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Coulomb corrections in the calculation of ultrarelativistic heavy ion production
of continuum e¿eÀ pairs
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Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
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Coulomb corrections to perturbation theory for producing electron-positron pairs in ultrarelativistic heavy
ion collisions are considered in a part-analytical, part-numerical approach. Production probabilities are reduced
from perturbation theory with increasing charge of the colliding heavy ions, as has been previously argued in
the literature. It is shown here that the reduction from perturbation theory comes from the appropriate physical
spatial cutoff of the electromagnetic potentials arising from the colliding ultrarelativistic heavy ions.
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I. INTRODUCTION

The problem of calculating heavy ion induced continuu
e1e2 pair production to all orders inZa has received some
renewed interest in the past several years. Realization th
an appropriate gauge@1#, the electromagnetic field of a rela
tivistic heavy ion is to a very good approximation ad func-
tion in the direction of motion of the heavy ion times the tw
dimensional solution of Maxwell’s equations in the tran
verse direction@2#, led to an exact solution of the appropria
Dirac equation for excitation of bound-electron positr
pairs @3#. Given this solution, it was perhaps not surprisi
that the solution of the Dirac equation was obtained indep
dently and practically simultaneously by two different co
laborations@4–6# for the analogous case of continuume1e2

pair production induced by the corresponding countermov
d function potentials produced by ultrarelativistic heavy io
in a collider such as RHIC. An extended discussion and
analysis of this solution, with comments on early para
work in the literature, shortly followed@7#. One apparent
physical consequence of this solution was that the rates
pair production in the exact solution agreed with the cor
sponding perturbation theory result@5–7#.

Several authors subsequently argued@8–10# that a correct
regularization of the exact Dirac equation amplitude sho
lead to deviations from perturbation theory, the so cal
Coulomb corrections. Although, as has been pointed out@11#,
the derived exact semiclassical Dirac amplitude is not sim
the exact amplitude for the excitation of a particular~corre-
lated! electron-positron pair, there are observables, such
the total pair production cross section, that can be c
structed from this derived amplitude. The exact amplitu
for a correlated electron-positron pair will not be treat
here. It is the Coulomb corrections to the observables
canbe constructed from this exact Dirac equation amplitu
that are the topic of this paper.

In what follows it will be shown from a somewhat differ
ent approach from what has been done before that Coul
corrections must exist, that they arise from the physical c
off of the transverse Coulomb potential, and the accurac
their evaluation has been up to now limited by an effect
two-peak approximation to the exact retarded Dir
amplitude.
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II. THE DIRAC EQUATION SOLUTION

One begins the semiclassical Dirac solution by repres
ing the electromagnetic effect of one heavy ion on the ot
as the Liénhard-Wiechart potential produced by a poi
charge on a straight-line trajectory,

V~r,z,t !5
aZ~12vaz!

A@~b2r!/g#21~z2vt !2
, ~1!

b is the impact parameter, perpendicular to thez axis along
which the ions travel,r, z, and t are the coordinates of th
potential relative to a fixed target~or ion!, az is the Dirac
matrix, andZ, v, andg are the charge, velocity, and relativ
istic g factor of the moving ion. If one makes a gauge tran
formation on the wave function@1#

c5e2 ix(r ,t)c8, ~2!

where

x~r ,t !5
aZ

v
ln@g~z2vt !1Ab21g2~z2vt !2# ~3!

the interaction potentialV(r,z,t) is gauge transformed to

V~r,z,t !5
aZ~12vaz!

A@~b2r!/g#21~z2vt !2
2

aZ@12~1/v !az#

Ab2/g21~z2vt !2
.

~4!

The second term is pure gauge and serves to reduce
range of the potential in (z2vt) to more closely map the
(z2vt) range of theB andE fields, which have the denomi
nator to the3

2 power rather than the12 power of the untrans-
formed Lorentz gauge potential Eq.~1!.

