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Coulomb corrections in the calculation of ultrarelativistic heavy ion production
of continuum e*e™ pairs
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Coulomb corrections to perturbation theory for producing electron-positron pairs in ultrarelativistic heavy
ion collisions are considered in a part-analytical, part-numerical approach. Production probabilities are reduced
from perturbation theory with increasing charge of the colliding heavy ions, as has been previously argued in
the literature. It is shown here that the reduction from perturbation theory comes from the appropriate physical
spatial cutoff of the electromagnetic potentials arising from the colliding ultrarelativistic heavy ions.
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I. INTRODUCTION II. THE DIRAC EQUATION SOLUTION

Th bl f calculating h ion induced " One begins the semiclassical Dirac solution by represent-
€ probiem of calculating heavy ion induced con Inuuming the electromagnetic effect of one heavy ion on the other

o . . :
e e par produc'_[lon to all orders ida has recelyed_some as the Limhard-Wiechart potential produced by a point
renewed interest in the past several years. Realization that Eharge on a straight-line trajectory.

an appropriate gaudéd], the electromagnetic field of a rela-

tivistic heavy ion is to a very good approximationsa&unc- aZ(l-va,)

tion in the direction of motion of the heavy ion times the two Vip.z,t)= > >
dimensional solution of Maxwell’s equations in the trans- VL(b=p) 71+ (z=vt)
verse directiori2], led to an exact solution of the appropriate p, s the impact parameter, perpendicular to thexis along
Dirac equation for excitation of bound-electron positronhich the ions travelp, z andt are the coordinates of the
pairs[3]. Given this solution, it was perhaps not surprising potential relative to a fixed targgor ion), a, is the Dirac
that the solution of the Dirac equation was obtained indepenmatriX, andz, v, andy are the Charge, Ve|0city' and relativ-

dently and practically simultaneously by two different col- jstic y factor of the moving ion. If one makes a gauge trans-

()

laborationg 4 —6] for the analogous case of continuahe ™ formation on the wave functioft]
pair production induced by the corresponding countermoving D)
5 function potentials produced by ultrarelativistic heavy ions p=e VY, (2

in a collider such as RHIC. An extended discussion and T here
analysis of this solution, with comments on early parallel

work in the literature, shortly followed7]. One apparent aZ

physical consequence of this solution was that the rates for x(r,t)= T'”[)’(Z—th %+ 92(z—vt)?] (3
pair production in the exact solution agreed with the corre-

sponding perturbation theory resili—7]. the interaction potentia¥(p,z,t) is gauge transformed to
Several authors subsequently arg{i@e 10| that a correct

regularization of the exact Dirac equation amplitude should aZ(l-vay,) aZ[1— (1) a,]

lead to deviations from perturbation theory, the so calledV(p,z,t)= > >~ T >

Coulomb corrections. Although, as has been pointed it VI(b—p)y1*+(z—vt)? b y*+(z—v1) 4

the derived exact semiclassical Dirac amplitude is not simply @

the exact amplitude for the excitation of a particuleorre- The second term is pure gauge and serves to reduce the

lated eIectro_n—positron pair, there are observables, such 8%inge of the potential inz—wvt) to more closely map the
the total pair production cross section, that can be CONtz—yt) range of theB andE fields, which have the denomi-

structed from this derived amplitude._ Thg exact amplitude,5ior 1o the power rather than thé power of the untrans-
for a correlated electron-positron pair will not be treatedymed Lorentz gauge potential E().

here. It is the Coulomb corrections to the observables that |, yhe ytrarelativistic limit(ignoring correction terms in
canbe constructed from this exact Dirac equation amplltudqt (b—p)y1?) [2]
that are the topic of this paper.

In what follows it will be shown from a somewhat differ- V(p,z,t)=— 8(z—t)(1— a,) aZpln(b—p)2. (5)
ent approach from what has been done before that Coulomb
corrections must exist, that they arise from the physical cutThis is the potential that allowed the closed form solution of
off of the transverse Coulomb potential, and the accuracy othe Dirac equation for the bound-electron—positron problem.
their evaluation has been up to now limited by an effectiveThe full solution of the problem is in perturbation theory
two-peak approximation to the exact retarded Diracform, but with an eikonalized interaction in the transverse
amplitude. direction,
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V(p,z,t)=—i8(z—t)(1— a,){exd —iaZpin(b— p)?]—1}, p andq are the four-momenta of the produced electron and
(6) positron, respectively is an intermediate transverse photon

