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Freeze-out mechanism and phase-space density in ultrarelativistic heavy-ion collisions

Boris Tomášik and Urs Achim Wiedemann
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

~Received 25 July 2002; published 9 September 2003!

We explore the consequences of a freeze-out criterion for heavy-ion collisions, based on pion escape
probabilities from the hot and dense but rapidly expanding collision region. The influence of the expansion and
the scattering rate on the escape probability is studied. The temperature dependence of this scattering rate
favors a low freeze-out temperature of;100 MeV. In general, our results support freeze-out along finite
four-volumes rather than sharp three-dimensional hypersurfaces, with high-p' particles decoupling earlier
from smaller volumes. We compare our approach to the proposed universal freeze-out criteria using the pion
phase-space density and its mean free path.
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I. INTRODUCTION

Experiments with nuclear collisions at ultrarelativistic e
ergies are performed with the aim of studying strongly int
acting matter under high temperature and density. Such
ditions are created very early in the collision. Hadrons at l
transverse momentum form the bulk of the particles p
duced in these collisions. They are produced at the end o
hot and dense partonic phase, but they subsequently sc
in the confined hadronic phase prior to decoupling from
collision system~‘‘freeze-out’’!. In general, the collective
evolution of the hot and dense matter leaves a distinct
print on the phase-space distribution of the fireball at free
out. For example, pressure gradients generated in the e
stage of the collision and indicative of the equation of st
result in collective transverse, radial and elliptic flow whi
shape important features of hadronic one- and two-part
spectra. However, to disentangle such information from f
tures generated during freeze-out a refined understandin
the decoupling process is needed. This is the condition wh
has to be satisfied locally for decoupling to take place.

Freeze-out is often modeled as a sudden breakup of
fireball on a fixed three-dimensional hypersurface@1#, speci-
fied, e.g., by a critical freeze-out temperature or density. T
implements in a very simplified way the physical picture th
the hadronic scattering rate drops with particle phase-sp
density and determines freeze-out. However, the difficul
at present in interpreting the HBT radii measured at RH
@2# motivate to go beyond a sharp three-dimensional imp
mentation of freeze-out. Moreover, the recently observed
crease in average pion phase-space density from SPSAs
517A GeV) to RHIC (As5130A GeV) @3,4# indicates
that—in contrast to an earlier suggestion@5#—additional fac-
tors beyond the particle phase-space density must be t
into account. This prompts us in the present work to disc
quantitatively how hadrochemical composition@6,7#, local
temperature and collective velocity gradients@8#, and par-
ticle momentum influence the decoupling of particles fro
the collision region. Since hadrochemistry does change,
freeze-out temperature or velocity gradients may change
going from SPS to RHIC energies, this study also addres
the possible dependence of hadronic freeze-out on bomb
ing energy.
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Clearly, in the general case, particles decouple from
fireball gradually@9,10#, as it is naturally implemented, e.g
in cascade generator simulations. The question arises to
extent this generic behavior can be described by the limit
case of a sharp three-dimensional freeze-out. To discuss
question, we first introduce in Sec. II the so-called esc
probability which characterizes the probability of a partic
to decouple from the system. In Sec. III, we demonstr
simple examples on how the escape probability is relate
the expansion strength and the scattering rate. This illustr
the earlier suggestion@8# that freeze-out occurs when th
dilution rate becomes comparable or larger than the sca
ing rate. Moreover, the scattering rate depends on dens
of individual species and the corresponding cross sect
@6,7#. For pions, e.g., scattering on nucleons is much m
important than scattering on other pions due to the lar
cross section of the former. In Sec. IV, we discuss the imp
of the hadrochemical composition on the scattering rates
freeze-out at SPS and RHIC. This also allows us to add
the observed change in the freeze-out phase-space de
@3,4#. Finally, we turn to the dependence of the scatter
rate and the escape probability on temperature. In doing
we find that'50% of the particles are emitted at temper
tures below;100 MeV. We discuss this result, togeth
with other findings of our calculations in Sec. V.

II. THE ESCAPE PROBABILITY

The following discussion of the freeze-out process@9,10#
is based on the particle escape probabilityP(x,p,t) defined
as

f esc~x,p,t!5P~x,p,t! f ~x,p,t!. ~1!

