV, the viscous corrections in the longitudinal directions
dN©/prdprdg. o . reduce(z?) and (t2) due to the reduction of longitudinal
Figure 3 shows the elliptic flow for pions. By construc- pressure. This reduces tRg andR, radii. From a phenom-

. . 0 N ) . . ) )
tion, the ideal curve{”) roughly reproduces the experimen- enological point of view the reduction &, is welcome. In

tal elliptic flow atb~6.8 fm. Taking a more realistic flow fyll ideal hydrodynamic simulations of heavy ion collisions
profile would improve the agreement of the ideal results withassuming boost invariance in the longitudinal direction
data[9]. The effect of ViSCOSity is to reduce the eIIiptiC flow. [10,333, R. is approximate|y twice too |arge Compared to the
Similar results were recently founk82] by considering a data. In the blast wave model, viscous correctionRtcare
partially thermalized expansion. Taken at face value theS%rge_ This suggests that Viscosity is responsib|e for the
results Suggest that the ViSCOSiW is small. |ndeed, in order tghortcomings in these simulations. Comparing F|gb) and
agree with the ideal results up r~1.0 GeV we require 5(p), it seems that the reduction R} is too large. However,
I's/7,=<0.1. It must be mentioned that the results of Fig. 3jt should be remembered that the parameters of the blast
are sensitive to the blast wave parameters. Ideal hydrodyyave model have been adjusted to reproduce the ideal results
namics generates an appropriate set of parameters. Whetheg@ad therefore viscous corrections make the agreement with
viscous expansiofwith I's/7,=0.1) can reproduce the ob- data worse. Further, because the correction to the longitudi-

served elliptic flow remains an open question. nal radius is large the calculation cannot be considered reli-
Finally, 1 discuss how viscosity affects the HBT radii. able. For I'S/TO%O_]_, the viscous correction tdr, is

First, I illustrate the ideal HBT radii for the blast wave pa- ~(30-50)% and the calculation is more reliable.

rametrization in Fig. ). Viscous corrections to the transverse variancéd and

The model parameters are again to be chosen to approxj . . .
P g bp y?) are small. Consequently, the sideward radius receives

mately reproduce the observed radii which are illustrated i . . i - e .
Fig. 4(b) for comparison. The viscous correction to each ra_only a small viscous correction. Viscosity introduces no sig-

dius is again found by substitutinig=f,+ of into Eq. (24) nificant x—t correlation which could influence the ratio of
o . .

and expanding the numerator and denominator to first orddfo @ Rs. In the blast wave model t~h2e difference between

in 6f and calculating the integrals numerically. The resultingRo @ndRs is due to the contributiot<). Viscous correc-

viscous corrections are illustrated in Fig. 5. tions to(t?) are negative and are essentially linearly propor-

)

o
T
—~
&

NO)

Viscous

% Correction
Ro: R, Ry (fm)
~

FIG. 5. (a) Viscous correction
8R? for Ry, Rg, andR, relative

N
o o

—5R3 /1 (R2)?

-40 —5R%/ (Rz)(O) 4 to ideal blast wave HBT radii
> 2.0 (R?)(©. (b) The HBT radii Ry,

e “ORLIRY 3 Rs, andR, including the viscous

Eo T correction. The viscous correction
80 - el 2 - )

F s s T is linearly proportional td"/7, .
100 ‘o 1

L TR AT N ET S R | I T I T NN T N B

0 01 02 03 04 05 06 07 % 01 02 03 04 05 06 07

Ky (GeV) Ky (GeV)
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tional to this variance. For the particular value Bf/r,  viscosity and depends upon the particular observable. | have
=1/5, the viscous correction is accidentally correct andestimated this momentum range for single-particle spectra,
makesRy/Rg~1 as illustrated in Fig. ®). The agreement elliptic flow, and HBT radii using the boost invariant blast
is accidental but the trend is completely general. Viscosityvave model. .

reduces thgt?) and therefore tends to mak®, equal to For reasonable values bt=37/(e+p), the viscous cor-

Rs. This is also welcome from a phenomenological point Ofrectlon to the single-particle sEectrum of a blast wave model
view. Full ideal hydrodynamic simulatioriwith [10,33 and becomes of the order of 1 far~1.5-2.0 GeV as illustrated

. . ) : . in Fig. 2.
W't?0u1[34] t?]-e has§umlgtlt;)n of boos(; mvanatr))cpred(qu The observed elliptic flow places a constraint on the shear
f\;]% SSHFIVCLg’a\;Va ich should be compared 160.9 observed in  \;iscqsity. Indeed, unleds, /7, is less than 0.1y, as a func-

