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Ground-state shape phase transitions in nuclei: Thermodynamic analogy and finite-N effects
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We study quantum phase transitions between spherical, prolate, and oblate nuclear ground-state shapes using
the interactingsd-boson model (sd-IBM ! and demonstrate the analogy between the IBM results~also results
of any axially symmetric quadrupole collective model! and predictions of the Landau theory of phase transi-
tions in classical thermodynamics. A detailed comparison of the two frameworks is performed exploiting the
concept of ‘‘specific heat,’’ introduced in four alternative ways in the quantum case. All these definitions~two
of them based on spectroscopic features of the ground state, the others on a randomized version of the model!
lead to similar peaked forms of the ‘‘specific heat’’ at the point of the quantum phase transition. We analyze the
effect of an increasing boson number on these curves and observe convergence to the singular phase-
transitional behavior in the classical limit. Other observable signatures of the IBM structural phase transitions
are also discussed with the aim to facilitate the location of a particular nucleus in the parameter space
~extended Casten triangle! near the transitions.
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I. INTRODUCTION

Phase transitions are a strongly discussed subject not
for traditional systems of condensed-matter physics, suc
ferromagnetic and ferroelectric materials, solid and liqu
crystals, or superfluid and superconducting media@1,2#. In
nuclear physics, as well, phase transitions have attra
growing attention of both theorists and experimentalists
already several decades.

The most prominent—although not yet experimenta
verified—phase transition in this field is the one from ha
ronic nuclear matter to the quark-gluon plasma@3#. At much
lower, but still high enough energies, nuclear temperature
about a few units of MeV, a phase transition similar to th
between liquid and gas has been observed in the multif
mentation of nuclei in heavy-ion collisions@4#. In only a
slightly lower temperature domain, variations of the form
giant dipole resonances observed ing-ray spectra from hot
rotating nuclei@5# indicate changes of the nuclear geomet
shapes@6#. These observations seem to be in agreement w
microscopic calculations of quadrupole shapes of nuclei@7#,
analyzed in the framework of Landau theory of phase tr
sitions. By further descending to temperatures less tha
MeV, another type of phase-transitional behavior is expec
in nuclei, namely, the pairing transition between superc
ducting and normal phases@8#.

The idea of phase transitions is so appealing that i
often imported from its homeland, classical thermodynam
to other fields of physics. It was in this spirit when Thoule
@9# used this term~still in quotation marks! to describe the
situation, in which the ground-state wave function sudde
changes from one configuration to another under varying
teraction constants in a quantum Hamiltonian. This situat
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is often referred to as quantum or structural phase transi
@2#. One typically deals with a parameter-dependent quan
Hamiltonian

H~l!5H01lV[~12l!H~0!1lH~1! ~1!

with lP@0,1# ~any scaling coefficient can be absorbed
V), where the limitsH(0) andH(1) represent two incom-
patible modes of motion,@H(0),H(1)#Þ0. As documented
by numerous examples@10–22#, transitions between the lim
iting dynamical modes may have a crossover character, w
the ground-state configuration~and in a limited extent also
the structure of other states! flips suddenly from one form to
another at a certain ‘‘critical point’’l5lc .

Note that the linearity of the dependence in Eq.~1! is not
really essential for the phase-transitional behavior, altho
it considerably simplifies some important aspects
the analysis~as we will see below!. We can, therefore, gen
eralize Eq.~1! to nonlinear cases, when the Hamiltonia
H(lW ) depends on a set of external parameters,lW
5(l1 ,l2 , . . . ,l f), in a general way, restricted just by th
incompatibility condition

@H~lW !,H~lW 8!#Þ0 for lW ÞlW 8. ~2!

If lW varies along a continuous curvelW 5lW (t) in the param-
eter space,tP@0,1#, the ground state can change abruptly
somet5tc , in an apparent analogy with the linear case d
cussed above.

Since thermodynamic phase transitions can be both qu
tum and classical, we prefer using the name ‘‘structu
phase transition’’ for the above-described situation~see, e.g.,
Ref. @13#!. If the structure of only the ground state is looke
for, these transitions correspond to the temperatureT50.
Whereas thermodynamic quantum phase transitions~with T
as a control parameter! concern only spectra of the system
subject to change~all observables being inherently containe
in partition functions!, the structural phase transitions a
©2003 The American Physical Society26-1
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related to the form of energy eigenfunctions, i.e., to the v
heart of quantum dynamics. In this sense they are ind
fundamentally different from thermodynamic phase tran
tions. By studying structural transitions in various toy a
realistic systems@2,9–22#, much insight has been gaine
during the past two decades concerning the essential fea
of quantum Hamiltonians that drive the systems to exh
crossover behaviors.

In nuclear physics, the structural phase transition app
most commonly in two incarnations: the first concerns
superfluid ~paired! and normal modes of motion in th
nucleus @13,14,12,19#, the second its various geometr
forms @9–14,20,21,23–35#. In contrast to the previously dis
cussed transitions between these phases in hot rotating
clei, the present changes are induced by variations of
nuclear many-body Hamiltonian when going from o
nucleus to another. In this paper, we will only be deali
with the ground-state shape phase transitions, our atten
being mostly focused on properties of the interacting bo
model ~IBM ! @36#.

The plan of the paper is as follows: In Sec. II we revie
phase-transitional aspects of the quadrupole geom
model, interactingsd-boson model, and semimicroscopic G
nocchio and fermion dynamical-symmetry models. We
lieve that this part will illuminate important recent achiev
ments and clarify some frequently asked questions in
field. In Sec. III, various spectroscopic signatures of tran
tions between spherical and deformed, and between pro
and oblate shapes are studied within the IBM. In particu
we compare the behavior of the ground-state energy
wave-function entropy, exploiting an analogy with classic
thermodynamics via the concept of ‘‘specific heat.’’ In Se
IV, we further extend this analogy by studyingthermalprop-
erties of the IBM with control parameters subject to a sm
amplitude random noise. The ‘‘specific heat,’’ which nat
rally appears in this stochastic version of the model, turns
to be closely related to that from Sec. III. All these a
proaches sum up in a picture that exhibits apparent analo
between structural phase transitions in the quantum bos
system represented by the IBM and standard phase tra
tions in classical thermodynamics. We assume that th
analogies can be further studied also in other systems
quantum phase transitions.

II. NUCLEAR SHAPE TRANSITIONS: AN OVERVIEW

A. Geometric model

A natural habitat for the description of nuclear shapes
the geometric model@37,38#. The geometric Hamiltonian
must be a scalar and thus depends only on rotational inv
ants constructed from tensorial shape coordinatesa (K) and
associated momentsp (K). Usually, only the quadrupole de
formations are taken into account,K52, and the Hamil-
tonian is expanded such that it contains only few lowe
order invariants summed up with certain weight coefficien
As the potential energy does not depend on the orientatio
the deformed shape in the laboratory system, it contains
the quadrupole case, only the Hill-Wheeler intrinsic va
ablesb andg. With the above restrictions it reads as
03432
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V~b,g!5Ab21Bb3cos 3g1Cb41••• ~3!

~whereA, B, C, . . . are constants!. Remind thatb andg are
polar coordinates of thea0

(2) andA2a62
(2) components of di-

agonalized tensor of quadrupole variables. To allow for ne
tive values ofb ~which will turn important below! we adopt
here the convention withbP(2`,1`) andgP@0,p).

The classical equilibrium configuration is given by th
position (b,g)5(b0 ,g0) of the global minimum of potentia
energy~3!. The analysis becomes particularly simple if th
higher-order terms can be truncated: In this case,C must be
positive to ensure physical asymptotics of the potential.
the g dependence in the truncated Eq.~3! allows only for
g050 or p/3, where the latter case can be equivalently e
pressed by the substitutionsg0°0 and b0°2b0, we set
g050 @34#. We therefore identify three types of equilibrium
shapes:~i! spherical forb050, ~ii ! prolate axisymmetric for
b0.0, and~iii ! oblate axisymmetric forb0,0. These apply
for ~i! A.Ac , ~ii ! A,Ac , B,0, and ~iii ! A,Ac , B.0,
where the ‘‘critical’’ value ofA is

Ac5
B2

4C
. ~4!

