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Effect of shear viscosity on spectra, elliptic flow, and Hanbury Brown–Twiss radii

Derek Teaney*
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

~Received 14 February 2003; published 29 September 2003!

Here we calculate the first correction to the thermal distribution function of an expanding gas due to shear
viscosity. With this modified distribution function we estimate viscous corrections to spectra, elliptic flow, and
Hanbury Brown–Twiss~HBT! radii in hydrodynamic simulations of heavy ion collisions using the blast wave
model. For reasonable values of the shear viscosity, viscous corrections become of the order of 1 when the
transverse momentum of the particle is larger than 1.7 GeV. This places a bound on thepT range accessible to
hydrodynamics for this observable. Shear corrections to elliptic flow causev2(pT) to veer below the ideal
results forpT'0.9 GeV. Shear corrections to the longitudinal HBT radiusRL

2 are large and negative. The
reduction ofRL

2 can be traced to the reduction of the longitudinal pressure. Viscous corrections cause the
longitudinal radius to deviate from the 1/AmT scaling which is observed in the data and which is predicted by
ideal hydrodynamics. The correction to the sideward radiusRS

2 is small. The correction to the outward radius
RO

2 is also negative and tends to makeRO /RS'1.
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I. INTRODUCTION

One of the most exciting results of the Relativistic Hea
Ion Collider ~RHIC! is the observation of collective motion
In particular, the experiments have measured a large elli
flow in noncentral collisions@1–5#. Elliptic flow is quantified
with the second harmonic of the azimuthal distribution
produced particles,

v2~pT!5^cos~2f!&pT
[

E
2p

p

df cos~2f!
d3N

dy pt dpt df

E
2p

p

df
d3N

dy pt dpt df

,

~1!

wheref is measured relative to the reaction plane.v2(pT)
rises strongly as a function of transverse momentum up
pT'1.5 GeV. One interpretation of the observed flow is th
hydrodynamic pressure is built up from the rescattering
produced secondaries and pressure gradients subsequ
drive collective motion. A strong hydrodynamic response
possible if the sound attenuation lengthGs[

4
3 h/(e1p) is

significantly smaller than the expansion rate,;t. ~In the for-
mula Gs[

4
3 h/(e1p), h is the shear viscosity,e is the en-

ergy density, andp is the pressure.! Estimates based upo
perturbation theory giveGs;t and indeed 30 times the pe
turbative 2-2 cross sections are needed to obtain the obse
elliptic flow @6#. However, these perturbative estimates
uncertain. In an example of a strongly coupled gauge the
where calculations are possible (N54 SUSY YM!, Gs is in
fact approximately two to four times smaller compared
perturbation theory@7# ~see also Sec. II!.

Ideal hydrodynamics (Gs50) has been used to simula
heavy ion reactions and readily reproduce the observed e
tic flow and its dependence on centrality, mass, beam ene
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and transverse momentum@8,9#. However ideal hydrody-
namics failed in several respects. First, abovepT'1.5 GeV
the observed elliptic flow does not increase further as p
dicted by hydrodynamics. Additionally, the single-partic
spectra deviate from hydrodynamic predictions abovepT
'1.5 GeV. Second, the observed Hanbury Brown–Tw
~HBT! radii are significantly smaller than that predicted
ideal hydrodynamics@10–12#. In particular, the longitudinal
radiusRL is 50% smaller than the ideal hydrodynamic resu
Further, the ratio between the outward (RO) and sideward
(RS) radii is observed to be'1 while ideal hydrodynamics
predictsRO /RS'1.3 @10#.

The domain of applicability of hydrodynamics can be a
swered quantitatively by calculating the first viscous corr
tion to ideal hydrodynamic results. The effect of viscosity
twofold. First, viscosity changes the solution to the equatio
of motion. Second, viscosity changes the local thermal d
tribution function. This effect was first investigated in hea
ion physics by Dumitru@13#. The purpose of this work is to
consider the effect of a modified thermal distribution fun
tion on spectra, elliptic flow, and HBT radii. Thus this wor
delineates the boundaries of the hydrodynamic descriptio
applied to relativistic heavy ion collisions.

II. VISCOUS CORRECTIONS TO A BOOST INVARIANT
EXPANSION

First consider a baryon-free viscous boost invariant
pansion with a vanishing bulk viscosity, but a nonzero sh
viscosity, h. Note that throughout this work we denote th
space-time rapidity ashs and the viscosity ash. Unlike for
ideal hydrodynamics where entropy is conserved, the
tropy per unit space-time rapidityts increases as a functio
of t5At22z2 @14–17#,

d~ts!

dt
5

4

3
h

tT
. ~2!
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For hydrodynamics to be valid, the entropy produced o

the time scale of the expansiont @to wit, t( 4
3 h/tT)] must be

small compared to the total entropy (ts). This leads to the
requirement that

Gs

t
!1, ~3!

where we have defined thesound attenuation length

Gs[

4

3
h

sT
. ~4!

Gs is approximately the mean free path and therefore
condition Gs /t!1 is just the statement that the mean fr
path be small compared to the system size. The name ‘‘so
attenuation length’’ follows from the dispersion relation for
sound pulsev5csk1 1

2 i Gs k2, where cs
25(]p/]e) is the

squared speed of sound. In the remainder of this sectio
gather estimates forGs in the quark gluon plasma~QGP!. For
similar estimates in the hadron gas, see Ref.@18#.

The shear viscosity has been determined in the pertu
tive QGP only to leading log accuracy@19,20#. To leading
ln(g21) the shear viscosity with two light flavor is given b
h586.473(1/g4)@T3/ln(g21)#. With the entropy of the QGP
s537(p2/15)T3, and settingas→ 1

2 and ln(g21)→1 the
sound attenuation length in perturbation theory is

S Gs

t D
pert

50.18
1

tT
. ~5!