; . . , . . tion of py falls well below the ideal curve byp+
In spite of these welcome corrections, including viscosity. 1 g GeV. For the blast wave model. the viscous correc-

makes some aspects of the hydrodynamic description of thgons to elliptic observables become lafgeforethe corre-
HBT radii worse. All of the observed raditlenoted generi-  sponding corrections to the transverse momentum spectra.

cally asRy) scale quite accurately witm;= K2+ m? as Shear viscosity also plays an important role in the inter-
pretation of the longitudinal radius. Indedd, reflects not

1 only the lifetime of the system but also the degree of ther-
Ry \/?T 31 malization in the longitudinal directior?, involves the sec-

ond moment of the thermal distribution function in the lon-
gitudinal direction where nonequilibrium effects are the

(see, e.g., Ref§35-37). Indeed, expanding E¢27) for the largest. Consequently, viscous corrections to this radius

Lo : : - ; : (=50% forI's/7,~0.2 and 25% fol'i/7,~0.1) are large
e ooty o7 XP879M Wenough o il e, shoud bt out of ooy
namic fits to heavy ion data. This does not imply that hydro-
T dynamics must be abandoned. On the contrary, while ther-
(RHO)=72—, (32)  modynamics might accurately descrildgr), it certainly
M does not accurately descrifp*® unless the viscosity is
very small. In addition, viscous corrections to the ideal lon-
gitudinal radius seem to contradict the measuremenk; of
Shear corrections cause the longitudinal radius to deviate
from the 1A/m; scaling clearly seen in the dafa1,29,3q
T 19T and expected in ideal hydrodynami@s].
(RO + 5Rf=r§<—— ——S). (33 Shear viscosity also reduces the ratio R to Rg by
mT 16 To . . . Wed . .
decreasing the emission duratifr). Nevertheless, viscosity
is not a panacea for the HBT problem. The sideward radius
falls precipitously as a function df+. This precipitous fall

Ideal hydrodynamics readily predicts thisyit; scaling

Viscous terms immediately break thisybh; scaling. Ex-
panding Eq.(26) for the longitudinal radius with viscous
corrections, we obtain

Viscous terms break the idealyith; scaling and this correc-

tion grows likemy /T relative to the ideal result. This devia- cannot be reproduced by hydrodynamics at least with a boost

tion from 1A/m; scaling is not seen in the data. : : : . _
There remain several puzzling aspects in the HBT meal—m/éIrlant expansior39]. Viscous corrections g, are

: . ; : small and make the sideward radius increase With
surements for which viscosity offers no explanation. All of Many of the conclusions in this work about HBT radii

the radii are the same order of magnitude and fall withas \yere recently reached “from the opposite end” by Gyulassy
in Eq. (31). In particular, the steep fall witmr in the  5q Molnar(GM) [40] using kinetic theory. GM started from
sideward radius was dlf_flcult to reprod_uce W_|th the viscousihe Knudsen limit, increased the transport opacity, and in-
blast wave model described here and in the ideal blast wavgeased the longitudinal radius. Here, | started from the ideal
model[29]. This behavior was predicted based upon a payygrodynamics, increased the viscosity, and reduced the lon-
rametrization of ideal hydrodynami¢86,37 where system i ginal radius. These authors also emphasized the impor-
cools_ rapldly_ during freeze-out and where temperature anghyce of they— 7 correlation in determining, . They also
velocity gradients are much larger than the geometric size of, ;g only small viscous corrections Ry, and experienced
the system. It is natural to ask whether these conditions Callmilar difficulties in reproducing the steep fall 6y .

be dynamically generated from some initial conditions or  cjearly performing a full viscous calculation is the next
freeze-out dynamics—see R¢88] for efforts in this direc-  g4o towards a complete thermodynamic description of the

tion. Large velocity gradients and temperature inhomogenexga,y ion reaction. Whether the shear viscosity can be made

ities should increase the relative importance of viscosityg i enough [./7,<0.1) in the early stages to reproduce
Nevertheless, the success of these models should be notegq e jjintic flow but still large enoughll/7,~0.2) in the
~0.

late stages to reprodué® andRgy/Rg remains an open and
VI. CONCLUSIONS important dynamical question.

In conclusion, | have calculated the first correction to the
thermal distribution function of an expanding gas due to
shear viscosity. The momentum range which is accurately | would like to thank Adrian Dumitru, Larry McLerran,
described by hydrodynamics is directly related to the sheaRob Pisarski, Edward Shuryak, and Raju Venugopalan for
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2 ” 1 "
APPENDIX A: THE VISCOUS TENSOR AND BLAST WAVE - ng fg%(v— gu®), (A3q)
MODEL