If approachingAc from below, the ‘‘spherical minimum’’
b050 appears as a local minimum already forA50[A0
<Ac , but only atA5Ac it becomes degenerated with th
‘‘deformed minimum’’ b0Þ0 and takes over the role of th
global minimum. On the other hand, if approachingAc from
above, a deformed local minimum first appears forA
59B2/(32C)[A1>Ac . The rangeAP@A0 ,A1# thus corre-
sponds to a form of the potential with two minima, the d
formed minimum being lower~stable! and spherical higher
~quasistable! for AP@A0 ,Ac#, and vice versa for A
P@Ac ,A1#. This is a typical behavior in a discontinuou
~first-order! phase transition, when the equilibrium jump
from one configuration to another at a certain ‘‘critica
value of a control parameter~the quotation marks used t
avoid confusion with critical points such as the Curie te
perature, etc.! and the two relevant phases coexist in a cert
interval around. ForB50, however, all the above value
coincide atA05Ac5A150. In this g-soft case, theb0Þ0
minimum coalesces with theb050 minimum atA5Ac and
the corresponding transition is continuous~second order!. By
analyzing equilibrium solutions within the truncated ge
metrical model, we therefore clearly identify various types
phase-transitional behaviors; a schematic phase diagra
shown in Fig. 1~a!.

In fact, the above-outlined phenomena are precisely th
described within the classical Landau theory of phase tra
tions @39,40#. An analog of Eq.~3! can be written for any
thermodynamic potential, where coefficientsA, B, C, . . .
depend on some external control parameters~thermodynamic
variables! andb represents an order parameter, which ch
acterizes the immediate state of the system~we now disre-
gard g). The order of a phase transition—according to t
Ehrenfest classification@1#—is given by the lowest rank o
the derivative ofV(b0) with respect to the control param
eters that changes discontinuously at the transitional po
6-2
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Note that the Landau theory was for the first time explici
applied to nuclear quadrupole shapes in the context of
rotating nuclei—see Ref.@7#, where the above results ar
already discussed.

According to the Landau theory@40#, a continuous phase
transition betweenb050 andb0Þ0 equilibrium states can
be located in the parameter space only at an intersectio
three or more discontinuous phase transitions, the ph
separating curves in the simplest case forming a ‘‘T ju
tion’’ in the phase diagram. This is exactly what we obse
in Fig. 1~a! since theA5B50 second-order transition is
crossing of the spherical-prolate (A5Ac , B,0), spherical-
oblate (A5Ac , B,0), and prolate-oblate (B50, A,0)
first-order transitions. Indeed, at the border between pro
and oblate shapes,B50, the minimumb0.0 flips to 2b0
in a discontinuous way, giving rise to the prolate-oblate fir
order phase transition@24,31#. Let us note that the existenc
of this phase transition and the role of the continuous tra
tion at A5B50 as a ‘‘triple point’’ of the phase diagram i
Fig. 1~a!, in the sense of the Landau theory, was recogni
only very recently@31,34#.

If compared to other first-order phase transitions,
prolate-oblate transition has one exceptional feature: it
no finite interval of phase coexistence. When looking at
tential ~3!, as it varies withB around the transition, one see
that it has a double-minimum form~with minima atb0 and
2b0) for any B. However, we must not forget thatg in Eq.
~3! can only be disregarded as far as the global minimum
concerned. With theg dependence included, the upper min
mum in b turns out to be only a saddle point and the who
V(b,g) has just one physical minimum, eitherb0.0, g0

FIG. 1. ~a! The shape-phase diagram of the GM potential~3!.
Phases I, II, and III correspond to spherical, prolate, and ob
axisymmetric shapes, respectively.~b! The shape-phase diagra
~extended Casten triangle! of the IBM Hamiltonian ~8! with the
corresponding dynamical symmetries and transitional paths A–
03432
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50, or b0,0, g050 @this minimum is of course trivially
repeated at (b,g)5(b0,2p/3) and (2b0 ,p/3) due to the
periodicity of the potential#.

Depending on particular values of the constantsA, B, and
C, the height of the barrier separating two degenera
minima in the region of spherical-deformed phase coex
ence atA5Ac can be just few eV, much less than the groun
state average kinetic energy. Thus the potential may be c
sidered practically flat in the transitional region. Th
recently led Iachello@28# to the concept of critical-point
symmetries, which result from replacing ofV(b,g) in the
vicinity of A5Ac by an infinite square well inb. As this
could only be achieved with terms in Eq.~3! up to infinite
order, the critical symmetries only approximate real eigen
lutions of the collective Hamiltonian. On the other hand
close realization of the analytic predictions based on t
assumption in some nuclei@29# shows that the approxima
tion is rather realistic.

It is evident that fluctuations due to the zero-point moti
in a finite quantum case make realistic shape transiti
smoother. Nevertheless, an abrupt change of the ground-
structure atA5Ac can be observed if the kinetic-energy a
erage for the ground state is much less than the depth o
deformed minimum. Another obstacle on the way to ident
phase-transitional behavior in atomic nuclei is the fact t
since real nuclei contain only an integer number of nucleo
nature does not allow us to vary the control parameters c
tinuously in the region where the phase transition occu
This leads to discrete changes in the properties of nu
around the transition point, making an extension of the ab
concepts to systems with a limited number of constituents
general importance.

B. Interacting boson model

In contrast to the simplicity and universality of the abov
outlined analysis, there is no ‘‘geometry’’ that could be d
rectly extracted from the ultimately microscopic descripti
of nuclei. This underlines the importance of algebraic a
proaches, the interacting boson model@36# being the most
popular example. The IBMs andd bosons with angular mo
menta 0 and 2, respectively, have microscopic origin
nucleonic Cooper pairs and they equivalently descr
quanta of collective excitations in an appropriate coordin
representation, allowing thus for a geometric interpretati
In particular, dynamical symmetries of thesd-IBM represent
integrable forms of an anharmonic vibrator@spherical shape
associated with the U~5! dynamical symmetry#, an axisym-
metric rotor@prolate or oblate shapes corresponding to SU~3!
or SU(3) symmetries, respectively#, or a g-soft rotor @both
O~6! andO(6) dynamical symmetries#.

The geometric content of thesd-IBM is derived using
condensate states@10,11,41,42#,

uN,b,g&5
1

AN S s†1b cosgd0
†1

b sin g

A2
@d22

† 1d12
† # D N

u0&,

~5!

whereu0& is the boson vacuum,s† anddm
† create bosons o

te

.
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the respective types (m is the angular-momentum projec
tion!, and N5N!(11b2)N ensures the normalization t
unity. N represents the total boson number, a finite and c
served quantity in the IBM, which forms the most importa
difference from geometric collective models. Coefficientsb
andg are given the same interpretation as those in Eq.~3!,
i.e., deformation parameters in the intrinsic frame. States~5!
are used as trial wave functions for the variational proced
estimating the energy and wave function of the IBM grou
state for a HamiltonianH by minimization of ^H&
5^N,b,guHuN,b,g& with respect tob andg.

To assure appropriate scaling with variableN, the IBM
energy is calculated per one boson,E5^H&/N, and one gets
a general expression

E~b,g!5
Ab21Bb3cos 3g1Cb4

~11b2!2
, ~6!

whereA, B, andC depend on the particular HamiltonianH
under study@43#. Note that Eq.~6! is exactly of form~3!,
with the higher-order terms given by an expansion of
1b2)22. The denominator is important since it makes t
b→` asymptotics ofE finite, equal toC, in agreement with
finite bounds of IBM energy spectra. AlthoughH is the full
Hamiltonian, the resulting energy functional represents
fact a ‘‘potential’’ similar to that in Eq.~3!. This is so since
the condensate states~5! carry zero linear momentum and th
kinetic terms, therefore, do not contribute to^H&. A related
procedure@44# using time-dependent variational princip
with Glauber coherent states yields both kinetic and poten
terms, the latter converging to the condensate value foN
→`. This represents the classical limit of the system,
which the zero-point motion vanishes and the conden
states become exact and orthonormal eigenstates of
Hamiltonian.

The shape-phase analysis based on Eq.~6! is analogous to
that of Eq.~3!. One can identify transitions between sphe
cal and deformed shapes in the same way as before, yiel
the same critical value~4!. The phase coexistence interval
again bounded byA050 from below, but the upper boun
A1 is given by a more complicated condition than befo
since for Eq.~6! it follows from a cubic equation, in contras
to the previous quadratic case. Theg-soft B50 line for A
,0 again represents the first-order phase transition betw
prolate and oblate geometries. In this way the O~6! dynami-
cal symmetry becomes an exact critical-point symmetry
the IBM @31,32#.

