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The Woods-Saxofiws) basis is suggested to replace the widely used harmonic oscillator basis for solving
the relativistic mean-field theory in order to generalize it to study exotic nuclei. As an example, the relativistic
Hartree theory is solved for spherical nuclei in a Woods-Saxon basis obtained by solving either tliin§ehro
equation or the Dirac equatidifabeled as SRHSWS and SRHDWS, respectively, and SRHWS foj.Hath
SRHDWS, the negative energy states in the Dirac sea must be properly included. The WS basis in SRHDWS
could be smaller than that in SRHSWS, which will simplify the deformed problem. The results from SRHWS
are compared in detail with those from solving the spherical relativistic Hartree theory in the harmonic
oscillator basi¥SRHHO and those in the coordinate spa@&RHR. All of these approaches give identical
nuclear properties such as total binding energies and root mean square radii for stable nuclei. For exotic nuclei,
e.g., ’Ca, SRHWS satisfactorily reproduces the neutron density distribution from SRHR, while SRHHO fails.

It is shown that the Woods-Saxon basis can be extended to more complicated situations for exotic nuclei where
both deformation and pairing have to be taken into account.
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[. INTRODUCTION of the corresponding equations are transformed into a matrix
diagonalization problem which can be easily dealt with.

The existence of an average field in an atomic nucleus However, due to the incorrect asymptotic behavior of the
revealed by the exceptional role of nuclear magic numberslO wave functions, the expansion in a localized HO basis is
provides the foundation of the nuclear shell model and varinot appropriate for the description of drip line nudléi-8],
ous mean-field approachg$s—3]. This average field is be- which display many interesting features because of the ex-
lieved to be approximated most closely by a Woods-Saxortremely weakly binding properties; that is, the coupling be-
(WS) potential[4], either by analyzing the radial dependencetween bound states and the continuum due to pairing corre-
of the nuclear force or by deriving it from a microscopic lations, the large spatial density distribution or possible
two-body force. modifications of shell structure, etc. One must improve the

Since eigenfunctions for the WS potential cannot be giverasymptotic behavior of HO wave functions, e.g., by perform-
analytically, as good approximations for stable nuclei, oneng a local scaling transformatidi9].
often adopts the harmonic oscillatdO) potential in shell A proper representation for solving the HFB or RHB
model calculations for both sphericél] and deformed nu- equations for drip line nuclei is in the coordinate space
clei [5] or the square well. The HO eigenfunctions also often[7,10—-13, where wave functions are approximated on a spa-
serve as a complete basis in solving equations in both nortial lattice and the continuum is discretized by suitably large
relativistic and relativistic mean-field approximations such asox boundary conditions. The HFB method solved Bpace
the Skyrme Hartree-FockSHF), Hartree-Fock-Bogoliubov can take into account all the mean-field effects of the cou-
(HFB), relativistic Hartree(RH), and relativistic Hartree- pling to the continuum fully[6,7,10,13. Nevertheless for
Bogoliubov (RHB) theories. In these approaches, solutionsdeformed nuclei, working i space becomes much more

difficult and numerically very sophisticat¢@]. Particularly,
it becomes very time consuming when pairing correlations
*Electronic address: sgzhou@mpi-hd.mpg.de; http://are included. Therefore, much effort is made towards a more

jcnp.pku.edu.cntsgzhou efficient solution of the HFB or RHB equations, e.g., using
TElectronic address: mengj@pku.edu.cn natural orbitals[14] or working on basis-spline Galerkin
*Electronic address: ring@physik.tu-muenchen.de lattices[15,16].
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Areconciler between the HO basis angipace may be the —(1—73)
WS basis becausg) the WS potential represents the nuclear —ey; TA% ; 1)
average field more suitably than the HO potential &ndin
principle, there are no localization restrictions on the WSwhere the summation convention is used and the summation
potential. Although analytical wave functions cannot begver i runs over all nucleonsx= yEx,=v,x*, M the
given for the WS potential, one may easily find numericalnucleon mass, ana, , g,, m,, g,,, m,, g, are the masses
solutions for a spherical WS potential irspace by virtue of and coupling constants of the respective mesons. Isovector
various effective methods of solving ordinary differential quantities are indicated by over arrows. The nonlinear self-

equationg 17]. One can still use a large box boundary con-coupling for the scalar mesons is given [34]
dition to discretize the continuum. These WS wave functions

can thus be used as a complete basis for spherical or de-
formed systems, and one finally comes back to the familiar
matrix diagonalization problem.

