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Freeze-out mechanism and phase-space density in ultrarelativistic heavy-ion collisions
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We explore the consequences of a freeze-out criterion for heavy-ion collisions, based on pion escape
probabilities from the hot and dense but rapidly expanding collision region. The influence of the expansion and
the scattering rate on the escape probability is studied. The temperature dependence of this scattering rate
favors a low freeze-out temperature 6f100 MeV. In general, our results support freeze-out along finite
four-volumes rather than sharp three-dimensional hypersurfaces, withphigiarticles decoupling earlier
from smaller volumes. We compare our approach to the proposed universal freeze-out criteria using the pion
phase-space density and its mean free path.
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[. INTRODUCTION Clearly, in the general case, particles decouple from the
fireball gradually[9,10], as it is naturally implemented, e.g.,
Experiments with nuclear collisions at ultrarelativistic en-in cascade generator simulations. The question arises to what
ergies are performed with the aim of studying strongly inter-extent this generic behavior can be described by the limiting
acting matter under high temperature and density. Such cormase of a sharp three-dimensional freeze-out. To discuss this
ditions are created very early in the collision. Hadrons at lowquestion, we first introduce in Sec. Il the so-called escape
transverse momentum form the bulk of the particles profrobability which characterizes the probability of a particle
duced in these collisions. They are produced at the end of th® decouple from the system. In Sec. Ill, we demonstrate
hot and dense partonic phase, but they subsequently scatmple examples on how the escape probability is related to
in the confined hadronic phase prior to decoupling from thehe expansion strength and the scattering rate. This illustrates
collision system(“freeze-out”). In general, the collective the earlier suggestiof8] that freeze-out occurs when the
evolution of the hot and dense matter leaves a distinct imdilution rate becomes comparable or larger than the scatter-
print on the phase-space distribution of the fireball at freezeing rate. Moreover, the scattering rate depends on densities
out. For example, pressure gradients generated in the earty individual species and the corresponding cross sections
stage of the collision and indicative of the equation of statd6,7]. For pions, e.g., scattering on nucleons is much more
result in collective transverse, radial and elliptic flow which important than scattering on other pions due to the larger
shape important features of hadronic one- and two-particleross section of the former. In Sec. IV, we discuss the impact
spectra. However, to disentangle such information from feaef the hadrochemical composition on the scattering rates and
tures generated during freeze-out a refined understanding éfeze-out at SPS and RHIC. This also allows us to address
the decoupling process is needed. This is the condition whicthe observed change in the freeze-out phase-space density
has to be satisfied locally for decoupling to take place. [3,4]. Finally, we turn to the dependence of the scattering
Freeze-out is often modeled as a sudden breakup of th@te and the escape probability on temperature. In doing so,
fireball on a fixed three-dimensional hypersurfatg speci- we find that~50% of the particles are emitted at tempera-
fied, e.g., by a critical freeze-out temperature or density. Thisures below~100 MeV. We discuss this result, together
implements in a very simplified way the physical picture thatwith other findings of our calculations in Sec. V.
the hadronic scattering rate drops with particle phase-space
density and determines freeze-out. However, the difficulties Il. THE ESCAPE PROBABILITY
at present in interpreting the HBT radii measured at RHIC
[2] motivate to go beyond a sharp three-dimensional imple- The following discussion of the freeze-out procggg0]
mentation of freeze-out. Moreover, the recently observed inis based on the particle escape probabif(,p,7) defined
crease in average pion phase-space density from SBS (as
=17A GeV) to RHIC (Js=130A GeV) [3,4] indicates
that—in contrast to an earlier suggest[&—additional fac- fesdX,p, ) =P(x,p,7)f(X,p, 7). @)
tors beyond the particle phase-space density must be taken . R ) ) )
into account. This prompts us in the present work to discus§i€re:f(x,p,7) is the distribution function of a given particle
quantitatively how hadrochemical compositif6,7], local ~ SPecies an.des({x,pzq-) denotes the distribution of that frac_—
temperature and collective velocity gradiefi@d, and par- tlon_ of particles WhICh have decpupled from the system prior
ticle momentum influence the decoupling of particles fromt© time 7 and will not rescatter in the future. For a particle
the collision region. Since hadrochemistry does change, anffith momentunp at space-time point,7), the probability
freeze-out temperature or velocity gradients may change, itp escape the medium without future interactiofigs10]
going from SPS to RHIC energies, this study also addresses
ms gnggi]t;/le dependence of hadronic freeze-out on bombard- ’P(X,p,r)=€x;{ _ fxd77€(x+v7,p)> . )
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Here, the scattering rat®(x,p) denotes the inverse of the particle. We start the discussion of the escape probalffljty
mean time between collisions for a particle at positiomith by considering a simple power-law ansatz for the scattering
momentump. The opacity integralin Eq. (2) determines the rate