Estimates of evolution time scales givetT;1. The value of
Gs /t is sensitive to the value ofas .

This perturbative estimate ofGs is clearly uncertain and
assumes thatas'1/2 and that ln(g21) is a large number.
Recently the shear viscosity was evaluated in a stron
coupled gauge theory,N54 SUSY YM using the AdS/CFT
correspondence@7#. The shear viscosity is given byh
5(p/8)Nc

2T3 @7# and the entropy is given bys
5(p2/2)Nc

2T3 @21#. Thus in this strongly coupled field
theoryGs is

S Gs

t D
AdS/CFT

5
1

3ptT
, ~6!

which is two to four times smaller than the correspond
perturbative estimate depending.

Finally, I compare these theoretical estimates ofGs to the
value abstracted from Monte Carlo simulations of RHIC c
lisions performed by Gyulassy and Molnar~GM! @6#. GM
modeled the heavy ion reaction as a gas of massless clas
particles suffering only 2→2 elastic collisions with a con
stant cross section in the center of mass system fra
ds/dV5s0/4p. When particle number is conserved,Gs is
given by a more complicated formula which reflects the c
pling between the energy and number densities@22#,
03491
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Gs5

4

3
h

e1p
1

k

e1p S ]e

]TD
n

21Fe1p22TS ]p

]TD
n

1cs
2TS ]e

]TD
n

2
n

cs
2 S ]p

]nD
T
G , ~7!

where k is the thermal conductivity. For the GM gas,cs
2

5 1
3 , p5 1

3 e5nT and Gs reduces to4
3 h/(e1p) as before.

The shear viscosity in the GM gas ish'1.264(T/s0) @23#.
ThereforeGs is directly proportional to the mean free path

Gs50.421
1

ns0
. ~8!

In order to achieve a reasonable agreement with the m
sured elliptic flow, GM required a transport opacity
x'20–40. This transport opacity was reached when
cross section wass0'10– 20 mb and the number of pa
ticles wasdN/dh'1000 at proper timeto50.1 fm. The ini-
tial density of particles isn5(dN/dh)/(topR2). Substitut-
ing R'5.5 fm we obtain

S Gs

t D
GM

50.02– 0.04. ~9!

This is smaller by a factor of 3 or more than even the Ad
CFT estimate assuming thattT;1. The physical mechanism
for such a small viscosity remains unclear.

The sound attenuation length is uncertain. In what follo
we takeGs /t5 1

5 and calculate viscous corrections to th
observed spectra, elliptic flow, and HBT radii. In summa
perturbation theory findsGs /t'0.18, strongly coupled su
persymmetric field theory findsGs /t'0.11, and phenom-
enology findsGs /t'0.03.

III. VISCOUS CORRECTIONS TO THE DISTRIBUTION
FUNCTION

Viscosity modifies the thermal distribution function. Th
formal procedure for determining the viscous corrections
the thermal distribution function is given in Refs.@19,24#. In
general, for a multicomponent gas the viscous correctio
different for each component. For simplicity, we will con
sider a single-component gas of ‘‘pions’’ withmp

5140 MeV. The basic form of the viscous correction can
intuited without calculation. First writef (p)5 f o1d f , where
f o(pu/T)51/(epu/T21) is the equilibrium thermal distribu
tion function andd f is the first viscous correction.d f is
linearly proportional to the spatial gradients in the syste
which have no time derivatives in the rest frame and
therefore formed with the differential operator“m5(gmn

2umun)]n. For a baryon-free fluid, these gradients are“aT,
“aua, and ^“aub&, where ^“aub&[“aub1“bua
2 2

3 Dab“gug. “aT can be converted into spatial derivative
“aub using the ideal equations of motion and the conditi
that Tmnun5eum @24#. “aua leads ultimately to a bulk vis-
cosity and will be neglected in what follows. Finally
3-2
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^“aub& leads to a shear viscosity. Ifd f / f o is restricted to be
a polynomial of degree less than 3 inpm, then the functional
form of the viscous correction is completely determined,

f 5 f oS 11
C

2T3
papb^“aub& D . ~10!

For a Boltzmann gas this is the form of the viscous corr
tion adopted in this work. The factor of 2 inC/2T3 is in-
serted for later convenience. For Bose and Fermi gases
ideal distribution function in Eq.~10! is replaced withf o(1
6 f o) @19#. The correction described here is precisely t
‘‘first approximation’’ of Ref. @24# and the ‘‘one-paramete
ansatz’’ for a variational solution of Ref.@19#. The ‘‘one-
parameter ansatz’’ reproduces the full result to the 15% le

The coefficientC in Eq. ~10! can be reexpressed in term
of the sound attenuation length. Indeed, substitutingf to de-
termine the stress energy tensor

Tmn5To
mn1h^“mun&5E d3p

~2p!3E
pmpn f , ~11!

we find

h^“mun&5
C

2T3 F E d3p

~2p!3E
pmpnpapb f o~11 f o!G ^“aub&.

~12!

The quantity in square brackets is a fourth-rank symme
tensor and consequently can be written in terms ofDmn

[gmn2umun andum. Thus,

C

2T3E d3p

~2p!3E
pmpnpapb f o~11 f o!

5ao~umunuaub!1a1~Dmnuaub1permutations!

1a2~DmnDab1DmaDnb1DmbDna!. ~13!
so
by
re
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Substituting Eq.~13! into Eq. ~12! and using the identities
ua^“aub&5ub^“aub&5Dab^“aub&50, we find 2a25h.
To determine the coefficienta2 , contract both sides of Eq
~13! with

1

45
~DmnDab1DmaDnb1DmbDna!, ~14!

and evaluate the resulting expression in the local rest fra
The result for the viscosity is

h5
6

90

C

T3E d3p

~2p!3E
f o~11 f o!upu4. ~15!

