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Structure function of a damped harmonic oscillator
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Following the Caldeira-Leggett approach to describe dissipative quantum systems the structure function for
a harmonic oscillator with Ohmic dissipation is evaluated by an analytic continuation from Euclidean to real
time. The analytic properties of the Fourier transform of the structure function with respect to the energy
transfer(the “characteristic functionf are studied and utilized. In the one-parameter model of Ohmic dissi-
pation we show explicitly that the broadening of excited states increases with the state number without
violating sum rules. Analytic and numerical results suggest that this is a phenomenologically relevant, consis-
tent model to include the coupling of a singleubnuclear particle to unobserved and complex degrees of
freedom.
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[. INTRODUCTION not onlyad hochut also may violate general properties of the
structure function, e.g., the fact that it has to vanish below
The structure functions measured in deep inelastic leptothe first(positive excitation energy.

scattering provide important information about the nature It is the purpose of this paper to demonstrate that a con-
and momentum distribution of the constituents of the targetsistent quantum-mechanical framework exists which allows
This is particularly true in the relativistic domain where theto treat couplings to unobserved degrees of freedom in a
pointlike building blocks of matter, the quarks and gluons,simple manner. Several methods have been used in the past
have been discovered and studied by inclusive scattering ¢6 achieve that, for example, for Coulomb excitation of
multi-GeV electrons, muons, or neutrinos. In a nonrelativis-particle-unstable stateg3]. For quasielastic scattering of
tic description the(longitudina) structure function for one electrons from nuclei, Horikawet al. [4] first have included

scalar particle is given by multinucleon channels by employing an optical potential
without violating the nonenergy-weighted sum rule
A NEWS
san=3 [ s0-E-Elnlexaia o)z, "R
1) jdvaq,y)zl. 3
0

where the summation is over all discrete and continuum

states which are excited by the probe. Hare denote mo- . ever there exists a simpler treatment based on the de-

mhentum and enerfgy tra;]nsfer ?.Eq the exc]jtationkenergies C.’f cription of dissipative quantum systems within the path in-
the target. Very often the confinement of quarks is describe gral formalism[5]. This originates in the celebrated work

by using rising potentials which lead to a purely discreteof Feynman and Vernop6] and Caldeira and Leggeff]

spectrum. The ;imple_st version s given by a h.armonic 0sCiliyho have modeled the coupling of the system to an environ-
lator (ho) potential which has a structure functiph] ment ofN(— ) harmonic oscillators

2| *A" 2 ) @ H= 2 bvon+ S [ + Lmpene
2m =1 \2m, 2 "N

n

Sho(q,v)z E S(v—nwy)
n=o0 n!

The oscillator frequency and length are denotedagyand N cﬁ

N

bo=1/Vmw,, wheremis the mass of the struck particle. For —X2D, CaXn+ X2 D 2
simplicity, all many-body and recaoil effects have been ne- n=t n=12mywy
glected and the elastic linen€0) is included in the sum
over excited states. However, the observed structure funawith a bilinear coupling. The limiN—~ of the number of
tions are smooth due to hadronization and/or final state inenvironmental oscillators is essential in preventing the
teractions. A number of recent theoretical studies have adounded motion of all particles to come back to the initial
counted for that by simply smearing out tidefunctions in  state after some time: the so-called Poingaeurrence time
Eq. (2) by a Breit-Wigner distribution with a constant width then tends to infinity[8] and irreversibility becomes
or averaged over nearhybins[2]. It is obvious that this is possible—still in a unitary quantum-mechanical framework.

The infinite number of degrees of freedom also allows for

strong damping even if each environmental oscillator

*Electronic address: roland.rosenfelder@psi.ch couples only weakly to the system. This mechanism leads to

4

0556-2813/2003/68)/03460211)/$20.00 68 034602-1 ©2003 The American Physical Society



R. ROSENFELDER PHYSICAL REVIEW (8, 034602 (2003

a broadenindand a shift of the § functions in the structure
function of the confined system without violating the sum fDX exp{—iqg-[X(7) —x(0) ] exp{ — A[x]}
rules. T(q,7)= lim
In this approach the path integral description of the sys- B—o f Dx expf — A[x]}
tem offers particular advantages since the bath oscillators can

be integrated out exactly. This gives rise to a retarded two- (10

i ion for the singl icle which h . . . .
time action for the single particle which does not have *Here A[x] is the effective action of the particle after the