. L , . momentum to be integrated over,
in place of the perturbation interaction, E@), producing

the higher order effect ida. Recall that this exact semiclas- a(k—p, )+ yom

sical solution produced a reduction of a little less than 10% M(k)=u(p) > > y_u(—q)

in the predicted cross section for At Au at RHIC[3]; one —pig-—(k=p)°"—m+ie

can identify this reduction as a Coulomb correction to — k=0, )+ yom

bound-electron—positron pair production. +u(p) MK~ )™ Yo v u(—q),
In the bound-electron—positron problem one conveniently —p_g;—(k—q,)?—m?+ie

takes the electromagnetic field of one moving heavy ion seen (10)
in the rest frame of the heavy ion that receives the created

electron. For production of continuum pairs in an ultrarela-ang the effect of the potential Eq§) and(8) is contained in

tivistic heavy ion reaction one may work in in the center ofintagrals F; andF,, over the transverse spatial coordinates
mass frame and the electromagnetic interaction goes to tht%king the form

limit of two countermovings function potentials

V(p,z,t)=8(z—t)(1—a,) A~ (p)+ 8(z+1t)(1+a,) A" (p), F(k)= J d?pexd —ik-pl{exd —i2Zalnp]—1}
()
where =2wap dpJo(kp){exd —i2ZaInp]—1}. (12)
L (p+bl2)2 °
AZ(p)=—2Zaln (b/2)% ®) F(k) has to be regularized or cut off at large How it is

regularized is the key to understanding Coulomb corrections.
The semiclassical Dirac equation with this potential hadf one merely regularizes the integral itself at largeone

been solved in closed fori—7]. Baltz and McLerrar{5]  obtains[5-7] apart from a trivial phase
noted the apparent agreement of the obtained amplitude with
that of perturbation theory even for large Segev and Wells dmal
[6] also noted the agreement with perturbation theory and F(k)= K2—2iaZ"
noted the scaling witlZ3Z5 seen in CERN SPS dafa2].
These data were obtained from reactions of 160 GeRbH All the higher orderZ« effects inM(p,q) are contained

ions on C, Al, Pa, and Au targets as well as 200 @e¥fons  only in the phase of the denominator of E#j2). As we will

on the same C, Al, Pa, and Au targets. The group presentingee, it directly follows that calculable observables are equal
the CERN data, Vanet al, stated their findings in summary: to perturbative results.

“Cross sections scale as the product of the squares of the
projectile and target nuclear charges." O+n t_he o_ther hand, it A. Observables
is well known that photoproduction oé™e~ pairs on a S o ) )

tional to Z2 that is well described by the Bethe-Maximon discuss the observables that can be calculgtde-17 from
theory[13]. the solution of a Dirac equation such as E@—(12). We

have pointed out that the derived semiclassical Dirac ampli-
tudeM (p,q) is not simply the exact amplitude for the exci-
tation of an electron-positron pdit1]. The point is that ex-

As noted in the Introduction, several authors have arguedct solution of the semiclassical Dirac equation may be used
that a correct regularization of the exact Dirac equation amto compute the inclusive average number of pairs—not an
plitude must lead to Coulomb corrections. The first analysigxclusive amplitude for a particular pair. Calculating the ex-
was done in a Weizsacker-Williams approximat[&h. Sub-  act exclusive amplitude to all orders Ztw is not easily trac-
sequently, Lee and Milstein argug#,10] the existence of table due to need for Feynman propagafd§. The possi-
Coulomb corrections by an approximate analysis of thebility of solutions of the semiclassical Dirac equation is
closed form solution of the Dirac equation. We will take asconnected to the retarded propagators involved. In this paper
our starting point a somewhat extended consideration of these do not consider the exclusivEeynman propagatpam-
results of Lee and Milstein. plitude at all. We concentrate on observables tba be

To begin let us write the previously derived semiclassicalconstructed from the above amplitude and investigate the
amplitude for electron-positron pair productiph—7] in the ~ Coulomb corrections contained in them.
notation of Lee and Milsteif9], The occupation number or inclusive number of electrons

created in stat@ (at impact parametdr) is

(12

III. COULOMB CORRECTIONS

dk
M(p.a)= [ 5zexii k- BIMOKFo(KF o, +p, k)