In the present work, we restrict the application of thisand field tensors for the vector mesons and the photon fields
method to nuclei with spherical symmetry, which largely fa-are defined as
cilitates the discussion of basic principles and allows one to
present illustrations for the radial dependence of all relevant Quy=0,0,= 0,0,
physical quantities such as density distributions. We combine - - - - -
this approach with the relativistic Hartree thetyg], which Ruv=0.py= 00— 9p(ppXp),
provides a framework for describing the nuclear many body F o —o0 A —aA 3)
problem as a relativistic system of baryons and mesons and, pyo Tpttv T
together with its extensions with deformation and/or pairing  The classical variation principle gives equations of mo-
correlations included, has been successfully applied to thgon for the nucleon, mesons, and the photon. As in many
studies of nuclear matter and properties of finite nucleipppiications, we study the ground state properties of nuclei
throughout the periodic table9,20. with time reversal symmetry; thus, the nucleon spinors are

‘The paper is organized as follows. In Sec. Il, we give ahe eigenvectors of the stationary Dirac equation
brief reminder of the formalism of the relativistic Hartree

1
U(a’)zim(2,0'2+ %0’3+ %0'4, 2

theory. The numerical details of solving it in the WS basis [@-p+V(r)+B(M+S(r))]ui(r)=€;(r), 4)
are given in Sec. lll. In Sec. IV, we present our results and ) )
compare them to those obtained in the HO basis and in and equations of motion for mesons and the photon are
space. We also discuss the contribution from negative energy A+ _
states in the Dirac sea in the same section. Finally, the work [=A+d,U(0)]o(r) 9ops(r),
is summarized in Sec. V. o _ (—A+mf,)w°(r)=gwpv(r),
Throughout the paper, the relativistic Hartree theories
solved inr space, in the; ‘I‘—IO baS|s,,, and in the WS" basis are (—A+mi)p°(r)=gpp3(r),
abbreviated as “SRHR,” “SRHHO,” and “SRHWS,” where
the first “S” represents “spherical.” We use “SWS” and —AAO(r)zepp(r), (5)

“DWS” to distinguish the WS basis which is obtained from
solving the Schrdinger equation or the Dirac equation with where w® and A° are timelike components of the vector
initial WS potentials, respectively. Thus we have SRHSWSand the photon fields ane® is the three-component of the
and SRHDWS theories. timelike component of the isovector vectermeson. Equa-
tions (4) and(5) are coupled to each other by the vector and
scalar potentials
Il. BASIC FORMALISM OF THE RELATIVISTIC

HARTREE THEORY (1-
V(1) =g,0°(N) +9,73p%(1) +e——5—A),

The starting point of the relativistic Hartree theory is a

Lagrangian density where nucleons are described as Dirac = 6
. e . S(r)=g,0(r), (6)
spinors which interact via the exchange of several mesons

(o, w, andp) and the photoi18-2Q, and various densities

A
_ 1 _ po(N) =2, Yi(N (1),
ﬁ=¢i(|/)_M)¢i+E%Uf?“ff_u(ff)_galﬁi(’wi =1

A
1 1 o 1* 2 = T )
=2 QY Emiw#w”—gwwidwi—ZRwRW pu(r) 241 i (D (1),
1 g = - . 1 , A .
+§mpp#pﬂ_gplﬂiﬁ71ﬂi_zFﬂvFM p3(r):2:1 wi(r)7-3l//i(r)y
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A
1_’7'3

A
pe(r) =2 (== (D). Y 4mrpa(r)= 2, 24(|Gi(r) 2+ i),

For spherical nuclei, meson fields and densities depend Aq
only on the radial coordinate The spinor is characterized 4mr2p(r)=>, (E—ti)(|Gi(r)|2+|Fi(r)|2). (12)
by the angular momentum quantum numbedrg)( m, the =1

parity, the isospirt==*=1/2 (“ +" for neutrons and “-" for . .
protons, and the radial quantum number. The Dirac The above coupled equations have been solvedspace
spinor has the form [22] and in the HO basif23] using the no sea and the mean-

field approximation. Here we depict briefly the procedure of
<(r) solving these coupled equations. With a set of estimated me-
Y}m(0,¢,s) son and photon fields, the scalar and vector potentials are

