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Ground-state shape phase transitions in nuclei: Thermodynamic analogy and finitét effects
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We study quantum phase transitions between spherical, prolate, and oblate nuclear ground-state shapes using
the interactingsd-boson model §d-IBM) and demonstrate the analogy between the IBM regalto results
of any axially symmetric quadrupole collective modahd predictions of the Landau theory of phase transi-
tions in classical thermodynamics. A detailed comparison of the two frameworks is performed exploiting the
concept of “specific heat,” introduced in four alternative ways in the quantum case. All these defifiitions
of them based on spectroscopic features of the ground state, the others on a randomized version of the model
lead to similar peaked forms of the “specific heat” at the point of the quantum phase transition. We analyze the
effect of an increasing boson number on these curves and observe convergence to the singular phase-
transitional behavior in the classical limit. Other observable signatures of the IBM structural phase transitions
are also discussed with the aim to facilitate the location of a particular nucleus in the parameter space
(extended Casten triangleear the transitions.
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[. INTRODUCTION is often referred to as quantum or structural phase transition
[2]. One typically deals with a parameter-dependent quantum
Phase transitions are a strongly discussed subject not ontyamiltonian
for traditional systems of condensed-matter physics, such as
ferromagnetic and ferroelectric materials, solid and liquid H(N)=Ho+AV=(1-MH(0)+AH(1) )
crystals, or superfluid and superconducting mddi2]. In . . - .
nL}/cIear physicF; as well, phgse transitior?s hErE\ve]attract ith A <[0,1] (any scaling coefficient can be absorbed in

rowing attention of both theorists and experimentalists for ), where the limitsH(0) andH(1) represent two incom-
glread;?several decades. P patlble modes of motior,H(0),H(1)]#0. As documented

The most prominent—although not yet expenmentallyby numerous examplg¢40—22, transitions between the lim-
verified—phase transition in this field is the one from had-'tng dynamical modes may have a crossover character, when
ronic nuclear matter to the quark-gluon plasf8 At much the ground-state configuratidiand in a limited extent also

lower, but still high enough energies, nuclear temperatures gf'€ Structure of other stateflips suddenly from one form to

about a few units of MeV, a phase transition similar to thatanother at a certain “critical pointk =\

between liquid and gas has been observed in the muliifrag- Note that the linearity of the dependence in En).is not
mentation of nuclei in heavy-ion collisiorfg]. In only a eally essential for the phase-transitional behavior, although
slightly lower temperature domain, variations of the form ofit considerably simplifies some important aspects of
giant dipole resonances observedjyifray spectra from hot the analysigas we will see below We can, therefore, gen-
rotating nuclei5] indicate changes of the nuclear geometric®'@/iz€ Ed.(1) to nonlinear cases, when the Hamiltonian
shapes$6]. These observations seem to be in agreement with!(\) depends on a set of external parameteks,
microscopic calculations of quadrupole shapes of njy@ei = (N1,M2, ... Af), in a general way, restricted just by the
analyzed in the framework of Landau theory of phase tranincompatibility condition

sitions. By further descending to temperatures less than 1

MeV, another type of phase-transitional behavior is expected [H(X),H(X")]#0 for X#X'. 2
in nuclei, namely, the pairing transition between supercon-
ducting and normal phasé8]. If X varies along a continuous cur¥e=X(t) in the param-

The idea of phase transitions is so appealing that it ieter spacete[0,1], the ground state can change abruptly at
often imported from its homeland, classical thermodynamicssomet=t., in an apparent analogy with the linear case dis-
to other fields of physics. It was in this spirit when Thoulesscussed above.

[9] used this tern(still in quotation marksto describe the Since thermodynamic phase transitions can be both quan-
situation, in which the ground-state wave function suddenlytum and classical, we prefer using the name “structural
changes from one configuration to another under varying inphase transition” for the above-described situatisee, e.g.,
teraction constants in a quantum Hamiltonian. This situatiorRef.[13]). If the structure of only the ground state is looked
for, these transitions correspond to the temperafured.
Whereas thermodynamic quantum phase transitiaith T

*Electronic address: pavel.cejnar@mff.cuni.cz as a control parameteconcern only spectra of the systems
"Electronic address: heinze@ikp.uni-koeln.de subject to changéall observables being inherently contained
*Electronic address: jolie@ikp.uni-koeln.de in partition function$, the structural phase transitions are
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related to the form of energy eigenfunctions, i.e., to the very V(B,y)=AB%>+BpB3cos 3y+Cp*+- - - 3
heart of quantum dynamics. In this sense they are indeed
fundamentally different from thermodynamic phase transi{whereA, B, C, ... are constantsRemind tha{3 andy are

tions. By studying structural transitions in various toy andpolar coordinates of the{? and \2«'?) components of di-
realistic systemg2,9—23, much insight has been gained agonalized tensor of quadrupole variables. To allow for nega-
during the past two decades concerning the essential featurgige values ofg (which will turn important belowwe adopt
of quantum Hamiltonians that drive the systems to exhibithere the convention witlg e (— o, +%) andye[0,).
crossover behaviors. The classical equilibrium configuration is given by the
In nuclear physics, the structural phase transition appeajsosition (3,v) = (B¢, vo) of the global minimum of potential
most commonly in two incarnations: the first concerns theenergy(3). The analysis becomes particularly simple if the
superfluid (paired and normal modes of motion in the higher-order terms can be truncated: In this c&eyust be
nucleus [13,14,12,19 the second its various geometric positive to ensure physical asymptotics of the potential. As
forms[9-14,20,21,23-36In contrast to the previously dis- the y dependence in the truncated E@) allows only for
cussed transitions between these phases in hot rotating nyz=0 or #/3, where the latter case can be equivalently ex-
clei, the present changes are induced by variations of thgressed by the substitutiong—0 and Bg— — B, we set
nuclear many-body Hamiltonian when going from one . =0 [34]. We therefore identify three types of equilibrium
nucleus to another. In this paper, we will only be dealingshapes(i) spherical for3,=0, (ii) prolate axisymmetric for
with the ground-state shape phase transitions, our attentiolgo>o, and(iii ) oblate axisymmetric foBy,<0. These apply
being mostly focused on properties of the interacting bosofgy (i) A>A,, (i) A<A., B<0, and(iii) A<A., B>0,

model (IBM) [36]. . ~ where the “critical” value ofA is
The plan of the paper is as follows: In Sec. Il we review
it ; 2
phase-transitional aspects of the quadrupole geometric B
model, interacting d-boson model, and semimicroscopic Gi- Ac= 4C" (4)

nocchio and fermion dynamical-symmetry models. We be-

lieve that this part will illuminate important recent achieve-  If approachingA, from below, the “spherical minimum”
ments and clarify some frequently asked questions in thig,=0 appears as a local minimum already #=0=A,
field. In Sec. IlI, various spectroscopic signatures of transi<A_, but only atA=A. it becomes degenerated with the
tions between spherical and deformed, and between prolatgleformed minimum” 3,#0 and takes over the role of the
and oblate shapes are studied within the IBM. In particularglobal minimum. On the other hand, if approachifsygfrom

we compare the behavior of the ground-state energy angbove, a deformed local minimum first appears far
wave-function entropy, exploiting an analogy with cIassicaIZQBZ/(ggc)E,/_\l;AC. The rangeAe[Ay,A,] thus corre-
thermodynamics via the concept of “specific heat.” In Sec.sponds to a form of the potential with two minima, the de-
IV, we further extend this analogy by studyititermalprop-  formed minimum being lowetstablé and spherical higher
erties of the IBM with control parameters subject to a Sma”-(quasistabl)a for Ae[Ag.AJ, and vice versa forA
amplitude random noise. The “specific heat,” which natu- e[A.,A;]. This is a typical behavior in a discontinuous
rally appears in this stochastic version of the model, turns ougirst-ordej phase transition, when the equilibrium jumps
to be closely related to that from Sec. Ill. All these ap-from one configuration to another at a certain “critical”
proaches sum up in a picture that exhibits apparent analogiglue of a control parametdthe quotation marks used to
between structural phase transitions in the quantum bosonigoid confusion with critical points such as the Curie tem-
system represented by the IBM and standard phase tranglerature, et¢.and the two relevant phases coexist in a certain
tions in classical thermodynamics. We assume that thesg@terval around. FolB=0, however, all the above values
analogies can be further studied also in other systems witBgincide atA,=A.=A;=0. In this y-soft case, the8,#0