Hamiltonian counterpart anymore similar as in_the time_oscillators of the environment have been integrated out and
honored polaron probled®]. In particular, no Schidinger T . . ; ;
ono polaron problerfd] P ! S ge the limit B—oo of the final Euclidean time projects out the

equation for the single-particle motion is available. However, R
g ge-p ground state of the systefl3]. In this limit the boundary

if this particle moves in a harmonic potential " . .
't this part vest 'cp ! conditions for the path integrals in ELO) do not matter;
2 (5) therefore we may sex(— B/2)=x(B/2)=x and integrate
overx, i.e., perform the thermodynamical trace. This allows
then the remaining path integral can also be done exactly. s to directly tgkg over resu!ts from Q|SS|pat|ve quantum sys-
tems where similar correlation functioite.g., for the posi-

Sec. Il we will employ this formalism and the explicit results o .
for the damped harmonic oscillator to obtain the Fouriertion operatoy have been evaluated at finite temperature, i.e.,

transform of the structure function with respect to the energyinité A [5]- Since this is quite standard now we can be brief
transfer. As thermal physics lives in Euclidean times one?d immediately use results from the nice review by Ingold
needs an analytic continuation to real times which is perl14} in particular from Chap. 4.3 with the driving force

formed in Sec. I1l. Numerical results are presented in Sec. N~ (9) =1d[8(c—7)—5(0)]. In the limit f—o the sum
while the conclusions are given in the final section. Somé?Ver Matsubara frequencies turns into an integral so that the
technical details are collected in the two appendixes. final result for the Euclidean correlation function reads

V(X)=3mw3 x

2 o _
Il. CHARACTERISTIC FUNCTION AND CORRELATION T(q,r)zex _ q_ £J+ 1 COS(ET) .
FUNCTIONS OF DISSIPATIVE SYSTEMS 2m ) o E2+|E| 7(|E|)+w€)
(1)
We will calculate the structure function from its Fourier
transform, Here

s —-1f+°°dt (¢ 6 E)= wad Ho) _ E 12
Q=] de ey, ® M=) e

the “characteristic functionT10]. For the pure harmonic os- s the damping kernel which is produced by the coupling of
cillator one has the system to the heat bath. One does not have to specify all
masses, frequencies, and coupling constants in(&gbut

hoy ey L o2 et only the spectral density{ w) of the environment oscillators.
P4 (t)—exp{ 2q bo(1—e "), @) The simplest assumption 8hmic dissipation
which after expansion and integration leads to the result Johm=MYy®w=Yon{E)= 1. (13

given in Eq.(2). For the damped harmonic oscillator the
characteristic function can be related to the particular correAlthough some observablgg.g., the ground state enejgy

lation function inEuclideantime 7, need high-frequency cutoff45] this form can be used with
impunity for the structure function where only energy differ-
T(q,T):<0|7(efiq-i(r)eiq-i(o))|0> (8) ences matter. For simplicity it will also be employed in the
following. We then obtain
by an analytic continuation. From the spectral representa- )
tions T(q,7)=exp{ =297 xy(0) = xy(7)]} (14)
Dy (1) . exp[—i(Eq— Eo)t] with
=2 [{nlexp(ig-x)|0)|*x
X = E real).
(9) A 2mar 0 E2+ 7E+w(2) T

one sees that both expressions coincide for positive Euclidthe analytic continuation of the above function which coin-
ean time and the correct analytic continuation is thereforeides withx,(7) for positive Euclidean time
obtained by considering(q,7>0) and replacing-— it.

In the path integral approach we have Ey(T)=Xy(7) (7=0) (16)
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may be called thé&/ineyard function since many years ago To see the effects of the damping we insert @q) into Egs.
Vineyard[17] derived an identical form of the structure func- (18) and(6), expand the exponential, and perform thete-
tion for inclusive scattering of slow neutrons from quantumgration. This gives

liquids. Its nice feature is the clean separation between the

squared momentum transfer and the variabigich is con- st g, v) = e~ 925 1)

jugate to the energy transfer. Such a form was also obtained "