Y (D,j=1=> calculated and the radial Dirac equation solved. The so ob-
FX(r) 7 tet -2’ tained nucleon wave functions are used to calculate the
- Yim(6,¢,s) source term of each radial Laplace equation for mesons and
®) the photon. New meson and photon fields are calculated by
solving these Laplace equations. This procedure is iterated

with G(r)/r and F“(r)r the radial wave functions for the until a demanded accuracy is achieved. Laplace equations

: . are usually solved by using the Green’'s function method
upper and lower components aﬁfﬁn(a,@ the spin spheri [22,23 though in Ref[23] Laplace equations for mesons are

cal harmonics wherec=(—1)""'" % + 1/2) andT=1+ " goved in the HO basis. SRHR, SRHHO, and SRHWS differ
(-1) - The value ofx from the upper component is fom each other mainly in how the Dirac equation is solved.

used to label a state disregarding that this state is in thg, the following, the numerical solution of the Dirac equa-
Fermi sea or in the Dirac sea. States with the sam@m a o1 in the WS basis will be presented.

“block.” The radial equation of the Dirac spinor, E4), is
reduced as

=

Doseml(r, S, 1) =

r

I1l. SOLVING THE DIRAC EQUATION IN A WOODS-
SAXON BASIS ANDX NUMERICAL DETAILS

" J K
eG,=|——+—

pri FL+[M+S(r)+V(r)]G,,

A. Woods-Saxon basis from solving a Schidinger equation
(the SWS basi$

. J K\ . « For the Schrdinger equation with a spherical Woods-
eFh=|+ EJF T GE—[M+S(r)=V(r)JF%. (9 Saxon potential
The meson field equations become simply radial Laplace Vo r<R
equations of the form — (r—Ro)/ag’ max
Vs(r)=9 1+el'"Roido (13
P29 . F=Rma
——2—FE+m¢ d(r)=s,(r). (10 o _ _
ar where Rax IS introduced for practical reasons to define the

box boundary, the eigenfunction can be writtendaﬁml(r)

m, are the meson masses f@r=o,w,p and zero for the :Rnl(r)Ylm|(91¢)- lts radial Schidinger equation is de-

photon. The source terms are

rived as
~0ops(1) = 0p02(r) —gsa™(r) for o 1(1a ,0 10+1)
9opu(r)  for o oM r_ZEr a2 +Vws(r) [Ry(r)
So(1)=4 g,pa(r) for p
epc(r) for A, = EnRy(1). (14)

Equation(14) is solved on a discretized radial mesh with
(1) amesh sizer. Ry (Ar) should be chosen largésmalle)
. enough to make sure that the final results do not depend on
with it. The radial wave functions thus obtained form a complete
basis

A
4”2’)5(”:21(|Gi(r)|2_|':i(r)|2)’ [Ry(r):n=0,1,...1=0,1, ... nl, (15)
A in terms of which the radial parts of the upper and the lower
47r2p (r)=2 (1Gi(N)[2+|F(n)]?), components of the Dirac spinor in EQ) are expanded,
v = ' respectively, as
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Nmax with n=0,1,..., k=122, ..., andm=—j,, ... j,-
GX(r)=—12, gunfRu(r), ¥ (r,s,t) takes the form of Eq(8). We note that states
~”:° both in the Fermi sea and in the Dirac sea should be included
Nmax in the basis for completeness. The nucleon wave function,
Fo(r)=— iE fonrRy(r). (16 Eqg. (8), can be expanded in terms of this set of basis as
" Nmax
The radial Dirac equation, Eq9), is transformed into the D18, =2 Conthm(1,8,1), (21)
WS basis as n=0

Amn B\ Gon G vyherenmax=n;ax+r_1r;ax+1 and _the summatiorl iS over posi-

S e A (17)  tive energy levels in the Fermi sea fosth=<n,,,, and over
Cn Drvn/ | fa an negative energy levels in the Dirac sea fof+1<n
<nmnha- The negative energy states are obtained with the
same method as the positive energy of@3. In this WS
basis, the Dirac equation, E@), turns out to be

where the matrix elements are calculated as follows

A= meaXerrle(r)(V(r)+S(r)+ M)Rn(r),
0

Camegl—'— ZX CanHr,nn: €,Com,M= 1,... Nmax; (22)
Rmax 2 J Ka_l n=0
Bym= fo r<drRpm(r) +E_ r Rqi(r), with
r 0 0
CgmszmaxrzdrR;ﬁ(r)(—i— Ka+1>Rm(r), Hinn=(URDILAV() + BAS(N [ R(1)
0 ar r Rmax
=f drGo(n[AV(r)+AS(r)]G3(r)
0
Daa=meaxrzdrRmr)(wm—S<r>—M)Rmm. .
° 19 +f "ArEO(N[AV(H)—AS(HFY(r), (23
0