quantum phase transitions. minimum coalesces with th8,=0 minimum atA=A, and
the corresponding transition is continudgscond order By
Il. NUCLEAR SHAPE TRANSITIONS: AN OVERVIEW analyzing equilibrium solutions within the truncated geo-

metrical model, we therefore clearly identify various types of
phase-transitional behaviors; a schematic phase diagram is
A natural habitat for the description of nuclear shapes isshown in Fig. 1a).
the geometric mode[37,38. The geometric Hamiltonian In fact, the above-outlined phenomena are precisely those
must be a scalar and thus depends only on rotational invardescribed within the classical Landau theory of phase transi-
ants constructed from tensorial shape coordinatés and  tions [39,40. An analog of Eq.(3) can be written for any
associated moments(®). Usually, only the quadrupole de- thermodynamic potential, where coefficiems B, C, . ..
formations are taken into accour{,=2, and the Hamil- depend on some external control parametérsrmodynamic
tonian is expanded such that it contains only few lowestvariable$ and 8 represents an order parameter, which char-
order invariants summed up with certain weight coefficientsacterizes the immediate state of the sysi@me now disre-
As the potential energy does not depend on the orientation afard y). The order of a phase transition—according to the
the deformed shape in the laboratory system, it contains, iEhrenfest classificatiofil]—is given by the lowest rank of
the quadrupole case, only the Hill-Wheeler intrinsic vari-the derivative ofV(B,) with respect to the control param-
ablesB andy. With the above restrictions it reads as eters that changes discontinuously at the transitional point.

A. Geometric model
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=0, or B¢<0, yo=0 [this minimum is of course trivially
repeated at 8,y)=(Bq,27/3) and (— By, m/3) due to the
periodicity of the potentidl
Depending on particular values of the constaht8, and
C, the height of the barrier separating two degenerated
minima in the region of spherical-deformed phase coexist-
ence atA=A. can be just few eV, much less than the ground-
state average kinetic energy. Thus the potential may be con-
sidered practically flat in the transitional region. This
recently led lachellg28] to the concept of critical-point
symmetries, which result from replacing ®i(3,y) in the
vicinity of A=A, by an infinite square well ir3. As this
could only be achieved with terms in E() up to infinite
order, the critical symmetries only approximate real eigenso-
u(s) lutions of the collective Hamiltonian. On the other hand, a
close realization of the analytic predictions based on this
11 assumption in some nuclg29] shows that the approxima-
d«\P tion is rather realistic.
N It is evident that fluctuations due to the zero-point motion
(b) in a finite quantum case make realistic shape transitions
n ; smoother. Nevertheless, an abrupt change of the ground-state
structure atA= A, can be observed if the kinetic-energy av-
FIG. 1. (@) The shape-phase diagram of the GM poten{&l erage for the ground state is much less than the depth of the
Phases I, Il, and Il correspond to spherical, prolate, and oblateleformed minimum. Another obstacle on the way to identify
axisymmetric shapes, respectivelfy) The shape-phase diagram phase-transitional behavior in atomic nuclei is the fact that
(extended Casten trianglef the IBM Hamiltonian(8) with the  since real nuclei contain only an integer number of nucleons,
corresponding dynamical symmetries and transitional paths A-C. nature does not allow us to vary the control parameters con-
tinuously in the region where the phase transition occurs.
Note that the Landau theory was for the first time explicitly This leads to discrete changes in the properties of nuclei
applied to nuclear quadrupole shapes in the context of haround the transition point, making an extension of the above
rotating nuclei—see Ref.7], where the above results are concepts to systems with a limited number of constituents of
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already discussed. general importance.
According to the Landau theoifyt0], a continuous phase
transition betweerBy=0 andB,# 0 equilibrium states can B. Interacting boson model

be located in the parameter space only at an intersection of
three or more discontinuous phase transitions, the pha
separating curves in the simplest case forming a “T junc
tion” in the phase diagram. This is exactly what we observ
in Fig. 1(a) since theA=B=0 second-order transition is a

crossing of the spherical-prolatd A, B<0), spherical- ., jar example. The 1B\ andd bosons with angular mo-
oblate A=A., B<0), and prolate-oblateB=0, A<0)  menta 0 and 2, respectively, have microscopic origin in

first-order transitions. Indeed, at the border between prolatg,, jeonic Cooper pairs and they equivalently describe
and o.blate §hape3:O, th? mlnlmumﬁo>0 flips to —Bo_ guanta of collective excitations in an appropriate coordinate
in a discontinuous way, giving rise to the prolate-oblate first g presentation, allowing thus for a geometric interpretation.
order phase transitioj24,31). Let us note that the existence | haticular, dynamical symmetries of tse-IBM represent
of this phase transition and the role of the continuous trans'rntegrable forms of an anharmonic vibrafspherical shape
tion atA= B=0 as a “triple point” of the phase diagram N associated with the (8) dynamical symmetryy an axisym-
Fig. 1(a), in the sense of the Landau theory, was recognizedhetric rotor]prolate or oblate shapes corresponding tdBU

only very recently[ 31,34 . . i
If compared to other first-order phase transitions, theg(;l;(rfg%;‘g;:;ﬁ;czsszemcxgtjnygrsa7 soft rotor [both
prolate-oblate transition has one exceptional feature: it ha The geometric content of thec-IBM is derived using

no finite interval of phase coexistence. When looking at po-
tential (3), as it varieps withB around the transition, ong se(E,)s condensate stat¢s0,11,41,42

that it has a double-minimum foritwith minima atB, and 1 B siny N
— Bo) for anyB. However, we must not forget tha»tlr_1 Ea.  |N,B,y)=—=| s+ Bcosyd}+ [d',+dt,1] |0),
(3) can only be disregarded as far as the global minimum is NI V2

concerned. With thes dependence included, the upper mini- (5)
mum in B turns out to be only a saddle point and the whole

V(B,y) has just one physical minimum, eith@,>0, v,  where|0) is the boson vacuuns' and dL create bosons of

In contrast to the simplicity and universality of the above-
Butlined analysis, there is no “geometry” that could be di-
Tectly extracted from the ultimately microscopic description
€f nuclei. This underlines the importance of algebraic ap-
proaches, the interacting boson mo¢@6] being the most
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the respective typesu( is the angular-momentum projec-
tion), and N=N!(1+ %N ensures the normalization to

unity. N represents the total boson number, a finite and con

served quantity in the IBM, which forms the most important
difference from geometric collective models. Coefficiegts
and y are given the same interpretation as those in (BY.
i.e., deformation parameters in the intrinsic frame. Stéfgs

PHYSICAL REVIEW @8, 034326 (2003

niansH()C) and H(X’) corresponding to prolate and oblate
deformations through a unitary similarity transformation:
H(X")=U(N’,X) H(X)U"}(X’,X). Since this operation
changes the sign @ in Eq. (6), the prolate-oblate transition
Bo— —Bo at B=0 could be seen just as a mirrorlike sym-
metry and not a real phase transition. However, we stress that
the energy spectra are not constituents for the phase-

are used as trial wave functions for the variational procedure,,nsitional behavior, in contrast to the structure of eigen-

estimating the energy and wave function of the IBM groun
state for a HamiltonianH by minimization of (H)
=(N,B,y|H|N,B,y) with respect to3 and y.

To assure appropriate scaling with variae the 1BM
energy is calculated per one bosém; (H)/N, and one gets
a general expression

ApB?+BB3cos3y+CpB*
(1+p%)?