Here,f (x,p,t) is the distribution function of a given particl
species andf esc(x,p,t) denotes the distribution of that frac
tion of particles which have decoupled from the system pr
to time t and will not rescatter in the future. For a partic
with momentump at space-time point (x,t), the probability
to escape the medium without future interaction is@9,10#

P~x,p,t!5expS 2E
t

`

dt̄R~x1v t̄,p! D . ~2!
©2003 The American Physical Society05-1
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BORIS TOMÁŠIK AND URS ACHIM WIEDEMANN PHYSICAL REVIEW C 68, 034905 ~2003!
Here, the scattering rateR(x,p) denotes the inverse of th
mean time between collisions for a particle at positionx with
momentump. Theopacity integralin Eq. ~2! determines the
average number of collisions of the particle after timet.
Thus, for a particle which tries to escape the medium at t
t with velocity v, Eq. ~2! determines the probability that th
particle succeeds in doing so.

The limiting case of a sharp freeze-out along the thr
dimensional~3D! proper time hypersurface given byt fr @1#
can be characterized by an abrupt change of the particle
cape probability~2! from 0 to 1:

P~x,p,t! freeze-out
3D 5H 0 for t,t fr

1 for t.t fr .
~3!

Freeze-out along more general three-dimensional hyper
faces@1# can be defined by requiring this kind of thresho
behavior of the escape probability along those hypersurfa
It corresponds to a scattering rate which changes abru
from a large value to zero along the freeze-out hypersurfa

Hypersurfaces of type~3! are characterized by a criterio
which testsonly the medium, but does not depend on th
particle momentum and particle properties. In the gene
case of continuous freeze-out, the situation is different si
freeze-out does depend on particle momentum and pro
ties. To characterize the four-volume from which partic
decouple, one requires@10#

pm]mP~x,p,t!.0. ~4!

This specifies the region in which the amount of esca
particles of momentumpm is growing. Note that this genera
condition also characterizes the freeze-out hypersurfac
the case of the sharp freeze-out according to Eq.~3!. Condi-
tion ~4! assumes, however, that there is no additional part
production, i.e.,pm]m f (x,p,t)50. In the presence of suc
particle production, one generalizes Eq.~4! to ]m(pmPf )
.0.

In general, the evaluation of criterion~4! is complicated.
In the Discussion, we shall consider a related, much sim
condition which gives some access to the structure of a fo
dimensional freeze-out region on the basis of the esc
probability.

III. THE DEPENDENCE OF PARTICLE FREEZE-OUT
ON EXPANSION

It has been argued a long time ago@8# that freeze-out
occurs when the dilution rate becomes larger than the c
sion rate. Here, we demonstrate how the collision rate
the expansion strength determine the escape probability

To this end, we consider the simplified case of a parti
of vanishing transverse momentum in the center of the fi
ball. Such a particle does not propagate through layers
different density, but—due to expansion—finds itself in
medium of decreasing density. This simplification allows
to illustrate the effect of dynamical properties of the collisi
region on freeze-out without being sensitive to further co
plications of the general case such as finite-size effects w
depend on the production point and the velocity of the t
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particle. We start the discussion of the escape probability~2!
by considering a simple power-law ansatz for the scatter
rate

R~p50,r 50,t!5R~t!5R0S t0

t D a

, a.1. ~5!

Here, R0 is the scattering rate at the timet0. Below, we
detail the assumptions on which Eq.~5! is based and how the
exponenta characterizes the expansion strength of the s
tem. To set the stage, however, we consider first the opa
integral of Eq.~5!,

E
t0

`

dt R~t!5
R0t0

a21
. ~6!

This illustrates the typical interplay of scattering and expa
sion: a given escape probability can be obtained for differ
values of the scattering rate, with a higher scattering rateR0
compensated by a stronger expansion~largera).

We further illustrate this point with two analytically ac
cessible models for the fireball expansion. Both are based
a factorized ansatz for the scattering rate in terms of
~averaged! cross sections for scattering in the medium, an
the average velocityv̄ rel relative to other particles,

R~t!5sr~t!v̄ rel . ~7!