. ) . . L (2 2)n %

in a (zeroth-order variational calculation of relativistic deep + E q -2 [ T4E.. . .4
inelastic scattering from a scalar particle where the broaden- i=1 nl 1

ing of the elastic line was due to multiple meson production
[11]. We thus have found a simple description of inclusive
scattering with one additional parametgrwhich accounts

for the coupling of the particle to additional degrees of free-
dom [18]. These could be the continuum and/or many-The first term is the elastic line with the square of the typical
nucleon emission in the case of quasielastic scattering frontaussian form factor for the harmonic oscillator. However,

nuclei or the production of colorless hadrons in the case ofhe oscillator length is renormalized by the interaction with
scattering from quarks. the environment:

Note thatT(q,7=0)=1 so that the sum rul€3) is ful-

filled. We will also see that the resulting structure function - )

has the correct support, i.e., no unphysical excitations occur. b —b®=4£,(0)= b0§ —arcta 23 <bg (20

This is because the Caldeira-Leggett model is based on a

consistent many-body Hamiltonian and the environmentalvith

degrees of freedom have been integrated out without ap-

proximation. In contrast, other descriptions of the damped > Y

harmonic oscillatofdho) [20], friction [21] or time asymme- A=\ oo~ - (21

try [22] in general require a modification of usual quantum

mechanics. (We are only considering the underdamped c@se2wy.)
Compared with Eq(2) all excited states are now broadened:;
in particular, the (=1) term just maps the weight function

v— 2 Ek) - p(Ep). (19

IIl. ANALYTIC CONTINUATION

The main task left over is to perform the analytic continu-  2q2e-9%%2@ () p( 1) = q 2 0 ~qevzz @0 O
ation to get the characteristic functidn,(t) from the corre- vtog 27
lation functionT(q,7). This requires the analytic continua-
tion of the Vineyard functiorty(7—it). % I'(v) _ (22)

It should be emphasized thay(7) and &, (7) arediffer- (v—wo)2+T?(v)I4

ent functions which only coincide for=0. In particular,
although from Eq(15) xy(7) is even inT we will see that Apart from the additional factord,/(v+ wo) the line shape
the Vineyard function has a logarithmic cut on the negatives just a one-sided Breit-Wigner distribution with the energy-
real 7 axis. In the following we will always indicate the dependent width
range of validity of the representation for the Vineyard func-
tion in parenthesis as was done in Et). It is obvious that I'(E)= 2Ey 23
this form cannot be used for analytic continuation to E+wg’
Minkowski time (where scattering occurdbecause the co-
sine function would blow up. As shown in Appendix A we Note that this distribution vanishes at threshold and is iden-
may, however, distort the integration contour as in Rgg]  tically zero for unphysical negative energy transfers. The
and obtain forr>0, same holds for all other terms in expansid®) due to thed
function and the fact that alt,=0. Thus the structure func-
tion of the damped harmonic oscillator has the correct sup-
. E —Er port. Unfortunately, it is not possible to evaluate the higher-
&u(7)= 2m7-J dL(Ez_w2)2+ 2Eze order terms analytically. Only in thenarrow-width
oY approximation

=:f0xdEp(E)e‘E’ (Rer=0). (17) I'(E)~T(wg)=7y (24)

a simple result is found when additionally the prefactor is

This now allows an analytic continuatian-it to obtain the ~ alS0 evaluated at=w, and thek integration extended to
characteristic function — .

L bg , Y
DIV —exp{~ 207 6,(0) - (D]} (19 fv('””f“"("“’t)“ 5“')- @
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Note that anexactexpression of this form together with a v o
real correctiorr (t) is derived in Appendix A. One then sees shq,v) — —
from Eqgs.(18) and(6) that thes function in thenth excited mm

state contribution to the structure functié®) of the har- c d with Ea(19 hat th . £ th
monic oscillator turns into a Breit-Wigner function with a Compared with Eq(19) one sees that the suppression of the

width low-lying states by the square of the elastic form factor has
disappeared and the asymptotic fo(B0) does not depend
T.~ny. (26) anymore onwg or the oscillator parametdsi—a property

which roughly resembles the conjectured “quark-hadron du-

This result is well known from the density of states of theality” [2]. _ o
damped harmonic oscillatp24] and has also been discussed ~Another consequence of E(8) is that logarithmic cor-
for the width of multiphonon giant resonanci2s). In the  rections toy scaling will persist even for large momentum
present context, however, it should be stressed that it is onlffansfer. This is because interaction tintesl/q are probed
approximate and leads to a small, but nonvanishing structuré® that limit [28] and thereforeq®t’In(iwgt) remains un-
function for »<0 [26]. This is due to the wrong analytic bounded forg— .