[ mdq )
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Likewise the inclusive number of positrons created in stpte Integrating exfi (k—k')-b] over the impact parametérin

is the usual way gives (2)26(k—k’) and so
N(q>=fm—d3p|M(p Q)2 14 a2
(2m)e f d?b| M (p,q)|?= f ZmE MWL
These inclusive expressions say nothing about correlations ) )
between electrons in stapeand and positrons in statg X|Fa(qr+pL—Kk)|*Fa(k)]*
The mean number of electron-positron pairs is of course (23

equal to either the mean number of positrons or the mean

number of electrons and may be obtained by integrating over One now obtains expressions foo(p), do(q), andot

either of the previous expressions, that appear identical to the result of perturbation théscgal-
& ing asZ4Z2) when our previous expression féi(k), Eq.

_[™ = m &’y 12), i loyed
N—JmN(p)—me(Q) (15) ( )1 IS employed,

m?d®p d®q do(p)=f LLL: f ok | M(K)[?
:f Hoee o IM(p.a). (16) (2m)eq) (2m)%
(27)°€p€q
. . . X|Falar+pi—KFFe(k)f? (29
It is possible to calculate well-defined observables from
the occupation numbers by integrating over the impact pa- m d®p d2k
t - | 2
rame erb’ dO’(CI) f (277)3€pf (277)2|M(k)|
_ | 42 _ [ o Mg 2 X |F +p, —k)|?|Fg(k)|? 25
do(p)= | dBN(p)= | a5 IM(p,a)|2, (17 [Fa(aL+pL—k)[?[Fg(k)|?, (25
q
m?d3p d®q [ d%k
m d3p — f k 2
da(q>=fd2bN<q>=fd2bm|M<p,q>|2 19 = | Gnere,) a2 MK
- X |Fa(dutpr—k)I?Fa(k)[. (26)
md3p dq ObviouslyFg andF 4 still have to be regularized or cut off at
_ 2 N — 2 2 _
ot fd bN fd b(Zw)Gepqu(p’Q)' . (19  smalllk| and|q, +p, —K|.
do(p) is the cross section for an electron of momentyan B. The regularization of Lee and Milstein

where the state of the positron is unspecified. Likewise,
do(q) is the cross section for a positron of momentm  , eyajuate Coulomb corrections by Taylor expandibg
with the state of the electron unspecified. Note thatcor- aroundk=0, i.e., M(k)=k-L. The derivativeL is evalu-
responds to a peculiar type of inclusive cross section Whicréted ak=0 ,and’also in the evaluation of, e.g., ER6) k is
we should call the “number weighted total cross section,” ignored inF,A(qurpL—k). Al the k depeﬁdenée of the in-

» tegral is then contained id’k k?|Fg(k)|%. Lee and Milstein
UT:J deN:f d2b >, nP,(b), (20)  theninvite us to consider the integral representing the differ-
n=1 ence between the exact solution and the perturbative

The strategy of the first paper of Lee and Milstgh was

. o ) . solution,
in contrast to the usual definition of an inclusive total cross
sectiono, for pair production, d2k ) ) T
g G f(zw)zk[“:(kﬂ —IFtoP1, @
o= | d?>, P,(b). (21)
n=1
where
Now we can write for the factor common to all the cross
sections, F= | dpex—ik-pliexi -ix(m1-1}, (28
) ) 5 d?k d?k’
f d*b|M(p,q)| :J' d bf Wf 2mE with the transverse form of the potential not yet specified,
xexdi (k—k")-b]JM(K)M(k')* *
FLi (k= k?)-DIMU) MK xo)= | dzvzp) (29

XFg(k)Fg(k)*Fa(q,+p;—k)
XFEa(qr+p—k)*. (22 and
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FO(k)= —if d?p exd —i k- p]x(p) (30) x(p)= f_ dz\(VZ*+p?) (34)
is the perturbative expression limit &f(k). andV(r) is cut off in a physically motivated way, such as an