For a Boltzmann gas,f o(11 f o) is to be replaced with
f o(pu/T)5e2pu/T and the integrals can be performed an
lytically. Comparing the resulting expression to the entro
of an ideal Boltzmann gas~see, e.g., Ref.@25#! we find C
5h/s. For a massless Bose gas, the integrals can agai
performed analytically and C5@p4/(90z(5))#(h/s)
'1.04(h/s). For a massive Bose gas, the integral was p
formed numerically andC varies monotonously betwee
these two limiting cases. Therefore up to a few percent,
haveC5h/s, and the viscous correctiond f is

d f 5
3

8

Gs

T2
f o~11 f 0!papb^“aub&.

IV. VISCOUS CORRECTIONS TO A BJORKEN
EXPANSION

Before considering the viscous corrections to more g
eral hydrodynamic expansions, let us consider a sim
Bjorken expansion of infinitely large nuclei without tran
verse flow. At mid space-time rapidity the stress energy t
sor at timeto is given by@17#
To
mn1h^“mun&5

t

x

y

z

t x y z

S e 0 0 0

0 p1
2

3

h

to
0 0

0 0 p1
2

3

h

to
0

0 0 0 p2
4

3

h

to

D , ~16!
rse
-

where To
mn denotes the ideal stress energy ten

diag(e,p,p,p), Thus, the longitudinal pressure is reduced
the expansionTzz5p2 4

3 h/to , while the transverse pressu
is increased by the expansionTxx5p1 2

3 h/to .
r The difference between the longitudinal and transve
pressures is reflected in thepT spectrum of thermal distribu
tion. Since the transverse pressure (Txx) is increased by
2
3 h/to , the particles are pushed out to largerpT . Armed
3-3



ken
-

DEREK TEANEY PHYSICAL REVIEW C68, 034913 ~2003!
 (GeV)zp
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

 (
ar

b.
 u

ni
ts

)
z

dpdN

0

0.02

0.04

0.06

0.08

0.1

=400 MeVTp

=1/5
oτ
sΓ

 = 0sη

Ideal

Viscous
(a)

z (fm)

-15 -10 -5 0 5 10 15

 (
ar

b.
 u

ni
ts

)
dzdN

0

0.02

0.04

0.06

0.08

0.1

=400 MeVTp

=1/5
oτ
sΓ

y = 0

Ideal

Viscous
(b)

FIG. 1. ~a! The pz distribution of particles with coordinate-space rapidityhs50, with and without viscous corrections.~b! The z
distribution of particles with momentum-space rapidityy50, with and without viscous corrections. The curves are drawn for a Bjor
expansion without transverse flow atto57 fm for a Boltzmann gas with temperatureT5160 MeV, m5140 MeV. The transverse momen
tum is fixed,pT5400 MeV. The viscous correction is linearly proportional toGs /to .
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with the modified thermal distribution function, the Coope
Frye formula@26# gives the thermal spectrum of particles
the transverse plane at proper timeto ,

d2N

d2pT dy
5

1

~2p!3E pmdSm f , ~17a!

d2N(0)

d2pT dy
1

d2N(1)

d2pT dy
5

1

~2p!3E pmdSm f o1d f . ~17b!

Here dSm is the oriented space-time volume. Substituti
into Eq. ~17! ~see Appendix B! we obtain the ratio betwee
the viscous correction (d dN[dN(1)/d2pTdy) and the ideal
spectrum (dN(0)[dN(0)/d2pTdy),

d dN

dN(0)
5

Gs

4to H S pT

T D 2

2S mT

T D 2 1

2S K3S mT

T D
K1S mT

T D 21D J .

Using the asymptotic expansion for the modified Bes
functions, we have for large transverse momenta

d dN

dN(0)
5

Gs

4to
S pT

T D 2

. ~18!

As promised, the larger transverse pressure drives push
corrected spectrum out to higher transverse momenta. F
Bjorken expansion without transverse flow, this formula a
indicates at what transverse momentum the hydrodyna
description ofpT spectra is applicable. ForGs /to'1/5 and
T5200 MeV, the ratio between the ideal spectrum and
correction becomes of the order of 1 forpT

max'800 MeV.
We shall see in the following section that this upper bou
on the domain of hydrodynamics is significantly larg
pT

max'1.5 GeV, once the transverse expansion is include
the flow profile.
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We have already noted that the longitudinal pressure
reduced by the expansion,Tzz5p2 4

3 h/t. The reduction in
the longitudinal pressure is ultimately responsible for a
duction in the longitudinal radius measured by Hanbu
Brown–Turiss interferometry. Since the longitudinal pre
sure is reduced due to the expansion, the distribution inpz at
mid space-time rapidity (hs50) is narrower. This is illus-
trated in Fig. 1~a! for a fixed transverse momentumpT
5400 MeV.

Due to boost invariance thepz distribution aths50 is
directly related to thez distribution aty50 @16#. Specifi-
cally, for fixed transverse momentum,dN/dydhs is a func-
tion of uy2hsu, which leads to the relation

mT

dN

dpzdh U
h50

5to

dN

dydzU
y50

. ~19!

It follows that the z distribution at mid momentum-spac
rapidity is narrower as indicated in Fig. 1~b!. The width of
this z distribution is related to the longitudinal radius that
measured by HBT interferometry~see, e.g., Ref.@27#!.