average number of collisions of the particle after time o

Thus, for a particle which tries to escape the medium at time R(p=0,r=0,7)=R( T)=R0(—) , a>1. (5)

7 with velocity v, Eq.(2) determines the probability that the T
particle succeeds in doing so.

The limiting case of a sharp freeze-out along the three
dimensional(3D) proper time hypersurface given by [1]
can be characterized by an abrupt change of the particle e
cape probability(2) from 0 to 1:

Here, Ry is the scattering rate at the timg. Below, we
detail the assumptions on which E§) is based and how the
exponenta characterizes the expansion strength of the sys-
t&m. To set the stage, however, we consider first the opacity
integral of Eq.(5),

0 for 7<mg

o R
P(X,p,7) ?re?eze—out: 1 for > () f drR(7)=
T 70

070
1 (6)

Freeze-out along more general three-dimensional hypersurhis llustrates the typical interplay of scattering and expan-
faces[1] can be defined by requiring this kind of threshold sjon: a given escape probability can be obtained for different
behavior of the escape probability along those hypersurfacegalues of the scattering rate, with a higher scattering Raje
It corresponds to a scattering rate which changes abruptiyompensated by a stronger expansi@nger ).
from a large value to zero along the freeze-out hypersurface. we further illustrate this point with two analytically ac-
Hypersurfaces of typ€3) are characterized by a criterion cessible models for the fireball expansion. Both are based on
which testsonly the mediumbut does not depend on the g factorized ansatz for the scattering rate in terms of the
particle momentum and particle properties. In the generalaveragejicross sectionr for scattering in the medium, and
case of continuous freeze-out, the situation is different sinc@,a average velocit;,e, relative to other particles,
freeze-out does depend on particle momentum and proper-
ties. To characten;e the four-volume from which particles R(T)=0p(T)0ey. )
decouple, one requird40]
While the time dependence & does not factorize in the
p*d, P(x,p,7)>0. (4)  general case, one may hope to capture the dominant features
8]‘ a realistic dynamical evolution by retaining the time de-
pendence of density only.
For the first model, we choose a power-law falloff of the
nsity

This specifies the region in which the amount of escape
particles of momenturp* is growing. Note that this general
condition also characterizes the freeze-out hypersurface ige
the case of the sharp freeze-out according to(Bg.Condi-

tion (4) assumes, however, that there is no additional particle _ [T “ 8
production, i.e.p*d,f(x,p,7)=0. In the presence of such p(T)=po| | ®)
particle production, one generalizes Ed) to J,(p"“Pf) ) ) ) ) _

>0. wherep, is the density at time. From this, expressio(b)

In general, the evaluation of criterid#) is complicated. ~¢&n be recovered. This time dependence of the density may
In the Discussion, we shall consider a related, much simpleffot be realized during the whole evolution of the fireball; we
condition which gives some access to the structure of a four@Ssume it just in the final stage of the collision. Therefore,
dimensional freeze-out region on the basis of the escap@me 7 is now definedoy the dilution ratey,
probability.
y=To o= ©)
Ill. THE DEPENDENCE OF PARTICLE FREEZE-OUT pdr T

ON EXPANSION . . . .
Even though we are interested in the situation along the lon-