&By)= (6)

whereA, B, andC depend on the particular Hamiltoniadh
under study{43]. Note that Eq.(6) is exactly of form(3),
with the higher-order terms given by an expansion of (1

+ %) 2. The denominator is important since it makes the

B— o asymptotics of finite, equal toC, in agreement with
finite bounds of IBM energy spectra. Althougrhis the full
Hamiltonian, the resulting energy functional represents i
fact a “potential” similar to that in Eq(3). This is so since
the condensate statés) carry zero linear momentum and the
kinetic terms, therefore, do not contribute(td). A related
procedure[44] using time-dependent variational principle
with Glauber coherent states yields both kinetic and potenti
terms, the latter converging to the condensate valueNfor

—oo. This represents the classical limit of the system, in

which the zero-point motion vanishes and the condensahé does not vanish, which is of course unrealistic for the 0

states become exact and orthonormal eigenstates of t
Hamiltonian.
The shape-phase analysis based on(&qs analogous to

states. Regardless of the parameter symmetry, the prolate/
oblate isospectral Hamiltonians represent incompatible
modes of motion, so that the essential condition in @y is
fulfilled. In fact, the prolate-oblate transition can proceed

along a pathfz)f(t) such that the spectra are not symmetric
around the transitional poirtt,, but the ground-state wave
function still exhibits the characteristic jump at this point.

It should be pointed out that the IBM phase transitions
can rigorously be studied only in the limit of an infinite
boson numbeNN, which is completely unrealistic when ap-
plied to nuclei. Although the general for(8) is valid for any
finite N, only in the classical limit the condensate trial wave
functions (5) become exact and the above-discussed jumps
of the control parameter actually take place. Nevertheless, it
has been show(and will also follow from the present work
that even in finiteN cases the characteristic signatures of
changing structures are observed, despite the fact that the

inite-size effects tend to wash out the phase-transitional be-

havior[20].
In this context it becomes interesting to compare the
above results with those following from an extension of the
ondensate variational method by projecting the trial states
o zero angular momentuifd8]. Indeed, although the aver-
age projection of the IBM angular momentum= /10 d*

g{a](” to any direction is zero for stat€5), the average of

ground state. Th&?=0 projected method represents better
approximation of the ground-state behavior for any fimte

that of Eq.(3). One can identify transitions between spheri- !t 1€ads, however, to the losts of phase transitions in the
cal and deformed shapes in the same way as before, yieldirffite-N cases, since the minimum of the generalized energy

the same critical valué4). The phase coexistence interval is
again bounded by,=0 from below, but the upper bound
A, is given by a more complicated condition than before
since for Eq.(6) it follows from a cubic equation, in contrast
to the previous quadratic case. Thesoft B=0 line for A
<0 again represents the first-order phase transition betwe
prolate and oblate geometries. In this way th@)Qlynami-

finctional (obtained by a numerical calculatipmoves con-
tinuously with varying» and y [26]. For N—o, naturally,
the projected results converge to the present ones, including
of course all phase-transitional effects discussed above. This
agrees with the general understanding that real critical be-

dyaviors can apply only to infinite systems.

cal symmetry becomes an exact critical-point symmetry of

the IBM [31,32.
Note that while the spherical-deformed nuclear shape

C. Semimicroscopic models

- As pointed out above, the IBM is believed to represent an

phase transitions, both continuous and discontinuous, hawapproach somewhere in between the purely phenomenologi-

been discussed in the IBM context already since 19&),
the prolate-oblate transition with all its consequences re
mained unrecognized until very recenfB4,31-34. This is

cal geometric model and a microscopically based fermion
model. It is clear that on the way from microscopic to the
IBM description one must deal with the problem of mapping

certainly connected with the long-persistent belief that thehe real fermion pairs, which regardless of carrying some

prolate-oblate transformation within the IBM is only due to

bosonic features still obey restrictions given by the Pauli

an unimportant gauge transformation, induced by a changgrinciple, onto the trus andd bosons of the IBM. Although

of the relative phase betweenand d bosons[36,45. This

this problem—in spite of large amount of effort spent on it

transformation is a special case of a discrete, parameter symp to now—cannot be declared as solved so far, a lot of

metry [46,47] that links isospectral pairs of IBM Hamilto-

insight into the microscopic foundations of nuclear boson
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models has already been gainet®]. The fermion models [53]). This conclusion was recently invoked to interpret re-
that seem to get closest to the IBM are the Ginocchio modesults of an extended phase-transitional analysis of the IBM
[50] and the subsequent fermion dynamical-symmetry modelvith cranking [35], where the rotation-induced transition
(FDSM) [51]. The correspondence between states of thes&om spherical to deformed phase closely resembles behav-
models and states of the IBM was studied in detail, as well afors observed in systems with competing superconducting
the mapping of relevant physical fermion operators into theand normal phases.
s,d-boson spac49,52. An interesting feature of the S8) model is that the phase
In both of the above-mentioned fermion models, the idearansition between spherical and deformgdoft shapes is
[50] of splitting the total single-nucleon angular momentumconnected with a special dynamical symmetry of the model,
into pseudo-orbital and pseudospin components is utilizedSO(7). This appears to be a “critical dynamical symmetry”
The angular momentum 0 or 2 of nucleor8and D pairs, characterized by-soft shapes of the potential well, in com-
respectively, is given by coupling only the so-called activeplete analogy with much later analy$&8] of “critical-point
componentgeither the pseudo-orbital or pseudospin gnes symmetries” in the framework of the geometric modsée
the other(inert) components being coupled to zero. In the Sec. Il A). Let us stress that S©@) is an exact dynamical
case of the pseudospin active components, the Ginocchsymmetry of the Ginocchio model and at the same time a
SQO8) model is obtained50,51], while the pseudo-orbital critical-point symmetry for the spherical-deformegsoft
active components lead to the FDSM with thg@pmlynami-  transition, which may be compared to the recently discov-
cal algebrg51]. Both of these possibilities result in an alge- ered double role of the exact(6€) dynamical symmetry in
braic description and make it possible to exploit the generalthe IBM [31,32 (the latter, however, being related to the
ized coherent statdg 1] transition between prolate and oblate shapes, see Seg. Il B
Based on the mapping of the &) model onto the IBM52]
=R t t_ it was shown[54] that the SQ@7) critical-point symmetry
[7) = Rin n)ex;{ 7005 +% 72,0~ H-C.[10), (D corresponds to the (8) dynamical symmetry of the IBM
with, however, a modified choice of operatorfson-
to extract the corresponding geomef{ry3,14. Indeed, al- Hermitian of electromagnetic transitions.
though generaky=7,, in Eq. (7) contain 12 real param- It is clear that a comprehensible discussion of problems
eters, the transformatioR;,(7) to the intrinsic frame outlined in this section would require much more space than
[13,14] ensures that the resulting energy functiogbl) available in the present paper. The main aim of this review
=(7|Hg 7) (WwhereH is a fermionic Hamiltoniandepends ~Wwas to illustrate the rich variety of aspects that should be
just on the Hill-Wheeler coordinates and . integrated in a comprehensible theory of shape-phase transi-
The analysis in the S@) case13] leads toy-soft shapes tions in nuclei, a theory we still only start developing. In the
while, on the other hand, the & FDSM results iny-rigid  rest of this paper we focus on phase-transitional properties of
quadrupole shapdd4]. This again implies first- or second- the interacting boson model.
order phase transitions—in the-rigid or soft cases,
respectively—between spherical and deformed shapes. Withlll. SPECTROSCOPIC SIGNATURES OF SHAPE-PHASE
the fermionic Hamiltonian containing at most two-body TRANSITIONS
terms, the energy functional has the general @8 allow-

. . . A. Extended Casten triang|
ing for both axially symmetric prolate@,>0, y,=0) and xtended L-asten frangie

oblate (8,<0, y,=0) equilibrium solutions. In addition, We use the well-known two-parameter IBM Hamiltonian
Pauli blocking effects restrict the available region in the 1
BX v plane, which under some conditions on the particle H(N, 7,x) = 7ng— S Q(x)-Q(x) ®)

number leads to the onset of triaxialit¥4] [Eq. (3) cannot

be minimized in the whole plaieThis results in additional ) .

