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Structure function of a damped harmonic oscillator

R. Rosenfelder*
Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

~Received 4 March 2003; published 3 September 2003!

Following the Caldeira-Leggett approach to describe dissipative quantum systems the structure function for
a harmonic oscillator with Ohmic dissipation is evaluated by an analytic continuation from Euclidean to real
time. The analytic properties of the Fourier transform of the structure function with respect to the energy
transfer~the ‘‘characteristic function’’! are studied and utilized. In the one-parameter model of Ohmic dissi-
pation we show explicitly that the broadening of excited states increases with the state number without
violating sum rules. Analytic and numerical results suggest that this is a phenomenologically relevant, consis-
tent model to include the coupling of a single~sub!nuclear particle to unobserved and complex degrees of
freedom.

DOI: 10.1103/PhysRevC.68.034602 PACS number~s!: 13.60.Hb, 25.30.Fj
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I. INTRODUCTION

The structure functions measured in deep inelastic lep
scattering provide important information about the nat
and momentum distribution of the constituents of the targ
This is particularly true in the relativistic domain where t
pointlike building blocks of matter, the quarks and gluon
have been discovered and studied by inclusive scatterin
multi-GeV electrons, muons, or neutrinos. In a nonrelativ
tic description the~longitudinal! structure function for one
scalar particle is given by

S~q,n!5(
n
E d„n2~En2E0!…u^nuexp~ iq• x̂!u0&u2,

~1!

where the summation is over all discrete and continu
states which are excited by the probe. Hereq,n denote mo-
mentum and energy transfer andEn the excitation energies o
the target. Very often the confinement of quarks is descri
by using rising potentials which lead to a purely discre
spectrum. The simplest version is given by a harmonic os
lator ~ho! potential which has a structure function@1#

Sho~q,n!5 (
n50

`
d~n2nv0!

n! S q2b0
2

2 D n

expS 2
q2b0

2

2 D . ~2!

The oscillator frequency and length are denoted byv0 and
b051/Amv0, wherem is the mass of the struck particle. Fo
simplicity, all many-body and recoil effects have been n
glected and the elastic line (n50) is included in the sum
over excited states. However, the observed structure fu
tions are smooth due to hadronization and/or final state
teractions. A number of recent theoretical studies have
counted for that by simply smearing out thed functions in
Eq. ~2! by a Breit-Wigner distribution with a constant widt
or averaged over nearbyn bins @2#. It is obvious that this is
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not onlyad hocbut also may violate general properties of t
structure function, e.g., the fact that it has to vanish bel
the first ~positive! excitation energy.

It is the purpose of this paper to demonstrate that a c
sistent quantum-mechanical framework exists which allo
to treat couplings to unobserved degrees of freedom i
simple manner. Several methods have been used in the
to achieve that, for example, for Coulomb excitation
particle-unstable states@3#. For quasielastic scattering o
electrons from nuclei, Horikawaet al. @4# first have included
multinucleon channels by employing an optical potent
without violating the nonenergy-weighted sum ru
~NEWSR!

E
0

`

dnS~q,n!51. ~3!

However, there exists a simpler treatment based on the
scription of dissipative quantum systems within the path
tegral formalism@5#. This originates in the celebrated wor
of Feynman and Vernon@6# and Caldeira and Leggett@7#
who have modeled the coupling of the system to an envir
ment ofN(→`) harmonic oscillators,

H5
p2

2m
1V~x!1 (

n51

N S pn
2

2mn
1

1

2
mnvn

2xn
2D

2x(
n51

N

cnxn1x2(
n51

N cn
2

2mnvn
2

~4!

with a bilinear coupling. The limitN→` of the number of
environmental oscillators is essential in preventing
bounded motion of all particles to come back to the init
state after some time: the so-called Poincare´ recurrence time
then tends to infinity @8# and irreversibility becomes
possible—still in a unitary quantum-mechanical framewo
The infinite number of degrees of freedom also allows
strong damping even if each environmental oscilla
couples only weakly to the system. This mechanism lead
©2003 The American Physical Society02-1
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a broadening~and a shift! of the d functions in the structure
function of the confined system without violating the su
rules.

In this approach the path integral description of the s
tem offers particular advantages since the bath oscillators
be integrated out exactly. This gives rise to a retarded t
time action for the single particle which does not have
Hamiltonian counterpart anymore similar as in the tim
honored polaron problem@9#. In particular, no Schro¨dinger
equation for the single-particle motion is available. Howev
if this particle moves in a harmonic potential

V~x!5 1
2 mv0

2 x2 ~5!

then the remaining path integral can also be done exactly
Sec. II we will employ this formalism and the explicit resul
for the damped harmonic oscillator to obtain the Four
transform of the structure function with respect to the ene
transfer. As thermal physics lives in Euclidean times o
needs an analytic continuation to real times which is p
formed in Sec. III. Numerical results are presented in Sec
while the conclusions are given in the final section. So
technical details are collected in the two appendixes.