It has been argued a long time af@®| that freeze-out gitudinal symmetry axis of the fireball, time agrees with
occurs when the dilution rate becomes larger than the collithe “usual” longitudinal proper tima/t2— 22 only if the den-
sion rate. Here, we demonstrate how the collision rate angity evolves according to E@8) from the very beginning of
the expansion strength determine the escape probability. the collision ¢=0). Otherwise it corresponds to a different

To this end, we consider the simplified case of a particlestarting pointt, of the time scale
of vanishing transverse momentum in the center of the fire-
ball. Such a particle does not propagate through layers of———
different density, but—due to expansion—finds itself in @ irechnically, if we were solving for the whole fireball evolution,
medium of decreasing density. This simplification allows usye would have to match prescripti68) and its first time derivative
to illustrate the effect of dynamical properties of the collisionto the time dependence of the density at earlier times. This is done
region on freeze-out without being sensitive to further com-py tuning p, and r,. Therefore,r, has to be a free parameter, and
plications of the general case such as finite-size effects whicis not necessarily equal to the longitudinal proper time measured
depend on the production point and the velocity of the testrom the moment of the first approach of the colliding nuclei.
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= m_ (10) For a second simple dynamical model of the fireball evo-
lution, we turn to recent hydrodynamic simulatiofis4].
This is analogous to the Hubble time in cosmology which isThese indicate that the transverse expansion at the freeze-out
defined as the inverse of the expansion velocity gradient. wetage may be better described by the ansatz
insert this dynamical information in the usual parametriza- _
tion of the expansion four-velocity m(7.0) =&, (17

ut=(coshzy coshn(7,r), cose sinhy(7,r), ¢(m)=const, (18)

sing sinhp(7,r), sinhycoshzp(7.r)). (11) rather than by expressiori8) and (14) used above. In this
case, variabler is still given by relation(10), but corre-
In accord with relation(10), the space-time rapidity is de- Sponds now to the inverse longitudinal gradient of the expan-
fined as sion velocity:

T=((90UO+ &3U3)71. (19)

1 [(t—t0)+z’ 12

7= =t -2

The ansatZEgs.(17) and (18)] implies a different time de-
pendence of the density. From E@.3), one finds for the

andr, ¢ are the standard radial coordinates used in the plan&ensity at the center of the fireball

transverse to the beam. The transverse rapigitwill be
assumed to groviinearly with the radial coordinate. If the

70
particle number is conserved, which is a good assumption at p(1)=po—_exf—2&(r—7)], (20
the end of the hadronic phase, the dilution rate is related to
the divergence of the velocity field 2] wherep, is again the density at time,. The corresponding
opacity integral reads
1dp 1
——&—=——u“aﬂp=a#u“. (13 o
paT b | amin=Romerpazror©2m). (21

If we assume thaty,(7,r)«r, then Eq.(13) links the four- °

velocity field (11) with ansatz(8). This specifies the time wherel'(a,x) is the incompletd” function[15],
dependence of the transverse rapidity

o X
F(a,x)zf dtt""*leftzl“(a)—fO dttd et
X

r
(T ) =X, (14)
Relation(21) is less transparent than E(.6), but it shows
a—1 the same qualitative feature: stronger scattering can be com-
X=—%- (15 pensated by transverse expansion and can lead to the same

escape probability.

In the vicinity of r=0, the choicey=1 leads to a quasi-
inertial flow which corresponds to an asymptotic solution of IV. THE SCATTERING RATE IN A THERMAL MODEL

the fireball hydrodynamicpL3]. The valuesy<<1 andy>1 In the preceding section, we studied the effect of expan-
stand for radially decelerating and accelerating flow profilessjon on freeze-out. We derived expressions for the opacity
respectively. This illustrates the phenomenological consemtegral, which depend on the scattering rate at a fixed time
quences of a specific choice of exponent Relation(15 7, Here, we calculate this scattering rate and study how it

allows us to rewrite the opacity integr) depends on hadrochemistry and temperature. In particular,
1 we determine the scattering rate corresponding to the had-
- _Romo_Ro[ X ronic final states at SPS and RHIC.
drR(7) ) (16 ) )
o a—1 2 \7 The scattering rate for a test pion of momentprdue to