In practical calculations, an energy cutéf,, (relative o here AV(r)=V(r)—Vy(r) and AS(r)=S(r) — So(r). The

the nucleon masM) is used to determine the cutoff of the angular, spin, and isospin quantum numbers are omitted for
radial quantum numben,,, for each block. In the expansion previty.

of the corresponding lower component, we take,=Nmax It should be mentioned that E(R) can be solved directly
+An with An=1 in order to avoid spurious statE23]. in r space with the same method of generating the DWS
The following Woods-Saxon parameters have been usebasis. It is our aim to test the validity of an efficient solution
according to Ref{25]: not only for the spherical RH model but also for its extension
to include the deformation and/or pairing correlations. In
Vo=[—51£33(N-2)/A] MeV, fact, if only the SRH theory is concerned, this procedure is
just a replacement of the direct solution inspace by a
Ro=1.27A% fm, a,=0.67 fm, (190  diagonalization of a matrix with some complication intro-

duced by the fact that contributions from states in the Dirac
where “+” is for the neutron and “” for the proton. As  sea must be included.
expected, the dependence of final results on the initial WS An energy cutoffE., (relative to the nucleon madd)
potential is almost negligible. For example, a variatio’Vgf  and the cutoff of radial quantum number,, are applied to
by 50% gives a difference in total binding energies by lesgositive energy levels alternatively according to practical
than 0.1% and a difference in charge radii by less than 0.5%onvenience. For the initial Woods-Saxon potentidjgr)
for 10, *8Ca, and®*®Pb. Such a situation is also checked to = Sy(r), we follow Ref.[24].
be true for the other two parameters in the WS poteriigl,

anday. C. Comparison with the r-space method

In order to check the validity of solving the Dirac equa-
tion in the WS basis and to provide numerical experiences
for future applications, we compare the results'é® and

The radial Dirac equation, Eq9), may be solved im  2%%p obtained from solving the Dirac equation in the WS
space [22] with Woods-Saxon-like potentials foWy(r) basis and those from solving the same equation in the coor-
+So(r) [24] within a spherical box of siz&,., together dinate space. The latter is the most accurate method of solv-
with the spherical spinor which gives a complete WS basising the Dirac equation for realistic nuclei up to now and thus

0 0 0 is used as a standard here. The scalar and vector potentials in
{Lencm: Ynm(r.S.O]; €0, m=0}, (200 the Dirac equation are provided by very accurate SRHR cal-

B. Woods-Saxon basis from solving a Dirac equation
(the DWS basi9
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TABLE I. Dependence of the average single-particle energy, root mean sgueyeadius, andr*)Y# on
the mesh sizér for the SRHSWS theory. The meson and Coulomb fields are obtained from SRHR calcu-
lations with the parameter set NL2r=0.05 fm, andR,=30 fm for %0 and 35 fm for 2°%b. In
SRHSWS calculations, the parameter set NL3 is used. Har, R,=4r,AY*=12.8 fm and E.
=300 MeV. For?%pPb, Ry,.,=3r,AY®=22.6 fm andE,= 200 MeV. The first row gives results from solving
the Dirac equation in the coordinate space.

Ar _Esp/A <r2>1/2 <I’4>l/4 _Esp/A <I’2>1/2 <r4>l/4
160 208Pb

23.0375 2.5945 2.8900 23.3348 5.6315 5.9883
0.05 23.0375 2.5945 2.8900 23.3348 5.6315 5.9883
0.10 23.0376 2.5945 2.8899 23.3348 5.6315 5.9883
0.20 23.0385 2.5941 2.8896 23.3347 5.6315 5.9883
0.30 23.0430 2.5930 2.8889 23.3343 5.6314 5.9883
0.40 23.0420 2.5923 2.8885 23.3334 5.6315 5.9885
0.50 22.9887 2.5949 2.8936 23.3284 5.6319 5.9890

culations with the parameter set NL3 for the Lagrangian, thdDWS basis and the same conclusions are drawn. For in-
mesh sizeAr =0.05 fm, and the box sizR,,,=30 fm for  stance, the deviations of the average single-particle energy
160 andRy,,=35 fm for 2°8Ph. Then withS(r) andV(r)  ESPA, the rms radiir2)*? and(r*)**from the standards are
thus obtained, the Dirac equation is solved in the coordinat@lotted versus, for different Ry, in Figs. 3 and 4.

space and in the WS basis with the parameter set NL3 also.