II. CHARACTERISTIC FUNCTION AND CORRELATION
FUNCTIONS OF DISSIPATIVE SYSTEMS

We will calculate the structure function from its Fouri
transform,

S~q,n!5:
1

2pE2`

1`

dteintFq~ t !, ~6!

the ‘‘characteristic function’’@10#. For the pure harmonic os
cillator one has

Fq
ho~ t !5expF2

1

2
q2b0

2~12e2 iv0t!G , ~7!

which after expansion and integration leads to the re
given in Eq. ~2!. For the damped harmonic oscillator th
characteristic function can be related to the particular co
lation function inEuclideantime t,

T~q,t!5^0uT~e2 iq• x̂(t)eiq• x̂(0)!u0& ~8!

by an analytic continuation. From the spectral represe
tions

Fq~ t !

T~q,t!
J 5(

n
u^nuexp~ iq• x̂!u0&u23H exp[2 i (En2E0)t]

exp[2(En2E0)utu],

~9!

one sees that both expressions coincide for positive Euc
ean time and the correct analytic continuation is theref
obtained by consideringT(q,t.0) and replacingt→ i t .

In the path integral approach we have
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T~q,t!5 lim
b→`

E Dx exp$2 iq•@x~t!2x~0!#%exp$2A@x#%

E Dx exp$2A@x#%

.

~10!

Here A@x# is the effective action of the particle after th
oscillators of the environment have been integrated out
the limit b→` of the final Euclidean time projects out th
ground state of the system@13#. In this limit the boundary
conditions for the path integrals in Eq.~10! do not matter;
therefore we may setx(2b/2)5x(b/2)5x and integrate
over x, i.e., perform the thermodynamical trace. This allow
us to directly take over results from dissipative quantum s
tems where similar correlation functions~e.g., for the posi-
tion operator! have been evaluated at finite temperature, i
finite b @5#. Since this is quite standard now we can be br
and immediately use results from the nice review by Ing
@14#, in particular from Chap. 4.3 with the driving forc
F(s)5 iq@d(s2t)2d(s)#. In the limit b→` the sum
over Matsubara frequencies turns into an integral so that
final result for the Euclidean correlation function reads

T~q,t!5expF2
q2

2m

1

pE2`

1`

dE
12cos~Et!

E21uEug~ uEu!1v0
2G .

~11!

Here

g~E!5
2

pmE
0

`

dv
J~v!

v

E

E21v2
~12!

is the damping kernel which is produced by the coupling
the system to the heat bath. One does not have to specif
masses, frequencies, and coupling constants in Eq.~4! but
only the spectral densityJ(v) of the environment oscillators
The simplest assumption isOhmic dissipation

JOhm5mgv⇒gOhm~E!5g. ~13!

Although some observables~e.g., the ground state energy!
need high-frequency cutoffs@15# this form can be used with
impunity for the structure function where only energy diffe
ences matter. For simplicity it will also be employed in th
following. We then obtain

T~q,t!5exp$22q2@xV~0!2xV~t!#% ~14!

with

xV~t!5
1

2mpE0

`

dE
cos~Et!

E21gE1v0
2 ~t real!. ~15!

The analytic continuation of the above function which co
cides withxV(t) for positive Euclidean time

jV~t!5xV~t! ~t>0! ~16!
2-2
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STRUCTURE FUNCTION OF A DAMPED HARMONIC . . . PHYSICAL REVIEW C68, 034602 ~2003!
may be called theVineyard function, since many years ag
Vineyard@17# derived an identical form of the structure fun
tion for inclusive scattering of slow neutrons from quantu
liquids. Its nice feature is the clean separation between
squared momentum transfer and the variablet which is con-
jugate to the energy transfer. Such a form was also obta
in a ~zeroth-order! variational calculation of relativistic dee
inelastic scattering from a scalar particle where the broad
ing of the elastic line was due to multiple meson product
@11#. We thus have found a simple description of inclusi
scattering with one additional parameterg which accounts
for the coupling of the particle to additional degrees of fre
dom @18#. These could be the continuum and/or man
nucleon emission in the case of quasielastic scattering f
nuclei or the production of colorless hadrons in the case
scattering from quarks.