In the ultrarelativistic limit„ignoring correction terms in
@„b2r…/g#2

… @2#

V~r,z,t !52d~z2t !~12az!aZPln~b2r!2. ~5!

This is the potential that allowed the closed form solution
the Dirac equation for the bound-electron–positron proble
The full solution of the problem is in perturbation theo
form, but with an eikonalized interaction in the transver
direction,
©2003 The American Physical Society06-1
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V~r,z,t !52 id~z2t !~12az!$exp@2 iaZPln~b2r!2#21%,
~6!

in place of the perturbation interaction, Eq.~5!, producing
the higher order effect inZa. Recall that this exact semiclas
sical solution produced a reduction of a little less than 1
in the predicted cross section for Au1 Au at RHIC @3#; one
can identify this reduction as a Coulomb correction
bound-electron–positron pair production.

In the bound-electron–positron problem one convenien
takes the electromagnetic field of one moving heavy ion s
in the rest frame of the heavy ion that receives the crea
electron. For production of continuum pairs in an ultrare
tivistic heavy ion reaction one may work in in the center
mass frame and the electromagnetic interaction goes to
limit of two countermovingd function potentials

V~r,z,t !5d~z2t !~12az!L
2~r!1d~z1t !~11az!L

1~r!,
~7!

where

L6~r!52Za ln
~r6b/2!2

~b/2!2
. ~8!

The semiclassical Dirac equation with this potential h
been solved in closed form@4–7#. Baltz and McLerran@5#
noted the apparent agreement of the obtained amplitude
that of perturbation theory even for largeZ. Segev and Wells
@6# also noted the agreement with perturbation theory
noted the scaling withZ1

2Z2
2 seen in CERN SPS data@12#.

These data were obtained from reactions of 160 GeV/c Pb
ions on C, Al, Pa, and Au targets as well as 200 Gev/c S ions
on the same C, Al, Pa, and Au targets. The group presen
the CERN data, Vaneet al., stated their findings in summary
‘‘Cross sections scale as the product of the squares of
projectile and target nuclear charges.’’ On the other hand
is well known that photoproduction ofe1e2 pairs on a
heavy target shows a negative~Coulomb! correction propor-
tional to Z2 that is well described by the Bethe-Maximo
theory @13#.

III. COULOMB CORRECTIONS

As noted in the Introduction, several authors have arg
that a correct regularization of the exact Dirac equation a
plitude must lead to Coulomb corrections. The first analy
was done in a Weizsacker-Williams approximation@8#. Sub-
sequently, Lee and Milstein argued@9,10# the existence of
Coulomb corrections by an approximate analysis of
closed form solution of the Dirac equation. We will take
our starting point a somewhat extended consideration of
results of Lee and Milstein.

To begin let us write the previously derived semiclassi
amplitude for electron-positron pair production@4–7# in the
notation of Lee and Milstein@9#,

M ~p,q!5E d2k

~2p!2 exp@ i k•b#M~k!FB~k!FA~q'1p'2k!.

~9!
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p andq are the four-momenta of the produced electron a
positron, respectively,k is an intermediate transverse photo
momentum to be integrated over,

M~k!5ū~p!
a~k2p'!1g0m

2p1q22~k2p'!22m21 i e
g2u~2q!

1ū~p!
2a~k2q'!1g0m

2p2q12~k2q'!22m21 i e
g1u~2q!,

~10!

and the effect of the potential Eqs.~7! and~8! is contained in
integrals,FB andFA , over the transverse spatial coordinat
taking the form

F~k!5E d2r exp@2 ik•r#$exp@2 i2Za ln r#21%

52pE
0

`

r drJ0~kr!$exp@2 i2Za ln r#21%. ~11!

F(k) has to be regularized or cut off at larger. How it is
regularized is the key to understanding Coulomb correctio
If one merely regularizes the integral itself at larger one
obtains@5–7# apart from a trivial phase

F~k!5
4paZ

k222iaZ
. ~12!