behavior of the Vineyard function in approximatig25)

where|t|= \t? also produces a cut for 0. In contrast, IV. NUMERICAL RESULTS

the exact expression ha_s only a Iogar|thm|_c cut in the upper- Sticking to pure Ohmic dissipation we next try to evaluate
half t plane in accord with general properties of the charac-

teristic function. This can be best seen in the explicit expres'Ehe structure function quantitatively. Only far—0 (.e.,
sion of the Vineyard function with Ohmic damping in terms photoabsorption expansion(19) into a sum over excited

of the standard exponential integral which is derived in Ap_states is useful. For arbitrary momentum transfer the numeri-
pendix A. From Eq(A7) it takes the form cal problem is much harder as one has to calculaterthe

elasticstructure function

> 3 vy g* (Inv>
T4 L 2 40ol—]. (30
53 G (30

m2ar V°

1
— ; i 1
&y(7)=regular function- 2quQsmr’(Qr) Sicmastic(q, y)= Zexq_ 202£,(0)]
Y too
Xsin ET)'ﬂ(a)OT), largr| < (27) % le dte " exy 202&y(it)]— 1}
for arbitrary complexr away from the cut. Evaluating Eq. (39

(6) for v<<O by closing the integration contour in the lower- . o . .
half t plane, one therefore encounters no singularities and th%fter subtraction of the elastic liie & function as a Fourier

structure function vanishes identically. The logarithmic cutgsgsgﬁgl Oy:gleamn éﬂﬂme llant?aalarlészae :E:%nilllae:tli?:test:l:](?-
of the Vineyard function also shows up in the ldvexpan- P ghtly by exp 9

. ture function as a sine transform over the imaginary part of
sion[see Eqs(A18) and(A19)] the characteristic function as demonstrated in REZ],

o it Y o 2 o
Ev(it)=&y(0)— m"‘ _4m77t In(i wot) mfgl’asﬁ&q'v):e*(1/2)q2b2;f0 dtsin(zt)(—1Im)
t2 2 2Q 3 20 i
_ 2_ 7 - s x{exdg 2q-¢&y(it)]}. (32
4mwQHQ 7 arctar( 5 )erﬂ(z yE” { v }
LO(t3), 28 This holds sincet,(it) vanishes as 17 in a sector of the

complext plane which includes the lower half plarisee

. . ;. Appendix A). Thus one may write a Cauchy integral repre-
which has important consequences: first, we see that also ﬂ%é)ntation for the(inelastio characteristic function and ex-
energy-weighted sum rukeWsR press its real part in terms of the imaginary part. We have

. 5 used the adaptive integration routine DO1ASF from the NAG
j dv vS(q,v) =i BL(0)= a (29  library together with the explicit representations8) and
0 2m (A13) of the Vineyard function to perform the numerical

evaluation of Eq(32).

is conserved 27] whereas higher-energy moments of the Figures 1 and 2 show the results of the calculation for
structure function diverge. This high-energy tail reflects, ofseveral momentum transfers and damping parameters. It is
course, the insufficient suppression of high frequencies in theeen that the excitation of individual levels gradually moves
simple model of Ohmic dissipation which may need modifi-into the broad structure of the quasielastic peak as the mo-
cation for phenomenological applications in nuclear andmentum transfer increases. The vaju@y= 0.2 corresponds
quark physics. Second, it is even possible to determine theughly to the one used in R§29] where a parametrization
tail for large energy transfer analytically: as shown in Appen-of the response function was fitted to photoabsorption and
dix B one obtains electron scattering data ifC. A peak position of 22.7 MeV
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FIG. 1. The structure function of a damped harmonic oscillator FIG. 2.
as a function of the energy transfer for momentum transigxs (bottom).
=0.5 (top) andgby=1 (bottom. Note the different scales in both
plots. The solid curves are for a value of the Ohmic damping pa-

rametery/ wy=0.2, the dashed one for/ wy=0.3, and the dotted .
one for y/w,=0.4. The undamped oscillator length and frequencyVergence to the correct values except for a few cases at high

are denoted by, and wy, respectively. momentum where, . is not large enough.
Due to its weighting the EWSR is, of course, not as well

fulfilled as the NEWSR, but the agreement is very satisfac-

_ i tory and sufficient to demonstrate the consistencglioparts
and a full width at half maximum of (2n2X2.6  of the calculation: elastic line, inelastic excitations, and
=4.3) MeV was obtained for the giant resonance. Althoughysymptotic behavior of the structure function.