Note thatT(q,t50)51 so that the sum rule~3! is ful-
filled. We will also see that the resulting structure functi
has the correct support, i.e., no unphysical excitations oc
This is because the Caldeira-Leggett model is based o
consistent many-body Hamiltonian and the environmen
degrees of freedom have been integrated out without
proximation. In contrast, other descriptions of the damp
harmonic oscillator~dho! @20#, friction @21# or time asymme-
try @22# in general require a modification of usual quantu
mechanics.

III. ANALYTIC CONTINUATION

The main task left over is to perform the analytic contin
ation to get the characteristic functionFq(t) from the corre-
lation functionT(q,t). This requires the analytic continua
tion of the Vineyard functionjV(t→ i t ).

It should be emphasized thatxV(t) andjV(t) arediffer-
ent functions which only coincide fort>0. In particular,
although from Eq.~15! xV(t) is even int we will see that
the Vineyard function has a logarithmic cut on the negat
real t axis. In the following we will always indicate the
range of validity of the representation for the Vineyard fun
tion in parenthesis as was done in Eq.~16!. It is obvious that
this form cannot be used for analytic continuation
Minkowski time ~where scattering occurs! because the co
sine function would blow up. As shown in Appendix A w
may, however, distort the integration contour as in Ref.@23#
and obtain fort.0,

jV~t!5
g

2mpE0

`

dE
E

~E22v0
2!21g2E2

e2Et

5:E
0

`

dE r~E!e2Et ~Ret>0!. ~17!

This now allows an analytic continuationt→ i t to obtain the
characteristic function

Fq
dho~ t !5exp$22q2@jV~0!2jV~ i t !#%. ~18!
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To see the effects of the damping we insert Eq.~17! into Eqs.
~18! and~6!, expand the exponential, and perform thet inte-
gration. This gives

Sdho~q,n!5e2q2b2/2d~n!

1 (
n51

`
~2q2!n

n!
e2q2b2/2E

0

`

dE1•••dEn

3dS n2 (
k51

n

EkD r~E1!•••r~En!. ~19!

The first term is the elastic line with the square of the typi
Gaussian form factor for the harmonic oscillator. Howev
the oscillator length is renormalized by the interaction w
the environment:

b0
2→b254jV~0!5b0

2 v0

V

2

p
arctanS 2V

g D<b0
2 ~20!

with

V5Av0
22

g2

4
. ~21!

~We are only considering the underdamped caseg,2v0.!
Compared with Eq.~2! all excited states are now broadene
in particular, the (n51) term just maps the weight functio

2q2e2q2b2/2Q~n!r~n!5
q2b0

2

2
e2q2b2/2

2v0

n1v0

Q~n!

2p

3
G~n!

~n2v0!21G2~n!/4
. ~22!

Apart from the additional factor 2v0 /(n1v0) the line shape
is just a one-sided Breit-Wigner distribution with the energ
dependent width

G~E!5
2Eg

E1v0
. ~23!

Note that this distribution vanishes at threshold and is id
tically zero for unphysical negative energy transfers. T
same holds for all other terms in expansion~19! due to thed
function and the fact that allEk>0. Thus the structure func
tion of the damped harmonic oscillator has the correct s
port. Unfortunately, it is not possible to evaluate the high
order terms analytically. Only in thenarrow-width
approximation

G~E!'G~v0!5g ~24!

a simple result is found when additionally the prefactor
also evaluated atn5v0 and theE integration extended to
2`:

jV~ i t !'
b0

2

4
expS 2 iv0t2

g

2
utu D . ~25!
2-3
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R. ROSENFELDER PHYSICAL REVIEW C68, 034602 ~2003!
Note that anexactexpression of this form together with
real correctionr (t) is derived in Appendix A. One then see
from Eqs.~18! and~6! that thed function in thenth excited
state contribution to the structure function~2! of the har-
monic oscillator turns into a Breit-Wigner function with
width

Gn'ng. ~26!

This result is well known from the density of states of t
damped harmonic oscillator@24# and has also been discuss
for the width of multiphonon giant resonances@25#. In the
present context, however, it should be stressed that it is
approximate and leads to a small, but nonvanishing struc
function for n,0 @26#. This is due to the wrong analyti
behavior of the Vineyard function in approximation~25!
whereutu5At2 also produces a cut for Imt,0. In contrast,
the exact expression has only a logarithmic cut in the upp
half t plane in accord with general properties of the char
teristic function. This can be best seen in the explicit expr
sion of the Vineyard function with Ohmic damping in term
of the standard exponential integral which is derived in A
pendix A. From Eq.~A7! it takes the form

jV~t!5regular function2
1

2mpV
sinh~Vt!