To compare the results obtained only from solving the R _-3268f]£“m }% %?, %8 %ﬁ N,
Dirac equation avoids errors from other numerical proce- R >=160fm 20 30 36 42 N
dures, e.g., the error from the iteration and that from solving 00| X0 - - -
the Laplace equations. For the same reason, what we coms'  0.0001 ¢ . LTS fﬁw,,,.....-
pare between these two methods is not the binding energy,g | ';/MI v
which contains the contribution from mesons, but the aver- <  0.0000 XIA \—ﬁ/j’;——%—‘k——__—;y.—mﬂm*
age single-particle energg™?/A; ESP=3. ¢, , wheree, is the T .,' \5/ 4 | 832 —
single-particle energy and the summation runs over all occu- Sl —0.0001F § }5,;’ } ::'Rm“_f:;'ﬁ _ifgf;‘m 3
pied states for both neutrons and protons. We also comparé,, | | - <>Rm—5ruA =16.0fm
the rms radii(r2)¥2 and (r*)¥4. The radius(r*)Y/* reflects 00001 F'x O'E' - i L
the nucleon densities in the largeegion more than the rms T ' o0 28 . J‘:}
radius does. = 00000 ——,?'--{\—m——l-' R b a i R RS

Table | presents the dependence of results of the DiraCy> __q o001k ,’! :bo/ “‘A:.’\ ]

equation in the SWS basis on the mesh size With Ar v [ P
decreasing, results in the SWS basis approach the standaed _0'0002";".' } } | 900600000000
results, i.e., those in spaceAr=0.1 fm gives results accu- “9 .,' : :
rately enough. The dependence on the box Bizg, and on 00010 = T e T o ’
the basis size determined By, are investigated and shown = 4‘: N 4}9\
in Figs. 1 and 2 where the deviations of the average single= _&ﬁ_ﬁ_:&!ﬁ_-.@jﬁ
particle energyESY/A, the rms radii(r?)2 and(r*)¥* from o 0000 I\.J/_ > o Seeee
the standards are plotted verdhg,, for different Ry . If ?‘|’ | I\
Rmax IS not large enough, it is difficult to approach the stan- = _ggo10f l l \M‘...OO-.-Q-Q-._._.
dard results. For example, wh@®,=3r,A*=9.4 fm and L L . . .
E..= 300 MeV for 10 (correspondinglyN,~20), the re- T 200 S0 400 500
sults seem converged, but the discrepancy of the average E.. [MeV]

single-particle energy from the standard one remains 0.1 keV
(Table 1l). So one must use a large enough box with a size
Rmax around 4 ,AY for light nuclei and 3,AY for heavy
ones. Itis interesting that the convergence of the results do
not depend oM, but only onE.,. For %0 (?%Pb), the
results converge to the standard ones-a800 (400 MeV.
From Figs. 1 and 2, we find that the radir$)* also con-

FIG. 1. (Color onling Deviations of the average single-particle
energy EVA
ane), and(r4) (the lower panelof %0 from the standard re-
Its versus the cutoff enerdgy,, with a different box sizéR 4, for
the SRHSWS theory. The meson and Coulomb fields are obtained
from SRHR calculations with the parameter set NLAr
=0.05 fm, andR,,,=30 fm. In SRHSWS calculations, the param-