(second-order phase transitions that were missing in the With the control parameters changing in the range[0,1]

simpler geometric and interacting boson models. and x e[ —\7/2+\7/2]. Here ng=d"-d is the d-boson
The particle number—and not only the interaction number operator an@(x) the quadrupole operator,

strengths inH—in fact becomes the principal control pa- -

rameter for the phase transitions between various shape types Q(x)=d"s+s"d+x[d"xd]?. 9

in both the S@) and Sy6) cases. This of course fully con- . ) )

forms with the shared understanding of the nature of nucleafS We consider the parametepsand x to be dimensionless,

ground-state shape-phase transitions, since the varying nurgd: (8) needs to be multiplied by an arbitrary factor defining

ber of nucleons is not expected to produce rapid changes §f€ actual energy scale. Thgx x parameter plane can be

strengths in the microscopic Hamiltonian, so that the particid'aturally represented by an extended Casten triangle in Fig.

number alone must be responsible for majority of transitionafl(t) [31,32 where they=const coordinate lines are as-

effects. It also turns outl3,14 that the transition from de- sumed to all intersect in the= 1 vertex. This vertex corre-

formed to spherical shapes is related to an abrupt change §Ponds to the (5) dynamical symmetry, the others to the

pairing properties, indicating that while the spherical phase i$U(3) and SU(3) symmetries, at,x)=(0,~7/2) and

associated with strong pairing correlations, in the deformed0,+/7/2), respectively. The @) symmetry is located at

phase these correlations become much lo¢see also Ref. 7=x=0, i.e., in between the SB) and SU(3) vertices.
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Compared with the standard Casten triangle, whose verticegamical symmetries. Although one can consider also more
were the standard dynamical symmetrieb)JSU3) (pro-  general possibilitief20], the paths will be realized here sim-
late), and 46), the extended triangle is doubled to include ply by fixing one of the parameters in the Hamiltonied)
also the oblate shapes. and varying the other—see Fig(hl.

The above-discussed prolate-oblate parameter symmetry Path A: y=—+/7/2, variable 5. The Hamiltonians along
[46,47) connects a given pointif, x) with its mirror image this leg of the Casten triangle interpolate between thé35U
(m,— x). It means that the added half of the triangle containsand U5) symmetries and contain no admixtures of the
Hamiltonians that are isospectral with those in the standard,[ O(6)] andC,[ O(5)] Casimir operators. According to Eg.
triangle. Note that we use the consisténtformalism, in  (13), the first-order phase transition between prolate and
which the quadrupole operat@®) in the Hamiltonian(8)  spherical geometries takes place a:9/11=0.818 B . ..
coincides with the quadrupole operator used to determine th@or N— ).

strengths of quadrupole transitions and average quadrupole pain A x=+17/2, variable ». This path is a mirror

moments. In this case, the mirror reflection pfin the image of path A and represents t&J(3)-U(5) (oblate-
Hamiltonian produces also the sign change of the quadrupolg,herica) transition. We will not separately consider this

moments associated with individual eigenstates, in agregsou, gince due to the parameter symmetry all the results are
ment with the geometric interpretation of the associated pagjther identical with those for Path A or can be trivially de-
rameter symmetry. The additional parameter symmetry annauced from them.

the _CI6)—U(5_) transition, as discus§ed in Rd#6], Ieads. Path B: y=0, variable 5. This is the @6)-U(5) transi-
putsnde the given parameter range: it would form a leg points; oA path corresponding entirely tg-soft shapes. The
ing out of the plane from the (3) vertex toO(6), butwe do  Hamiltonians here contain no admixtures of the($Land

no; Co_nSIder this transitional line he_re. In any case, paran SU(3) invariants. The second-order phase transition between
etrization(8) does only span a two-dimensional plane in they

di onal f1h 'IBM. b eformed and spherical shapes is locatedpat4/5=0.8,
six-dimensional parameter space of the genera » DULONGLich is also a triple point of shape phases in the extended
that is extremely rich in structures. Casten triangle

The shape analysis of the HamiltonidB) using the ‘

. Path C: »=0, variable y. These Hamiltonians are tran-
condensate-state method leads to the energy functi@al sitional bet\7/7veen \t/hel S(B)Xand SU(3) d Inamlical svmme-
with coefficients in theN— o limit given by the following y y

: . tries, with the @6) symmetry in the middle. The ®) point
expression$20,34,43: is a phase transition between prolate and oblate shapes and

A.(n)=5n—4, 10 the central point of they< — y parameter symmetry. It

() =57 (19 should be noted that the Hamiltonians along this path—if
> decomposed into a linear combination of Casimir invariants

Bx(ﬂix)=4\/;x(1— 7), (11) corresponding to the standard3), O(6), O(5), SU(3), and

0O(3) symmetries—contain nonvanishing components of the
U(5) invariants(except, of course, g¢=0 and—7/2) but
Co.(m,x)= 17— Exz(l_ 7). (12) f[hese can be avoided if tf(&;[_SU(B)] Casimir operator is
7 included into the decomposition.

. . . . For paths A, A and B, the Hamiltoniar8) is apparently
This conforms with the standard geometric interpretation ofOf the linear form(1) with

the IBM dynamical symmetries and yields the phase diagram

of the Hamiltonian(8), as schematically shown in Fig(H): 1

the phase separatrix between deformed prolgte @) and Ho=— NQ(X)'Q(X)'

oblate (y>0) shapes is thg =0 line for »<4/5, while the

separatrix between deformedp€ 5, and spherical 4 V=ny—H, (14)

> 7. shapes is given by

(and, of course\ = 7). For path C, however, the dependence
on y is clearly quadratic. Nevertheless, if only a small inter-
val of y is considered, the linearization can be done approxi-
mately[32]. For instance, near the phase transitiory atO

for both prolate and oblate shapes @heho. Note that with ~ One can neglect the terms wijff and again obtain Eq1)
the N-dependent interaction coefficient in B&), which en- ~ With
sures the appropriate relative scaling of both terms for vari-
able boson number, finits-effects in Eq.(13) are given just Ho=— EQ(O) .Q(0)
by a quickly vanishing additive terr®(N ). At the inter- N '
section of the two above curves of discontinuous phase tran-
sitions, at (7,x)=(4/5,0), the transitions become continu-
ous[34].
Below we will analyze the behavior of various observ-
ables along several transitional paths between limiting dy¢for A= y).

_A+2)PIT

= 13
5+2x%/7 13

e

V=—§(s*ﬁ+d*s)~(dTa)(2) (15
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B. Phase-transitional observables given by the minimal value of the energy functional in Eq.

In this section, we discuss some observables suitable fcff’) with Egs. (10~(12) (»=0). At the phase transitiony
detecting the phase-transitional behavior and also for locat- 0 the ground-state energy makes a kink of which the
ing nuclei near transitions in the extended Casten triangle. ﬁha;pbnfcsosm'g‘;r?::”e;(;’;’S'ti]olnr;i;Zeojsyerrspftgﬁ'gv\ll?#ér'f:et’hf?i'rst
should be stressed that many such observables have alre . S P . i
been studied before, mainlyyfor the @U(5) transition © der transitional behavior illustrated in Figib2 by the flip
(path A) [10,20,21,25-27,30,33but also for the ©6)-U(5) of By. In the present parametrization of the Hamiltonian, the

PO L round-state energy is symmetric with respect to the transi-
(path B [10,30,33 and recently for SUB)-O(6)-SU(3) tran- gonal point due tc?>t/ha(<—)>/—x parameter sSmmetry Note
sitions(path Q [31,32. We .W'” now gen_erallzg these StUd'eSrpowever that this mirrorlike symmetry could be av.oided,—
Ejo the Who'ﬁ extenSed t;'%ngle and r:nvestlgate th; de%e é{ithout ,aﬁecting the phase-transitional behavior—if the

ence on the number of bosons. The way we adopted t . . :

systematically study these issues relies on using IBM Calcufhzmslg):gl?:v(asr)i; tev)\,(it;]nge(_j dgyeigzt:te\:v;?rm’ for instance,
Iat|0(ns with boso)n m;mberskvarymg frog; small toI large vgl- To show that the prol)a(lte-opblate transit?on. represents an
ues(up toN=80). This makes it possible to single-out ob- . ! .
servables and effects related to phase transitions, determitls%?r(]jrl:gtkilye |g33§'tcl;%r:§i dzlrafﬁé E}??/\r/glveesiur?itig\r? e[:}?rrggeter
their N dependence, and apply these findings in the fow- ' ) o e .
limit to study empirical nuclei. Note that the discussion of g{jg\]i?( t%rr?al;ngfSttr?ée'sglsingvua?irglg '_‘T‘_r:gd\?vg?/g(_jsj?]tczgr?OSible
finite-N effects will continue from various viewpoints also in tropy 55,56 '
the forthcoming sections. Py 159,