Note that while the spherical-deformed nuclear sha
phase transitions, both continuous and discontinuous, h
been discussed in the IBM context already since 1980@10#,
the prolate-oblate transition with all its consequences
mained unrecognized until very recently@24,31–34#. This is
certainly connected with the long-persistent belief that
prolate-oblate transformation within the IBM is only due
an unimportant gauge transformation, induced by a cha
of the relative phase betweens and d bosons@36,45#. This
transformation is a special case of a discrete, parameter s
metry @46,47# that links isospectral pairs of IBM Hamilto
03432
n-
t

e,

n

al

te
he

-
ng

en

f

-
ve

-

e

ge

m-

niansH(lW ) and H(lW 8) corresponding to prolate and obla
deformations through a unitary similarity transformatio
H(lW 8)5U(lW 8,lW ) H(lW )U21(lW 8,lW ). Since this operation
changes the sign ofB in Eq. ~6!, the prolate-oblate transition
b0°2b0 at B50 could be seen just as a mirrorlike sym
metry and not a real phase transition. However, we stress
the energy spectra are not constituents for the pha
transitional behavior, in contrast to the structure of eige
states. Regardless of the parameter symmetry, the pro
oblate isospectral Hamiltonians represent incompat
modes of motion, so that the essential condition in Eq.~2! is
fulfilled. In fact, the prolate-oblate transition can proce
along a pathlW 5lW (t) such that the spectra are not symmet
around the transitional pointtc , but the ground-state wav
function still exhibits the characteristic jump at this point.

It should be pointed out that the IBM phase transitio
can rigorously be studied only in the limit of an infinit
boson numberN, which is completely unrealistic when ap
plied to nuclei. Although the general form~6! is valid for any
finite N, only in the classical limit the condensate trial wa
functions ~5! become exact and the above-discussed jum
of the control parameter actually take place. Nevertheles
has been shown~and will also follow from the present work!
that even in finite-N cases the characteristic signatures
changing structures are observed, despite the fact that
finite-size effects tend to wash out the phase-transitional
havior @20#.

In this context it becomes interesting to compare
above results with those following from an extension of t
condensate variational method by projecting the trial sta
to zero angular momentum@48#. Indeed, although the aver
age projection of the IBM angular momentumL5A10@d†

3d̃# (1) to any direction is zero for states~5!, the average of
L2 does not vanish, which is of course unrealistic for the1

ground state. TheL250 projected method represents bet
approximation of the ground-state behavior for any finiteN.
It leads, however, to the losts of phase transitions in
finite-N cases, since the minimum of the generalized ene
functional~obtained by a numerical calculation! moves con-
tinuously with varyingh and x @26#. For N→`, naturally,
the projected results converge to the present ones, inclu
of course all phase-transitional effects discussed above.
agrees with the general understanding that real critical
haviors can apply only to infinite systems.

C. Semimicroscopic models

As pointed out above, the IBM is believed to represent
approach somewhere in between the purely phenomeno
cal geometric model and a microscopically based ferm
model. It is clear that on the way from microscopic to t
IBM description one must deal with the problem of mappi
the real fermion pairs, which regardless of carrying so
bosonic features still obey restrictions given by the Pa
principle, onto the trues andd bosons of the IBM. Although
this problem—in spite of large amount of effort spent on
up to now—cannot be declared as solved so far, a lot
insight into the microscopic foundations of nuclear bos
6-4
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GROUND-STATE SHAPE PHASE TRANSITIONS IN . . . PHYSICAL REVIEW C68, 034326 ~2003!
models has already been gained@49#. The fermion models
that seem to get closest to the IBM are the Ginocchio mo
@50# and the subsequent fermion dynamical-symmetry mo
~FDSM! @51#. The correspondence between states of th
models and states of the IBM was studied in detail, as we
the mapping of relevant physical fermion operators into
s,d-boson space@49,52#.

In both of the above-mentioned fermion models, the id
@50# of splitting the total single-nucleon angular momentu
into pseudo-orbital and pseudospin components is utiliz
The angular momentum 0 or 2 of nucleonicS and D pairs,
respectively, is given by coupling only the so-called act
components~either the pseudo-orbital or pseudospin one!,
the other~inert! components being coupled to zero. In t
case of the pseudospin active components, the Ginoc
SO~8! model is obtained@50,51#, while the pseudo-orbita
active components lead to the FDSM with the Sp~6! dynami-
cal algebra@51#. Both of these possibilities result in an alg
braic description and make it possible to exploit the gene
ized coherent states@41#

uh&5Rint~h!expS h00S
†1(

m
h2mDm

† 2H.c.D u0&, ~7!

to extract the corresponding geometry@13,14#. Indeed, al-
though generalh[hlm in Eq. ~7! contain 12 real param
eters, the transformationRint(h) to the intrinsic frame
@13,14# ensures that the resulting energy functional^HF&
5^huHFuh& ~whereHF is a fermionic Hamiltonian! depends
just on the Hill-Wheeler coordinatesb andg.

The analysis in the SO~8! case@13# leads tog-soft shapes
while, on the other hand, the Sp~6! FDSM results ing-rigid
quadrupole shapes@14#. This again implies first- or second
order phase transitions—in theg-rigid or soft cases,
respectively—between spherical and deformed shapes.
the fermionic Hamiltonian containing at most two-bod
terms, the energy functional has the general form~3!, allow-
ing for both axially symmetric prolate (b0.0, g050) and
oblate (b0,0, g050) equilibrium solutions. In addition
Pauli blocking effects restrict the available region in t
b3g plane, which under some conditions on the parti
number leads to the onset of triaxiality@14# @Eq. ~3! cannot
be minimized in the whole plane#. This results in additiona
~second-order! phase transitions that were missing in t
simpler geometric and interacting boson models.

The particle number—and not only the interacti
strengths inHF—in fact becomes the principal control pa
rameter for the phase transitions between various shape t
in both the SO~8! and Sp~6! cases. This of course fully con
forms with the shared understanding of the nature of nuc
ground-state shape-phase transitions, since the varying n
ber of nucleons is not expected to produce rapid change
strengths in the microscopic Hamiltonian, so that the part
number alone must be responsible for majority of transitio
effects. It also turns out@13,14# that the transition from de
formed to spherical shapes is related to an abrupt chang
pairing properties, indicating that while the spherical phas
associated with strong pairing correlations, in the deform
phase these correlations become much looser~see also Ref.
03432
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@53#!. This conclusion was recently invoked to interpret r
sults of an extended phase-transitional analysis of the I
with cranking @35#, where the rotation-induced transitio
from spherical to deformed phase closely resembles be
iors observed in systems with competing superconduc
and normal phases.

An interesting feature of the SO~8! model is that the phase
transition between spherical and deformedg-soft shapes is
connected with a special dynamical symmetry of the mod
SO~7!. This appears to be a ‘‘critical dynamical symmetry
characterized byb-soft shapes of the potential well, in com
plete analogy with much later analysis@28# of ‘‘critical-point
symmetries’’ in the framework of the geometric model~see
Sec. II A!. Let us stress that SO~7! is an exact dynamica
symmetry of the Ginocchio model and at the same tim
critical-point symmetry for the spherical-deformedg-soft
transition, which may be compared to the recently disc
ered double role of the exact O~6! dynamical symmetry in
the IBM @31,32# ~the latter, however, being related to th
transition between prolate and oblate shapes, see Sec.!.
Based on the mapping of the SO~8! model onto the IBM@52#
it was shown@54# that the SO~7! critical-point symmetry
corresponds to the U~5! dynamical symmetry of the IBM
with, however, a modified choice of operators~non-
Hermitian! of electromagnetic transitions.

It is clear that a comprehensible discussion of proble
outlined in this section would require much more space th
available in the present paper. The main aim of this revi
was to illustrate the rich variety of aspects that should
integrated in a comprehensible theory of shape-phase tra
tions in nuclei, a theory we still only start developing. In th
rest of this paper we focus on phase-transitional propertie
the interacting boson model.