(the upper pangl rms radius({r)*? (the middle

verges very well, which implies that nucleon densities can beter set NL3 is used. FdE.,= 100, 200, 300, and 400 MeV, the

calculated accurately even for large
We have made similar investigations for results in the
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FIG. 2. (Color onling Deviations of the average single-particle FIG. 3. (Color online Deviations of the average single-particle
energy ESPA (the upper pangl rms radius(r)? (the middle energy E/A (the upper pangl rms radius(r)? (the middle
pane), and (r*)¥* (the lower panel of 2°%Pb from the standard panel, and (r%)¥4 (the lower panélof 0 from the standard re-
results versus the cutoff energi,, with a different box _S'ZeRmaX sults versus the cutoff enerdgy, with a different box sizéR,,,, for
for the SRHSWS theory. The meson and Coulomb fields are 0bg,e SRHDWS theory. The meson and Coulomb fields are obtained
tained from SRHR calculations with the parameter set NAB, from SRHR calculations with the parameter set NLAy
=0.05 fm, Rpa=35 fm. In SRHSWS calculations, the parameter _ 0.05 fm andR,,,=30 fm. In SRHDWS calculations, the param-
set NL3 is used. FoE¢,=100, 200, 300, and 400 MeV, the ap- oo set NL3 is used. FdE,=100, 200, 300, and 400 MeV, the
proximate maximum principal quantum number in each basisyynoyimate maximum principal quantum number in each basis,
Nimax=2Nmaxt1, is given on the top of the plot. N mas=2Nmax+ 1, is given on the top of the plot.

TABLE II. Dependence of the average single-particle energy, rms radiugr&rd on the differencel n= ", Nmax for the SRHSWS
theory. The meson and Coulomb fields are obtained from SRHR calculations with the parameter 2etNQ3)5 fm, andR,,,,,=30 fm for
160 and 35 fm for?°Pb. In SRHSWS calculations, the parameter set NL3 is used %r Ry, =4r,AY=12.8 fm. For2%Pb, Ry
=3r,A®=22.6 fm.

An _Esp/A <r2>1/2 <I’4>1/4 _Esp/A <I‘2>1/2 <r4>1/4
160: E =100 MeV 20%pph: E. =100 MeV
1 23.0382 2.5947 2.8920 23.3344 5.6315 5.9884
3 23.0326 2.5949 2.8913 23.3341 5.6315 5.9884
5 23.0298 2.5952 2.8915 23.3340 5.6315 5.9884
7 23.0290 2.5953 2.8915 23.3340 5.6315 5.9884
9 23.0289 2.5953 2.8915 23.3340 5.6315 5.9884
160: E¢, =300 MeV 208%ph: E, =200 MeV
1 23.0375 2.5945 2.8999 23.3348 5.6315 5.9883
3 23.0375 2.5945 2.8999 23.3348 5.6315 5.9883
5 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
7 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
9 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
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R,,=147fm 18 26 34 40 N, The above investigations are somehow academic. In prac-
smngg-ﬂm 38 ‘5% % gg Nmax tical applications, it is not necessary to go to an accuracy of
e some keV in the single-particle energy or fofm in the
= o000 b %Xloo | X0 R A AT = 1a7im | radius. So in the following calculations, we will us&,,«
g ) \ .; | BoHR = HAT=221Mm =20 fm, Ar=0.1 fm, andE_,=60-80 MeV for heavy and
< Y N\ :rb\&'QRmax:‘”oA =2941m light nuclei, which give reasonable accuracies both for the
g, 00001 F & in ®®ecceecccces binding energy and the radius. This set of cutoffs corre-
| l ‘)il]l ® spo_nds approximately tN .= 2Nmaxt1~25, wherel is the
< 00000 f————— : _____ I_e’__':'—ti-mmm orbital angular momentum of relevant state.
w | | I I I
_ 00002 $ 2 IV. RESULTS AND DISCUSSION
£ ®
& 0.0000 ———‘.—Ill\—éﬁf—“wouaﬁm In this section, we present results of SRHWS. Since our
Ne° “ ] \\ main aim is to show the virtues of SRHWS compared to
| —00002F ln’l & 3 SRHHO and SRHR, we do not include pairing correlations
S é y®v0e0ceccccccccccesd and restrict our study to doubly magic or magic nuclei only.
v —00004F . . . . E If not specified, the parameter set NLSH is used for the La-
S ' ' ' ' grangianRpy.,=20 fm, andAr =0.1 fm throughout this sec-
=B IR tion. Other parameter sets for the Lagrangian do not change
£ 00010 F | ®W 3 ) o
T \ 3 the conclusion here. In SRHDWS, the number of positive
Iy e Do energy levels in the Fermi sea and that of negative energy
) F— S — g — Y 2%00066000000000009 - : : :
v\f 0.0000 v e ones in the Dirac sea are the same for convenience, i.e.,
oy 00010k ""Wocoooooﬂ N ax="max: FOr SRHHO i wo=41A"2 has been used and
Y ' , , , , , cutoffs of the expansion for fermions and bosons are the
0 100 200 300 400 500 same, i.e.Ng=Ng=Nax-
E.. [MeV]
FIG. 4. (Color onling Deviations of the average single-particle A. Bulk properties of stable nuclei from
energy ES?A (the upper pangl rms radius(r)*? (the middle different SRH theories

pane), and (r*y* (the lower pangl of 2°%Pb from the standard
results versus the cutoff enerd, with a different box sizeR

for the SRHDWS theory. The meson and Coulomb fields are ob
tained from SRHR calculations with the parameter set NAB,