While the time dependence ofR does not factorize in the
general case, one may hope to capture the dominant fea
of a realistic dynamical evolution by retaining the time d
pendence of density only.

For the first model, we choose a power-law falloff of th
density

r~t!5r0S t0

t D a

, ~8!

wherer0 is the density at timet0. From this, expression~5!
can be recovered. This time dependence of the density
not be realized during the whole evolution of the fireball; w
assume it just in the final stage of the collision. Therefo
time t is now definedby the dilution rateg,

g[2
1

r

]r

]t
5

a

t
. ~9!

Even though we are interested in the situation along the
gitudinal symmetry axis of the fireball, timet agrees with
the ‘‘usual’’ longitudinal proper timeAt22z2 only if the den-
sity evolves according to Eq.~8! from the very beginning of
the collision (t50). Otherwise it corresponds to a differe
starting pointt0 of the time scale1

1Technically, if we were solving for the whole fireball evolution
we would have to match prescription~8! and its first time derivative
to the time dependence of the density at earlier times. This is d
by tuningr0 andt0. Therefore,t0 has to be a free parameter, an
is not necessarily equal to the longitudinal proper time measu
from the moment of the first approach of the colliding nuclei.
5-2
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t5A~ t2t0!22z2. ~10!

This is analogous to the Hubble time in cosmology which
defined as the inverse of the expansion velocity gradient.
insert this dynamical information in the usual parametri
tion of the expansion four-velocity

um5„coshh coshh t~t,r !, cosf sinhh t~t,r !,

sinf sinhh t~t,r !, sinhh coshh t~t,r !…. ~11!

In accord with relation~10!, the space-time rapidity is de
fined as

h5
1

2
lnF ~ t2t0!1z

~ t2t0!2zG , ~12!

andr , f are the standard radial coordinates used in the p
transverse to the beam. The transverse rapidityh t will be
assumed to growlinearly with the radial coordinate. If the
particle number is conserved, which is a good assumptio
the end of the hadronic phase, the dilution rate is relate
the divergence of the velocity field@12#

2
1

r

]r

]t
52

1

r
um]mr5]mum. ~13!

If we assume thath t(t,r )}r , then Eq.~13! links the four-
velocity field ~11! with ansatz~8!. This specifies the time
dependence of the transverse rapidity

h t~t,r !5x
r

t
, ~14!

x5
a21

2
. ~15!

In the vicinity of r 50, the choicex51 leads to a quasi
inertial flow which corresponds to an asymptotic solution
the fireball hydrodynamics@13#. The valuesx,1 andx.1
stand for radially decelerating and accelerating flow profil
respectively. This illustrates the phenomenological con
quences of a specific choice of exponenta. Relation ~15!
allows us to rewrite the opacity integral~6!

E
t0

`

dtR~t!5
R0t0

a21
5

R0

2 S x

t0
D 21

. ~16!

According to Eq.~14!, x/t0 is the gradient of transvers
rapidity at the timet0. At r 50, it is to a good approxima
tion equal to the transverse velocity gradient. This substa
ates the statement made above: a higher scattering rate
be compensated by a stronger transverse flow and still
to the same escape probability. We note that it is not
average flow velocity, but the local flowgradientwhich de-
termines the local density decrease and thus enters Eq.~16!.
In Appendix A we relate this result to the freeze-out criterio
requiring the scattering rate to be smaller than the dilut
rate @8#.
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For a second simple dynamical model of the fireball ev
lution, we turn to recent hydrodynamic simulations@14#.
These indicate that the transverse expansion at the freez
stage may be better described by the ansatz

h t~t,r !5jr , ~17!

j~t!5const, ~18!

rather than by expressions~8! and ~14! used above. In this
case, variablet is still given by relation~10!, but corre-
sponds now to the inverse longitudinal gradient of the exp
sion velocity:

t5~]0u01]3u3!21. ~19!