To understand this result analytically we must calcul
the width of thez distribution for a simple Bjorken expan
sion of a Boltzmann gas at proper timeto . Let us quickly
recall the definitions of the HBT radii. The source functio
S(x,K) for on shell pion emission is defined such that

EK

d3N

d3K
[E d4xS~x,K !, ~20!

where EK5K05AK21mp
2 . Averages with respect to

the source function are defined as ^a&K
[*d4x a S(x,K)/*d4x S(x,K). To a good approximation
~see, e.g., Ref.@27#!, certain spatial and temporal varianc
of the source function can be determined from the Bo
Einstein correlations between pion pairs at small relative m
menta. For a boost invariant and rotationally invaria
source, we can assume without loss of generality that the
3-4
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momentum points in thex direction @i.e., K5(Kx,Ky,Kz)
5(KT,0,0)]. Then the following variances can be dete
mined from HBT measurements:

RO
2 ~KT![^~ x̃2vK t̃ !2&KT

, ~21!

RS
2~KT![^ ỹ2&KT

, ~22!

RL
2~KT![^ z̃2&KT

, ~23!

wherevK5KT /EK and, for example,x̃[x2^x&. Comparing
Eqs.~18! and~20!, we see that in this work the source fun
tion is confined to a freeze-out surface and therefore the
erages are understood to mean

^a&K[

E
S
KmdSma f ~x,K !

E
S
KmdSm f ~x,K !

. ~24!

The assumption of a sharp freeze-out surface is cle
unrealistic. In general there is a transition region from hyd
dynamics to the Knudsen limit. Within ideal hydrodynami
this transition region cannot be determined. Within visco
hydrodynamics, viscous terms become large (;1/2) and sig-
nal the transition.

Armed with these formulas, the computation ofRL
2 for a

boost invariant expansion is straightforward. We have

RL
2~KT![^z̃2&KT

[
E KmdSm f ~x,K !z2

E KmdSm f ~x,K !

. ~25!

Substitutingf 5 f o1d f , expanding to first order ind f , and
performing the integrals~see Appendix B!, we find the vis-
cous correctiondRL

2 :

dRL
2

~RL
2!(0)

52
Gs

toF 6

4

mT

T

K3S mT

T D
K2S mT

T D

2S mT

T D 2 1

8S K3S mT

T D
K2S mT

T D 21D G , ~26!

where the (RL
2)(0) is the ideal longitudinal radius@28#,

~RL
2!(0)5to

2 T

mT

K2~x!

K1~x!
. ~27!

For the relevant range ofmT /T, the Bessel function expres
sion in square brackets is large'6 – 8. Accordingly, viscous
corrections to the longitudinal radius are quite lar
(.100%) and tend to reduce the radius relative to its id
03491
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value. Including the transverse expansion reduces the
cous correction to 50%. Nevertheless, the viscous correc
to the longitudinal radius remains large unlessGs /to is sig-
nificantly smaller than 0.1. This formula and some cave
are discussed further in the following section.

V. VISCOUS CORRECTIONS WITH TRANSVERSE
EXPANSION

To go further and illustrate the effect of viscosity on th
observed spectra, elliptic flow, and HBT radii of hydrod
namical models of the heavy ion collision, I generalize t
blast wave model to include the viscous corrections of E
~10!. The blast wave model provides a simple parametri
tion of the flow of full ideal hydrodynamic simulation
which assume boost invariance@8,9#. The corrections de-
scribed below are therefore indicative of similar correctio
to these simulations. This is the reason for adopting the b
wave model here. The blast wave model also has been
to fit experimental data. The model provides a good desc
tion of spectra and elliptic flow@2,9,29# and provides a fair
description of HBT radii for smallMT , MT,0.5 GeV@30#.
However, for largerMT the model does not reproduce th
strong dependence onMT seen in theRO and RS radii
@29,31#. The blast wave model remains simply a model of t
flow fields and ultimately a full viscous simulation is need
to estimate viscous effects.

In the blast wave model of central collisions consider
here, a hot pion gas is expanding in a boost invariant fash
and freezes out at a proper timeto . In the transverse plane
the temperature is constant,To5160 MeV, and the matter
distribution is uniform up to a radiusRo . The transverse
velocity rises linearly as a function of the radius,ur

5uo(r /RO). Summarizing, the hydrodynamic fields (T and
um) are parametrized as

T~to ,hs ,r ,f!5ToQ~Ro2r !, ~28a!

ur~to ,hs ,r ,f!5uo

r

Ro
Q~Ro2r !, ~28b!

uf50, ~28c!

uh50, ~28d!

uto5A11~ur !2. ~28e!

The blast wave parameters are adjusted so that model
the ideal thermal distribution can approximately reprodu
the spectra and HBT radii. Similar blast wave model fi
have appeared ubiquitously in the heavy ion literature~see,
e.g., Ref.@29#!. Then with the model parameters fixed, th
viscous correction is calculated and compared to the id
results. The model parameters for central collisions are
corded in Table I.

With the hydrodynamic fields specified, the viscous ten
^“aub& can be computed in a simple but lengthy calculati
which is worked out in Appendix A. One technical poin
should be noted. In the viscous tensor^“aub& time deriva-
3-5
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DEREK TEANEY PHYSICAL REVIEW C68, 034913 ~2003!
tives of the velocity appear. These time derivatives are c
verted into spatial derivatives using the ideal equations
motion which are sufficient to leading order in the viscosi

The spectrum of particles emerging from the freeze-
oriented three-volume is calculated by employing t
Cooper-Frye formula, Eq.~17!. These integrals are pe
formed numerically in a straightforward fashion. Again re
evant details are relegated to Appendix A. The ideal sp
trum of this blast wave model is typical of blast and is
rough agreement with pion data at RHIC.~See, e.g., Ref.
@29# for fits to data of this type.! In Fig. 2, the solid line
shows the ratio of the viscous correction to the ideal sp
trum. The dashed line shows the Bjorken result@Eq. ~18!#
without transverse flow. The viscous correction becom
comparable to ideal results forpT'1.7 GeV indicating the
breakdown of the hydrodynamic description ofpT spectra for
the flow profile considered here. SettingGs /to to 0.1 extends
the domain of applicability to 2.3 GeV. The analytic Bjorke
result @Eq. ~18!# qualitatively explains the shape of Fig.
Quantitatively however, the transverse expansion allevia
some of the longitudinal shear and pushes the region of
plicability hydrodynamics to somewhat larger transverse m
mentum.