interactions with particles of typeand momentunk can be
According to Eq.(14), x/7q is the gradient of transverse written as[16,17]
rapidity at the timery. At r=0, it is to a good approxima-

tion equal to the transverse velocity gradient. This substanti- dRi(x,p) xK)oi(9) V(s—5S,)(s—Sp) 29
. i i ——= = pi(X,K) T .
ates the statement made above: a higher scattering rate can a3k pi i }2\/mi+ pz\/mi2+k2

be compensated by a stronger transverse flow and still lead
to the same escape probability. We note that it is not th¢jere, o, (s) denotes the total cross section for collinear col-

average flow velocity, but the local flogradientwhich de- |isjon,

termines the local density decrease and thus enter§lBy.

In Appendix A we relate this result to the freeze-out criterion, Sa=(m+m,_)?, (23
requiring the scattering rate to be smaller than the dilution

rate[8]. Sp=(m;—m,)?, (24)
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and the center-of-mass systémm.s) energys=s(k,p). TABLE I. Chemical potentials in units of MeV used in the cal-
We assume that distribution of scattering partngts,k)  culation for SPS at/s=17A GeV.

is given by the equilibrium form. In this way, we neglect

modification of the distribution function due to decoupling of ~Témperature 90MeV) 100 (MeV) 120 (MeV)

sogne partllcltles. Sucrr\] approximation V}ias_arghued to.callljse " 477-497 435455 350-379
onI y a stma errgr |_r|1_r'1t e escapgtprobabl ity in the practically e 301-321 238-259 114-143
relevant casegl0]. Thus, we write M 5065 38-53 10-30
A 527-562 473-508 360-409
Pi(xyk): gi S (eXFI(Ek_,U«i)/T]i 1)—1, (25) MA 351-386 276-312 124-173
(27) “, 100-130 76-106 20-60
K 162-182 132-153 72-102
whereg; is the degeneracy of the specidsis the tempera- UK 111-131 76-96 4-33
ture, E,= Jk?+ mzi , and the chemical potential; fixes the
total density. This is known to provide a good description of
the hadronic final state at SPS and RHISB,19. =130A GeV, we determine the chemical potentials for three
The total scattering rate is obtained by integrating expresdifferent temperatures: 90, 100, and 120 MeV.
sion (22) over momentunk and summing over all speciés In detail, the pion chemical potential at the SPS is ob-
tained by comparing then, -dependence of the average
dRi(x,p) phase-space density measured by NA22] and WA98[23]
R(X,D)ZZ fdg'kT- (26)  Collaborations to the result expected from a thermalized

boost-invariant source with box transverse density profile
nd a transverse flow profiley=\27:/Ryox [24]. The
ransverse momentum spectra relate transverse flow and tem-
é:)erature, such that 7;=0.7 corresponds to T
=90-100 MeV andn;=0.55 for T=120 MeV. From the
ratios ofdN/dy at midrapidity measured for pions, protons,
antiprotons, positive and negative kaof%5,2€|, particle

All pion scattering rates are computed in the rest frame o
the hadron gas. We include pion&@nt)nucleons, kaons,
rhos, and(antjdeltas as scattering partners. The total cros
section of pion-baryon scatterings is parametrizef28$

a(\s)= >, iMoo Mal |9 M) (28 +1) densities, and corresponding chemical potentials are ex-
r (25+1)(25,+1) tracted under the assumption that all particles originate from
the same thermal source, in accord with the use of equili-

™ Iyl o 27) brated distribution in Eq.22). Resonance decay contribution

to pion production is taken into account. The density of neu-
trons is assumed to be the same as that of protons. Chemical