All the higher orderZa effects inM (p,q) are contained
only in the phase of the denominator of Eq.~12!. As we will
see, it directly follows that calculable observables are eq
to perturbative results.

A. Observables

Before considering the Lee and Milstein analysis, we w
discuss the observables that can be calculated@14–17# from
the solution of a Dirac equation such as Eqs.~9!–~12!. We
have pointed out that the derived semiclassical Dirac am
tudeM (p,q) is not simply the exact amplitude for the exc
tation of an electron-positron pair@11#. The point is that ex-
act solution of the semiclassical Dirac equation may be u
to compute the inclusive average number of pairs—not
exclusive amplitude for a particular pair. Calculating the e
act exclusive amplitude to all orders inZa is not easily trac-
table due to need for Feynman propagators@11#. The possi-
bility of solutions of the semiclassical Dirac equation
connected to the retarded propagators involved. In this pa
we do not consider the exclusive~Feynman propagator! am-
plitude at all. We concentrate on observables thatcan be
constructed from the above amplitude and investigate
Coulomb corrections contained in them.

The occupation number or inclusive number of electro
created in statep ~at impact parameterb) is

N~p!5E m d3q

~2p!3eq
uM ~p,q!u2. ~13!
6-2
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Likewise the inclusive number of positrons created in statq
is

N~q!5E m d3p

~2p!3ep
uM ~p,q!u2. ~14!

These inclusive expressions say nothing about correlat
between electrons in statep and and positrons in stateq.

The mean number of electron-positron pairs is of cou
equal to either the mean number of positrons or the m
number of electrons and may be obtained by integrating o
either of the previous expressions,

N5E m d3p

~2p!3ep
N~p!5E m d3q

~2p!3eq
N~q! ~15!

5E m2d3p d3q

~2p!6epeq
uM ~p,q!u2. ~16!

It is possible to calculate well-defined observables fr
the occupation numbers by integrating over the impact
rameterb,

ds~p!5E d2bN~p!5E d2b
m d3q

~2p!3eq
uM ~p,q!u2, ~17!

ds~q!5E d2bN~q!5E d2b
m d3p

~2p!3ep
uM ~p,q!u2 ~18!

and

sT5E d2bN5E d2b
m2d3p d3q

~2p!6epeq
uM ~p,q!u2. ~19!

ds(p) is the cross section for an electron of momentum~p!
where the state of the positron is unspecified. Likewi
ds(q) is the cross section for a positron of momentum~q!
with the state of the electron unspecified. Note thatsT cor-
responds to a peculiar type of inclusive cross section wh
we should call the ‘‘number weighted total cross section,

sT5E d2bN5E d2b(
n51

`

nPn~b!, ~20!

in contrast to the usual definition of an inclusive total cro
sections I for pair production,

s I5E d2b(
n51

`

Pn~b!. ~21!

Now we can write for the factor common to all the cro
sections,

E d2buM ~p,q!u25E d2bE d2k

~2p!2E d2k8

~2p!2

3exp@ i „k2k8…•b#M~k!M~k8!*

3FB~k!FB~k8!* FA~q�1p�2k!

3FA~q�1p�2k8!* . ~22!
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Integrating exp@i „k2k8…•b# over the impact parameterb in
the usual way gives (2p)2d„k2k8… and so

E d2buM ~p,q!u25E d2k

~2p!2 uM~k!u2

3uFA~q�1p�2k!u2uFB~k!u2.

~23!

One now obtains expressions fords(p), ds(q), andsT
that appear identical to the result of perturbation theory~scal-
ing asZA

2ZB
2) when our previous expression forF(k), Eq.