The ansatz@Eqs.~17! and ~18!# implies a different time de-
pendence of the density. From Eq.~13!, one finds for the
density at the center of the fireball

r~t!5r0

t0

t
exp@22j~t2t0!#, ~20!

wherer0 is again the density at timet0. The corresponding
opacity integral reads

E
t0

`

dtR~t!5R0t0exp~2jt0!G~0,2jt0!, ~21!

whereG(a,x) is the incompleteG function @15#,

G~a,x!5E
x

`

dt ta21e2t5G~a!2E
0

x

dt ta21e2t.

Relation~21! is less transparent than Eq.~16!, but it shows
the same qualitative feature: stronger scattering can be c
pensated by transverse expansion and can lead to the
escape probability.

IV. THE SCATTERING RATE IN A THERMAL MODEL

In the preceding section, we studied the effect of exp
sion on freeze-out. We derived expressions for the opa
integral, which depend on the scattering rate at a fixed t
t0. Here, we calculate this scattering rate and study how
depends on hadrochemistry and temperature. In partic
we determine the scattering rate corresponding to the h
ronic final states at SPS and RHIC.

The scattering rate for a test pion of momentump due to
interactions with particles of typei and momentumk can be
written as@16,17#

dRi~x,p!

d3k
5r i~x,k!s i~s!

A~s2sa!~s2sb!

2Amp
2 1p2Ami

21k2
. ~22!

Here,s i(s) denotes the total cross section for collinear c
lision,

sa5~mi1mp!2, ~23!

sb5~mi2mp!2, ~24!
5-3
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and the center-of-mass system~c.m.s.! energys5s(k,p).
We assume that distribution of scattering partnersr i(x,k)

is given by the equilibrium form. In this way, we negle
modification of the distribution function due to decoupling
some particles. Such approximation was argued to ca
only a small error in the escape probability in the practica
relevant cases@10#. Thus, we write

r i~x,k!5
gi

~2p!3
„exp@~Ek2m i !/T#61…21, ~25!

wheregi is the degeneracy of the species,T is the tempera-
ture, Ek5Ak21mi

2, and the chemical potentialm i fixes the
total density. This is known to provide a good description
the hadronic final state at SPS and RHIC@18,19#.

The total scattering rate is obtained by integrating expr
sion ~22! over momentumk and summing over all speciesi:

R~x,p!5(
i
E d3k

dRi~x,p!

d3k
. ~26!

All pion scattering rates are computed in the rest frame
the hadron gas. We include pions,~anti!nucleons, kaons
rhos, and~anti!deltas as scattering partners. The total cr
section of pion-baryon scatterings is parametrized as@20#

s~As!5(
r

^ j i ,mi , j p ,mpuuJr ,Mr&~2Sr11!

~2Si11!~2Sp11!

3
p

pc.m.s.
2

G r→p iG tot

~Mr2As!21G tot
2 /4

. ~27!

This is the usual Breit-Wigner resonance formula, whereMr
is the resonance mass andG tot and G r→p i are the total and
the partial width for the given decay channel, respective
Summation in Eq.~27! runs over all relevant resonanc
states listed in Ref.@20#. Momentum in the c.m.s. is denote
aspc.m.s.. The prefactor takes care of proper counting of s
and isospin states. The square of the Clebsch-Gordan co
cient ^ j i , mi , j p , mp uu Jr , Mr& assures that the appropria
fraction of the resonance state is picked in the coupling
the isospin states of the two scattering partners. Par
properties are taken from Ref.@21#, except for higher exci-
tations with large uncertainties which are taken from R
@20#. For scattering on both strange and nonstrange mes
formula ~27! is used again and a 5-mb momentum
independent contribution is added to account for elastic p
cesses. The cross section with baryons is taken to satura
30 mb forAs above 3 GeV/c. This, however, has a negli
gible effect on the calculation since high momentum p
ticles are suppressed in the thermal distribution.

To fix the hadrochemical composition of scattering pa
ners at SPS and RHIC, an estimate of the chemical poten
entering Eq.~25! is needed. We take the chemical potent
for direct pions from data on pion phase-space densities,
those for all other particle species from ratios ofdN/dy at
midrapidity. For SPS atAs517A GeV and RHIC atAs
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5130A GeV, we determine the chemical potentials for thr
different temperatures: 90, 100, and 120 MeV.