3sinS g

2
t D ln~v0t!, uargtu,p ~27!

for arbitrary complext away from the cut. Evaluating Eq
~6! for n,0 by closing the integration contour in the lowe
half t plane, one therefore encounters no singularities and
structure function vanishes identically. The logarithmic c
of the Vineyard function also shows up in the low-t expan-
sion @see Eqs.~A18! and ~A19!#

jV~ i t !5jV~0!2
i t

4m
1

g

4mp
t2ln~ iv0t !

2
t2

4mpV F S V22
g2

4 DarctanS 2V

g D1gVS 3

2
2gED G

1O~ t3!, ~28!

which has important consequences: first, we see that also
energy-weighted sum rule~EWSR!

E
0

`

dn nS~q,n!5 i Fq8~0!5
q2

2m
~29!

is conserved@27# whereas higher-energy moments of t
structure function diverge. This high-energy tail reflects,
course, the insufficient suppression of high frequencies in
simple model of Ohmic dissipation which may need mod
cation for phenomenological applications in nuclear a
quark physics. Second, it is even possible to determine
tail for large energy transfer analytically: as shown in Appe
dix B one obtains
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Sdho~q,n! →
n→` g

mp

q2

n3
1

3

2

g

m2p

q4

n4
1OS ln n

n5 D . ~30!

Compared with Eq.~19! one sees that the suppression of t
low-lying states by the square of the elastic form factor h
disappeared and the asymptotic form~30! does not depend
anymore onv0 or the oscillator parameterb—a property
which roughly resembles the conjectured ‘‘quark-hadron
ality’’ @2#.

Another consequence of Eq.~28! is that logarithmic cor-
rections toy scaling will persist even for large momentu
transfer. This is because interaction timest;1/q are probed
in that limit @28# and thereforeq2t2ln(iv0t) remains un-
bounded forq→`.

IV. NUMERICAL RESULTS

Sticking to pure Ohmic dissipation we next try to evalua
the structure function quantitatively. Only forq→0 ~i.e.,
photoabsorption! expansion~19! into a sum over excited
states is useful. For arbitrary momentum transfer the num
cal problem is much harder as one has to calculate thein-
elasticstructure function

Sinelastic
dho ~q,n!5

1

2p
exp@22q2jV~0!#

3E
2`

1`

dteint$exp@2q2jV~ i t !#21%

~31!

after subtraction of the elastic line~a d function! as a Fourier
transform over an infinite interval. One may alleviate t
numerical problem slightly by expressing the inelastic str
ture function as a sine transform over the imaginary part
the characteristic function as demonstrated in Ref.@12#,

Sinelastic
dho ~q,n!5e2(1/2)q2b2 2

pE0

`

dt sin~nt !~2Im!

3$exp@2q2jV~ i t !#%. ~32!

This holds sincejV( i t ) vanishes as 1/t2 in a sector of the
complex t plane which includes the lower half plane~see
Appendix A!. Thus one may write a Cauchy integral repr
sentation for the~inelastic! characteristic function and ex
press its real part in terms of the imaginary part. We ha
used the adaptive integration routine D01ASF from the NA
library together with the explicit representations~A8! and
~A13! of the Vineyard function to perform the numeric
evaluation of Eq.~32!.

Figures 1 and 2 show the results of the calculation
several momentum transfers and damping parameters.
seen that the excitation of individual levels gradually mov
into the broad structure of the quasielastic peak as the
mentum transfer increases. The valueg/v050.2 corresponds
roughly to the one used in Ref.@29# where a parametrization
of the response function was fitted to photoabsorption
electron scattering data in12C. A peak position of 22.7 MeV
2-4
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STRUCTURE FUNCTION OF A DAMPED HARMONIC . . . PHYSICAL REVIEW C68, 034602 ~2003!
and a full width at half maximum of (2Aln 232.6
54.3) MeV was obtained for the giant resonance. Althou
accounting for the coupling of this excitation to many-bo
states and the continuum this value ofg/v0 gives too much
structure from individual levels at higherq compared with
typical experimental cross section. This may indicate tha
modification of the assumed Ohmic damping is needed fo
description of medium-energy inclusive scattering data fr
nuclei.

That the sum rules are well preserved can be see
Tables I and II where the relative size of different contrib
tions is presented forg/v050.2 ~other values of the damp
ing parameter yield similar results!. The numerical part was
obtained by integrating the structure functions shown in F
1 and 2 with weightnn,n50,1 from n50 to n5nmax in
steps ofDn by means of a Simpson rule. The NEWSR,
course, also gets a contribution exp(2q2b2/2) from the elas-
tic line. Also listed are the asymptotic contributions obtain
from Eq. ~30! by integrating fromnmax to `. It is seen that
the asymptotic contributions substantially improve the c

(a)

(b)

FIG. 1. The structure function of a damped harmonic oscilla
as a function of the energy transfer for momentum transfersqb0

50.5 ~top! andqb051 ~bottom!. Note the different scales in bot
plots. The solid curves are for a value of the Ohmic damping
rameterg/v050.2, the dashed one forg/v050.3, and the dotted
one forg/v050.4. The undamped oscillator length and frequen
are denoted byb0 andv0, respectively.
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vergence to the correct values except for a few cases at
momentum wherenmax is not large enough.