III. SPECTROSCOPIC SIGNATURES OF SHAPE-PHASE
TRANSITIONS

A. Extended Casten triangle

We use the well-known two-parameter IBM Hamiltonia

H~N,h,x!5hnd2
12h

N
Q~x!•Q~x! ~8!

with the control parameters changing in the rangehP@0,1#

and xP@2A7/2,1A7/2#. Here nd5d†
•d̃ is the d-boson

number operator andQ(x) the quadrupole operator,

Q~x!5d†s1s†d̃1x@d†3d̃# (2). ~9!

As we consider the parametersh andx to be dimensionless
Eq. ~8! needs to be multiplied by an arbitrary factor definin
the actual energy scale. Theh3x parameter plane can b
naturally represented by an extended Casten triangle in
1~b! @31,32# where thex5const coordinate lines are as
sumed to all intersect in theh51 vertex. This vertex corre-
sponds to the U~5! dynamical symmetry, the others to th
SU~3! and SU(3) symmetries, at (h,x)5(0,2A7/2) and
(0,1A7/2), respectively. The O~6! symmetry is located a
h5x50, i.e., in between the SU~3! and SU(3) vertices.
6-5
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Compared with the standard Casten triangle, whose vert
were the standard dynamical symmetries U~5!, SU~3! ~pro-
late!, and O~6!, the extended triangle is doubled to includ
also the oblate shapes.

The above-discussed prolate-oblate parameter symm
@46,47# connects a given point (h,x) with its mirror image
(h,2x). It means that the added half of the triangle conta
Hamiltonians that are isospectral with those in the stand
triangle. Note that we use the consistent-Q formalism, in
which the quadrupole operator~9! in the Hamiltonian~8!
coincides with the quadrupole operator used to determine
strengths of quadrupole transitions and average quadru
moments. In this case, the mirror reflection ofx in the
Hamiltonian produces also the sign change of the quadru
moments associated with individual eigenstates, in ag
ment with the geometric interpretation of the associated
rameter symmetry. The additional parameter symmetry al
the O~6!–U~5! transition, as discussed in Ref.@46#, leads
outside the given parameter range: it would form a leg po
ing out of the plane from the U~5! vertex toO(6), but we do
not consider this transitional line here. In any case, par
etrization~8! does only span a two-dimensional plane in t
six-dimensional parameter space of the general IBM, but
that is extremely rich in structures.

The shape analysis of the Hamiltonian~8! using the
condensate-state method leads to the energy functiona~6!
with coefficients in theN→` limit given by the following
expressions@20,34,43#:

A`~h!55h24, ~10!

B`~h,x!54A2

7
x~12h!, ~11!

C`~h,x!5h2
2

7
x2~12h!. ~12!

This conforms with the standard geometric interpretation
the IBM dynamical symmetries and yields the phase diag
of the Hamiltonian~8!, as schematically shown in Fig. 1~b!:
the phase separatrix between deformed prolate (x,0) and
oblate (x.0) shapes is thex50 line for h,4/5, while the
separatrix between deformed (h,hc) and spherical (h
.hc) shapes is given by

hc5
412x2/7

512x2/7
~13!

for both prolate and oblate shapes andN→`. Note that with
the N-dependent interaction coefficient in Eq.~8!, which en-
sures the appropriate relative scaling of both terms for v
able boson number, finite-N effects in Eq.~13! are given just
by a quickly vanishing additive termO(N21). At the inter-
section of the two above curves of discontinuous phase t
sitions, at (h,x)5(4/5,0), the transitions become contin
ous @34#.

Below we will analyze the behavior of various obser
ables along several transitional paths between limiting
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namical symmetries. Although one can consider also m
general possibilities@20#, the paths will be realized here sim
ply by fixing one of the parameters in the Hamiltonian~8!
and varying the other—see Fig. 1~b!.

Path A: x52A7/2, variable h. The Hamiltonians along
this leg of the Casten triangle interpolate between the SU~3!
and U~5! symmetries and contain no admixtures of t
C2@O(6)# andC2@O(5)# Casimir operators. According to Eq
~13!, the first-order phase transition between prolate a
spherical geometries takes place ath59/1150.818 18 . . .
~for N→`).

Path Ā: x51A7/2, variable h. This path is a mirror
image of path A and represents theSU(3)-U(5) ~oblate-
spherical! transition. We will not separately consider th
path since due to the parameter symmetry all the results
either identical with those for Path A or can be trivially d
duced from them.

Path B: x50, variable h. This is the O~6!-U~5! transi-
tional path corresponding entirely tog-soft shapes. The
Hamiltonians here contain no admixtures of the SU~3! and
SU(3) invariants. The second-order phase transition betw
deformed and spherical shapes is located ath54/550.8,
which is also a triple point of shape phases in the exten
Casten triangle.

Path C: h50, variable x. These Hamiltonians are tran
sitional between the SU~3! and SU(3) dynamical symme-
tries, with the O~6! symmetry in the middle. The O~6! point
is a phase transition between prolate and oblate shapes
the central point of thex↔2x parameter symmetry. I
should be noted that the Hamiltonians along this path—
decomposed into a linear combination of Casimir invaria
corresponding to the standard U~5!, O~6!, O~5!, SU~3!, and
O~3! symmetries—contain nonvanishing components of
U~5! invariants~except, of course, atx50 and2A7/2) but
these can be avoided if theC2@SU(3)# Casimir operator is
included into the decomposition.

For paths A, Ā, and B, the Hamiltonian~8! is apparently
of the linear form~1! with

H052
1

N
Q~x!•Q~x!,

V5nd2H0 ~14!

~and, of course,l[h). For path C, however, the dependen
on x is clearly quadratic. Nevertheless, if only a small inte
val of x is considered, the linearization can be done appro
mately @32#. For instance, near the phase transition atx50
one can neglect the terms withx2 and again obtain Eq.~1!
with

H052
1

N
Q~0!•Q~0!,

V52
2

N
~s†d̃1d†s!•~d†d̃!(2) ~15!

~for l[x).
6-6
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FIG. 2. The ground-state en
ergy per boson@panel~a!# for the
Hamiltonian ~8! with N55 –80,
and the location of the potentia
minimum b0 @panel ~b!# along
path C.
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B. Phase-transitional observables

In this section, we discuss some observables suitable
detecting the phase-transitional behavior and also for lo
ing nuclei near transitions in the extended Casten triangl
should be stressed that many such observables have al
been studied before, mainly for the SU~3!-U~5! transition
~path A! @10,20,21,25–27,30,33#, but also for the O~6!-U~5!
~path B! @10,30,33# and recently for SU~3!-O~6!-SU(3) tran-
sitions~path C! @31,32#. We will now generalize these studie
to the whole extended triangle and investigate the dep
dence on the number of bosons. The way we adopte
systematically study these issues relies on using IBM ca
lations with boson numbers varying from small to large v
ues~up to N580). This makes it possible to single-out o
servables and effects related to phase transitions, deter
their N dependence, and apply these findings in the lowN
limit to study empirical nuclei. Note that the discussion
finite-N effects will continue from various viewpoints also
the forthcoming sections.

To illustrate a typical phase-transitional behavior, let
first consider the Hamiltonian~8! along the prolate-oblate
transitional path C. This transition was discussed rece
both from the theoretical and experimental viewpoin
@31,32#. In Fig. 2~a! we show the absolute energy per bos
of the 01 ground state for 5, 10, 40, and 80 bosons. T
curves for increasingN must converge to that forN→`,
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given by the minimal value of the energy functional in E
~6! with Eqs. ~10!–~12! (h50). At the phase transition,x
50, the ground-state energy makes a kink of which
sharpness increases withN. In the asymptotic limit, the tan-
gent becomes really discontinuous, as follows from the fi
order transitional behavior illustrated in Fig. 2~b! by the flip
of b0. In the present parametrization of the Hamiltonian, t
ground-state energy is symmetric with respect to the tra
tional point due to thex↔2x parameter symmetry. Note
however, that this mirrorlike symmetry could be avoided
without affecting the phase-transitional behavior—if t
Hamiltonian ~8! is extended by another term, for instanc
the SO~3! invariant with ax-dependent weight.