In detail, the pion chemical potential at the SPS is o
tained by comparing them'-dependence of the averag
phase-space density measured by NA44@22# and WA98@23#
Collaborations to the result expected from a thermaliz
boost-invariant source with box transverse density pro
and a transverse flow profileh t5A2h f r /Rbox @24#. The
transverse momentum spectra relate transverse flow and
perature, such that h f.0.7 corresponds to T
590–100 MeV andh f.0.55 for T5120 MeV. From the
ratios ofdN/dy at midrapidity measured for pions, proton
antiprotons, positive and negative kaons@25,26#, particle
densities, and corresponding chemical potentials are
tracted under the assumption that all particles originate fr
the same thermal source, in accord with the use of equ
brated distribution in Eq.~22!. Resonance decay contributio
to pion production is taken into account. The density of ne
trons is assumed to be the same as that of protons. Chem
potentials forr ’s, D ’s and D̄ ’s are deduced by requiring
detailed balance@27#

mr52mp , mD5mp1mp , mD̄5m p̄1mp . ~28!

The chemical potentials extracted in this way are summ
rized in Table I. The upper and lower values ofm ’s were
chosen such that our parameters overpredict or underpre
the data by at least the maximal amount allowed by
quoted error bars. This ensures insensitivity of our conc
sions against fine tuning of parameters.

The same procedure is repeated for RHIC atAs
5130A GeV. Results are summarized in Table II. The yiel
at midrapidity for pions,~anti!protons, and kaons were take
from Ref.@28#. Unlike at SPS, the feed-down to~anti!proton
yields from weak decays was not corrected for in the u
data. We performed a simple correction by assuming that
yields ofL ’s andS ’s are given by the same temperature a
their chemical potentials are equal to that of the protons. T
preliminary data on pion phase-space density presented
cently by STAR Collaboration show small statistical err
bars only@3#, and lie close to the upper bound of the lar
systematic errors quoted earlier@4#. Our analysis accounts
for this not fully clarified experimental situation by associa
ing the central value of the most recent data@3# to the large

TABLE I. Chemical potentials in units of MeV used in the ca
culation for SPS atAs517A GeV.

Temperature 90~MeV! 100 ~MeV! 120 ~MeV!

mp 477–497 435–455 350–379
m p̄ 301–321 238–259 114–143
mp 50–65 38–53 10–30
mD 527–562 473–508 360–409
mD̄ 351–386 276–312 124–173
mr 100–130 76–106 20–60
mK 162–182 132–153 72–102
m K̄ 111–131 76–96 4–33
5-4
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~asymmetric! systematic errors of Ref.@4#. To avoid a bias in
relating SPS and RHIC energies, we compare the up
bound of the chemical potential for RHIC in Table II~which
corresponds to the central value in Ref.@3#! to the upper
bound listed in Table I for SPS. We thus underestimate
difference between RHIC and SPS.

Figure 1 shows the corresponding scattering rates foT
5100 MeV. The smaller contribution of nucleons at RHIC
largely compensated by antinucleons. Despite the increa
pion phase-space density at RHIC, the pionic contribut
does not dominate the total scattering rate because of
small pion-pion cross section. Scattering on pions is of co
parable importance to scattering on nucleons and antinu
ons: both particle species lead to a momentum averaged
tering rate of;0.2 (fm/c)21.

We observe that the increase of pion phase-space de
at RHIC when compared to SPS@3,4# has no significant im-
pact on the scattering rate. The earlier suggestion that
pion phase-space density at the freeze-out should be a
versal quantity@5# did not account for the contribution o
other particle species to the pion scattering rate.

Figure 2 illustrates our results for the various sets
freeze-out temperature and chemical potentials which li
the range of values consistent with data from SPS and RH
Although particle densities are approximately the same
all temperatures, the scattering rate increases significa

TABLE II. Chemical potentials in units of MeV used in th
calculation for RHIC atAs5130A GeV.