Due to its weighting the EWSR is, of course, not as w
fulfilled as the NEWSR, but the agreement is very satisf
tory and sufficient to demonstrate the consistency ofall parts
of the calculation: elastic line, inelastic excitations, a
asymptotic behavior of the structure function.

Although the NAG routine D01ASF does an excellent j
in evaluating the oscillating integral over the characteris
function one may ask whether it is possible to introdu
additional damping by deforming the integration contour
Eq. ~31! in the upper-halft plane. Indeed, running along bot
sides of the cut would eliminate the oscillating exponen
factor altogether.

However, this is not possible since as shown in Appen
A there areStokeslines in the upper-halft plane which sepa-
rate the powerlike decrease of the Vineyard functionjV( i t )
from an exponential increase which would overwhelm t
exponential damping from the factor exp(int). The optimal
damping which is achievable without contributions from t
arcs at infinity is a rotation by an angle

w15arctanS g

2V D ~33!

r

-

y

(a)

(b)

FIG. 2. Same as in Fig. 1 but forqb052 ~top! and qb054
~bottom!.
2-5
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TABLE I. Test of the non-energy-weighted sum rule~3! for different momentum transfersq and upper
limits nmax of the numerical integration performed in steps ofDn. The parameter for Ohmic damping is take
asg/v050.2. The columns labeled ‘‘elast.’’ and ‘‘num.’’ denote the contribution of the elastic line and
result from numerical integration up ton5nmax, respectively. The columns ‘‘asy.’’ list the leading-orde
~LO! and next-to-leading~NLO! asymptotic contributions fromnmax to infinity. In places with no entry the
previous value applies.

qb0 nmax/v0 Dn/v0 elast. num. asy.~LO! asy.~NLO! Total

0.5 3.0 0.01 0.88904 0.10966 0.00088 0.00007 0.9996
4.0 0.11037 0.00050 0.00003 0.99994
5.0 0.11061 0.00031 0.00002 0.99998

1.0 3.0 0.62471 0.36250 0.00354 0.00118 0.9919
5.0 0.37334 0.00127 0.00025 0.99957
7.0 0.37448 0.00065 0.00009 0.99993

2.0 5.0 0.02 0.15230 0.80314 0.00509 0.00407 0.9646
8.0 0.84239 0.00200 0.00099 0.99768
10.0 0.84532 0.00127 0.00051 0.99940

4.0 15.0 0.05 0.00054 0.97227 0.00226 0.00241 0.9774
20.0 0.99455 0.00127 0.00102 0.99738
25.0 0.99744 0.00082 0.00052 0.99932
ni
to
er
d
a

ar
q

the
del
of

nal

a-
ed
has
ion
ju-
s to
—
e-
dy

ad-
which is depicted in Fig. 3. We have evaluated

Sinelastic
dho ~q,n!5e2(1/2)q2b2 1

p
ReS eiwE

0

`

dx exp@ inxeiw#

3$exp@2q2 jV~t5 ixeiw!#21% D ~34!

by standard Gaussian integration after mapping the infi
interval to a finite one. As expected the damping fac
exp(2nxsinw) is most beneficial for large energy transf
whereas a greater number of integration points is neede
avoid a negative numerical result for the structure function
smalln. Thus the contour rotation method is complement
to an explicit summation over excited lines as given in E
~19!.
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V. SUMMARY

We have shown that the Caldeira-Leggett model of
damped harmonic oscillator also provides a consistent mo
for inclusive processes where it accounts for the coupling
a single particle to more complicated states and additio
degrees of freedom. With only one additional~damping! pa-
rameter in the simplest version with purely Ohmic dissip
tion a highly nontrivial structure function has been obtain
which conserves the sum rules. Its characteristic function
been given in closed analytic form with a clear separat
between momentum transfer and ‘‘time,’’ the variable con
gate to the energy transfer in the process. This allowed u
concentrate on the study of a function of a single variable
the Vineyard function—and its analytic properties which d
termine the dynamics. As an extension to the many-bo
case is straightforward further applications in nuclear or h
ronic physics seem to be possible.
TABLE II. Same as in Table I but for the energy-weighted sum rule~29! divided byq2/(2m). Note that
no elastic contribution exists in this case. The Ohmic parameter is againg/v050.2.