To show that the prolate-oblate transition represents
irreducible transitional class, regardless of the param
symmetry, let us consider the SU~3! wave-function entropy
of the ground state. This quantity is independent of poss
admixtures of the SO~3! invariant. The wave-function en
tropy @55,56#

W0
B52(

i
u^C0u i B&u2lnu^C0u i B&u2 ~16!

measures the fragmentation of the ground-state wave fu
tion uC0& in the eigenbasisB[$u i B&% corresponding to the
given dynamical symmetry, SU~3! in the present case. In Fig
6-7



ia

e
l
ru

e
st
l
th

t

ing
an
e

r
t

-
ed
le
ta

o
th
-

co
lec

o
th
on
, t

on

ural

t,

, in

lly
-
Fig.

ing
o-
an
u-
ey

nd-
in-

ase-
nd-
l

nded

PAVEL CEJNAR, STEFAN HEINZE, AND JAN JOLIE PHYSICAL REVIEW C68, 034326 ~2003!
3 the quantityr 0
SU(3)5(expW0

SU(3)21)/r GOE, as introduced
in Ref. @56#, is shown for path C to demonstrate a nontriv
dependence of the SU~3! entropy onx ~no mirrorlike sym-
metry is observed!. In fact, the denominatorr GOE ensures
that r 0

B'1 if the ground state has a completely random ov
lap with B, while clearlyr 0

B50 for the ground-state identica
with one of the basis vectors. Since Fig. 3 shows an ab
change fromr 0

SU(3)'0 to '0.8 atx'0, it is clear that the
intermediate-x ground state virtually coincides with th
SU~3! ground state forx,0, but it suddenly becomes almo
totally delocalized in the SU~3! eigenbasis at the critica
point. Note that this effect, as discussed later, is due to
mixing of the ground state with the other 01 states, mainly
with its nearest neighbor 02

1 . It should also be pointed ou
that, in the present case, theSU(3) wave-function entropy
would have exactly opposite behavior.

We now turn to characteristic observables indicat
structural changes in nuclei around the shape-phase tr
tions across the whole extended Casten triangle. Still on
the clearest experimental signatures traditionally used
identify such changes is the two-nucleon separation ene
@10,30#. This quantity can be extracted from the absolu
ground-state energies~masses! of neighboring even-even nu
clei and is therefore predictable also from the IBM, provid
one knows how the IBM parameters depend on the nuc
mass number. In Fig. 4 we have plotted the ground-s
energy per boson for the whole triangle forN510 and 80. As
exemplified by theN510 case, the ground-state energy f
lower boson numbers shows a much smoother behavior
the N→` limit, but still the transitional effects can be ex
perimentally detected@30#.

Other signatures of nuclear shape-phase transitions
cern spectra and quantum characteristics of low-lying col
tive states and the associated transition rates@23,25–29,31–
33#. Although these quantities are not literally properties
the ground state, they are intimately connected with
ground-state phase transitional behavior. We will dem
strate here variations of a few selected quantities, namely
ratio of excitation energies for the first excited 41 and 21

states,R4/2, the quadrupole moment of the first excited 21

state,Q(21
1), and a rate of the electric quadrupole transiti

χ
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0.4

0.6

0.8

1

1 0. 5 0 0.5 1

FIG. 3. SU~3! wave-function entropy ratio along path C forN
530.
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between second and first excited 21 states, B(E2;22
1

→21
1). Each of these signatures reveals important struct

information: The value ofR4/2 is 3.33 for SU~3! and
SU(3)-like nuclei, around 2.5 for O~6!-like nuclei, and
around 2 for U~5!-like nuclei. The quadrupole momen
which is directly related to the equilibrium valueb0, allows
to observe the prolate-oblate transition:Q(21

1) is negative
for prolate, positive for oblate, and zero forg-soft nuclei~we
are dealing now with the laboratory quadrupole moment
contrast to the intrinsic one reflected byb0; this explains the
sign inversion!. B(E2;22

1→21
1) is zero in the SU~3! and

SU(3) limits, but nonzero everywhere else; it essentia
measures whether the O~5! symmetry is present. These sig
natures are shown across the whole extended triangle in
5 for N55 ~upper row! and 40~lower row!. The location of
the phase transitions is clearly indicated by sharply vary
observables. TheN dependence shows that for realistic b
son numbers,N'5 –10, the signatures behave smoother th
for higher values, but they still can be used to unambig
ously locate a given nucleus in the transitional region. Th
have been applied in the Hf-Hg mass region@31,32#, related
to the above example withh50.

C. Thermodynamic and Coulomb-gas analogies

We saw in Figs. 2 and 4 that the change of the grou
state energy at the critical points becomes sharper with
creasing boson numbers. A very sensitive probe of the ph
transitional behavior is the second derivatives of the grou
state energy ~per boson! with respect to the contro
parameters:

c~l i !u$l j %
52

]2

]l i
2
E0~lW ! ~17!

E
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N
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ηχ
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FIG. 4. The ground-state energy per boson across the exte
Casten triangle forN510 ~a! and 80~b!.
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FIG. 5. The observablesR4/2, Q(21
1), andB(E2;22

1→21
1) across the extended Casten triangle forN55 @row ~a!# and 40@row ~b!#.
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~where alll j ’s with j Þ i are kept constant!. These are shown
for the three transitional paths—A/A, B, and C—in panels
~a! of Figs. 6, 7, and 8, respectively. In the above-discus
thermodynamic analogy,E0(lW ) is replaced by the equilib
03432
d

rium value of the thermodynamic potential,F0(p,T) ~where
p andT are pressure and temperature!. Its second derivative
with respect to temperature determines the specific hea~or
heat capacity! of the system,c(T)up52T]2F0(p,T)/]T2,
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FIG. 6. The ‘‘specific heat’’ of the ground state for paths A and A¯calculated following four definitions discussed in the text:~a! from the
second derivative of the ground-state energy,c(h) according to Eq.~17!, ~b! from the first derivative of the U~5! wave-function entropy,
c8(h) in Eq. ~18!, ~c! from thermal properties of the randomized IBM,cth(h) in Eq. ~23!, and~d! from the first derivative of the U~5! overlap
entropy,cth8 (h) in Eq. ~26!. In all cases, theh dependence of the ‘‘specific heat’’ is shown for boson numbers from 10 to 40; the asym
limit ~in the full scale shown in the inset! and theN55 dependence~the lowest curve! are given for~a!.
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whereas the second derivative with respect to pressure y
the compressibility,c(p)uT52V21]2F0(p,T)/]p2 @40#. In-
spired by the first of these terms, we will call both
the quantities c(h)ux52]2E0(h,x)/]h2 and c(x)uh
52]2E0(h,x)/]x2 the ‘‘specific heat.’’

It can be seen in panel~a! of Figs. 6–8 that the ‘‘specific
heats’’ derived from the second derivatives of the grou
state energy have maxima in the critical regions. As
pected, the sharpness of these peaks increases with a
creasing boson number, the maximum moving towards
hc value~for lower N, the criticalh is shifted due to finite-N
corrections of the coefficientsA, B, andC, cf. Refs.@20,34#!.
The curve corresponding to the asymptotic limitN→`, as
determined from the energy functional in Eqs.~6! and~10!–
~12!, is also shown for the paths A/A¯and B. It has a singula
behavior for the first-order phase transition on paths A/,̄
see Fig. 6~a! ~also on path C!, while it is only discontinuous
for the second-order phase transition on path B, see Fig. 7~a!.
Clearly, the finite-N curves converge to the asymptotic lim
but even theN540 case is still far away from it, indicating
that the second derivatives considered here are indeed a
powerful magnifying glass.