To illustrate a typical phase-transitional behavior, let us
first consider the Hamiltoniaii8) along the prolate-oblate WE= =7 [(W,]iB)|2In|(W|i%)[2 (16)
transitional path C. This transition was discussed recently :
both from the theoretical and experimental viewpoints
[31,32. In Fig. 2a) we show the absolute energy per bosonmeasures the fragmentation of the ground-state wave func-
of the 0" ground state for 5, 10, 40, and 80 bosons. Thetion |¥,) in the eigenbasi®={|i®)} corresponding to the
curves for increasind\ must converge to that foN— oo, given dynamical symmetry, SB) in the present case. In Fig.
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FIG. 3. SU3) wave-function entropy ratio along path C fidir < 001'; :
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02 [~
. SU(3) u(3) : 025
3 the quantityr g :(expvv?, —1)/rgoE, as introduced
in Ref.[56], is shown for path C to demonstrate a nontrivial o8
dependence of the §B) entropy ony (no mirrorlike sym- 15 ) 0. R '
metry is observed In fact, the denominatorgoe ensures X n

thatr§~1 if the ground state has a completely random over-
lap with B, while Clearlyr03=0 for the ground-state identical FIG. 4.. The ground-state energy per boson across the extended
with one of the basis vectors. Since Fig. 3 shows an abrugt@sten triangle foN=10(a) and 80(b).

change fromr§”*)~0 to ~0.8 atx~0, itis clear that the petween second and first excited” 2states, B(E2;2;
intermediatey ground state virtually coincides with the _,2*) Each of these signatures reveals important structural
SU(3) ground state fo <0, but it suddenly becomes almost jnformation: The value ofR,, is 3.33 for SW3) and
totally delocalized in the S(3) eigenbasis at the critical Sy(3)-like nuclei, around 2.5 for @)-like nuclei, and
point. Note that this effect, as discussed later, is due to thground 2 for W5)-like nuclei. The quadrupole moment,
mixing of the ground state with the other Gstates, mainly  which is directly related to the equilibrium valyg, allows
with its nearest neighbor,0. It should also be pointed out tg observe the prolate-oblate transitid@(2;) is negative
that, in the present case, tI8J(3) wave-function entropy for prolate, positive for oblate, and zero fersoft nuclei(we
would have exactly opposite behavior. are dealing now with the laboratory quadrupole moment, in
We now turn to characteristic observables indicatingcontrast to the intrinsic one reflected By; this explains the
structural changes in nuclei around the shape-phase transiign inversiop. B(E2;2, —2;) is zero in the S(B) and

tions across the whole extended Casten triangle. Still one a§(3) Jimits, but nonzero everywhere else; it essentially
the clearest experimental signatures traditionally used toneasures whether the(®) symmetry is present. These sig-
identify such changes is the two-nucleon separation energyatures are shown across the whole extended triangle in Fig.
[10,30. This quantity can be extracted from the absolutes for N=5 (upper row and 40(lower row). The location of
ground-state energigmassepof neighboring even-even nu- {he phase transitions is clearly indicated by sharply varying
clei and is therefore predictable also from the IBM, providedgpservables. Thal dependence shows that for realistic bo-
one knows how the IBM parameters depend on the nucleaon numbers~5-10, the signatures behave smoother than
mass number. In Fig. 4 we have plotted the ground-statgy higher values, but they still can be used to unambigu-
energy per boson for the whole triangle fé~ 10 and 80. As  gysly locate a given nucleus in the transitional region. They

exemplified by theN=10 case, the ground-state energy for have been applied in the Hf-Hg mass regjaa,32, related
lower boson numbers shows a much smoother behavior thag the above example withy=0.

the N—<o limit, but still the transitional effects can be ex-

perimentally detectef30]. C. Thermodynamic and Coulomb-gas analogies
Other signatures of nuclear shap_e—'phase transitions con- We saw in Figs. 2 and 4 that the change of the ground-

cern spectra and quantum characteristics of low-lying collec-

e sites and the associted Uansion (2825-2031- S° IO 1 e 8 PO becomes Sharher it 1
33]. Although these quantities are not literally properties of 9 ' y b P

the ground state, they are intimately connected with thé[ransmonal behavior is the se_cond derivatives of the ground-
I . . State energy(per bosom with respect to the control
ground-state phase transitional behavior. We will demon- -
L " arameters:
strate here variations of a few selected quantities, namely, tHE
ratio of excitation energies for the first excited 4and 2" 52
statesR,,, the quadrupole moment of the first excited 2 c(\)[py=— _250()() (17)
! ON;

state,Q(2;), and a rate of the electric quadrupole transition i
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FIG. 5. The observableR,,,, Q(27), andB(E2;2; —2;) across the extended Casten triangleNet 5 [row (a)] and 40[row (b)].

(where all\j’'s with j#i are kept constaptThese are shown rium value of the thermodynamic potentiédg(p,T) (where
for the three transitional paths—A/ B, and C—in panels p andT are pressure and temperaturés second derivative
(@) of Figs. 6, 7, and 8, respectively. In the above-discussewvith respect to temperature determines the specific (weat

thermodynamic analogyy(X) is replaced by the equilib- heat capacity of the systemc(T)|,=—Td*Fo(p,T)/dT?,

| i 100F w .
50+ “ 1
|
. @ | (b)
40 I ‘:" b 80 i . P 4
§ - S N=infinity
ﬁ 30+ z i | ol N=40 : |
| it = :
= N N=30 ,,\
. — 100+ s \“\ _ ”
8 20 50 ;\:31“‘-"“ o N—ZO i |
2 ——— N=10 8
8_ 00T U7 03 UZ U5 05 07 U8 U9 i " ;
= 10 i
0 . J
0 0.2 0.4 0
05F T T ‘

(c) 008 ()

o
i
T

"specific heat"

0.2r
0.1r
0 0.2 0.2

FIG. 6. The “specific heat” of the ground state for paths A andaiculated following four definitions discussed in the téaj:from the
second derivative of the ground-state enerdyy) according to Eq(17), (b) from the first derivative of the (5) wave-function entropy,
¢’ (#) in Eq.(18), (c) from thermal properties of the randomized IB&,( 7) in Eq. (23), and(d) from the first derivative of the (5) overlap

entropy,cg,(7) in Eg. (26). In all cases, the; dependence of the “specific heat” is shown for boson numbers from 10 to 40; the asymptotic

limit (in the full scale shown in the ingeand theN=5 dependencé&he lowest curveare given for(a).

034326-9



PAVEL CEINAR, STEFAN HEINZE, AND JAN JOLIE PHYSICAL REVIEW @8, 034326 (2003

"specific heat"

=}
[

o
Q
@

"specific heat"

o
Q
>

FIG. 7. The same as in Fig. 6, but for path B.

whereas the second derivative with respect to pressure yieldsother entropic quantity that behaves in a similar way and

the compressibilityc(p)|t=—V " 19%Fo(p,T)/dp? [40]. In-  could thus be used to determine an alternative “specific

spired by the first of these terms, we will call both of heat” in the present case. It is the wave-function entropy of

the quantities c(#)|,=— *Eo(m,x)dn?  and c(x)|, the ground state in an appropriate dynamical-symmetry basis

=—92Eo( 1, x)! dx? the “specific heat.” [20,26,58. The wave-function entropy is defined by Eg.
It can be seen in panéh) of Figs. 6—8 that the “specific (16), where now the basi8 will be the U5) eigenbasis for

heats” derived from the second derivatives of the groundpaths A/Aand B, and the S(3) eigenbasis for path ¢Note
state energy have maxima in the critical regions. As exthat while path C could be equivalently characterized by the

pected, the sharpness of these peaks increases with an —§U(3) entropy, the use of the $8) or SU(3) entropies for
creasing boson number, the maximum moving towards theathAorK respectively, would be inconvenient since in the
7. value(for lower N, the critical 5 is shifted due to finiteN P P Y.