qb0 nmax/v0 Dn/v0 num. asy.~LO! asy.~NLO! Total

0.5 3.0 0.01 0.9448 0.0424 0.0027 0.9899
4.0 0.9638 0.0318 0.0015 0.9971
5.0 0.9723 0.0255 0.0009 0.9987

1.0 3.0 0.8882 0.0425 0.0106 0.9413
5.0 0.9653 0.0255 0.0038 0.9946
7.0 0.9785 0.0182 0.0020 0.9987

2.0 5.0 0.02 0.8512 0.0255 0.0153 0.8920
8.0 0.9668 0.0159 0.0060 0.9887
10.0 0.9797 0.0127 0.0038 0.9962

4.0 15.0 0.05 0.9356 0.0085 0.0068 0.9509
20.0 0.9819 0.0064 0.0038 0.9921
25.0 0.9898 0.0051 0.0024 0.9973
2-6
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APPENDIX A: THE VINEYARD FUNCTION FOR THE
HARMONIC OSCILLATOR WITH OHMIC DAMPING

Here we derive and collect a few properties of the Vin
yard function defined by Eqs.~16! and ~15! in Euclidean
time t>0,

jV~t!5
1

2mpE0

`

dE
cos~Et!

E21gE1v0
2

. ~A1!

One may decompose the cosine function into exponen
and deform the integration path such that it runs along
imaginary axes. There is no contribution from poles of t
integrand~which are all in the left-handE plane! and one
therefore obtains~first for t>0)

jV~t!5
g

2mpE0

`

dE
E

~E22v0
2!21g2E2

e2Et ~Ret>0!.

~A2!

This is suitable for analytic continuationt→ i t since the in-
tegral also converges for Ret>0. Using partial fractions one
gets

jV~t!5
1

8mp iV (
r ,s561

rsE
0

`

dE
1

E1Er ,s
e2Et

5
1

8mp iV (
r ,s561

rseEr ,stE1~Er ,st!, t>0 ~A3!

FIG. 3. Integration contours in the complext plane for the nu-
merical evaluation of the structure from the characteristic functi
original path along the real axis~solid line! and path rotated by an
anglew into the upper half plane~double line!. The arcs at infinity
~dashed curves! do not give a contribution as long asw,w1 where
w1 is defined in Eq.~33!. The logarithmic cut along the positiv
imaginary axis is shown as hatched strip.
03460
t

.

l-
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e

e

with

Er ,s5rV1 is
g

2
, r ,s561. ~A4!

Here

E1~z!52gE2 ln z2 (
n51

`
~2z!n

nn!
5:2gE2 ln z1Ein~z!

~A5!

is the standard exponential integral andgE
50.577 215 66 . . . Euler’s number. A careful evaluation o
the arguments of the logarithm fort>0 then gives

jV~t!5
1

8mpV (
r ,s561

eEr ,stH arctanS 2V

g D2r
p

2

1 i rs @gE1 ln~v0t!2Ein~Er ,st!#J , ~A6!

which defines the Vineyard function forarbitrary complext
with uargtu,p. Since Ein(z) is an entire function~Ref.
@30#, Chap. 5.1, footnote 3! one sees that

jV~t!5regular function

2
1

2mpV
sinh~Vt!sinS g

2
t D ln~v0t!, ~A7!

which allows to determine the discontinuity across the cu
For purely imaginary argumentst5 i t ,t real, Eq.~A6! can

be written as

jV~ i t !5
1

4mV
expS 2 iVt2

g

2
utu D2r ~ t !, ~A8!

r ~ t !5
1

4mpV
Im@ezg(t)E1„zg~ t !…2~g→2g!#,

zg~ t ![S iV1
g

2D utu. ~A9!

The first term corresponds to the narrow-width approxim
tion ~25! whereas the last term~which is real, even int and
vanishing forg50) corrects for its deficiencies.

Another representation of the remainder functionr (t) is
obtained by using the identity

E

~E22v0
2!21g2E2

5
1

4V F 1

~E2V!21g2/4
2

1

~E1V!21g2/4
G ,

~A10!

:
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which shows that the weight functionr(E) can also be con-
sidered as a~anti!symmetrized Breit-Wigner distribution
aroundE5V. Inserting this into Eq.~A2! one obtains for
t5 i t ,t real,

jV~ i t !5
g

8mpV H E
2`

1`

dE
exp~2 iEt !

~E2V!21g2/4

2E
2`

0

dE
exp~2 iEt !