accounting for the coupling of this excitation to many-body Ajthough the NAG routine DO1ASF does an excellent job
states and the continuum this valuewiw, gives too much i, eyaluating the oscillating integral over the characteristic
structure from individual levels at higher compared with  fynction one may ask whether it is possible to introduce
typical experimental cross section. This may indicate that gqgitional damping by deforming the integration contour in
modification of the assumed Ohmic damping is needed for &q_ (31) in the upper-half plane. Indeed, running along both
description of medium-energy inclusive scattering data fronkjges of the cut would eliminate the oscillating exponential
nuclei. factor altogether.

That the sum rules are well preserved can be seen in However, this is not possible since as shown in Appendix
Tables | and Il where the relative size of different contribu- a there areStokedines in the upper-half plane which sepa-
tions is presented foy/wo=0.2 (other values of the damp- yate the powerlike decrease of the Vineyard functigfit)
ing parameter yield similar resujtsThe numerical part was from an exponential increase which would overwhelm the
obtained by integrating the structure functions shown in Figsexponential damping from the factor eig]. The optimal

1 and 2 with weightv",n=0,1 from »=0 10 v=vmax IN  gamping which is achievable without contributions from the
steps ofAv by means of a Simpson rule. The NEWSR, of gy¢s at infinity is a rotation by an angle

course, also gets a contribution exqufb?2) from the elas-
tic line. Also listed are the asymptotic contributions obtained
from Eq. (30) by integrating fromw,,, to . It is seen that
the asymptotic contributions substantially improve the con-

Same as in Fig. 1 but fatby=2 (top) and qby,=4

1= arctarE %) (33
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TABLE I. Test of the non-energy-weighted sum ry® for different momentum transfeig and upper
limits v,y Of the numerical integration performed in steps\of. The parameter for Ohmic damping is taken
as y/wy=0.2. The columns labeled “elast.” and “num.” denote the contribution of the elastic line and the
result from numerical integration up te= vy, respectively. The columns “asy.” list the leading-order
(LO) and next-to-leadingNLO) asymptotic contributions fromr,,,, to infinity. In places with no entry the
previous value applies.

qbg Vmax! @0 Aviwg elast. num. asy(LO) asy.(NLO) Total

0.5 3.0 0.01 0.88904 0.10966 0.00088 0.00007 0.99965
4.0 0.11037 0.00050 0.00003 0.99994
5.0 0.11061 0.00031 0.00002 0.99998

1.0 3.0 0.62471 0.36250 0.00354 0.00118 0.99193
5.0 0.37334 0.00127 0.00025 0.99957
7.0 0.37448 0.00065 0.00009 0.99993

2.0 5.0 0.02 0.15230 0.80314 0.00509 0.00407 0.96460
8.0 0.84239 0.00200 0.00099 0.99768
10.0 0.84532 0.00127 0.00051 0.99940

4.0 15.0 0.05 0.00054 0.97227 0.00226 0.00241 0.97749
20.0 0.99455 0.00127 0.00102 0.99738
25.0 0.99744 0.00082 0.00052 0.99932

which is depicted in Fig. 3. We have evaluated V. SUMMARY

We have shown that the Caldeira-Leggett model of the
oo (U2 1 o [” ) o damped harmonic oscillator aIsp provides a consistent .model
inelastid 0, ) = € —Ree o dxexdivxe?] for inclusive processes where it accounts for the coupling of

a single particle to more complicated states and additional

5 o degrees of freedom. With only one additioridamping pa-

X{exd 2g° §y(r=ixe'?)] -1} (34 rameter in the simplest version with purely Ohmic dissipa-

tion a highly nontrivial structure function has been obtained
which conserves the sum rules. Its characteristic function has

by standard Gaussian integration after mapping the infinitdbeen given in closed analytic form with a clear separation

interval to a finite one. As expected the damping factorbetween momentum transfer and “time,” the variable conju-
exp(—vxsing) is most beneficial for large energy transfer gate to the energy transfer in the process. This allowed us to
whereas a greater number of integration points is needed woncentrate on the study of a function of a single variable—
avoid a negative numerical result for the structure function athe Vineyard function—and its analytic properties which de-
small v. Thus the contour rotation method is complementarytermine the dynamics. As an extension to the many-body
to an explicit summation over excited lines as given in Eq.case is straightforward further applications in nuclear or had-

(19. ronic physics seem to be possible.