Indeed, viscous effects are implicated in the heavy
data for pT'1.5 GeV. The observed elliptic flow deviate

TABLE I. Table of parameters used in the blast wave mo
described in the text.

Central@~0–5!%# Noncentral@~16–24!%#

To ~MeV! 160 160
Ro ~fm! 10 7.5
to ~fm! 7.0 5.25
uo 0.55 0.55
u2 0 0.1

 (GeV)Tp
0 0.5 1 1.5 2 2.5

(0
)

dN d
N

δ

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 = 7.0 fmoτ
 = 10.0 fmoR
 = 160 MeVoT

 = 1/5oτ/sΓ

 = 0.55 co
ru

FIG. 2. ~Color online! The solid line shows the ratio between th
viscous correction (ddN[dN(1)/d2pTdy) and the ideal spectrum
(dN(0)[dN(0)/d2pTdy). The dashed line shows the Bjorken res
without transverse flow given in Eq.~18!. The band indicates wher
the hydrodynamic description of thepT spectrum in the blast wave
model cannot be reliably calculated. The viscous correction is
early proportional toGs /to .
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from ideal hydrodynamic results forpT'1.5 GeV. Further
for pT'1.5 GeV, the single-particle spectra start to devi
strongly from the hydrodynamic results~see, e.g., Ref.@8#!.
Viscosity provides a simple explanation for the observ
breakdown of thepT spectrum in this momentum range.

Next we examine the effect of viscosity on elliptic flow
In noncentral collisions the radial velocity is given a sm
elliptic component to reproduce the observed elliptic flow

ur~to ,hs ,r ,f!5uo

r

Ro
@11u2cos~2f!#Q~Ro2r !.

~29!

The functional form of all other hydrodynamic fields is ke
the same. Here we simulate the STAR~16–24!% centrality
bin which corresponds to an impact parameter bin^b&
'6.8 fm @3#. In the model, the radius and lifetime param
eters (Ro andto) are scaled downward from the central va
ues by the ratio of the rms radii betweenb56.8 fm and
central AuAu collisions. This scaling ofRo andto approxi-
mates the impact parameter dependence of ideal hydr
namic solutions@8#. The noncentral parameters are record
in Table I. As before, once the flow fields are specified,
viscous correction is found by differentiating^“aub&. The
full form of the correction is given in Appendix A.

The elliptic flow as a function of transverse momentu
v2(pT) is defined by Eq.~1!. Expanding to first order,

v2~pT!5v2
(0)~pT!S 12

E df
d2N(1)

pT dpT df

E df
d2N(0)

pT dpT df

D
1

E df cos~2f!
d2N(1)

pT dpT df

E df
d2N(0)

pT dpT df

, ~30!
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FIG. 3. Elliptic flow v2 as a function ofpT for different values
of Gs /to . The data points are four-particle cumulant data from
STAR Collaboration@3#. Only statistical errors are shown. The di
ference between the ideal and viscous curves is linearly pro
tional to Gs /to .
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PHENIX Collaboration@12#. For
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wherev2
(0)(pT) denotes the elliptic flow as a function ofpT

calculated as in Eq.~1! but with the ideal distribution
dN(0)/pT dpT df.

Figure 3 shows the elliptic flow for pions. By constru
tion, the ideal curvev2

(0) roughly reproduces the experime
tal elliptic flow at b'6.8 fm. Taking a more realistic flow
profile would improve the agreement of the ideal results w
data@9#. The effect of viscosity is to reduce the elliptic flow
Similar results were recently found@32# by considering a
partially thermalized expansion. Taken at face value th
results suggest that the viscosity is small. Indeed, in orde
agree with the ideal results up topT'1.0 GeV we require
Gs /to&0.1. It must be mentioned that the results of Fig
are sensitive to the blast wave parameters. Ideal hydro
namics generates an appropriate set of parameters. Whe
viscous expansion~with Gs /to50.1) can reproduce the ob
served elliptic flow remains an open question.

Finally, I discuss how viscosity affects the HBT rad
First, I illustrate the ideal HBT radii for the blast wave p
rametrization in Fig. 4~a!.

The model parameters are again to be chosen to app
mately reproduce the observed radii which are illustrated
Fig. 4~b! for comparison. The viscous correction to each
dius is again found by substitutingf 5 f o1d f into Eq. ~24!
and expanding the numerator and denominator to first o
in d f and calculating the integrals numerically. The resulti
viscous corrections are illustrated in Fig. 5.
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Several observations are immediate. First, as discusse
Sec. IV, the viscous corrections in the longitudinal directio

reduce^ z̃2& and ^ t̃ 2& due to the reduction of longitudina
pressure. This reduces theRO andRL radii. From a phenom-
enological point of view the reduction ofRL is welcome. In
full ideal hydrodynamic simulations of heavy ion collision
assuming boost invariance in the longitudinal directi
@10,33#, RL is approximately twice too large compared to t
data. In the blast wave model, viscous corrections toRL are
large. This suggests that viscosity is responsible for
shortcomings in these simulations. Comparing Figs. 4~b! and
5~b!, it seems that the reduction toRL is too large. However,
it should be remembered that the parameters of the b
wave model have been adjusted to reproduce the ideal re
and therefore viscous corrections make the agreement
data worse. Further, because the correction to the longit
nal radius is large the calculation cannot be considered
able. For Gs /to'0.1, the viscous correction toRL is
'(30–50)% and the calculation is more reliable.