In the above thermodynamic analogy, the first derivat
of the ground-state energy with respect to the control par
eter determines an analog of entropy@in the thermodynamic
case we haveS52]F0(p,T)/]T]. As follows from the
peaked form of the ‘‘specific heat,’’ the entropy has a stepl
behavior at the phase-transitional point. There is, howe
03432
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another entropic quantity that behaves in a similar way a
could thus be used to determine an alternative ‘‘spec
heat’’ in the present case. It is the wave-function entropy
the ground state in an appropriate dynamical-symmetry b
@20,26,56#. The wave-function entropy is defined by E
~16!, where now the basisB will be the U~5! eigenbasis for
paths A/Āand B, and the SU~3! eigenbasis for path C.@Note
that while path C could be equivalently characterized by
SU(3) entropy, the use of the SU~3! or SU(3) entropies for
path A or Ā, respectively, would be inconvenient since in t
spherical-to-deformed transition the ground state does
flip to the SU~3! form instantly at the phase-transition
point. For the same reason, we do not use the O~6! entropy
along path B.# We can thus define

c8~l i !u$l j %
57

]

]l i
W0

B~lW !, ~18!

where we conveniently redefine the sign (2 for paths A/Ā
and B,1 for C! to obtain similar behaviors as in panel~a! of
Figs. 6–8.@We skip here any coefficient carrying suitab
dimension of the ‘‘specific heat’’ in Eq.~18!.# Indeed, panels
~b! of Figs. 6–8 show the ‘‘heat capacity’’~18! based on the
U~5! or SU~3! wave-function entropies of the ground sta
for the respective paths. In all cases one again observ
sharpening of the phase-transitional peak with increasingN,
6-10
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Because of the nonlinear dependence of
Hamiltonian onx, only the cases analogous t
~a! and ~b! from Fig. 6 are relevant, where~a! is
c(x) according to Eq.~17! and ~b! is c8(x) de-
termined from thex derivative of the SU~3!
wave-function entropy, Eq.~18!.
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which indicates a convergence of the corresponding wa
function entropy curve to its asymptotic steplike form.

If the dependence of the Hamiltonian on the varying co
trol parameter is linear, as is the case for paths A/A¯ and B,
one can look at the phase-transitional behavior also fro
completely different viewpoint. The new interpretation fo
lows from the so-called Coulomb-gas analogy@57,58#: It is
known that energy levels of the Hamiltonian~1! behave as a
linear chain of charged particles on a plane interacting
Coulomb forces, the charges being determined by matrix
ements ofV. The control parameterl plays a role of time, so
that the second derivatived2E0(l)/dl2 ~where E0 is the
ground-state energy! is nothing but a force experienced b
the ‘‘particle’’ corresponding to the ground state—the for
from all the other particles that represent excited levels w
the same spin and parity. In particular, one has@57#

c~l!52(
iÞ0

u^C i~l!uVuC0~l!&u2

Ei~l!2E0~l!
, ~19!

where Ei(l) is the i th energy of the Hamiltonian~1! and
uC i(l)& is the corresponding eigenvector. This express
can be applied toc(h)ux with x5const andh variable, since
the Hamiltonian~8! depends onh linearly, see Eq.~14!, but
also toc(x)uh with h5const andx variable forx close to
zero, where the linearization of the Hamiltonian@Eq. ~15!
generalized tohÞ0] is locally valid.
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The N→` behavior of c(h)ux or c(x)uh for paths
A/Ā –C in panel~a! of Figs. 6–8 indicates that the groun
state gets a ‘‘kick’’ at the phase-transitional points. The for
exhibits either a singularity~for paths A/Āand C! or just a
discontinuity~for path B!, resulting in the respective first- o
second-order phase-transitional behavior. The correspon
‘‘motion’’ or ‘‘ trajectory,’’ as given by the evolution of the
ground-state energy, abruptly changes the direction~cf. Fig.
2!, as in a hard-wall scattering, or just changes a ‘‘rate
changing the direction.’’ Naturally, the prominent role in su
~19!—just because of the denominator’s increase w
distance—has the terms corresponding to the closest le
in particular to the first excited 01 state in our case. Never
theless, more distant states can also bring considerable
tributions if their ‘‘charges,’’ i.e., matrix elements in the nu
merator of Eq.~19!, are large.

The level dynamics is tightly interrelated with the mixin
properties of the eigenstate wave functions. The rate of m
ing of the ground state for the linear Hamiltonian~1! with the
i th excited state at a givenl can be represented by the qua
tity Mi(l)5 limdl→0u^C0(l)uC i(l1dl&)u2/(dl)2 ~as the
numerator converges to zero withdl→0, the ratio yields a
finite value!. Summed over all levels, the total rate of mixin
( iM i(l)[M (l) expresses the ‘‘decay’’ of the intermedia
ground-state wave function under an infinitesimal variat
of l, namely,u^C0(l)uC0(l1dl)&u2'12M (l)(dl)2. It
is given by
6-11
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FIG. 9. Energies of all 01 states along paths A
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M ~l!5(
iÞ0

u^C i~l!uVuC0~l!&u2

@Ei~l!2E0~l!#2
, ~20!

a very similar expression as Eq.~19!, except for the power of
energy denominators. These considerations shed more
on the link between the two definitions of the ‘‘specifi
heat,’’ as discussed above: the rate of change of the gro
state entropy withl @measured by the derivative in Eq.~18!,
i.e., by the ‘‘specific heat’’c8(l)] is typically correlated with
the decay rate ofuC0(l)&, Eq. ~20!, and, therefore, it is
expected to exhibit qualitatively similar behavior asc(l) in
Eq. ~19!. This is what we indeed observe in panels~a! and
~b! of Figs. 6 and 7. However, in spite of the link to Eq.~20!
the quantityc8(l) cannot be exactly expressed in this
similar form. For instance, even rapid variations of the wa
function due to a large mixing rate at a givenl do not have
to necessarily induce substantial changes of the wa
function entropy in some reference bases. Therefore,
similarity of the corresponding curves in panels~a! and~b! of
Figs. 6 and 7 is not perfect. In particular, the order of t
phase transition, as determined from the variation of
ground-state energy, cannot be read out from the chang
the ground-state wave-function entropy around the tra
tional point.
03432
ht

d-

e

e-
e

e
e
of
i-

In Figs. 9, 10, and 11 we show the absolute energy of
01 states forN540 as a function of the varying parameterh

or x for transitional paths A/Ā, B, and C, respectively. Thes
figures thus represent the dynamics of the whole ensemb
the Coulomb-gas particles along the respective transitio
One clearly sees that although the impulse of force at
phase-transitional point affects most the ground-state tra
tory, the other levels are also involved, although in an ext
decreasing with the excitation energy. This agrees with
understanding of the quantum phase transition as a sim
neous avoided crossing of a number of levels, indicated a
by a peak in the distribution of the Hamiltonian’s exception
points @15,16,20#. The correlation between the level dynam
ics and mixing of wave functions implies that such places
multiple avoided crossings host sizeable structural chan
of all the levels involved. The impact of such changes is
reaching and does not affect only the spectroscopy, as
cussed in Sec. III B. For instance, consequences for quan
memory effects were investigated in Ref.@20#.

Level dynamics along the three paths in Figs. 9–11 dif
in one important aspect. While path B involves in its who
length integrable Hamiltonians@due to the underlying O~5!
dynamical symmetry in both the O~6! and U~5! chains#,
paths A/Ā and C are chaotic@59#. As a consequence, th
.
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FIG. 10. The same as in Fig. 9, but for path B
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the
levels along path B~Fig. 10! cross each other for intermed
ate values ofh with no induced repulsive forces~the corre-
sponding charges vanish due to the underlying symme!,
while the levels along paths A/A¯and C can cross only in th
dynamical-symmetry limits~away from the symmetries, th
levels with the same angular momentum and parity do
typically cross since the varying control parameterh or x is
a single real variable!. As an example, consider path C
Fig. 11. The level trajectories for this transition cross at
three dynamical symmetries involved, i.e., SU~3! ~left!, O~6!
~middle!, andSU(3) ~right!, which is due to the degeneracie
connected with the SU~3!, O~6!, or SU(3) missing labels.
However, as we can see in Fig. 11, avoided crossings a
from integrable cases are still very close for large enou
boson numbers.

Let us close this part by the remark that level dynam
along various transitional paths in the extended Casten
angle and its various consequences will be discussed in m
detail in a forthcoming paper.

IV. EIGENSTATE MIXING AND THERMALIZATION

In the preceding section we attempted to attribute to
IBM ground state some appropriate ‘‘thermal’’ properties
specific heat, entropy, etc. Since these quantities are es
tially applicable under statistical circumstances while
case studied represents a deterministic system, the abov
sults just build up ananalogybetween the structural quantu
phase transitions and standard thermodynamics. Let us s
that the actual specific heat of any quantum system at
temperature~which corresponds to the situation studied he
when only the ground state is populated! is identically zero
in terms of thermodynamics. However, in this section
will discuss another framework for studying paramet
dependent quantum systems, such as the IBM, in which
thermal properties appear as a natural ingredient regard
of the actual population of the model eigenstates. The res
obtained in this way will be closely related to those d
scribed above.