~12!, is employed,

ds~p!5E m d3q

~2p!3eq
E d2k

~2p!2uM~k!u2

3uFA~q�1p�2k!u2uFB~k!u2, ~24!

ds~q!5E m d3p

~2p!3ep
E d2k

~2p!2uM~k!u2

3uFA~q�1p�2k!u2uFB~k!u2, ~25!

sT5E m2d3p d3q

~2p!6epeq
E d2k

~2p!2 uM~k!u2

3uFA~q�1p�2k!u2uFB~k!u2. ~26!

ObviouslyFB andFA still have to be regularized or cut off a
small uku and uq'1p'2ku.

B. The regularization of Lee and Milstein

The strategy of the first paper of Lee and Milstein@9# was
to evaluate Coulomb corrections by Taylor expandingM
aroundk50, i.e., M(k).k•L . The derivativeL is evalu-
ated atk50, and also in the evaluation of, e.g., Eq.~26! k is
ignored inFA(q'1p'2k). All the k dependence of the in
tegral is then contained ind2k k2uFB(k)u2. Lee and Milstein
then invite us to consider the integral representing the dif
ence between the exact solution and the perturba
solution,

G5E d2k

~2p!2 k2@ uF~k!u22uF0~k!u2#, ~27!

where

F~k!5E d2r exp@2 i k•r#$exp@2 ix~r!#21%, ~28!

with the transverse form of the potential not yet specified

x~r!5E
2`

`

dzV~z,r! ~29!

and
6-3
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F0~k!52 i E d2r exp@2 i k•r#x~r! ~30!

is the perturbative expression limit ofF(k).
Lee and Milstein keep the 2Za ln(r) form for x(r) but

switch the order of integration betweenr andk. They inte-
gratek to some finite upper limitQ and then claim to setQ
to infinity in the resulting expression. ActuallyQ simply falls
out of the problem by a rescaling ofr to r/Q. Next, after
integrating over the rescaledr, the expression they obtain i
a universal function ofZa,

G528p~Za!2@Rec~11 iZa!1gEuler#, ~31!

where c(11 iZa) is the digamma function andgEuler is
Euler’s constant. This expression may be alternatively
pressed as

G528p~Za!2f ~Za!, ~32!

wheref (Za) is the same function that was derived by Bet
and Maximon for Coulomb corrections toe1e2 photopro-
duction on heavy nuclei and takes the form

f ~Za!5~Za!2(
n51

`
1

n@n21~Za!2#
. ~33!

The derivation and result may seem a little mystifyin
Lee and Milstein state, ‘‘Thus, we come to a remarka
conclusion: although the main contribution to the integral
Eq. ~4! comes from the region of smallk, where uF(k)u
differs from (uF0(ku)54pZa/k2 and depends on the regu
larization parameters~the radius of screening!, nevertheless
the integralG itself is a universal function ofZa. ’’ As we
will see later, the only part of this quoted statement tha
completely true is thatG is a universal function ofZa.

G is then used by Lee and Milstein to calculate the Co
lomb correction arising from ionB by taking ionA to lowest
order in Za. Generalizing this approach, the correspond
Coulomb correction arising from ionA is also evaluated
@10#. The sum of these two contributions then agrees with
Coulomb corrections as evaluated by Ivanov, Schiller, a
Serbo@8# using the Weizsacker-Williams method.

C. A physical regularization

Let us try to understand Lee and Milstein’s result by p
ting in a physical cutoff to the transverse potentialx(r)
~which has been up to now set to 2Za ln r). Instead of regu-
larizing the integral itself and letting the cutoff radius go
infinity as was originally done@4–7#, we will apply an ap-
propriate physical cutoff to the interaction potential. In t
Weizsacker-Williams or equivalent photon treatment of el
tromagnetic interactions the potential is cut off at impa
parameterb.g/v, whereg is the relativistic boost of the
ion producing the photon andv is the energy of the photon
As Lee and Milstein subsequently recall~but do not utilize!
if
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x~r!5E
2`

`

dzV~Az21r2! ~34!

andV(r ) is cut off in a physically motivated way, such as a
equivalent photon cutoff, then