Temperature 90~MeV! 100 ~MeV! 120 ~MeV!

mp 442–489 393–452 291–373
m p̄ 407–458 354–418 245–332
mp 78–100 70–97 50–85
mD 520–589 463–549 341–458
mD̄ 485–558 424–515 295–417
mr 156–200 140–194 100–170
mK 194–242 170–229 120–202
m K̄ 179–230 153–217 100–187
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with temperature. On the other hand, we see a generic
crease of the scattering rate with the pion momentum. T
behavior is mainly dictated by phase space available for
collisions, but also depends on the cross section as a func
of s. We discuss this behavior in more detail in Appendix

In the lowest panel of Fig. 2, we compare the extre
results for SPS and RHIC. If the scattering rate in one of
systems was clearly larger than in the other one, this wo

 

 

 

 

 

 

 
 

FIG. 2. Pion scattering rate as a function of pion moment
calculated for temperatures 90, 100, and 120 MeV and all co
sponding sets of chemical potentials from Tables I~SPS atAs
517A GeV) and II ~RHIC at As5130A GeV). The lowest panel
summarizes the lowest and the highest curves from both SPS
RHIC.
of
t
S

ng
di-
e-
FIG. 1. Pion scattering rate as a function
pion momentum atT5100 MeV and the highes
possible values of chemical potentials for SP
~left column! and RHIC ~right column!. Contri-
butions to the total scattering rate from scatteri
on nucleons, antinucleons, and pions are in
cated. The lower row shows the baryonic and m
sonic relative contributions.
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BORIS TOMÁŠIK AND URS ACHIM WIEDEMANN PHYSICAL REVIEW C 68, 034905 ~2003!
indicate a stronger transverse expansion in that system
follows from Sec. III. We see that the present data do
allow to make any conclusion on this subject just by us
the scattering rate.

V. CONCLUSIONS

In this paper, we have calculated the scattering rate
pions which are characteristic for the late hadronic phas
the collisions at SPS and RHIC. We also illustrated sim
examples on how these scattering rates determine the es
probability and how the escape probability is affected
velocity gradients. Moreover, we found that the temperat
dependence of the scattering rate allows us to constrain
range of temperatures at which pion emission is significa
To estimate this temperature range, we combined the sca
ing rates of Sec. IV with the expressions for the opac
integrals~16! and ~21!. Here, we discuss what is needed
overcome the limitation of our approach and what our res
imply for freeze-out in the realistic case.

Going beyond the calculations presented here will requ
a refined dynamical model which follows the full space-tim
evolution of the fireball. Most likely, this will involve nu-
merical simulations. In particular, one may hope to extend
this way the expressions for the opacity integral in Sec. II
the case of particles with finite momentum. For a realis
scenario, we envisage the following additional effects:

~i! In a transversely expanding fireball, particles withp'

.0 are produced from parts of the system that comove tra
versely. Their momentum relative to the mediumpp is thus
smaller thanp' . The corresponding scattering rateR(pp) is
thus higher than the naively expected value atp' . Hence,
this effectlowers the escape probability.

~ii ! A particle with finitep' can escape the fireball regio
in a finite time. Thus, the corresponding opacity integral~2!
receives a contribution from a finite time only, in contrast
the infinite time which is accumulated by a test particle w
p'50 in our simplified calculation. This effect leads to
lower value of the opacity integral andenhancesthe escape
probability.

Also, evaluation of the general freeze-out criterion~4! is
complicated and requires complete knowledge of the sp
time evolution of the fireball. To gain some understanding
the freeze-out process from the models studied here, h
ever, it is instructive to turn to a simpler condition. Let
define freeze-out for particles at positionx with momentump
to occur if the corresponding escape probabilityP(x,p) in-
creases above a certain threshold value. Doing this, we a
ally specify a three-dimensional hypersurface on which
given fractionf esc/ f 5P of all particles is already decoupled
However, in contrast to previous freeze-out criteria@7,5,11#,
this condition does not only depend on the medium, but a
on the particle momentum. Moreover, we can access s
properties of the whole four-dimensional freeze-out reg
by varying the threshold value forP. In this way, the above
model calculations give some insight into freeze-out crite
which are more general than the Cooper-Frye type. To pu
numbers, a realistic estimate of the transverse flow grad
03490
as
t