This is the usual Breit-Wigner resonance formula, whdre  potentials forp’s, A's and A’s are deduced by requiring a
is the resonance mass afig; andT',_, _; are the total and detailed balancg27]
the partial width for the given decay channel, respectively.
Summation in Eq.(27) runs over all relevant resonance Mp=2Mm, MA=MpTMmy MA=Mpt . (28
states listed in Ref20]. Momentum in the c.m.s. is denoted
aspc.ms. The prefactor takes care of proper counting of spinThe chemical potentials extracted in this way are summa-
and isospin states. The square of the Clebsch-Gordan coeffized in Table I. The upper and lower values @& were
cient{j;, mi,j», m.||J;, M,) assures that the appropriate chosen such that our parameters overpredict or underpredict
fraction of the resonance state is picked in the coupling othe data by at least the maximal amount allowed by the
the isospin states of the two scattering partners. Particlquoted error bars. This ensures insensitivity of our conclu-
properties are taken from RdR1], except for higher exci- sions against fine tuning of parameters.
tations with large uncertainties which are taken from Ref. The same procedure is repeated for RHIC &
[20]. For scattering on both strange and nonstrange mesons;130A GeV. Results are summarized in Table Il. The yields
formula (27) is used again and a 5-mb momentum- at midrapidity for pions(antjprotons, and kaons were taken
independent contribution is added to account for elastic profrom Ref.[28]. Unlike at SPS, the feed-down tantiproton
cesses. The cross section with baryons is taken to saturate\aélds from weak decays was not corrected for in the used
30 mb for \s above 3 GeVé. This, however, has a negli- data. We performed a simple correction by assuming that the
gible effect on the calculation since high momentum paryields of A’s and’s are given by the same temperature and
ticles are suppressed in the thermal distribution. their chemical potentials are equal to that of the protons. The
To fix the hadrochemical composition of scattering part-preliminary data on pion phase-space density presented re-
ners at SPS and RHIC, an estimate of the chemical potentiatently by STAR Collaboration show small statistical error
entering Eq.(25) is needed. We take the chemical potentialbars only[3], and lie close to the upper bound of the large
for direct pions from data on pion phase-space densities, ansystematic errors quoted earlipt]. Our analysis accounts
those for all other particle species from ratiosd¥/dy at  for this not fully clarified experimental situation by associat-
midrapidity. For SPS at/s=17A GeV and RHIC at\/s ing the central value of the most recent dg@ato the large

X .
pg.m.s.(M r \/§)2+ thot/4
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TABLE II. Chemical potentials in units of MeV used in the SPbs T =00 MoV low pis.
calculation for RHIC at\/§: 130A GeV. "; 12 ;:fgohﬁglvﬁgx ﬁj: -
£ e
Temperature 9QMeV) 100 (MeV) 120 (MeV) g 08 . T=120 MeV, high p's ==+~ .
Ko 442-489 393-452 291-373 £
s 407-458 354-418 245-332 3
Lo 78-100 70-97 50-85 ’
A 520-589 463-549 341-458 N T =00 MLV, low e
uy 485-558 424-515 295-417 — 12k N T=90 MeV, high p's -----
5 - T=100 MeV, low s --eeee
somm oo omm o Lo HEES
MK - - - o 08 ™ S = eV, highp's ------ —
i 179-230 153-217 100-187 >
.E;
(asymmetri¢ systematic errors of Reffi4]. To avoid a bias in 0 —! : : :
relating SPS and RHIC energies, we compare the upper TS Y RSHP,g;;;ggmgg;:gng ______ i
bound of the chemical potential for RHIC in Table(Which T oL . SheT=120Ney, highus -----
corresponds to the central value in RE3]) to the upper £ 0s - ' SF;SVS, e
bound listed in Table | for SPS. We thus underestimate the g [
difference between RHIC and SPS. g
Figure 1 shows the corresponding scattering ratesTfor §
=100 MeV. The smaller contribution of nucleons at RHIC is ?

largely compensated by antinucleons. Despite the increased 0 o1 0.2 03 o4 os
pion phase-space density at RHIC, the pionic contribution p, [GeVic]

does not dominate the total scattering rate because of the ) ) ] ]
small pion-pion cross section. Scattering on pions is of com- FIG. 2. Pion scattering rate as a function of pion momentum
parable importance to scattering on nucleons and antinucl&@/culated for temperatures 90, 100, and 120 MeV and all corre-

ons: both particle species lead to a momentum averaged sc&P°Nding sets of chemical potentials from TabletSPS ats