Viscous corrections to the transverse variances^x̃2& and

^ ỹ2& are small. Consequently, the sideward radius rece
only a small viscous correction. Viscosity introduces no s
nificant x2t correlation which could influence the ratio o
RO to RS . In the blast wave model the difference betwe
RO and RS is due to the contribution̂ t̃ 2&. Viscous correc-
tions to^ t̃ 2& are negative and are essentially linearly prop
n
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FIG. 5. ~a! Viscous correction
dR2 for RO , RS , andRL relative
to ideal blast wave HBT radii
(R2)(0). ~b! The HBT radii RO ,
RS , andRL including the viscous
correction. The viscous correctio
is linearly proportional toGs /to .
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DEREK TEANEY PHYSICAL REVIEW C68, 034913 ~2003!
tional to this variance. For the particular value ofGs /to
51/5, the viscous correction is accidentally correct a
makesRO /RS'1 as illustrated in Fig. 5~b!. The agreemen
is accidental but the trend is completely general. Viscos
reduces thê t̃ 2& and therefore tends to makeRO equal to
RS . This is also welcome from a phenomenological point
view. Full ideal hydrodynamic simulations~with @10,33# and
without @34# the assumption of boost invariance! predict
RO /RS'1.3 which should be compared to;0.9 observed in
the RHIC data.

In spite of these welcome corrections, including viscos
makes some aspects of the hydrodynamic description of
HBT radii worse. All of the observed radii~denoted generi-
cally asRX) scale quite accurately withmT5AKT

21m2 as

RX}
1

AmT

. ~31!

Ideal hydrodynamics readily predicts this 1/AmT scaling
~see, e.g., Refs.@35–37#!. Indeed, expanding Eq.~27! for the
longitudinal radius of an ideal boost invariant expansion,
obtain the Sinyukov-Makhlin formula@35#

~RL
2!(0)5to

2 T

mT
. ~32!

Viscous terms immediately break this 1/AmT scaling. Ex-
panding Eq.~26! for the longitudinal radius with viscou
corrections, we obtain

~RL
2!(0)1dRL

25to
2S T

mT
2

19

16

Gs

to
D . ~33!

Viscous terms break the ideal 1/AmT scaling and this correc
tion grows likemT /T relative to the ideal result. This devia
tion from 1/AmT scaling is not seen in the data.

There remain several puzzling aspects in the HBT m
surements for which viscosity offers no explanation. All
the radii are the same order of magnitude and fall withmT as
in Eq. ~31!. In particular, the steep fall withmT in the
sideward radius was difficult to reproduce with the visco
blast wave model described here and in the ideal blast w
model @29#. This behavior was predicted based upon a
rametrization of ideal hydrodynamics@36,37# where system
cools rapidly during freeze-out and where temperature
velocity gradients are much larger than the geometric siz
the system. It is natural to ask whether these conditions
be dynamically generated from some initial conditions
freeze-out dynamics—see Ref.@38# for efforts in this direc-
tion. Large velocity gradients and temperature inhomoge
ities should increase the relative importance of viscos
Nevertheless, the success of these models should be no

VI. CONCLUSIONS

In conclusion, I have calculated the first correction to t
thermal distribution function of an expanding gas due
shear viscosity. The momentum range which is accura
described by hydrodynamics is directly related to the sh
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viscosity and depends upon the particular observable. I h
estimated this momentum range for single-particle spec
elliptic flow, and HBT radii using the boost invariant bla
wave model.

For reasonable values ofGs[
4
3 h/(e1p), the viscous cor-

rection to the single-particle spectrum of a blast wave mo
becomes of the order of 1 forpT'1.5–2.0 GeV as illustrated
in Fig. 2.

The observed elliptic flow places a constraint on the sh
viscosity. Indeed, unlessGs /to is less than 0.1,v2 as a func-
tion of pT falls well below the ideal curve bypT
'1.0 GeV. For the blast wave model, the viscous corr
tions to elliptic observables become largebe f ore the corre-
sponding corrections to the transverse momentum spect

Shear viscosity also plays an important role in the int
pretation of the longitudinal radius. Indeed,RL reflects not
only the lifetime of the system but also the degree of th
malization in the longitudinal direction.RL involves the sec-
ond moment of the thermal distribution function in the lo
gitudinal direction where nonequilibrium effects are t
largest. Consequently, viscous corrections to this rad
('50% for Gs /to'0.2 and 25% forGs /to'0.1) are large
enough so that perhapsRL should be left out of hydrody-
namic fits to heavy ion data. This does not imply that hyd
dynamics must be abandoned. On the contrary, while th
modynamics might accurately describe^pT&, it certainly
does not accurately describe^pT

100& unless the viscosity is
very small. In addition, viscous corrections to the ideal lo
gitudinal radius seem to contradict the measurements ofRL .
Shear corrections cause the longitudinal radius to dev
from the 1/AmT scaling clearly seen in the data@31,29,30#
and expected in ideal hydrodynamics@35#.

Shear viscosity also reduces the ratio ofRO to RS by
decreasing the emission duration^ t̃ &. Nevertheless, viscosity
is not a panacea for the HBT problem. The sideward rad
falls precipitously as a function ofKT . This precipitous fall
cannot be reproduced by hydrodynamics at least with a b
invariant expansion@39#. Viscous corrections toRside are
small and make the sideward radius increase withKT .