Lee and Milstein keep theZx In(p) form for y(p) but  equivalent photon cutoff, then
switch the order of integration betweenandk. They inte-

gratek to some finite upper limiQ and then claim to se® V()= —Zaexd—rwap/y] (35)
to infinity in the resulting expression. Actually simply falls r '
out of the problem by a rescaling of to p/Q. Next, after
integrating over the rescalgd the expression they obtain is Where
a universal function o¥ «,
P++Q+ p-+Q-
2 . WA= y WB= (36)
G=—-8m(Za) [Rey(1+iZa)+ yeyierd, (31) 2 2

with w4 the energy of the photon from iofh moving in the
positivez direction andwg the energy of the photon from ion
B moving in the negative direction. For simplicity we will

where ¢(1+iZ«) is the digamma function an@ge, IS
Euler’s constant. This expression may be alternatively ex

pressed as . .
suppress the subscripts an, remembering, however, for
_ 2 possible use in future thas, g are well defined in terms of
G 8m(Za)"1(Za), (32) p- andq- . Integral(34) can be carried out to obtain
wheref(Za) is the same function that was derived by Bethe Y(p)=—2ZaKo(pwly), (37)
and Maximon for Coulomb corrections ®"e~ photopro-
duction on heavy nuclei and takes the form and
(7 F (k=27 [ dopdo(kp) (exi 2Z, Kol ol )] 1)

(39)

The derivation and result may seem a little mystifying. The modified Bessel functioiq(pw/y)=—In(pw/2y) for
Lee and Milstein state, “Thus, we come to a remarkablesmall p and cuts off exponentially g~ y/w. This is the
conclusion: although the main contribution to the integral inphysical cutoff to the transverse potential.

Eq. (4 comes from the region of smak, where |F (k)] One may defing=kp and rewrite Eq(39),

differs from (F°(k|)=4nZa/k? and depends on the regu-

larization parameter&he radius of screeningnevertheless 27 ]

the integralG itself is a universal function oZa.” As we Fas(k)= FJ d&&o(E){exH 2iZp paKo(£w/ vK)]— 1}
will see later, the only part of this quoted statement that is (39
completely true is thaG is a universal function oZ«.

G is then used by Lee and Milstein to calculate the Cou-t is now clear thatF, g is a function of 1K? times some
lomb correction arising from ioB by taking ionAto lowest  function of (yk/w). The perturbative IimitF,%’B(k) is ana-
order inZ«. Generalizing this approach, the correspondinglytically solvable and takes the form
Coulomb correction arising from ioi\ is also evaluated
[10]. The sum of these two contributions then agrees with the 0 ATZp g AmZppa
Coulomb corrections as evaluated by Ivanov, Schiller, and Fag(k)= T, 5, > 5 g
Serbo[8] using the Weizsacker-Williams method. K+ 0%y K1+ k%Y%)

(40)

Figure 1 displays the results of numerical calculation of
C. A physical regularization the scaled magnitude &f(k) as a function oky/w for Z
=1 [essentially the perturbative form E¢0)] and for Z
=82. Note that the upper cutoff gfat y/w has the effect of

(which has been up to now set t@a In p). Instead of regu- regulzarizzing F(k) at smallk. F(k) goes to the constant
larizing the integral itself and letting the cutoff radius go to 47"/ @” @sk goes to zero in th&=1 perturbative case; it
infinity as was originally doné4—7], we will apply an ap- 90€S to a reduced cons_ta_mt value.kagoes to zero foiz
propriate physical cutoff to the interaction potential. In the =82- The form of the original solution, E¢12),
Weizsacker-Williams or equivalent photon treatment of elec-

tromagnetic interactions the potential is cut off at impact F(k)= dmal (41)
parametetb=y/w, wherey is the relativistic boost of the k2-2iaz

ion producing the photon and is the energy of the photon.

As Lee and Milstein subsequently rec@ut do not utilize  is simply wrong because it is unphysical. Since it lacks a
if proper physical cutoff ipp, it not only blows up ak=0, but

Let us try to understand Lee and Milstein’s result by put-
ting in a physical cutoff to the transverse potentidlp)
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FIG. 1. The decrease in the magnitude of the transverse integral
F with Z. The two sets of curves have been normalized to display FIG. 3. Region oky/w contributing to the Coulomb correction
that the finite Coulomb correction only rescales down [fRék)| integral G for Z=82.
~1/w? behavior atkw/y=0 and that the negative Coulomb cor-
rections do not vanish until well above the onset®B(k)|~ 1/k? Note that, given the k? dependence of (k) and of Egs.
dominant behavior. (39) and (40), this is a logarithmic integral ok (i.e., dk/k)
it also fails to exhibit the correct reduction in magnitude thattImeS a funct|o_n O'.(Vlw' Therefore the integration Is really
over the combination variabley/w. Thus y/w falls out of

OC?:l;ri;the :is(g/nwallfe?:;t?gilsar%e.of results of the numericafhe integral, and the Coulomb correction functi®moes not
9 play depend ony or w.

calculations showing the fractional decrease in the ratio . .
| have evaluate®@ numerically and found it exactly con-

O . .