: » -1 =17A GeV) and Il (RHIC at ys=130A GeV). The lowest panel
ter{;]v% rcz)igze?:c/e(ihzaiftmhg:)inc;ease of pion phase-space densi urr|1cr:narizes the lowest and the highest curves from both SPS and
at RHIC when compared to SHS,4] has no significant im- '
pact on the scattering rate. The earlier suggestion that the
pion phase-space density at the freeze-out should be a unith temperature. On the other hand, we see a generic de-
versal quantity[5] did not account for the contribution of crease of the scattering rate with the pion momentum. This
other particle species to the pion scattering rate. behavior is mainly dictated by phase space available for the

Figure 2 illustrates our results for the various sets ofcollisions, but also depends on the cross section as a function
freeze-out temperature and chemical potentials which limibf s. We discuss this behavior in more detail in Appendix B.
the range of values consistent with data from SPS and RHIC. In the lowest panel of Fig. 2, we compare the extreme
Although particle densities are approximately the same foresults for SPS and RHIC. If the scattering rate in one of the
all temperatures, the scattering rate increases significantlgystems was clearly larger than in the other one, this would

T T

172 . ' 1727 y i
— s'"% =17 AGeV total s'"% = 130 AGeV total
S 08t nucleons -------- 1k nucleons -------- |
€ antinucleons -~ antinucleons ---------
= pions pions
° 4
[
(=2 - . . .
< FIG. 1. Pion scattering rate as a function of
5 N pion momentum af =100 MeV and the highest
(o] . . .
@ possible values of chemical potentials for SPS
(left column and RHIC (right column. Contri-

5 | butions to the total scattering rate from scattering
3 on nucleons, antinucleons, and pions are indi-
‘g 1 1 cated. The lower row shows the baryonic and me-
b ] | sonic relative contributions.
=
e 02 paryons - e[ baryons e R

mesons MESONS e .

0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 04
p, [GeV/c] p, [GeVic]
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indicate a stronger transverse expansion in that system, &s=0.08fm ! and the Bjorken freeze-out timg,=10fm/c

follows from Sec. Ill. We see that the present data do nois taken from Ref[18]. The value¢é=0.08fm ! is also in

allow to make any conclusion on this subject just by usingagreement with hydrodynamic simulatiof4]. In order to

the scattering rate. achieve the escape probability of at least 1/3, the opacity
integral must be smaller thanIn1/3~1.1. Then, Eq(16)
leads to a scattering rate of less than 0.18 ¢§m#, while

V. CONCLUSIONS Eqg. (21) puts the upper limit for the scattering rate to

.26 (fm/c) ~1. At a temperature of 120 MeV, such a low

alue of the scattering rate is possibly reached at RHIC for

+>0.4GeVk and at SPS gi,>0.3 GeVk, as seen in Fig.

In this paper, we have calculated the scattering rates o?
pions which are characteristic for the late hadronic phase of
the collisions at SPS and RHIC. We also illustrated simpl . . .
examples on how these scattering rates determine the escai)'eIf We Increase the l;eqwrecljl escape probability to 1é2 the
probability and how the escape probability is affected by cattering rate must be smater, 0.11 or O'.16' according ©
velocity gradients. Moreover, we found that the temperaturézqs' (16) and (21), respectively. For particles wittp,
dependence of the scattering rate allows us to constrain the -4 G€VE, the temperature has to drop to 100 MeVAf
range of temperatures at which pion emission is significanShould reach 1/2. Particles with,<0.2 GeVe must wait
To estimate this temperature range, we combined the scattéfVen longer. On the other hand, if we put the required value
ing rates of Sec. IV with the expressions for the opacityof P to 0.1, Eq. (21) leads to an upper bound of
integrals(16) and (21). Here, we discuss what is needed to 0.54 (fmic) ™! for the scattering rate. In the case of
overcome the limitation of our approach and what our results=120MeV and high u's at RHIC pions with p,
imply for freeze-out in the realistic case. >0.25 GeVE fulfill this condition; in the less extreme cases,