Many of the conclusions in this work about HBT rad
were recently reached ‘‘from the opposite end’’ by Gyulas
and Molnar~GM! @40# using kinetic theory. GM started from
the Knudsen limit, increased the transport opacity, and
creased the longitudinal radius. Here, I started from the id
hydrodynamics, increased the viscosity, and reduced the
gitudinal radius. These authors also emphasized the im
tance of they2hs correlation in determiningRL . They also
found only small viscous corrections toRs and experienced
similar difficulties in reproducing the steep fall inKT .

Clearly performing a full viscous calculation is the ne
step towards a complete thermodynamic description of
heavy ion reaction. Whether the shear viscosity can be m
small enough (Gs /to&0.1) in the early stages to reproduc
the elliptic flow but still large enough (Gs /to'0.2) in the
late stages to reproduceRL andRO /RS remains an open and
important dynamical question.
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APPENDIX A: THE VISCOUS TENSOR AND BLAST WAVE
MODEL

To write down the viscous tensor̂“aub& it is most
convenient to use Bjorken coordinates:t5At22z2,
hs5

1
2 ln@(t1z)/(t2z)#, r 5Ax21y2, andf5atan(y/x). Note

that we denote the space-time rapidity withhs and the vis-
cous coefficient withh. However, we will drop the ‘‘s’’ on
raised and lowered space-time indices when confusion
not arise. In this coordinate system the metric tensor is

t

hs

r

f

t hs r f

S 1 0 0 0

0 2r 2 0 0

0 0 21 0

0 0 0 2r 2

D . ~A1!

The only nonvanishing Christoffel symbols areGhh
t 5t,

Gth
h 51/t, Gff

r 52r , G rf
f 51/r .

Without particle number conservation, the hydrodynam
fields are T(t,hs ,r ,f) and um(r ,hs ,r ,f), where m
5r ,t,hs ,f. The velocity field satisfiesumum51 and there-
fore only three components ofum need to be specified. Fo
boost invariant flow,uh50. For rotationally invariant flow,
uf50. For nonrotationally invariant flow, we shall leav
uf50 and leave the temperature profile rotationally inva
ant. We assume boost invariance throughout. By assump
the particles freeze-out at a proper timeto with a uniform
distribution in the transverse plane and a linearly rising fl
profile. Thus, the hydrodynamic fields are parametrized a

T~to ,hs ,r ,f!5To Q~Ro2r !, ~A2a!

ur~to ,hs ,r ,f!5uo

r

Ro
@11u2cos~2f!#Q~Ro2r !,

~A2b!

uf50, ~A2c!

uh50, ~A2d!

ut5A11~ur !2. ~A2e!

For central collisions,u2 is zero. It is useful to realize tha
tuh and ruf are the velocities in theh and f directions,
respectively.

The viscous tensor is constructed with the differential o
erator“a5Dabdb , where Dab denotes the projectorgab

2uaub and db denotes the covariant derivativedbua

5]bua1Gmb
a um. With these definitions the viscous tensor

given by h^“aub&, where ^“aub&[“aub1“bua
2 2

3 Dab“gug. Assuming boost invariance, the spatial co
ponents of the viscous tensor are given by
03491
l
y

n-

c

-
n,
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r ^“ ruf&52r ] ru
f2

1

r
]fur2rurDuf2rufDur

2
2

3
rD rf

1

A2g
]m~A2gum!, ~A3a!

r 2^“fuf&522]fuf22
ur

r
22r 2ufDuf

2
2

3
r 2Dff

1

A2g
]m~A2gum!, ~A3b!

^“ rur&522] ru
r22urDur2

2

3
D rr

1

A2g
]m~A2gum!,

~A3c!

t2^“huh&522
ut

t
1

2

3

1

A2g
]m~A2gum!, ~A3d!

^“ ruh&5^“fuh&50. ~A3e!

HereA2g5tr , the expansion scalar is given by

1

A2g
]m~A2gum!5

ut

t
1

ur

r
1]fuf1] ru

r1]tu
t,

~A4!

and the time derivatives in the rest frameDum5uadaum are
given by

Dur5ut]tu
r1ur] ru

r1uf]fur2r ~uf!2, ~A5!

rDuf5ut]t~ruf!1ur] r~ruf!1uf]f~ruf!1ufur .
~A6!

Once the spatial components of the viscous stress en
tensor are known, the temporal components are determ
~numerically! from the relations,̂“aub&ub50.

In these equations the time derivatives]tu
f,]tu

r , and
]tu

t appear. To fix the value of these time derivatives it
sufficient to consider the ideal equations of motion. Inclus
of viscous terms would lead to previously neglected seco
order corrections inGs /t. The ideal equations of motion ca
be written as

De52~e1p! “mum, ~A7!

Dum51
“

mp

e1p
. ~A8!

With these two equations forDe and Dur , and the flow
profile given in Eqs.~A2!, the time derivatives can be dete
mined:

]tu
f50, ~A9a!
3-9
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]tu
r5

cs
2v

12cs
2v2 S ut

t
1

ur

r
1] ru

r1v2] ru
r D2v] ru

r ,

~A9b!

]tu
t5v]tu

r . ~A9c!

Herev5ur /ut is the radial velocity andcs
25dp/de denotes

the squared speed of sound.cs
2 is very close to1

3 for the pion
gas considered and is found by differentiating the equatio
state for a single-component massive classical ideal gas.
e.g., Ref.@25# for explicit formulas for the pressure and e
ergy density. With the necessary time derivatives, the
viscous tensor can be found by substituting the flow pro
given in Eq.~A2! into Eq.~A3! and differentiating. The fina
formulas are lengthy and are not given. A check of the al
bra is provided by the trace relation,gmnTv is

mn 50.
An additional prescription for fixing the time derivativ

was tried. If the particles are freezing out, then the partic
are free streaming. Accordingly, we haveDum50. This
amounts to dropping terms proportional tocs

2 when comput-
ing Eq. ~A9!. This change made only a negligible change
final results. This is because the whole effect of the ti
derivative is proportional tocs

2v2 which is rather small in
practice,cs

2v2' 1
10 .