~E2V!21g2/4

2E
0

`

dE
exp~2 iEt !

~E1V!21g2/4
J

5
g

8mpV H 2p

g
expS 2 iVt2

g

2
utu D

22E
0

`

dE
cos~Et!

~E1V!21g2/4
J . ~A11!

Hence

r ~ t !5
g

4mpVE
0

`

dE
cos~Et!

~E1V!21g2/4
, t real.

~A12!

Again one may distort the integration path such that it ru
along the imaginary axis. Decomposing the cosine funct
into exponentials and realizing that the integrand in E
~A12! has only poles atE52V6 ig/2, one then obtains a
representation

r ~ t !5
g

2mpE0

`

dE
E

~E22v0
2!214V2E2

e2Eutu, t real

~A13!

which is very well suited for numerical evaluation. Indee
we have checked the routine which calculates the Viney
function jV( i t ) based on the exponential integral~ei! repre-
sentation~A9! by a direct Gaussian integration of Eq.~A13!
and found a relative deviation

UjV
ei~ i t !2jV

num~ i t !

jV
num~ i t !

U,231026 ~A14!

for all real t andg/v0<0.4. In this comparison the comple
exponential integralE1(z) was calculated by the rational ap
proximations withn510 terms given in Ref.@31#: Table 64.4
was used foruzu,9 and Table 64.5 foruzu>9 and checked
against values listed in Table 5.6 of Ref.@30#. Figure 4 shows
jV(t) @relative to the undamped caseb0

2 exp(2v0t)/4] and
Fig. 5 the remainder functionr (t) for the chosen values o
the damping parameterg.

Note that one has a simple result for theimaginary part
~which is odd int),
03460
s
n
.

,
rd

Im jV~ i t !52
1

4mV
sin~Vt !e2gutu/2, ~A15!

but that the real part is more involved. This can also be s
if we use the standard representation of the step function

Q~E!52
1

2p i E2`

1`

ds
exp~2 isE!

s1 i e
~A16!

to extend the integration range in Eq.~A2! to 2`. Using
identity ~A10! simple manipulations then give

jV~ i t !5
1

4mpVE
2`

1`

ds
sin~Vs!

s2t1 i e
e2gusu/2, t real

~A17!

which shows that the real part is determined by a princip
value integral whereas the imaginary part is given by E
~A15!.

Finally we consider the behavior of the Vineyard functio
for small and larget. From Eq.~A6! one immediately ob-
tains

FIG. 4. The Vineyard functionjV(t) normalized to the un-
damped case as a function of the Euclidean timet. The solid curve
is for a value of the Ohmic damping parameterg/v050.2, the
dashed one forg/v050.3, and the dotted one forg/v050.4.

FIG. 5. The correction termr (t) to the narrow-width approxi-
mation ~A8! for the Vineyard functionjV( i t ) as a function of the
time t. Note the logarithmic scale forr (t).
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jV~t!5 (
k50

`

akt
k1 (

k51

`

b2kt
2kln~v0t! ~A18!

with

a05
1

2mpV
arctanS 2V

g D , a152
1

4m
,

a25
1

4mpV FgVS 3

2
2gED1S V22

g2

4 DarctanS 2V

g D G ,
a352

g

48m S V22
3g2

2 D , ~A19!

A

b252
g

4mp
, b452

g

24mp S V22
g2

4 D , . . . .

Another possibility is to use the differential equation

jV
IV~t!2~2v0

22g2!jV9 ~t!1v0
4jV~t!5

g

2mp

1

t2

~A20!

with the appropriate boundary conditions, which follows d
rectly from Eq.~A2!.

The asymptotic behavior for arbitraryt is more involved.
Equation~A2! may be used in the right-handt plane: one
simply has to expandr(E) for smallE and integrate term by
term to find

jV~t! →
t→` g

2mpv0
4

1

t2
1

6g

mpv0
8 S V22

g2

4 D 1

t4
1•••

Ret>0. ~A21!

This is consistent with the result from the differential equ
tion ~A20! for large t if one considers the derivatives a
corrections. To find the asymptotic behavior in the left-ha
t plane we may use the explicit representation~A6! and
reintroduce the exponential integral as this function ha
simple asymptotic behavior„see, e.g., Eq.~5.1.51! in Ref.
@30#…,

E1~z!;
e2z

z F12
1!

z
1

2!

z2
2•••G , uargzu,3p/2.

~A22!

However, care is needed when replacing Ein(z) by the ex-
ponential integral since the correct addition theorem of
logarithm with complex arguments,

ln~ab!5 ln~a!1 ln~b!12p i @Q~2Im a!Q~2Im b!