TABLE Il. Same as in Table | but for the energy-weighted sum (2@ divided byg?/(2m). Note that
no elastic contribution exists in this case. The Ohmic parameter is agaig—0.2.

qbg Vmax! @0 Avlwg num. asy.(LO) asy.(NLO) Total

0.5 3.0 0.01 0.9448 0.0424 0.0027 0.9899
4.0 0.9638 0.0318 0.0015 0.9971
5.0 0.9723 0.0255 0.0009 0.9987

1.0 3.0 0.8882 0.0425 0.0106 0.9413
5.0 0.9653 0.0255 0.0038 0.9946
7.0 0.9785 0.0182 0.0020 0.9987

2.0 5.0 0.02 0.8512 0.0255 0.0153 0.8920
8.0 0.9668 0.0159 0.0060 0.9887
10.0 0.9797 0.0127 0.0038 0.9962

4.0 15.0 0.05 0.9356 0.0085 0.0068 0.9509
20.0 0.9819 0.0064 0.0038 0.9921
25.0 0.9898 0.0051 0.0024 0.9973
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with
.Y
Er,s=rQ+|s§, r,s==1. (A4)
Here
S (—2)" _
Ei(2)=—ye—Inz— >, ———=:—yg—Inz+Ein(2)
n=1 hn!
(A5)

FIG. 3. Integration contours in the compléyplane for the nu- i .
merical evaluation of the structure from the characteristic functioniS ~ the  standard  exponential integral — andyg
original path along the real axisolid line) and path rotated by an =0.5772156 ... Euler's number. A careful evaluation of
angleg into the upper half planédouble ling. The arcs at infinity ~ the arguments of the logarithm fee=0 then gives
(dashed curveddo not give a contribution as long @s< ¢, where

¢, is defined in Eq.(33). The logarithmic cut along the positive 1 E 2Q) T
imaginary axis is shown as hatched strip. §y(7)= sma Q) ; &y ersharctan —| —r >
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relevant work on damping in nuclear reactions and mul-
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APPENDIX A: THE VINEYARD FUNCTION FOR THE -

HARMONIC OSCILLATOR WITH OHMIC DAMPING 2m ()

SinI"(QT)sin(%T)ln(wor), (A7)

Here we derive and collect a few properties of the Vine-which allows to determine the discontinuity across the cut.
yard function defined by Eqg16) and (15 in Euclidean For purely imaginary arguments=it,t real, Eq.(A6) can
time =0, be written as

® coqE7)
§V(T):2m E > 2"
m™Jo E“+ yE+ wj

1
(AD) gv(it>=4erxp<—im—g|t|>—r(t), (A8)

One may decompose the cosine function into exponentials

_ z,(t) (s —
and deform the integration path such that it runs along the r(v 4m7rQ|m[e TRZ(0) = (y ",
imaginary axes. There is no contribution from poles of the
integrand(which are all in the left-hand plane and one y
therefore obtaingfirst for 7=0) z,(H)=|i1Q+ > [t]. (A9)
Y [T4E E -Er  (Rer=0 The first term corresponds to the narrow-width approxima-
gV( T) = 2 2.2 2 2e ( er= ) . . . .
2mmJo  (E —wg)+yE tion (25) whereas the last teritwhich is real, even it and

(A2)  vanishing fory=0) corrects for its deficiencies.
Another representation of the remainder functrdt) is
This is suitable for analytic continuation—it since the in- obtained by using the identity
tegral also converges for Re=0. Using patrtial fractions one