The statistical framework for studying a determinis
quantum system with external parameters utilizes the ide
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randomization of the model Hamiltonian via a small stoch
tic component of the control parameters@21,60#. In this way,
for instance,l in Eq. ~1! is subject to an external noise,l
→l1dl, wheredl is a zero-mean random variable with
small dispersion~relative to the range ofl). Usually we
assume the Gaussian distributionw(dl)}exp(2dl2/2s2)
with s25^dl2&!1. Accordingly, the Hamiltonian~1! ac-
quires a random component

H~l!→H~l1dl!5H~l!1dlV, ~21!

where both deterministic and stochastic terms on the rig
hand side are incompatible,@H(l),V#5@H0 ,V#Þ0, the
commutator showing no dependence onl. The latter
condition—as will be discussed below—is important and
fact restricts the use of this scheme only to linear Hamil
nians of form~1!.

With the stochastic component, the ground state of
Hamiltonian~21! is not represented by a vector in the Hilbe
space, but by a statistical ensemble of vectors, a density
erator

uC0~l!&→%0~l!5E w~l8!uC0~l8!&^C0~l8!udl8,

~22!

where we introducedl85l1dl with ^l8&5l. The noise
can be imagined as a random process, thusdl dependent on
time, whose dynamics is very slow~adiabatic! with respect
to the periodic motion associated with the ground state. T
the statistical ensemble in Eq.~22! represents states of th
randomly driven system~in the lowest-energy state! that ac-
tually occur in time with the respective weights.

The density operator~22! involves the ‘‘statistical ele-
ment’’ needed for a fundamentally motivated assignment
thermal properties to a given deterministic system. Nam
@21#, it can be associated with a canonical density opera
% th(l)5exp@2H(l)/T(l)#/Z(l), whereZ is the partition
sum whileH andT stand for a ‘‘fictitious’’ Hamiltonian and
an effective temperature, respectively, both attributed to
density operator~22! via the required equality%0(l)
5% th(l). As shown in Ref.@21#, an inherent ambiguity of
6-13
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the thermal density operator associated with the original d
sity matrix in Eq. ~22! makes it possible to fix the energ
averagê E& and dispersion̂E2&2^E&2 of % th to the respec-
tive values corresponding to%0. Consequently, one obtain
the relation̂ E2&2^E&25cthT

2, wherecth is the specific hea
of the thermally populated system~i.e., the system repre
sented by the HamiltonianH), which is—at the same time—
expressed through%0:

cth~l!5Tr@%0~l!ln2 %0~l!#2Tr2@%0~l!ln %0~l!#.
~23!

We thus obtain yet another definition of the ‘‘specific hea
than those discussed in Sec. III.

The density operator%0(l) and thus also the ‘‘specific
heat’’ ~23! depend on fluctuations of the model control p
rameter, i.e., onw(dl). As this distribution is assumed t
have the Gaussian form, we have one free parametes2

involved in the analysis. The requirement ofs2!1 makes
the perturbative treatment applicable@21,60#, which results
in the leading-order term of the ‘‘specific heat’’ from Eq.~23!
given by the following expression:

cth~l!'~s2 ln2 s2!M ~l!1•••. ~24!

Here,M (l) is the rate of mixing from Eq.~20! and the dots
stand for terms which can be neglected in comparison w
the present term fors2→0. We see that in this limit the
‘‘specific heat’’ has a nonanalytical behavior, so that anyh
small noises2.0 produces a finite value ofcth . Moreover,
the ‘‘specific heat’’ for small fluctuations is approximate
proportional to the total rate of mixing of the given state w
the other states, in a close correspondence with results
cussed in Sec. III. In particular, Eq.~24! ensures a peake
behavior of the ‘‘specific heat’’~23! at phase transitions, a
we explicitly demonstrate below. This all gives the pres
randomization scheme with small-amplitude noise dee
physical sense.

As mentioned above, the randomization in Eq.~21! re-
quires a linear dependence of the original Hamiltonian on
control parameter subject to the noise. In the opposite c
the rate of mixing generated by the noise may unde
‘‘secular’’ variations withl, since a degree of incompatibi
ity of the deterministic and statistical terms in the Ham
tonian changes withl. For instance, the randomization o
the x dependence of the Hamiltonian~8! would imply that
H(x1dx) ~for now we skiph from the notation! is given by
a more complicated form than Eq.~21!, namely byH(x)
1dxH8(x)1dx2H9, where the commutator of the statist
cal termsdx H8(x) and dx2H9 ~their explicit form can be
easily calculated! with the deterministic termH(x) varies
with x. On the other hand, the randomization of theh de-
pendence in Eq.~8! works as explained above, the statistic
term dhV given by Eq.~14!. We therefore present here ca
culations of the ‘‘specific heat’’ according to the randomiz
tion scheme only for paths A/A¯ and B. These are given in
Figs. 6~c! and 7~c! for N510, . . .,40, where the dispersio
of the Gaussian random variabledh was varied with the
boson number ass2510243(10/N)1.2.
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The dependence of the noise amplitudes on N, as em-
ployed in calculations shown in panel~c! of Figs. 6 and 7,
results from an optimal fit of the present specific heatcth(l)
to c(l) from Eq. ~17! for path B. Indeed, the shapes of a
curves for N510, . . . ,40 inpanel ~c! of Fig. 7 are very
similar, in fact practically indistinguishable, from the respe
tive curves in panel~a!. However, because the formulas lea
ing the behavior in both cases are similar but not identic
see Eqs.~24! and ~19!, the unification of the two sets o
curves cannot be quite universal, as exemplified by sh
differences for paths A/Āshown in panels~a! and~c! of Fig.
6, where we used the same scaling ofs2 with N as for path
B.

Another approach to determine a suitable ansatz for
dependence ofs2 on N can be derived from the theory o
parametric decorrelations of wave functions@61#, which
yields predictions for an average overlapu^C i(l)uC i(l
1dl)&u2 in terms of a universally scaled control paramet
It turns out@61# that the overlap depends in a generic way
dl̃5ADdl, whereD is a ‘‘diffusion constant’’ for level en-
ergies. As in our case these energies are globally proporti
to N, thusD}N2, one could argue for thes2}1/N2 scaling
of the size of fluctuations. In this case, results of the ab
calculations with different boson numbers should be com
rable. Indeed, we checked that for this scaling t
N-dependent curves of the ‘‘specific heat’’ according to E
~23! peak with approximately the same maximum value
the phase transition and sharpen asN increases. However, to
show the similarity of forms for different definitions of th
‘‘specific heat’’ we present in Figs. 6~c! and 7~c! the curves
with the empirical scaling, as discussed above.

It is interesting to realize that the present randomizat
scheme offers several alternative possibilities for definitio
of the ‘‘specific heat.’’ Having introduced the density oper
tor in Eq. ~22!, one can, for example, determine von Ne
mann entropyS052Tr@%0 ln %0# and calculate the ‘‘specific
heat’’ from its first derivative with respect to the control p
rameter. This quantity, however, would not have the char
teristic form with a peak locating the phase transition, sin
von Neumann entropy itself is already peaked at the ph
transition. Details, including a discussion of differences b
tweencth andS0, can be found in Ref.@21#.

Nevertheless, the randomization scheme in the IBM c
yields another entropic quantity which has a steplike beh
ior at the phase transition and thus results in a peaked f
of the ‘‘specific heat.’’ This quantity is the overlap entropy
the density-operator eigenbasis with eigenbases of co
niently chosen Hamiltonians@21#. The eigenbasis$uF i(l)&%
of the density operator in Eq.~22! at a givenl is obtained
simply by the diagonalization of%0(l) and has in genera
nothing to do with the Hamiltonian eigenbases$uC i(l8)&% at
any l8, except being, of course, another orthonormal ba
of the wholen-dimensional Hilbert space of states. The ov
lap entropy measures the proximity of the%0 eigenbasis—in
another context also called the ‘‘pointer basis’’—to an ar
trary basisB[$u i B&% through the following formula:

O0
B~l!52

1

n (
j

(
i

u^F j~l!u i B&u2lnu^F j~l!u i B&u2.

~25!
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We see that this is just the average wave-function entrop
all the density-matrix eigenstates in the reference basisB, cf.
Eq. ~16!.