) . spherical-to-deformed transition the ground state does not
corrections of the coefficients, B, andC, cf. Refs.[20,34)). ; . i o
The curve corresponding to the asymptotic liNits=, as flip to the SU3) form instantly at the phase-transitional

: . X point. For the same reason, we do not use tl@ ®ntropy
deterrmned from the energy funcﬂonal in E¢®) and(.10)— along path B} We can thus define
(12), is also shown for the paths A/énd B. It has a singular

behavior for the first-order phase transition on paths A/A
see Fig. 6a) (also on path ¢ while it is only discontinuous
for the second-order phase transition on path B, see Fag. 7
Clearly, the finiteN curves converge to the asymptotic limit
but even theN=40 case is still far away from it, indicating _
that the second derivatives considered here are indeed a vemhere we conveniently redefine the sign for paths A/A
powerful magnifying glass. and B,+ for C) to obtain similar behaviors as in parie) of

In the above thermodynamic analogy, the first derivativeFigs. 6—8.[We skip here any coefficient carrying suitable
of the ground-state energy with respect to the control paramdimension of the “specific heat” in Eq18).] Indeed, panels
eter determines an analog of entrdjy the thermodynamic (b) of Figs. 6—8 show the “heat capacity18) based on the
case we haveS=—gFy(p,T)/dT]. As follows from the U(5) or SU3) wave-function entropies of the ground state
peaked form of the “specific heat,” the entropy has a steplikefor the respective paths. In all cases one again observes a
behavior at the phase-transitional point. There is, howevegharpening of the phase-transitional peak with increaling

d -
’ — - B
c ()\i)l{)\j}_"‘a)\iwo()\)a (18)
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fg 01z k- : i wave-function entropy, E¢18).
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which indicates a convergence of the corresponding wave- The N— behavior of c(#)|, or c(x)|, for paths

function entropy curve to its asymptotic steplike form. AIA—C in panel(a) of Figs. 6—8 indicates that the ground

If the dependence of the Hamiltonian on the varying contate gets a “kick” at the phase-transitional points. The force
trol parameter is linear, as is the case for paths A B,  exhibits either a singularityfor paths A/Aand Q or just a
one can look at the phase-transitional behavior also from discontinuity(for path B, resulting in the respective first- or
completely different viewpoint. The new interpretation fol- second-order phase-transitional behavior. The corresponding
lows from the so-called Coulomb-gas anald§y,58: Itis  “motion” or “ trajectory,” as given by the evolution of the
known that energy levels of the Hamiltonigh) behave as a ground-state energy, abruptly changes the direddnFig.
linear chain of charged particles on a plane interacting vie2), as in a hard-wall scattering, or just changes a “rate of
Coulomb forces, the charges being determined by matrix elehanging the direction.” Naturally, the prominent role in sum
ements olV. The control parameter plays a role of time, so  (19—just because of the denominator’s increase with
that the second derivativd?Eq(\)/d\? (where E, is the  distance—has the terms corresponding to the closest levels,
ground-state energyis nothing but a force experienced by in particular to the first excited 0 state in our case. Never-
the “particle” corresponding to the ground state—the forcetheless, more distant states can also bring considerable con-
from all the other particles that represent excited levels withributions if their “charges,” i.e., matrix elements in the nu-

the same spin and parity. In particular, one (&g merator of Eq(19), are large.
) The level dynamics is tightly interrelated with the mixing
con=23 (WM [V[Wo(N))] (19)  Properties of the eigenstate wave functions. The rate of mix-

7o  Ei(N)—Eq(N) ing of the ground state for the linear Hamiltoni@n with the

ith excited state at a givexcan be represented by the quan-
where E;(\) is theith energy of the Hamiltoniaiil) and  tity M;(\)=lim s _o[{(Wo(\)|¥;(X+ S\))|%/(6N)? (as the
|Wi(\)) is the corresponding eigenvector. This expressiomumerator converges to zero with —0, the ratio yields a
can be applied ta(#)|, with y=const andy variable, since finite valug. Summed over all levels, the total rate of mixing
the Hamiltonian(8) depends o linearly, see Eq(14), but  Z;M;(A)=M(\) expresses the “decay” of the intermediate
also toc(x)|,, with »=const andy variable fory close to  ground-state wave function under an infinitesimal variation
zero, where the linearization of the Hamiltonifq. (15)  of N, namely,[{¥o(A\)|Wo(X+ SN))|2=1—M(\)(SN)2. It
generalized top# 0] is locally valid. is given by
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FIG. 9. Energies of all 0 states along paths A

and Afor N=40. The inset shows a zoom into
the low-energy phase-transitional region.

(W00 V[ (M) +In Figs. 9, 10, and 11 we _show the absqlute energy of all
, (20 0™ states foN=40 as a function of the varying parametgr

or x for transitional paths A/AB, and C, respectively. These
figures thus represent the dynamics of the whole ensemble of

energy denominators. These considerations shed more Iigme Coulomb-gas particles along the_ respective transitions.
on the link between the two definitions of the “specific On€ clearly sees that although the impulse of force at the
heat,” as discussed above: the rate of change of the groun@_hase-transnmnal point affect_s most the ground-_state trajec-
state entropy with. [measured by the derivative in EG.8), oy, the other levels are also involved, although in an extent
i.e., by the “specific heatt’(\)] is typically correlated with ~ decreasing with the excitation energy. This agrees with the
the decay rate ofWy(\)), Eq. (20), and, therefore, it is understanding of the quantum phase transition as a simulta-
expected to exhibit qualitatively similar behavior&3\) in neous avoided crossing of a number of levels, indicated also
Eq. (19). This is what we indeed observe in panésand Py a peak in the distribution of the Hamiltonian’s exceptional
(b) of Figs. 6 and 7. However, in spite of the link to H80) points[15,16,2Q. The correlation between the level dynam-
the quantityc’ (\) cannot be exactly expressed in this orics and mixing of wave functions implies that such places of
similar form. For instance, even rapid variations of the wavemultiple avoided crossings host sizeable structural changes
function due to a large mixing rate at a giverdo not have of all Fhe levels involved. The impact of such changes is fqr
to necessarily induce substantial changes of the wave€aching and does not affect only the spectroscopy, as dis-
function entropy in some reference bases. Therefore, theussed in Sec. lll B. For instance, consequences for quantum
similarity of the corresponding curves in pan@sand(b) of ~ memory effects were investigated in REZ0].

Figs. 6 and 7 is not perfect. In particular, the order of the Level dynamics along the three paths in Figs. 9-11 differ
phase transition, as determined from the variation of thdn one important aspect. While path B involves in its whole
ground-state energy, cannot be read out from the change #ingth integrable Hamiltoniangiue to the underlying ()

the ground-state wave-function entropy around the transidynamical symmetry in both the (6) and U5) chaing,
tional point. paths A/Aand C are chaoti¢59]. As a consequence, the

M= e Ean T

a very similar expression as Ed.9), except for the power of

0.1

FIG. 10. The same as in Fig. 9, but for path B.
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FIG. 11. The same as in Fig. 9, but for path C.
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levels along path BFig. 10 cross each other for intermedi- randomization of the model Hamiltonian via a small stochas-
ate values ofp with no induced repulsive forceshe corre-  tic component of the control paramet¢®d,60. In this way,
sponding charges vanish due to the underlying symmetry for instance\ in Eq. (1) is subject to an external noisk,
while the levels along paths A/And C can cross only in the — XA+ 6\, whered\ is a zero-mean random variable with a
dynamical-symmetry limit§away from the symmetries, the small dispersion(relative to the range ok). Usually we
levels with the same angular momentum and parity do nogssume the Gaussian distributiov( 6\) «exp(— 720
typically cross since the varying control parameteor y is ~ With o®=(8\?)<1. Accordingly, the Hamiltoniar(1) ac-

a single real variable As an example, consider path C in quires a random component

Fig. 11. The level trajectories for this transition cross at the

three dynamical symmetries involved, i.e., SW(left), O(6) HM)—=H+N)=H(\)+ AV, (21

(middle), andSU(3) (right), which is due to the degeneracies \yhere hoth deterministic and stochastic terms on the right-
connected with the S@), O(6), or SU(3) missing labels. hand side are incompatibldH(\),V]=[H,V]#0, the
However, as we can see in Fig. 11, avoided crossings awaypmmutator showing no dependence an The latter
from integrable cases are still very close for large enoughongition—as will be discussed below—is important and in

boson numbers. ~ fact restricts the use of this scheme only to linear Hamilto-
Let us close this part by the remark that level dynamicsyians of form(1).