gets E
o 1 (Ez—w(z))2+y2E2
Ey(r)= — > rsf dE———e F7
8mmi) rs==+1 0 E+EF,S 1 1 1
1 T AQ(E- Q)24 924 (E+Q)2+ /4]
= Er,s" =
S Qr’;ﬂrse Ei(E;s7), 7=0 (A3) (A10)
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which shows that the weight functign( E) can also be con-
sidered as a(ant)symmetrized Breit-Wigner distribution
aroundE=(. Inserting this into Eq(A2) one obtains for
T=it,t real,
+oo exp(—iEt)
§u(it)= ! J dE%
8mrQ | )« (E—Q)%+ %4
0 exp(—iEt
_ f dE_SXPIEYD
—= (E—Q)%+ %4
o exp —iEt
_ f geSXPIED
o (E+Q)%+4%4
FIG. 4. The Vineyard functioré,(7) normalized to the un-
__7 Z—ﬂex i0t— Z|t| damped case as a function of the Euclidean tim&he solid curve
8mm Q)| vy 2 is for a value of the Ohmic damping parametghw,=0.2, the
dashed one fo/wy=0.3, and the dotted one for/ wg=0.4.
® cog Et)
N e L 02
0 ith= — — i -
Y Im &,(it) 4szm(Qt)e , (A15)
Hence but that the real part is more involved. This can also be seen
if we use the standard representation of the step function
()=~ fwdE co<EY t real
r(t)y= , real. o i
ammQJo T (E+Q)2+yY4 O(E)=— iﬁ ds—eXp( .ISE) (A16)
(A12) 27 ) —o S+ie

Again one may distort the integration path such that it rung0 extend the integration range in Ef2) to —o. Using
along the imaginary axis. Decomposing the cosine functioridentity (A10) simple manipulations then give
into exponentials and realizing that the integrand in Eq.

(A12) has only poles aE=—(+iy/2, one then obtains a £u(it)= J+wdsS|mQS) e 92t real
representation Admm Q) ) _ t+i
(A17)
r(t)= Y deE E e Eltl t real which shows that the real part is determined by a principal-
2mm Jo (Ez—wo) +40°%E? value integral whereas the imaginary part is given by Eq.
(A13) (A15).

Finally we consider the behavior of the Vineyard function
which is very well suited for numerical evaluation. Indeed,for small and larger. From Eq.(A6) one immediately ob-
we have checked the routine which calculates the Vineyarthins
function &,(it) based on the exponential integfel) repre-
sentation(A9) by a direct Gaussian integration of H¢\13) 107" . ! . ! . ! . !
and found a relative deviation ]

£9(it) — €t

Al4 N
num(lt) ( )

<2x10°8

for all realt and y/ wy=<0.4. In this comparison the complex ] ~<
exponential integrakE;(z) was calculated by the rational ap- 1 R
proximations withn= 10 terms given in Ref31]: Table 64.4 = |
was used fofz|<9 and Table 64.5 fofz]|=9 and checked —~—
against values listed in Table 5.6 of RE30]. Figure 4 shows 107 —
&y(7) [relative to the undamped cabé exp(~wyn/4] and
Fig. 5 the remainder function(t) for the chosen values of
the damping parametey.

w,t

FIG. 5. The correction term(t) to the narrow-width approxi-

Note that one has a simple result for tineaginary part
(which is odd int),

mation (A8) for the Vineyard functioné,(it) as a function of the
time t. Note the logarithmic scale far(t).
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Ey(T)= kZO akrk+ kZl b2k7'2k|n( wQT) (A18)

with
1 20 1
ao—marcta 7 , al——m,
1 o 3 02 ¥? 2Q)
az—m 0% > ve |+ x arcta 7 ,
Y 3y?
a3——m(92—7), (Alg)
2
T B A o S
b=~ Zmm P4 24m77(Q 4)'

Another possibility is to use the differential equation
vy 1
2mar ?
(A20)

V(1) = (2wi— YA EY( 1)+ wiéy(T)=

PHYSICAL REVIEW @8, 034602 (2003

has to be used for |&{ 7). Consequently,

1
(1=~ gog . 2

s=x1

refrsT270(slm 7)

XO(—sIm(E, 7)) +is Ei(E; s7)],

largr| <. (A24)
Although Eq. (A24) is less suited to display the analytic
structure of the Vineyard function it allows to find the Stokes
lines for the asymptotic behavior. These are the rays in the
complexr plane which divide the powerlike decrease of Eq.
(A21) from an exponential increase. Indeed, due to Eq.
(A22) the last term in the square brackets of E&R4) gives

rise to the powerlike decrease &f( ) but this will be over-
whelmed by the exponential increase of the first term if

O(ReE, s7)O(siIm 7)O(—sIm(E; 47))#0 (A25)
for anyr,s==*=1. Writing

El,l=9+i%=woei"’1, <p1=arcta76%, Os<¢;<

(A26)

NI

a straightforward analysis of conditidA25) shows that an

with the appropriate boundary conditions, which follows di- €xponential increase only occurs for

rectly from Eq.(A2).