g

of
of
e
ape
y
e
he
t.
er-
y

ts

e

n
o
c

s-

e-
f
w-

tu-
a

o
e

n

a
in
nt

j50.08 fm21 and the Bjorken freeze-out timet0510 fm/c
is taken from Ref.@18#. The valuej50.08 fm21 is also in
agreement with hydrodynamic simulations@14#. In order to
achieve the escape probability of at least 1/3, the opa
integral must be smaller than2 ln 1/3'1.1. Then, Eq.~16!
leads to a scattering rate of less than 0.18 (fm/c)21, while
Eq. ~21! puts the upper limit for the scattering rate
0.26 (fm/c)21. At a temperature of 120 MeV, such a lo
value of the scattering rate is possibly reached at RHIC
pp.0.4 GeV/c and at SPS atpp.0.3 GeV/c, as seen in Fig.
2. If we increase the required escape probability to 1/2,
scattering rate must be smaller, 0.11 or 0.16, according
Eqs. ~16! and ~21!, respectively. For particles withpp

,0.4 GeV/c, the temperature has to drop to 100 MeV ifP
should reach 1/2. Particles withpp,0.2 GeV/c must wait
even longer. On the other hand, if we put the required va
of P to 0.1, Eq. ~21! leads to an upper bound o
0.54 (fm/c)21 for the scattering rate. In the case ofT
5120 MeV and high m ’s at RHIC pions with pp

.0.25 GeV/c fulfill this condition; in the less extreme case
the 10% escape probability is reached by almost all pion

This illustrates that particles decouple from the fireb
gradually. It indicates that'10% of the pions are decouple
at T5120 MeV, but approximately half of them will escap
at local temperatures below 100 MeV. Thus, a large fract
of the particles decouples at rather low temperatures.
note that a temperature of 120 MeV was assumed a
freeze-out temperature in a recent work@7# where a pion
mean free path'1 fm was suggested as the universal free
out criterion. This work neglects the temperature depende
of the escape probability and its dependence on the mom
tum of the particle. Also, it does not consider the possi
cancellation between stronger scattering and stronger tr
verse expansion. In our approach, a thermal distribution
T5120 MeV at RHIC results in a pion mean free path
only 1.7 fm, only slightly larger than that in Ref.@7#. How-
ever, only 10% of all particles are decoupled at this tempe
ture. At lower temperatures, where the fraction of decoup
particles reaches 50%, we find a significantly larger aver
pion mean free path of at least 3–5 fm.

Let us further comment on the significance of the mom
tum dependence of the scattering rate. As discussed earli
certainp' the particle has a momentum with respect to t
surrounding mediumpp,p' , and thus thep'-dependence
of the scattering rate can be flatter than what is plotted in F
2. We expect, however, that the monotonic increase of
escape probability withp' will be robust against refinement
of our calculation. This suggests that in contrast to the i
alization of a sharp freeze-out along a three-dimensional
persurface, particle escape is ordered in momentum w
high-p' particles freezing-out earlier and thus originatin
from a smaller fireball. This effect could lead to a strong
transverse mass dependence of HBT radii@29# than what is
found in current model studies based on a Cooper-F
freeze-out condition. These latter models~see, e.g., theblast-
wave modeldiscussed in Ref.@30#! have difficulties in repro-
ducing the observed strongM'-dependence of HBT radii a
RHIC. In what concerns the mechanism proposed here,
5-6



th
th
d
lie
a

th
y
es
ld

ee
om

th
ci

e
-o
ch
h

-
at
n

th
c

r-

pe

of-

f the

are

-
rger.
of
her-

FREEZE-OUT MECHANISM AND PHASE-SPACE . . . PHYSICAL REVIEW C 68, 034905 ~2003!
may envisage compensating effects: for example, if
transverse flow gradient is stronger at later times, then
will reduce the homogeneity regions measured by HBT ra
at later times. Such a scenario seems unlikely since it imp
acceleration of the collective expansion at a time when p
ticles slowly cease to interact. However, to substantiate
expectation, a model which fully implements the fireball d
namics is needed. In our opinion, this warrants further inv
tigations. In particular, hydrodynamical simulations shou
be revisited, which are typically based on sharp thr
dimensional freeze-out and thus miss any contribution fr
freeze-out along finite four-volumes.
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APPENDIX A: INTERPLAY OF THE SCATTERING RATE
AND THE DILUTION RATE

Here, we give further details on the relation between
dilution rate and the scattering rate. We start from the opa
integral ~6! and we express the exponenta in terms of the
dilution rateg via Eq. ~9!. This leads to

E
t0

`

dt R~t!5
R0t0

a21
5

R0

g2
1

t0

. ~A1!