along various transitional paths in the extended Casten tri- \yjith the stochastic component, the ground state of the

angle and its various consequences will be discussed in mofgamiltonian(21) is not represented by a vector in the Hilbert

detail in a forthcoming paper. space, but by a statistical ensemble of vectors, a density op-
erator

IV. EIGENSTATE MIXING AND THERMALIZATION

In the preceding section we attempted to attribute to the |‘I'o()\)>—>90()\):f WA )[Wo(N"))(Wo(N")|dN',
IBM ground state some appropriate “thermal” properties— (22)
specific heat, entropy, etc. Since these quantities are essen-
tially applicable under statistical circumstances while thewhere we introduced’=X\+ N\ with (A')=\. The noise
case studied represents a deterministic system, the above @&n be imagined as a random process, Huslependent on
sults just build up amnalogybetween the structural quantum time, whose dynamics is very slo@@diabati¢ with respect
phase transitions and standard thermodynamics. Let us strefssthe periodic motion associated with the ground state. Then
that the actual specific heat of any quantum system at zerhe statistical ensemble in E(R2) represents states of the
temperaturéwhich corresponds to the situation studied hererandomly driven systertin the lowest-energy stat¢hat ac-
when only the ground state is populatésl identically zero tually occur in time with the respective weights.
in terms of thermodynamics. However, in this section we The density operatof22) involves the “statistical ele-
will discuss another framework for studying parameter-ment” needed for a fundamentally motivated assignment of
dependent quantum systems, such as the IBM, in which théhermal properties to a given deterministic system. Namely
thermal properties appear as a natural ingredient regardle§21], it can be associated with a canonical density operator
of the actual population of the model eigenstates. The result@(N) =exd —H(N)/T(N)1/Z(N), whereZ is the partition
obtained in this way will be closely related to those de-sum while?{ andT stand for a “fictitious” Hamiltonian and
scribed above. an effective temperature, respectively, both attributed to the

The statistical framework for studying a deterministic density operator(22) via the required equalityp(\)
guantum system with external parameters utilizes the idea of p,(\). As shown in Ref[21], an inherent ambiguity of
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the thermal density operator associated with the original den- The dependence of the noise amplitugieon N, as em-
sity matrix in Eq.(22) makes it possible to fix the energy ployed in calculations shown in pang) of Figs. 6 and 7,
average E) and dispersiofE2)—(E)? of o, to the respec- results from an optimal fit of the present specific hegt\)
tive values corresponding t@,. Consequently, one obtains to ¢(\) from Eq. (17) for path B. Indeed, the shapes of all
the relation{E2)— (E)?=c,,,T?, wherecy, is the specific heat curves forN=10, ...,40 inpanel (c) of Fig. 7 are very
of the thermally populated systefie., the system repre- Similar, in fact practically indistinguishable, from the respec-
sented by the Hamiltoniaf), which is—at the same time— five curves in panefa). However, because the formulas lead-

expressed throuab a: ing the behavior in both cases are similar but not identical,
P 9Bo see EQs.(24) and (19)., the .unification of the two sets of
cr(N) =T 2o(M)INZ 00(M) 1= Tr2[ 26(M)In @6(N)]. curves cannot be quite universal, as exemplified by shape

(23 differences for paths A/Ahown in panelga) and(c) of Fig.
6, where we used the same scalingoéfwith N as for path
We thus obtain yet another definition of the “specific heat” B.
than those discussed in Sec. IIl. Another approach to determine a suitable ansatz for the
The density operatopo(\) and thus also the “specific dependence of* on N can be derived from the theory of
heat” (23) depend on fluctuations of the model control pa-Parametric decorrelations of wave functiofl], which
rameter, i.e., ow(S\). As this distribution is assumed to Yi€lds predictions for an average overlap¥;(\)|W;(x

2 - .
have the Gaussian form, we have one free parameter + 6\))|# in terms of a universally scaled control parameter.

involved in the analysis. The requirement ®f<1 makes lt_}ums outf61] that the overlap depends in a generic way on

the perturbative treatment applicali21,60, which results oA =D\, whereD is a “diffusion constant” for level en-
in the leading-order term of the “specific heat” from E§3)  €rgies. As in our case these energies are globally proportional

given by the following expression: to N, thusD«N?, one could argue for the®>=1/N? scaling
of the size of fluctuations. In this case, results of the above
cr(M)=(02 12 GD)M(N)+ - - - (24 calculations with different boson numbers should be compa-

rable. Indeed, we checked that for this scaling the
N-dependent curves of the “specific heat” according to Eq.
. . . . (23) peak with approximately the same maximum value at
stand for terms which can be neglected in comparison WItlﬁhe phase transition and sharper\asicreases. However, to

Ehe pfe.se”t t?rm for°—0. W‘? see that. in this limit the show the similarity of forms for different definitions of the
specific heat” has a nonanalytical behavior, so that anyhovvhspechciC heat” we present in Figs.(6) and 7c) the curves

- 2 . .
small noises">0 produces a finite value @k,. Moreover, i the empirical scaling, as discussed above.
the “specific heat” for small fluctuations is approximately ¢ is jnteresting to realize that the present randomization
proportional to the total rate of mixing of the given state with scheme offers several alternative possibilities for definitions

the othe_r states, in a clos_e correspondence with results digs e sspecific heat.” Having introduced the density opera-
cussed in Sec. lll. In particular, E¢24) ensures a peaked ., in Eq. (22), one can, for example, determine von Neu-

behavio_r pf the “specific heat(23) at_phase.transitions, as mann entropyS,= — Tr[ 0, In 4] and calculate the “specific
we explicitly demonstrate below. This all gives the preseniyeqe from ts first derivative with respect to the control pa-
randomization scheme with small-amplitude noise deepefymeter. This quantity, however, would not have the charac-
physical sense. teristic form with a peak locating the phase transition, since

As mentioned above, the randomization in BBl re-  \on Neumann entropy itself is already peaked at the phase
quires a linear dependence of the original Hamiltonian on thgasition. Details, including a discussion of differences be-
control parameter subject to the noise. In the opposite CaSEyeenc,, andS,, can be found in Ref21]

the rate of mixing generated by the noise may undergo  eyertheless, the randomization scheme in the IBM case
‘secular” variations with), since a degree of incompatibil- ;0145 another entropic quantity which has a steplike behav-
ity of the deterministic and statistical terms in the Hamil-{5 o the phase transition and thus results in a peaked form
tonian changes witl. For instance, the randomization of ¢ i «specific heat.” This quantity is the overlap entropy of

the x dependence of the HamiltoniaB) would imply that o gensity-operator eigenbasis with eigenbases of conve-

H(x+ 6x) (for now we skipz from the notatiohis given by piently chosen Hamiltonian@1]. The eigenbasi§|®;(\))}

a more compllczat(,e’d form than E@1), namely byH(X) o the density operator in Eq22) at a given\ is obtained
+0oxH (X)+5{( H", wherez tr/‘,e commutator of the stalisti- gjmply by the diagonalization abo(\) and has in general
cal termsdy H'(x) and 5x“H" (their explicit form can be  4hing to do with the Hamiltonian eigenbagé®;(A'))} at
easily calculatedwith the deterministic termH(x) varies 5y ) 7 except being, of course, another orthonormal basis
with x. On the other hand, the randomization of thede- . the wholen-dimensional Hilbert space of states. The over-
pendence in Eq8) works as explained above, the statistical lap entropy measures the proximity of thg eigenbasis—in
term 67V given Py Eq.(14). Wf therefore present here cal- 4ngther context also called the “pointer basis’—to an arbi-
culations of the “specific heat” according to the rand0m|za-trary basisB={[i%)} through the following formula:

tion scheme only for paths A/&and B. These are given in L

Figs. @c) and 7c) for N=10, . . .,40, where the dispersion Biyy—_ — _ B2 _ B2

of the Gaussian random variabl®; was varied with the Oo(M) n 2 2. (@ V(@ OfFH*

boson number asg?=10"4x (10N)*2 (25)

Here,M(\) is the rate of mixing from Eq(20) and the dots
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We see that this is just the average wave-function entropy of An interesting observation, resulting from detailed calcu-
all the density-matrix eigenstates in the reference basi. lations that we do not show here, is that when approaching