To write down the viscous tensgiV ,ug) it is_most
convenient to use Bjorken coordinatest=\t?— 22,
ns= sIn[(t+2)/(t—2)], r = Vx?+y?, and ¢=atanfy/x). Note
that we denote the space-time rapidity wigy and the vis- 2 1
cous coefficient Withnp. However, vr\)/e V\>I/i|| gr%)p the “s” on B §r2A¢¢f‘9u( \/—_gu“),
raised and lowered space-time indices when confusion can- g

not arise. In this coordinate system the metric tensor is

ur
r{vou?y=—2g,u—2——2r2u’Du?
¢ r

(A3b)

2 1
(Viu")=-2g,u"=2u'Du"— A" —4,(J—gu"),

T 7s r ¢ 3 NG
/1 0 0 0 (A30)
7/ 0 —-r2 0 0
. (A1) ) 2
I <V’7u">——2— 3 g Vmow). (a30
¢ \0 0 0 -r?
The only nonvanishing Christoffel symbols af&] =1, (V'u”)=(V%u7)=0. (A3e)

L7 =1z T'y,=—r, Tl=1n.

Without particle number conservation, the hydrodynamic
fields are T(r7,7s,r,¢) and u®(r,ns,r,¢), where u o
=r,7,7s,¢. The velocity field satisfies*u,=1 and there- . u
fore only three components of* need to ge specified. For \/_ 9ul \/_gu _+ _+‘9‘f’u¢+a u'+a.u”
boost invariant flowu”=0. For rotationally invariant flow, (A4)
u®=0. For nonrotationally invariant flow, we shall leave
u®=0 and leave the temperature profile rotationally invari-and the time derivatives in the rest frae”=u*d, u* are
ant. We assume boost invariance throughout. By assumptiogiven by
the particles freeze-out at a proper timg with a uniform
distribution in the transverse plane and a linearly rising flow Dur=uTaTur+u’&rur+u‘f’a¢ur—r(u¢)2, (A5)
profile. Thus, the hydrodynamic fields are parametrized as

Here \—g=7r, the expansion scalar is given by

rDu?=u"g.(ru®)+u"g,(ru®)+u®s,(ru?)+u’u’.
T(Tovﬂs’raﬁi’):To@(Ro_r)’ (A23) ( : f( ) ¢( : (A6)

r Once the spatial components of the viscous stress energy
r — _ _
W (70, 75,1, ) =Uo R0[1+u200$2¢)]®(R° ), tensor are known, the temporal components are determined
(A2b)  (numerically from the relations{V*u®)u,=0.
In these equations the time derlvat|vé§u¢ J,u", and

u?=0, (A2c) d,u” appear. To fix the value of these time derlvatlves it is
sufﬁcient to consider the ideal equations of motion. Inclusion
u?=0, (A2d) of viscous terms would lead to previously neglected second-
order corrections i’/ 7. The ideal equations of motion can
_ m (A2¢) be written as
For central collisionsy, is zero. It is useful to realize that De=—(etp) V,u*, (A7)

7u” andru? are the velocities in they; and ¢ directions,

respectively. DUf— + V¥p (A8)
The viscous tensor is constructed with the differential op- e+p’

erator V¥=A*"d;, where A“? denotes the projectog*?

—u®uf and dg denotes the covariant derlvatlvdﬁu With these two equations fobe and Du', and the flow

=dgu”+T'7 suk. With these definitions the viscous tensor is profile given in Eqs(A2), the time derlvat|ves can be deter-
given by 7(V,ug), where (V,ug=V, uz+Vzu, mined:

2AC,ﬁV u”. Assuming boost invariance, the spatial com-
ponents of the viscous tensor are given by a,u®=0, (A9a)
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2 (ur uf spectrum from an expanding cylinder,
S

—_ = |4 r 2 r_ r
Ju 1—C§v2 . + . +d,u +v°du vd.u, 42N ) 1 j s (pu) 0
(A%D) Ppray (2m?) DT
T r
M= d (A9) Substituting the integration measypéd>. ,, we have
Herev =u'/u” is the radial velocity and¢?=dp/de denotes d2N© 1 (R, o "
the squared speed of soumﬁ.is very close ta; for the pion 5 = ?j rdr f d¢f Tdysmrcosky
gas considered and is found by differentiating the equation of d“Prdy (2m)°/o 0 -

state for a single-component massive classical ideal gas. See, pu

e.g., Ref[25] for explicit formulas for the pressure and en- —7s) fo(—)_ (B2)

ergy density. With the necessary time derivatives, the full T

viscous tensor can be found by substituting the flow profil ; ; . ; )

given in Eq.(A2) into Eq.(A3) and differentiating. The final etPrSrrTf]ormlng the integral, we obtain the ideal thermal spec

formulas are lengthy and are not given. A check of the alge-

bra is provided by the trace relatiog,,, T};c=0. d2N(® mR2
An additional prescription for fixing the time derivative =My 2Ky (X). (B3)

was tried. If the particles are freezing out, then the particles d°prdy (2m)

are free streaming. Accordingly, we hau®“=0. This o161, (x) is the modified Bessel function evaluatedsat
amounts to dropping terms proportionaldbwhen comput-  —m /T “Now we determine the correction spectrum. For a

ing Eq. (A9). This change made only a negligible change topre poost invariant expansion, the nonvanishing compo-
final results. This is because the whole effect of the time,ants of viscous tensdiV“u”) are from Eqs(A3),

derivative is proportional t@§v2 which is rather small in

practice,c2v?~ 3.