This can be directly compared to the statement@8# that
freeze-out occurs when the dilution rate is at least as larg
the scattering rate. For the scenario of continuous freeze
considered here, a reasonable escape probability is rea
when the opacity integral is of order one or smaller. In t
model of Eqs.~5! and ~7!, this leads to the condition

g2
1

t0
*R0 ,

i.e., there is a factor21/t0 in addition to the standard crite
rion g*R0 @8#. The details of the relation between the sc
tering rate and the dilution rate at the freeze-out will depe
on the particular time evolution ofR andr, but the feature
that largerR can be compensated by largerg is generic.

APPENDIX B: GENERAL EXPRESSION FOR THE
SCATTERING RATE

In this appendix we derive a general expression for
scattering rate. This allows us to investigate its dependen
on temperature and the test particle momentum.

Following Eq.~26! we write the scattering for some pa
ticle species of massm. Assuming a Boltzmann distribution
of the scattering partners and suppressing the position de
dence,
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R~p!5E d3k

~2p!3
g expS 2

Ek2m

T D ~B1!

3s~s!
A~s2sa!~s2sb!

2Amp
2 1p2Am21k2

. ~B2!

If we change the integration variables to the center-
mass energys and the energy of the scattering partnerEk ,
and perform theEk integration, this integral leads to

R~p!5
g em/T

8p2 pAp21mp
2

~B3!

3E
(mp1m)2

`

dss~s!A~s2mp
2 2m2!224mp

2 m2

~B4!

3sinhS p

2Tmp
2
A~s2mp

2 2m2!224mp
2 m2D

~B5!

3expS 2
Ap21mp

2

2Tmp
2 ~s2mp

2 2m2!D . ~B6!

This scattering rate can be expressed as a convolution o
cross section with the ‘‘distribution of two-particle ap-
proaches’’ D(p,s),

R~p!5E
(mp1m)2

`

D~p,s!s~s!ds. ~B7!

By comparing with Eq.~B3!, we obtain

D~p,s!5
gem/TA~s2mp

2 2m2!224mp
2 m2

8p2 pAp21mp
2

~B8!

3sinhS p

2Tmp
2
A~s2mp

2 2m2!224mp
2 m2D

~B9!

3expS 2
Ap21mp

2

2Tmp
2 ~s2mp

2 2m2!D .

~B10!

In the arguments of the exponential functions of Eq.~B8!,
the momentum of the test particle and the temperature
inversely related. Thus if one ignores the 1/pAp21mp

2 pref-
actor, increasingT has the same effect as decreasingp. This
offers an explanation whyR increases with the raising tem
perature, but decreases when the momentum becomes la
There is no collision dynamics going into the calculation
D; it represents merely the phase-space populated with t
mally distributed scattering partners.
5-7
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However, the temperature and the momentum depend
of the scattering rate is not given solely by the distributi
of two-particle approaches, but also reflects details of
convolution of D(p,s) with the scattering cross sectio
s(s). This can be seen, e.g., by comparing our res
with those obtained in Ref.@16#. In that paper, the author
used a simple prescriptions(s)}d(s2Mr

2), which leads
er
a

.

tt.

03490
ce

e

ts

to a qualitatively different dependence of the scattering r
on the test particle momentum. We verified that this is
consequence of neglecting the width of the resonance.
only assuming the lowest resonance states in a given cha
and narrowing the resonance shape, we were able to re
duce the results of Ref.@16# as a limiting case of our calcu
lation.
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Cramer, Phys. Lett. B457, 347 ~1999!.

@6# S. Nagamiya, Phys. Rev. Lett.49, 1383~1982!.
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