A natural choice forB in Eq. ~25! is either~a! the local
eigenbasis ofH(l), i.e., the energy eigenbasisBH(l)
5$uC i(l)&% at the same value of control parameters
where the basis of%0(l) is taken from~in the IBM casel
stands for bothh andx), or ~b! the Hamiltonian eigenbase
corresponding to the dynamical symmetries of the model.
the latter possibilities, only the U~5! dynamical-symmetry
basisBU(5) turns out interesting. In both of these cases,B
5BH(l) andBU(5), the overlap entropy with the pointer bas
was shown@21# to decrease to zero close to the U~5! vertex
of the Casten triangle, the spherical-deformed phase sep
trix again defining approximately the zone of maxim
change of the corresponding entropies. We must empha
that the other dynamical-symmetry bases turn out totally
relevant for the%0 eigenbasis since their overlap entropies
regardless of whether they are evaluated in a close vicinit
the respective symmetry or anywhere else—were checke
have similar values as expected just for any randomly cho
basis@21#.

Therefore, in analogy with Eq.~18!, we can introduce
another ‘‘specific heat’’

cth8 ~h!ux52
]

]h
O0

B~h,x!, ~26!

whereB5BU(5). It is shown in panel~d! of Figs. 6~for paths
A/Ā ) and 7~path B!, again withN510, . . . ,40~the scaling
of s2 with N remains the same as above!. In the phase-
transitional region,hP(0.7,1), all curves withN.10 ex-
hibit a clear maximum whose height increases with the
son number. Thus the corresponding overlap entropy
sharply decreasing function ofh in this interval, see an ex
ample in Fig. 12~the sharpness increases as approaching
asymptotic regime!. Let us note that the irregularities ob
served particularly on lower-N curves shown in Figs. 6~d!
and 7~d! result from some numerical instabilities connect
with the precise diagonalization of the density matrix%0 for
very small noise.
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An interesting observation, resulting from detailed calc
lations that we do not show here, is that when approach
the U~5! limit along both paths A/Āand B ~and also the
other paths in between!, the %0 eigenbasis at intermediat
values of the control parameter is even closer to the U~5!
basis than to the local energy eigenbasisBH(l) . This is indi-
cated by a faster decrease of the U~5! overlap entropy in
comparison to the overlap entropy withBH(l) . Thus the ‘‘at-
traction’’ of the density-matrix eigenbasis to the U~5! basis
close to this limit seems to be the major effect, while t
decrease of theBH(l) overlap entropy comes only as a co
sequence due to the convergence ofBH(l) to BU(5) . Recall
that, fundamentally, there is no need for such an attrac
and—as pointed out for one special case already in R
@21#—the behavior observed in Figs. 6~d! and 7~d! is indeed
an exceptional property of transitions to the U~5! symmetry.
So far, no explanation was found for this phenomenon,
though it seems to be an analog of the similar behavior of
U~5! wave-function entropy in the IBM without randomiza
tion ~Sec. III!.

V. CONCLUSIONS

Let us summarize the main conclusions of this wo
First, we reviewed and compared—in Sec. II—various wa
of how geometry and shape-phase transitions can be stu
in low-energy nuclear physics. Except the phenomenolog
geometric model~Sec. II A!, the central role in all ap-
proaches is played by the algebraic method and conden
coherent trial states~Secs. II B and II C!. We saw that Eq.~3!
represents a universal result so that the analysis in the fra
work of Landau theory, e.g., Fig. 1~a!, is relevant regardless
of the concrete model used. In particular, phase transiti
between axially symmetric deformed and spherical, and
tween prolate and oblate shapes of the ground state appe
all algebraic models with quadrupole variables, the ax
symmetry resulting from the form of the model Hamiltonia
with at most two-body terms. Triaxiality and the correspon
ing phase transitions can nevertheless occur, as show
Ref. @14# using the FDSM, if the available range in theb
3g plane is restricted by a microscopic analysis.
6-15
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PAVEL CEJNAR, STEFAN HEINZE, AND JAN JOLIE PHYSICAL REVIEW C68, 034326 ~2003!
Second, we demonstrated on several examples that
ably selected quantum signatures of shape-phase trans
make it possible to detect the transition and locate a gi
nucleus in its vicinity even in situations when the sha
phase-transitional behavior is smoothened by fluctuation
finite systems~see Sec. III B!. The calculation of selected
observables was performed across the whole extended
ten triangle of the IBM control parameters for boson nu
bers going up to previously unreachable values, evenN
580, see Figs. 4 and 5.

Third, we introduced and analyzed several quantities
can for nuclear ground-state shape-phase transitions be
sidered analogous to the specific heat in stand
thermodynamics—see Sec. III C. In particular, the seco
derivative of the ground-state energy,c(l) in Eq. ~17!, and
the first derivative of the U~5! ~for paths A/Ā and B! or
SU~3! ~for path C! wave-function entropy,c8(l) in Eq. ~18!,
were shown to play that role in the IBM. These quantit
proved to be extremely sensitive to the phase-transitio
effects and their washing out at finite boson numbers. Eq
tions ~19! and~20! provide the insight needed for fundame
tal understanding of the similarity exhibited by peaked for
of the ‘‘specific heats,’’ see panels~a! and ~b! of Figs. 6–8.
The ‘‘coming together’’ of all the levels at the phas
transitional point, see Figs. 9–11, or ‘‘multiple avoide
crossing’’ in a more sophisticated language, is associa
with the crossover effects on wave functions, as already
cussed before for numerous quantum systems@15–21#.

Finally, in Sec. IV we discussed and utilized the gene
randomization scheme for Hamiltonians with a linear dep
dence on control parameters. Through this scheme, statis
and thermal properties of otherwise deterministic quant
systems can be naturally introduced. Two additional defi
tions of the ‘‘specific heat’’ were considered, namely, the o
derived from the energy dispersion of the randomized s
tem, cth(l) in Eq. ~23!, and the other based on the overl
entropy of the pointer basis with the U~5! basis,cth8 (l) in Eq.
~26!. We saw that mixing properties of energy eigenstates
again of the major importance for outputs of the randomi
tion method—see, e.g., Eq.~24! which leads to very similar
behavior ofcth(h) in panel~c! of Figs. 6 and 7 withc(h)
and c8(h) in panels~a! and ~b!. An important issue in this
respect is the scaling of the range of fluctuationsdl with N.

The quantitiesc8(l), cth(l), andcth8 (l) discussed above
represent a nontrivial generalization of the ‘‘specific he
l

an
,
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c(l) from Eq. ~17!. While c(l) was introduced as a direc
analog of the specific heat in standard thermodynamics,
other definitions are either based on the first derivative of
entropic quantity@c8(l) andcth8 (l)], or represent actual spe
cific heat of a ‘‘thermal equivalent’’ associated with the give
randomized system@cth(l)#. Their comparison on the sam
basis is thus fully justified. The verification of their peake
form at the structural phase transitions, Figs. 6–8, is the
fore the main result of the present work, indicating fa
reaching analogies between thermodynamics and nonsta
cal quantum mechanics. It consistently extends the rec
application@34# of the Landau theory of phase transitions
the analysis of behaviors encoded in the energy functio
~6!. Let us note that while the ‘‘specific heat’’cth(l) in Eq.
~23! is rather universal, as discussed already in Ref.@21#, the
definition of cth8 (l) in Eq. ~26! concerns the IBM only. In
particular, the reason for the decrease of the U~5! overlap
entropy with h, see Fig. 12, and thus also for the peak
form of thecth8 (h) curves remains basically unclear; we ve
fied here that the effect first observed in Ref.@21# concerns
also the other transitional paths to the U~5! symmetry.

Let us stress that in this paper we focused on propertie
the ground state only. The structure of the ground stat
clearly substantial for the main features of all low-ener
collective states. However, the techniques discussed
could equally well be employed also at higher excitatio
either by explicitly focusing on particular excited states,
via introducing a canonical population of the model sta
with finite temperatures. Note that some of these results w
already discussed in previous papers@20,21# and showed that
the phase-transitional behavior persists in a limited part
the IBM spectrum above the ground state.

We believe that structural phase transitions in finite qu
tum systems, such as atomic nuclei, represent important
interesting subject of contemporary many-body physics.
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