3Q„Im~ab!…2Q~ Im a!Q~ Im b!Q„2Im~ab!…#,

~A23!
03460
-

d

a

e

has to be used for ln(Er,st). Consequently,

jV~t!52
1

8mpV (
r ,s561

reEr ,st@2pQ~sIm t!

3Q„2sIm~Er ,st!…1 is E1~Er ,st!#,

uargtu,p. ~A24!

Although Eq. ~A24! is less suited to display the analyt
structure of the Vineyard function it allows to find the Stok
lines for the asymptotic behavior. These are the rays in
complext plane which divide the powerlike decrease of E
~A21! from an exponential increase. Indeed, due to E
~A22! the last term in the square brackets of Eq.~A24! gives
rise to the powerlike decrease ofjV(t) but this will be over-
whelmed by the exponential increase of the first term if

Q„Re~Er ,st!…Q~sIm t!Q„2sIm~Er ,st!…Þ0 ~A25!

for any r ,s561. Writing

E1,15V1 i
g

2
5v0eiw1, w15arctanS g

2V D , 0<w1<
p

2
~A26!

a straightforward analysis of condition~A25! shows that an
exponential increase only occurs for

uargtu.
p

2
1w1 , ~A27!

i.e., inside a sector around the cut with opening anglep/2
2w15arctan(2V/g). This means that Eq.~A21! holds for the
wider rangeuargtu,p/21w1.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF THE STRUCTURE FUNCTION

Here we derive the asymptotic behavior of the struct
function when the energy transfern becomes very large. This
is done by standard asymptotic analysis: for example,
may apply Eq.~30! in Ref. @32# to our Eq.~32!. Then one
obtains

S~q,n! →
n→` 2

p F2
1

n
Im Fq~0!1

1

n3
Im Fq9~0!

2
1

n5
Im Fq

IV~0!1•••G
5

g

mp

q2

n3
1•••, ~B1!

since ImFq(0)50. Here we have used the representation
the characteristic function in terms of the Vineyard functi
jV( i t ) and the low-t expansion of the latter. Note that th
leading contribution comes from the logarithmic term in E
~28! which produces an imaginary part forjV9 (0).
2-9
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However, higher-order terms cannot be calculated
means of Eq.~B1! since ImFq

IV(0) does not exist. This
shows that the next-to-leading asymptotic term isnot falling
off like 1/n5. To determine this term we use the exponen
representation~6!, well-known results for the Fourier trans
form of generalized functions and the low-t behavior of the
Vineyard function. Writing

2q2@jV~ i t !2jV~0!#5: f ~ t !1g~ t !ln~ iv0t !

5 f ~ t !1g~ t !F ln~v0utu!1 i
p

2
sgnt G

~B2!

with

f ~ t ! →
t→0

2 i
q2

2m
t1O~ t2!, g~ t ! →

t→0g

p

q2

2m
t21O~ t4!

~B3!

one simply gets by expanding the exponential

Fq~ t ! →
t→0

11 f ~ t !1g~ t !F ln~v0utu!1 i
p

2
sgnt G

1
1

2
f 2~ t !1 f ~ t !g~ t !F ln~v0utu!1 i

p

2
sgnt G

1
1

2
g2~ t !F ln~v0utu!1 i

p

2
sgnt G2

1•••. ~B4!

As the Fourier transform of powers oft gives derivatives of
d functions we see that all regular terms do not contribute
the asymptotic behavior for largen. The contribution of the
nonanalytic terms can be taken from Table 1 of Ref.@32#
@settingy52n/(2p)],
an

. C

03460
y

l

o

E
2`

1`

dttnsgnt eint52
n!

~2 in!n11
, ~B5!

E
2`

1`

dttnlnutueint5 ip
n!

~2 in!n11
sgnn. ~B6!

One then realizes that the leading contribution in t
asymptotic expansion arises from the last term in the fi
line of Eq. ~B4!,

S~q,n! →
n→` 1

2p

gq2

2mpE2`

1`

dtt2F ln~v0utu!1 i
p

2
sgnt Geint

5
g

mp

q2

n3
, ~B7!

in agreement with Eq.~B1!. The subleading contribution
stems from the last term in the second line,

DS~q,n! →
n→` 1

2p S 2 i
q2

2mD gq2

2mp

3E
2`

1`

dtt3F ln~v0utu!1 i
p

2
sgnt Geint

5
3g

2m2p

q4

n4
, ~B8!

whereas one can show that the last line gives a contribu
of the order of (lnn)/n5. The asymptotic expansion make
sense if the subleading term is much smaller than the lea
one which requiresn@q2/(2m), i.e., excitation energies
much larger than the maximum of the quasielastic peak.
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