To finish computing the viscous correctigitp’(V ,u,),
we need to expreg®* and the integration measupgds. , in
the (r,7s,r,¢) coordinate system. For a particle at point r2<V¢u¢’)=£ (B4b)
(7,m5,r,¢) with four-momentum p#=(E,p*,p’,p? 37’

= (my coshy,pr cos¢y, ,pr Sin ¢, ,myr sinhy), we have

2
(Vrur)=3—T, (B4a)

p”=mscoshy— 7)), (A10a) (VU7 =— % (B4o)
7p"=mysinhly = 75), (A10D)  Thys the viscous correctiodf is
p'=prcos ¢, — ), (A10c) 3T, [pu
p?=prsin( gy~ 6). (A100) "3 Ff"(?) PEPIT )
The oriented freeze-out volume is dX, 3T, (pu\[2p3 4m?
=(d%,,d3,,dY,,d3,)=(rdpsrdrd¢$,0,0,0) and the in- :ggfo(?)(¥—¥3|nf?7]s)- (BY)

tegration measure is

(A11) Note. that we have substitutégd(1+ fo) in Eq.(16) by f, as
required by the Boltzmann approximation. We can then sub-

With these formulas there is ample information to computestitute 6f to determine the first viscous correction

the viscous correctio_p“p”(VMuV) and to perform the nec- 2N 1

essary Cooper-Frye integrals. -

d’prdy (2m)°

prdX ,=mycoshy — 75) rdnsrdrd¢.

f prds. , of. (B6)

APPENDIX B: VISCOUS CORRECTIONS TO A BJORKEN T . . . .
EXPANSION Substituting the integration measure and performing the in-

tegral over therg as for the ideal case, we obtain
In this appendix, | provide the details leading to the vis- 5
cous corrections to the spectrum and longitudinal radius d?N® _ TR 2K Is
[Egs.(18) and (26)] for a boost invariant expansion without d%p dy_mTTO(zw)s 1(X)4_T
transverse flow. The spectrum is given by the Cooper-Frye T
formula, Eq.(17). First we compute the ideal spectrum. For pr\2  [mg) 2/ Kg(x)
== —|= -1]|. (B7)
T T K1(X)

a boost invariant expansion without a transverse flaw,
=1 andu”=u"=u?=0. The thermal distribution for an ex-

panding Boltzmann gas isf,(pu/T)=exd—mycoshy  Dividing Eq. (B7) with Eq. (B3) we obtain Eq(18) given in
—79/T]. Then the Cooper-Frye integral gives the thermalthe text.

X
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Next we work out the first viscous correction to the lon-
gitudinal HBT radius. The longitudinal radius is given by Eq.
(25). Expanding to first order idf and using the relatiom
= 7, Sinh 7, we obtain the ideal contribution

Ku
f K“dEﬂfo(?) 72 sint? 7,

Ku ’
f K“dEMf0(7)

and the first viscous correction

(ROO(Ky) = (B9)

dN®) )
, o) K dKy fK“dEluéfTosmf'?ﬂs
I _
KrdKt fK dz”fo( T)
(B9)
For the kinematics of typical HBT measurements
at  midrapidity, we have K*=(K",K"K?K?)

=(\/KT2+ m?,K+,0,0). The integration measure s dz.
=my cosh@p) Tdzsrdr de, wheremy= K2+ m2.

PHYSICAL REVIEW C 68, 034913 (2003

First we work out the ideal radiusRf)(®. Substituting
K#dZ , into the numerator and denominator and performing
the integrals over the freeze-out surfdas in Eq.(B2)], we
obtain the Herrmann-Bertsch formulas]

, T Ka(x)

21(0)
(RO To mr Ky(x)'

(B10)

wherex=\/m?+ KTZIT. For large values of, Eq. (B10) re-
duces to the Makhlin-Sinyukov formu(&5]
T
(R?)©O=75—. (B12)
mr
A similar calculation gives the viscous correction. Substi-
tuting the viscous correctiodf [Eq. (B5)] into Eq. (B9),
using the previous results for the spectriggs. (B3) and

(B7)] and ideal radiugEq. (B10)], and performing thep,

integrals, we obtain Eq26) quoted in the text:
oR? T 6xK3(x)_X2}(K3(x) 1”
(B12)

4 Ky(x) 8

(RE)(O): Ea Ko(x)
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