Going beyond the calculations presented here will requireghe 10% escape probability is reached by almost all pions.

a refined dynamical model which follows the full space-time  This illustrates that particles decouple from the fireball
evolution of the fireball. Most likely, this will involve nu- gradually. It indicates that 10% of the pions are decoupled
merical simulations. In particular, one may hope to extend irat T=120 MeV, but approximately half of them will escape
this way the expressions for the opacity integral in Sec. Il toat local temperatures below 100 MeV. Thus, a large fraction
the case of particles with finite momentum. For a realisticof the particles decouples at rather low temperatures. We
scenario, we envisage the following additional effects: note that a temperature of 120 MeV was assumed as a

(i) In a transversely expanding fireball, particles with ~ freeze-out temperature in a recent wgid where a pion
>0 are produced from parts of the system that comove trangnean free path=1 fm was suggested as the universal freeze-
versely. Their momentum relative to the mediyp is thus  out criterion. This work neglects the temperature dependence
smaller tharp, . The corresponding scattering ré®€p,) is  of the escape probability and its dependence on the momen-
thus higher than the naively expected valugpat Hence, tum of the particle. Also, it does not consider the possible
this effectlowersthe escape probability. cancellation between stronger scattering and stronger trans-

(i) A particle with finitep, can escape the fireball region verse expansion. In our approach, a thermal distribution of
in a finite time. Thus, the corresponding opacity integeal T=120MeV at RHIC results in a pion mean free path of
receives a contribution from a finite time only, in contrast toonly 1.7 fm, only slightly larger than that in Ref7]. How-
the infinite time which is accumulated by a test particle withever, only 10% of all particles are decoupled at this tempera-
p, =0 in our simplified calculation. This effect leads to a ture. At lower temperatures, where the fraction of decoupled
lower value of the opacity integral arehhanceshe escape particles reaches 50%, we find a significantly larger average
probability. pion mean free path of at least 3—-5 fm.

Also, evaluation of the general freeze-out criteri@ is Let us further comment on the significance of the momen-
complicated and requires complete knowledge of the spacéum dependence of the scattering rate. As discussed earlier, at
time evolution of the fireball. To gain some understanding ofcertainp, the particle has a momentum with respect to the
the freeze-out process from the models studied here, hovsurrounding mediunp_.<p, , and thus thep, -dependence
ever, it is instructive to turn to a simpler condition. Let us of the scattering rate can be flatter than what is plotted in Fig.
define freeze-out for particles at positiowith momentunp 2. We expect, however, that the monotonic increase of the
to occur if the corresponding escape probabifitgx,p) in- escape probability witlp, will be robust against refinements
creases above a certain threshold value. Doing this, we actof our calculation. This suggests that in contrast to the ide-
ally specify a three-dimensional hypersurface on which alization of a sharp freeze-out along a three-dimensional hy-
given fractionf .o/ f =P of all particles is already decoupled. persurface, particle escape is ordered in momentum with
However, in contrast to previous freeze-out critgficb,11], highp, particles freezing-out earlier and thus originating
this condition does not only depend on the medium, but alsérom a smaller fireball. This effect could lead to a stronger
on the particle momentum. Moreover, we can access somteansverse mass dependence of HBT rg2#di] than what is
properties of the whole four-dimensional freeze-out regiorfound in current model studies based on a Cooper-Frye
by varying the threshold value f@?. In this way, the above freeze-out condition. These latter mod&dse, e.g., thblast-
model calculations give some insight into freeze-out criteriavave modetliscussed in Ref30]) have difficulties in repro-
which are more general than the Cooper-Frye type. To put iducing the observed strord | -dependence of HBT radii at
numbers, a realistic estimate of the transverse flow gradierRHIC. In what concerns the mechanism proposed here, one