LF(/k)V“: is(IZ)IL;?;rgﬁrI&uestv\\igll;ieirggztr?:t % rf?nnccrgzgi of verging to Lee and Milstein’s result according to the ex-

Y. : 9 . ag pected improved precision with decreasing mesh size. | at-
Coulomb corrections redude(k) from the perturbative re- . - 6

It for kKy/w<100. Only fork>~100 w/y does the ma tained agreement to one part in 10
Sl.Jt g f?;‘;: ' 'yt the oriai (qu Y fSE 21 9" Conjecturing that the detail of the cutoff should not mat-
n l:\I ewol t( ) gonO\ggrgl 0 i?lc\)/\rlli?gn; orm Oifi Cf{ rm‘ f ter, | replaced the functioKy(pw/7y) with a different func-
F(k)od'selau:dc'% E g 1?::1 5 € Specilic Torms OF 4ion that also goes as In(pw/2v) (plus an irrelevant con-

ISplayed In Figs. ' stant, 1/2 ygye) for small p and also cuts off

d2k , , orits exponentially afp~ y/ w:
6= [ g KUFRP-IF0OPL (a2 2
1)
015 Lotpaln= L2 K pal y) Kol pol ) Kapal 1]

(43

Calculations ofG with L in place ofK, similarly converge

i numerically to the result of Lee and Milstein with agreement
to one part in 16, Note, however, the nonidentical shapes of
the contribution tds as a function oky/ w for theKy andL g
transverse potential forms exhibited in Fig. 3, even though
the area above the two curvé@be value ofG) is identical.

1 Now we can begin to understand the result of Lee and
Milstein. The reason that “the integré itself is a universal
function of Za” is that the first orderk? factor from the
expansion makes the integi@llogarithmic and so, contrary

0.1

0.05

(R FRIIF (k)]

Z=20 T to what Lee and Milstein stat& does not “deped ... on
9 o1 o1 I o T00 the regularization parametefthe radius of screening The
' ' Kyl radius of screening, i.ey/ w, is finite, but it has fallen out of

the problem. Furthermore “the main contribution to the in-
FIG. 2. The curves display the ratio[|Fq(k)| tegral” does not “come from the region of sm&ll but, as is
—|F(k)|1/|Fo(k)| as a function ofZ. seen from the plot of the physically motivat&d, curve in
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Fig. 3, the main contribution is peaked @ak/w=2.8 and rections reduce the uncorrelated electron or positron produc-

spreads out between half maxima at 1.3 and 7.5. tion cross sections and the number weighted total pair cross
Note that the decoupling of the Coulomb corrections fromsection.
vl seen inG is only valid to first order ink. Including In general, and not limited to lowest order in transverse

higher order terms irk or, alternatively, carrying out a full momentum, Coulomb corrections are a function of oBly
numerical evaluation of, e.g., Eq26), would necessarily and the combination variablky/®. Coulomb corrections
restore some dependence @hw to the Coulomb correc- arise from the finite cutoff of the transverse spatial integral at
tions. A previous Monte Carlo perturbation theory calcula-y/w and vanish for larg&y/ w.

tion of Bottcher and Strayéd 8] displays the pair production Since the CERN data cover a large part of the momentum
cross section as a function &f=p, +q,, and shows a range of produced positrons and scale perturbatively, they
significant deviation between an exact Monte Carlo evaluastill seem to present a puzzle. It would be useful to carry out
tion of the cross section and evaluation using a two peakull calculations of the total number weighted cross section
approximation(in particular, see Fig. 9 of Ref18]). Since ot as well as of the uncorrelated momentum dependent elec-
in carrying out their calculation, Lee and Milstein made atron and positron cross sectiods(p) anddo(q), utilizing
variety of a two peak approximatiofassumingPr=p, the transverse integrals with a correct physical cutoff. Since
+q, smal), one has to assume that the precision of theithe CERN data only detect positrons, comparison with a full
results is limited. calculation ofdo(q) is appropriate.

IV. GENERAL OBSERVATIONS
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