V~r !5
2Za exp@2rvA,B /g#

r
, ~35!

where

vA5
p11q1

2
, vB5

p21q2

2
~36!

with vA the energy of the photon from ionA moving in the
positivez direction andvB the energy of the photon from ion
B moving in the negativez direction. For simplicity we will
suppress the subscripts onv, remembering, however, fo
possible use in future thatvA,B are well defined in terms o
p6 andq6 . Integral~34! can be carried out to obtain

x~r!522ZaK0~rv/g!, ~37!

and

FA,B~k!52pE drrJ0~kr!$exp@2iZA,BaK0~rv/g!#21%.

~38!

The modified Bessel functionK0(rv/g)52 ln(rv/2g) for
small r and cuts off exponentially atr;g/v. This is the
physical cutoff to the transverse potential.

One may definej5kr and rewrite Eq.~38!,

FA,B~k!5
2p

k2 E djjJ0~j!$exp@2iZA,BaK0~jv/gk!#21%.

~39!

It is now clear thatFA,B is a function of 1/k2 times some
function of (gk/v). The perturbative limitFA,B

0 (k) is ana-
lytically solvable and takes the form

FA,B
0 ~k!5

4pZA,Ba

k21v2/g2
5

4pZA,Ba

k2~11v2/k2g2!
. ~40!

Figure 1 displays the results of numerical calculation
the scaled magnitude ofF(k) as a function ofkg/v for Z
51 @essentially the perturbative form Eq.~40!# and for Z
582. Note that the upper cutoff ofr at g/v has the effect of
regularizing F(k) at small k. F(k) goes to the constan
4pg2/v2 ask goes to zero in theZ51 perturbative case; i
goes to a reduced constant value ask goes to zero forZ
582. The form of the original solution, Eq.~12!,

F~k!5
4paZ

k222iaZ
~41!

is simply wrong because it is unphysical. Since it lacks
proper physical cutoff inr, it not only blows up atk50, but
6-4
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it also fails to exhibit the correct reduction in magnitude th
occurs whenkg/v is not too large.

Figure 2 is an alternate display of results of the numer
calculations showing the fractional decrease in the ra
uF(k)u/uF0(k)u for various values ofZ as a function of
kg/v. It is clear from the two figures that for increasingZ
Coulomb corrections reduceF(k) from the perturbative re-
sult for kg/v!100. Only fork.;100 v/g does the mag-
nitude ofF(k) go over into the original form of Eq.~41!.

Now let us considerG again with the specific forms o
F(k) displayed in Figs. 1 and 2,

G5E d2k

~2p!2 k2@ uF~k!u22uF0~k!u2#. ~42!

0.01 0.1 1 10 100
kγ/ω

0

0.5

1

 S
ca

le
d 

M
ag

ni
tu

de
 o

f 
F

(k
)

Z=1 Z=1

Z=82
Z=82

ω2
|F(k)|/γ24παZ

k
2
|F(k)|/4παZ

FIG. 1. The decrease in the magnitude of the transverse inte
F with Z. The two sets of curves have been normalized to disp
that the finite Coulomb correction only rescales down theuF(k)u
;1/v2 behavior atkv/g50 and that the negative Coulomb co
rections do not vanish until well above the onset ofuF(k)u;1/k2

dominant behavior.

0.01 0.1 1 10 100
kγ/ω

0

0.05

0.1

0.15

[|
F

0(
k)

||
F

(k
)|]

/|F
0(

k)
|

Z=82

Z=40

Z=20

FIG. 2. The curves display the ratio @ uF0(k)u
2uF(k)u#/uF0(k)u as a function ofZ.
03490
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Note that, given the 1/k2 dependence ofF(k) and of Eqs.
~39! and ~40!, this is a logarithmic integral ofk ~i.e., dk/k)
times a function ofkg/v. Therefore the integration is reall
over the combination variablekg/v. Thusg/v falls out of
the integral, and the Coulomb correction functionG does not
depend ong or v.