034905-6



FREEZE-OUT MECHANISM AND PHASE-SPAE . .. PHYSICAL REVIEW C 68, 034905 (2003

may envisage compensating effects: for example, if the d3k Ev—

transverse flow gradient is stronger at later times, then this R(p)zf 39 exp{ i ) (B1)

will reduce the homogeneity regions measured by HBT radii (2m)

at later times. Such a scenario seems unlikely since it implies

acceleration of the collective expansion at a time when par- V(S—Sg)(s—sp)

ticles slowly cease to interact. However, to substantiate this Xa(s) 2, 2 (2112 (B2)
: ’ 2\m?2+p?ym?+k

expectation, a model which fully implements the fireball dy-
namics is needed. In our opinion, this warrants further inves- ¢ change the integration variables to the center-of-

tigations. In particular, hydrodynamical simulations s;houldmass energy and the energy of the scattering partir,

be revisited, which are typically based on sharp three-aml perform theE, integration, this integral leads to

dimensional freeze-out and thus miss any contribution from
freeze-out along finite four-volumes.

g e,LL/T
RP)= 75— (B3)
82 pyp?+m?
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(B4)
APPENDIX A: INTERPLAY OF THE SCATTERING RATE
AND THE DILUTION RATE ><sin>'< P _J(s—mZ- m2)2_4m127m2)

Here, we give further details on the relation between the 2Tm; B5
dilution rate and the scattering rate. We start from the opacity (BS)
integral (6) and we express the exponeatin terms of the 5
dilution ratey via Eq. (9). This leads to xXexp ———— (s~ mi—mz) . (B6)

2Tm:
* RoTo Ro
drR(1)=——7= 1" (Al)  This scattering rate can be expressed as a convolution of the
o y—— cross section with the distribution of two-particle ap-
7o proaches D(p,s),
This can be directly compared to the statemfBit that _ f *
freeze-out occurs when the dilution rate is at least as large as Rip)= ( +m)2D(p,s) o(s)ds. (B7)
the scattering rate. For the scenario of continuous freeze-out
considered here, a reasonable escape probability is reachBg comparing with Eq(B3), we obtain
when the opacity integral is of order one or smaller. In the
model of Egs.(5) and(7), this leads to the condition ge'T\(s—m2—m?)2— am2m?
D(p,s)= - - (B8)
1 872 p\p’+ mz7T
—_—=
Y o ~R01

; h‘ I 2 2\2 2 2
Xsin S—m n 4mom
2T 2\/( T ) T

i.e., there is a factot 1/7q in addition to the standard crite-

rion y=R, [8]. The details of the relation between the scat- (B9)
tering rate and the dilution rate at the freeze-out will depend —
on the particular time evolution d® andp, but the feature pT+my 2 2
. . Xexp —————(s—m-—m°) |.
that largerkR can be compensated by largglis generic. 2-|-m§T &
(B10)

APPENDIX B: GENERAL EXPRESSION FOR THE

In the arguments of the exponential functions of Eg8),
SCATTERING RATE

the momentum of the test particle and the temperature are

In this appendix we derive a general expression for thénversely related. Thus if one ignores the {p>+ mzw pref-
scattering rate. This allows us to investigate its dependencexctor, increasing has the same effect as decreagnghis
on temperature and the test particle momentum. offers an explanation wh{R increases with the raising tem-
Following Eq.(26) we write the scattering for some par- perature, but decreases when the momentum becomes larger.
ticle species of mass. Assuming a Boltzmann distribution There is no collision dynamics going into the calculation of
of the scattering partners and suppressing the position depe® it represents merely the phase-space populated with ther-
dence, mally distributed scattering partners.

034905-7



BORIS TOMASIK AND URS ACHIM WIEDEMANN PHYSICAL REVIEW C 68, 034905 (2003

However, the temperature and the momentum dependencte a qualitatively different dependence of the scattering rate
of the scattering rate is not given solely by the distributionon the test particle momentum. We verified that this is a
of two-particle approaches, but also reflects details of theonsequence of neglecting the width of the resonance. By
convolution of D(p,s) with the scattering cross section only assuming the lowest resonance states in a given channel
o(s). This can be seen, e.g., by comparing our resultand narrowing the resonance shape, we were able to repro-
with those obtained in Refl16]. In that paper, the authors duce the results of Refl6] as a limiting case of our calcu-
used a simple prescription(s)m&(s—M,Z), which leads lation.
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