Eq. (16). the U5) limit along both paths A/Aand B (and also the

A natural choice for3 in Eq. (25) is either(a) the local  other paths in betwegnthe g, eigenbasis at intermediate
eigenbasis ofH(\), i.e., the energy eigenbasiBy) values of the control parameter is even closer to tli) U
={|¥i(\))} at the same value of control parameters aspasis than to the local energy eigenbasig,, . This is indi-
where the basis 0fo(\) is taken from(in the IBM case\  cated by a faster decrease of thé5Uoverlap entropy in
stands for bothy andx), or (b) the Hamiltonian eigenbases comparison to the overlap entropy wify,, . Thus the “at-
corresponding to the dynamical symmetries of the model. Ofraction” of the density-matrix eigenbasis to thé3) basis
the latter possibilities, only the () dynamical-symmetry close to this limit seems to be the major effect, while the
basis Bys) turns out interesting. In both of these casBs, decrease of thé, (., overlap entropy comes only as a con-
=Byn) andBys), the overlap entropy with the pointer basis sequence due to the convergenceBpf,, to By . Recall
was showr[21] to decrease to zero close to theSlvertex  that, fundamentally, there is no need for such an attraction
of the Casten triangle, the spherical-deformed phase separand—as pointed out for one special case already in Ref.
trix again defining approximately the zone of maximal[21]—the behavior observed in Figs(d and 7d) is indeed
change of the corresponding entropies. We must emphasizg, exceptional property of transitions to thé&SJsymmetry.
that the other dynamical-symmetry bases turn out totally irSo far, no explanation was found for this phenomenon, al-
relevant for theg; eigenbasis since their overlap entropies—though it seems to be an analog of the similar behavior of the
regardless of whether they are evaluated in a close vicinity tQJ(5) wave-function entropy in the IBM without randomiza-
the respective symmetry or anywhere else—were checked ton (Sec. 1.
have similar values as expected just for any randomly chosen
basis[21].

Therefore, in analogy with Eg(18), we can introduce V. CONCLUSIONS

another “specific heat” ) _ ) _
Let us summarize the main conclusions of this work:

P First, we reviewed and compared—in Sec. ll—various ways
ci( |, =— a—OOB( 7,X), (26)  of how geometry and shape-phase transitions can be studied
Y in low-energy nuclear physics. Except the phenomenological
) ) _ geometric model(Sec. Il A), the central role in all ap-
whereB=Bys). Itis shown in paneld) of Figs. 6(for paths  proaches is played by the algebraic method and condensate/
A/A) and 7(path B), again withN=10, . .. ,40(the scaling coherent trial stateiSecs. Il B and Il §. We saw that Eq(3)
of o with N remains the same as abgvén the phase- represents a universal result so that the analysis in the frame-
transitional region,ne (0.7,1), all curves withN>10 ex-  work of Landau theory, e.g., Fig(d), is relevant regardless
hibit a clear maximum whose height increases with the boef the concrete model used. In particular, phase transitions
son number. Thus the corresponding overlap entropy is hetween axially symmetric deformed and spherical, and be-
sharply decreasing function of in this interval, see an ex- tween prolate and oblate shapes of the ground state appear in
ample in Fig. 12the sharpness increases as approaching thall algebraic models with quadrupole variables, the axial
asymptotic regime Let us note that the irregularities ob- symmetry resulting from the form of the model Hamiltonian
served particularly on lowex curves shown in Figs.(6)  with at most two-body terms. Triaxiality and the correspond-
and 7d) result from some numerical instabilities connecteding phase transitions can nevertheless occur, as shown in
with the precise diagonalization of the density matixfor  Ref. [14] using the FDSM, if the available range in tie
very small noise. X y plane is restricted by a microscopic analysis.
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Second, we demonstrated on several examples that suit{\) from Eq. (17). While c(\) was introduced as a direct
ably selected quantum signatures of shape-phase transitioasalog of the specific heat in standard thermodynamics, the
make it possible to detect the transition and locate a givewther definitions are either based on the first derivative of an
nucleus in its vicinity even in situations when the sharpentropic quantityc’(\) andc,(\)], or represent actual spe-
phase-transitional behavior is smoothened by fluctuations igific heat of a “thermal equivalent” associated with the given
finite systems(see Sec. Il B. The calculation of selected randomized systerficy,(A)]. Their comparison on the same
observables was performed across the whole extended Cdgasis is thus fully justified. The verification of their peaked
ten triangle of the IBM control parameters for boson num-form at the structural phase transitions, Figs. 6-8, is there-
bers going up to previously unreachable values, elen fore the main result of the present work, indicating far-
=80, see Figs. 4 and 5. reaching analogies between thermodynamics and nonstatisti-

Third, we introduced and analyzed several quantities thagal quantum mechanics. It consistently extends the recent
can for nuclear ground-state shape-phase transitions be coapplication[34] of the Landau theory of phase transitions in
sidered analogous to the specific heat in standarthe analysis of behaviors encoded in the energy functional
thermodynamics—see Sec. Il C. In particular, the second6). Let us note that while the “specific heat},(\) in Eq.
derivative of the ground-state energy\) in Eq. (17), and  (23) is rather universal, as discussed already in Rz], the
the first derivative of the (5) (for paths A/Aand B or  definition of c{(\) in Eq. (26) concerns the IBM only. In
SU(3) (for path Q wave-function entropy;’(\) in Eq.(18),  particular, the reason for the decrease of th&)lWverlap
were shown to play that role in the IBM. These quantitiesentropy with », see Fig. 12, and thus also for the peaked
proved to be extremely sensitive to the phase-transitiondborm of thec,(#) curves remains basically unclear; we veri-
effects and their washing out at finite boson numbers. Equéfied here that the effect first observed in Rgfl] concerns
tions (19) and(20) provide the insight needed for fundamen- also the other transitional paths to théSsymmetry.
tal understanding of the similarity exhibited by peaked forms Let us stress that in this paper we focused on properties of
of the “specific heats,” see pane(s) and (b) of Figs. 6—-8. the ground state only. The structure of the ground state is
The “coming together” of all the levels at the phase- clearly substantial for the main features of all low-energy
transitional point, see Figs. 9-11, or “multiple avoided collective states. However, the techniques discussed here
crossing” in a more sophisticated language, is associatedould equally well be employed also at higher excitations,
with the crossover effects on wave functions, as already diseither by explicitly focusing on particular excited states, or
cussed before for numerous quantum systghss-21]. via introducing a canonical population of the model states

Finally, in Sec. IV we discussed and utilized the generalwith finite temperatures. Note that some of these results were
randomization scheme for Hamiltonians with a linear depenalready discussed in previous pap?8,21] and showed that
dence on control parameters. Through this scheme, statisticéile phase-transitional behavior persists in a limited part of
and thermal properties of otherwise deterministic quantunthe IBM spectrum above the ground state.
systems can be naturally introduced. Two additional defini- We believe that structural phase transitions in finite quan-
tions of the “specific heat” were considered, namely, the onetum systems, such as atomic nuclei, represent important and
derived from the energy dispersion of the randomized sysinteresting subject of contemporary many-body physics.
tem, ci,(N) in Eqg. (23), and the other based on the overlap
entropy of the pointer basis with the®) basisc,(\) in Eq.

(26). We saw that mixing properties of energy eigenstates are
again of the major importance for outputs of the randomiza- The authors thank R. Bijker, R.F. Casten, F. lachello, A.
tion method—see, e.g., Eq4) which leads to very similar  Linnemann, A. Schiller, P. Strasky, P. von Brentano, V.
behavior ofcy,(7) in panel(c) of Figs. 6 and 7 withc(7)  Werner, and V. Zelevinsky for illuminating discussions. The
andc’(#) in panels(a) and (b). An important issue in this work was supported by the DFG under Grant No. 436 TSE
respect is the scaling of the range of fluctuatiéhswith N. 17/04/02 and by the GAR under Grant No. 202/02/0939.

The quantitiex’ (\), cy(N), andcy(N) discussed above P.C. acknowledges the University of Cologne for the hospi-
represent a nontrivial generalization of the “specific heat”tality and excellent working environment.
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