I have evaluatedG numerically and found it exactly con
verging to Lee and Milstein’s result according to the e
pected improved precision with decreasing mesh size. I
tained agreement to one part in 106.

Conjecturing that the detail of the cutoff should not ma
ter, I replaced the functionK0(rv/g) with a different func-
tion that also goes as2 ln(rv/2g) ~plus an irrelevant con-
stant, 1/21gEuler) for small r and also cuts off
exponentially atr;g/v:

L0~rv/g!5
~rv/g!2

2
@K1

2~rv/g!2K0~rv/g!K2~rv/g!#.

~43!

Calculations ofG with L0 in place ofK0 similarly converge
numerically to the result of Lee and Milstein with agreeme
to one part in 106. Note, however, the nonidentical shapes
the contribution toG as a function ofkg/v for theK0 andL0
transverse potential forms exhibited in Fig. 3, even thou
the area above the two curves~the value ofG) is identical.

Now we can begin to understand the result of Lee a
Milstein. The reason that ‘‘the integralG itself is a universal
function of Za ’’ is that the first orderk2 factor from the
expansion makes the integralG logarithmic and so, contrary
to what Lee and Milstein state,G does not ‘‘depend . . . on
the regularization parameters~the radius of screening!.’’ The
radius of screening, i.e.,g/v, is finite, but it has fallen out of
the problem. Furthermore ‘‘the main contribution to the i
tegral’’ does not ‘‘come from the region of smallk’’ but, as is
seen from the plot of the physically motivatedK0 curve in

ral
y

1 10 100
kγ/ω

2

1

0

d 
G

 / 
d 

ln
(k

γ/
ω

)

with L0with K0

FIG. 3. Region ofkg/v contributing to the Coulomb correction
integralG for Z582.
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Fig. 3, the main contribution is peaked atgk/v52.8 and
spreads out between half maxima at 1.3 and 7.5.

Note that the decoupling of the Coulomb corrections fro
g/v seen inG is only valid to first order ink. Including
higher order terms ink or, alternatively, carrying out a ful
numerical evaluation of, e.g., Eq.~26!, would necessarily
restore some dependence ong/v to the Coulomb correc-
tions. A previous Monte Carlo perturbation theory calcu
tion of Bottcher and Strayer@18# displays the pair production
cross section as a function ofPT5p'1q' , and shows a
significant deviation between an exact Monte Carlo eval
tion of the cross section and evaluation using a two p
approximation~in particular, see Fig. 9 of Ref.@18#!. Since
in carrying out their calculation, Lee and Milstein made
variety of a two peak approximation~assumingPT5p'

1q' small!, one has to assume that the precision of th
results is limited.

IV. GENERAL OBSERVATIONS

To lowest order in transverse momentum~small k and
small PT5p'1q'), Coulomb corrections do exist as a un
versal function off (aZ), wheref (aZ) is the same function
of Bethe and Maximon derived for Coulomb corrections
electron-positron pair photoproduction. These Coulomb c
v.

hy

s
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rections reduce the uncorrelated electron or positron prod
tion cross sections and the number weighted total pair c
section.

In general, and not limited to lowest order in transver
momentum, Coulomb corrections are a function of onlyZ
and the combination variablekg/v. Coulomb corrections
arise from the finite cutoff of the transverse spatial integra
g/v and vanish for largekg/v.

Since the CERN data cover a large part of the momen
range of produced positrons and scale perturbatively, t
still seem to present a puzzle. It would be useful to carry
full calculations of the total number weighted cross sect
sT as well as of the uncorrelated momentum dependent e
tron and positron cross sectionsds(p) andds(q), utilizing
the transverse integrals with a correct physical cutoff. Sin
the CERN data only detect positrons, comparison with a
calculation ofds(q) is appropriate.
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