The asymptotic behavior for arbitraryis more involved.
Equation(A2) may be used in the right-hangd plane: one
simply has to expand(E) for small E and integrate term by
term to find

T—®

§u(7) —

y 1 6y Y
YRR 8(92__
m'ﬂ'wo T m'ﬂ'wo

Rer=0. (A21)

v
largr|>>+¢1, (A27)

i.e., inside a sector around the cut with opening angl2
— ¢ =arctan(Z)/y). This means that EqA21) holds for the
wider rangelargr| < w/2+ ;.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF THE STRUCTURE FUNCTION

Here we derive the asymptotic behavior of the structure

This is consistent with the result from the differential equa-function when the energy transfetbecomes very large. This
tion (A20) for large 7 if one considers the derivatives as is done by standard asymptotic analysis: for example, one
corrections. To find the asymptotic behavior in the left-handmay apply Eq.(30) in Ref.[32] to our Eq.(32). Then one

7 plane we may use the explicit representati@®) and

obtains

reintroduce the exponential integral as this function has a

simple asymptotic behaviosee, e.g., Eq(5.1.5) in Ref.
[30)),

, |arge|<3m/2.
(A22)

z 22 '

e’ 1 2!
El(Z)"’T 1-—+— .-

However, care is needed when replacing Ejnfy the ex-

ponential integral since the correct addition theorem of the

logarithm with complex arguments,
In(ab)=In(a)+In(b)+27i[®@(—Ima)®(—Imb)
X0 (Im(ab))-0(Ima)®(Imb)O (—Im(ab))],
(A23)

V— 0

1 1
S(q,l/) — ;{ — ;Im q)q(0)+ Elm q)g(O)

1
—=Im®g(0)+- -
14

y q°
:——+,
mar 4,3

(B1)
since Im®,(0)=0. Here we have used the representation of
the characteristic function in terms of the Vineyard function
&y(it) and the lowt expansion of the latter. Note that the
leading contribution comes from the logarithmic term in Eq.
(28) which produces an imaginary part f&{(0).
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However, higher-order terms cannot be calculated by

+o0 !
means of Eq.(B1) since Imd)'(;’(O) does not exist. This f dtt"sgnt e‘”t=2_n—'n+l, (B5)
shows that the next-to-leading asymptotic termds falling — (—iv)

off like 1/v°. To determine this term we use the exponential

representatiori6), well-known results for the Fourier trans- e it n!

form of generalized functions and the ldvwbehavior of the wa dtt"inft|e _'WWSQHV' (B6)

Vineyard function. Writing

2 . . , One then realizes that the leading contribution in the
207 &(i) = &(0)]=:1(1) + g(V)In(i wot) asymptotic expansion arises from the last term in the first
T line of Eq. (B4),

=f(t)+g(t) In(wo|t|)+i§sgnt

(B2) Say) ve’ fmdttz In(wo|t]) +i —sgnt |e!"t
a.v 27 2mar ) — “o 2 g
with ,
y q
t—0 2 t—0 2 = T (B7)
9 2 YA o mm 3
f() = ~i5t+0(1%),  g(t) = — 5 t?+0(t)

(B3) in agreement with Eq(B1). The subleading contribution

_ ) ) stems from the last term in the second line,
one simply gets by expanding the exponential

v—o 1 2 2
t—0 AS(q,V) — E( —|q_> yq

Dy(t) — 1+ () +g(t) In(wo|t|)+igsgnt 2m/2mn
1 m ><f+mdtt3 In(w |t|)+izsgnt el
+§f2(t)+f(t)g(t) In(awolt]) +i 5sgnt o 0 2
1 T 2 3y g
~ g2 i— = - B8
+ 59 (D] IN(wolt])+i 2sgnt +.... (B4 o2 v (B8)

As the Fourier transform of powers bfjives derivatives of whereas one can show that the last line gives a contribution
& functions we see that all regular terms do not contribute tmf the order of (Inv)/»°. The asymptotic expansion makes
the asymptotic behavior for large The contribution of the sense if the subleading term is much smaller than the leading
nonanalytic terms can be taken from Table 1 of H82]  one which requiresy>q?/(2m), i.e., excitation energies
[settingy=—v/(27)], much larger than the maximum of the quasielastic peak.
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