To finish computing the viscous correctionpmpn^“mun&,
we need to expresspm and the integration measurepmdSm in
the (t,hs ,r ,f) coordinate system. For a particle at poi
(t,hs ,r ,f) with four-momentum pm5(E,px,py,pz)
5(mT coshy,pT cosfp ,pT sinfp ,mT sinhy), we have

pt5mTcosh~y2hs!, ~A10a!

tph5mTsinh~y2hs!, ~A10b!

pr5pTcos~fp2f!, ~A10c!

rpf5pTsin~fp2f!. ~A10d!

The oriented freeze-out volume is dSm
5(dSt ,dS r ,dSf ,dSh)5(tdhs rdr df,0,0,0) and the in-
tegration measure is

pmdSm5mT cosh~y2hs! tdhs rdr df. ~A11!

With these formulas there is ample information to comp
the viscous correctionpmpn^“mun& and to perform the nec
essary Cooper-Frye integrals.

APPENDIX B: VISCOUS CORRECTIONS TO A BJORKEN
EXPANSION

In this appendix, I provide the details leading to the v
cous corrections to the spectrum and longitudinal rad
@Eqs.~18! and ~26!# for a boost invariant expansion withou
transverse flow. The spectrum is given by the Cooper-F
formula, Eq.~17!. First we compute the ideal spectrum. F
a boost invariant expansion without a transverse flow,ut

51 anduh5ur5uf50. The thermal distribution for an ex
panding Boltzmann gas isf o(pu/T)5exp@2mT cosh(y
2hs)/T#. Then the Cooper-Frye integral gives the therm
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spectrum from an expanding cylinder,

d2N(0)

d2pT dy
5

1

~2p!3E pmdSm f oS pu

T D . ~B1!

Substituting the integration measurepmdSm , we have

d2N(0)

d2pT dy
5

1

~2p!3E0

Ro
r dr E

0

2p

dfE
2`

`

t dhs mTcosh~y

2hs! f oS pu

T D . ~B2!

Performing the integral, we obtain the ideal thermal sp
trum

d2N(0)

d2pT dy
5mTto

pRo
2

~2p!3
2K1~x!. ~B3!

Here K1(x) is the modified Bessel function evaluated atx
[mT /T. Now we determine the correction spectrum. Fo
pure boost invariant expansion, the nonvanishing com
nents of viscous tensor^“mun& are from Eqs.~A3!,

^“ rur&5
2

3t
, ~B4a!

r 2^“fuf&5
2

3t
, ~B4b!

t2^“huh&52
4

3t
. ~B4c!

Thus the viscous correctiond f is

d f 5
3

8

Gs

T2
f oS pu

T D pmpn^“mun&

5
3

8

Gs

T2
f oS pu

T D S 2 pT
2

3t
2

4mT
2

3t
sinh2hsD . ~B5!

Note that we have substitutedf o(11 f o) in Eq. ~16! by f o as
required by the Boltzmann approximation. We can then s
stituted f to determine the first viscous correction

d2N(1)

d2pT dy
5

1

~2p!3E pmdSmd f . ~B6!

Substituting the integration measure and performing the
tegral over thehs as for the ideal case, we obtain

d2N(1)

d2pT dy
5mTto

pRo
2

~2p!3
2K1~x!

Gs

4t

3F S pT

T D 2

2S mT

T D 2S K3~x!

K1~x!
21D G . ~B7!

Dividing Eq. ~B7! with Eq. ~B3! we obtain Eq.~18! given in
the text.
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Next we work out the first viscous correction to the lo
gitudinal HBT radius. The longitudinal radius is given by E
~25!. Expanding to first order ind f and using the relationz
5to sinhhs, we obtain the ideal contribution

~RL
2!(0)~KT!5

E KmdSm f oS Ku

T D to
2 sinh2hs

E KmdSm f oS Ku

T D , ~B8!

and the first viscous correction

dRL
2~KT!5~RL

2!(0)S dN(1)

KTdKT

dN(0)

KTdKT

D 1

E KmdSmd f to
2sinh2hs

E KmdSm f oS Ku

T D .

~B9!

For the kinematics of typical HBT measuremen
at midrapidity, we have Km5(Kt,Kr ,Kf,Kh)
5(AKT

21m2,KT ,0,0). The integration measure isKmdSm

5mT cosh(hs) t dhsrdr df, wheremT5AKT
21m2.
t.

et

ys
d

hy

03491
First we work out the ideal radius (RL
2)(0). Substituting

KmdSm into the numerator and denominator and perform
the integrals over the freeze-out surface@as in Eq.~B2!#, we
obtain the Herrmann-Bertsch formula@28#

~RL
2!(0)5to

2 T

mT

K2~x!

K1~x!
, ~B10!

wherex[Am21KT
2/T. For large values ofx, Eq. ~B10! re-

duces to the Makhlin-Sinyukov formula@35#

~RL
2!(0)5to

2 T

mT
. ~B11!

A similar calculation gives the viscous correction. Subs
tuting the viscous correctiond f @Eq. ~B5!# into Eq. ~B9!,
using the previous results for the spectrum@Eqs. ~B3! and
~B7!# and ideal radius@Eq. ~B10!#, and performing thehs
integrals, we obtain Eq.~26! quoted in the text:

dRL
2

~RL
2!(0)

52
Gs

t F6

4

xK3~x!

K2~x!
2x2

1

8 S K3~x!

K2~x!
21D G .

~B12!
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