In Table IV, the binding energy per nucleoE/@), and
neutron, proton, and charge radiiy( r,, andr;) of some
typical spherical nuclei are presented, which are calculated
_ _ ; from the present available codes, including SRHR
=0.05 fm, andR =35 fm. In SRHDWS calculations, the param- v !
eter set NL3 is used. Fd.,=100, 200, 300, and 400 MeV, the SRHSWS, SRHDWS, and SRHHO. Available d@26,27]

approximate maximum principal quantum number in each basisa€ alSo included for comparison. We use approximately the
sameN,,, in the SRHHO as that in the SRHWS which is

determined byE .
, i Generally speaking, for each studied nucleus, the four ap-

In the expansion of the nucleon wave function, B20),  hroaches give almost the same results with an accuracy
one has to take into account not only the levels in the Fermjihin 0.19% with few exceptions where the differences are
sea but also those in the Dirac sea because together ey jess than 0.3%. They are in excellent agreement with
form a.complet.e basis. Now the question arises of how many, silable data.
levels in the_Dlrr_:lc sea one has to take mEo acciount_. In the With the same parameters of spatial lattiBe,,, andAr,
cilculatmns_m Figs. 3 and 4, we have usgg,=nn.,With  SRHWS should reproduce results of SRHR wigg, (or
Nmax determined byE.,;. In Table IIl, the dependence of the s large enough. This is justified in Table IV. One can
average single-particle energy, the rms raffif)* and  find exactly coincident results between SRHSWS and SRHR
(r'yY* on Ny, = 2ny.,+1—a cutoff on the principal quantum  for most of the studied nuclei. The remaining differences and
number of levels in the Dirac sea—are given f§O and  those between SRHDWS and SRHR could be diminished by
29%p. From Table 111, we find the merit of solving the Dirac increasingE .
equation in the DWS basis: the number of negative energy In Fig. 5, the neutron density distributions are compared
states included in the basis could be much smaller than thafetween SRHR, SRHSWS, SRHDWS, and SRHHO, in
of the positive energy states. Let us ta®® as an example, which %0 is chosen as an example. Comparisons are also
Rmax=4r0AY® and E¢= 300 MeV for positive energy states made for heavier nuclei such #§Ca and 2%%b. Similar
correspond toN..,~28. For negative energy statel,,, results are obtained and not shown here. The calculation de-
=10 gives very accurate results, e.g., the discrepancy dhils are the same as Table IV. For these stable nuclei, all of
ESYA from the standard is smaller than 0.1 keV. This will these SRH methods are valid and all calculations are in ex-
significantly simplify the deformed problem by decreasingcellent agreement with each other from the central to the
the matrix dimension compared to the solution of the Diracouter region of each nucleus. Small differences in the central
equation in the SWS basis. region do not affect the physical observables, such as the

Nmax=2Nmaxt1, iS given on the top of the plot.
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TABLE lIl. Dependence of the single particle energy, rms radius, @A on the maximum principal
quantum numbeN ,,,.=2n.+! for the SRHDWS theory. The meson and Coulomb fields are obtained from
SRHR calculations with the parameter set NA3,=0.05 fm, andR =30 fm for °0 and 35 fm for?°%b.

In SRHDWS calculations, the parameter set NL3 is used. ¥ar, Ry,=4r,AY°=12.5 fm andEy
=300 MeV for positive energy states. F¥Pb, Rya=3r,AY*=22.1 fm andE,=200 MeV for positive
energy states.

Nmax _Esp/A <I’2>l/2 (I’4>l/4 _Esp/A <r2>l/2 <r4>1l4
160 208Pb

no 23.1129 2.5912 2.8859 23.3331 5.6314 5.9889
0 23.1077 2.5916 2.8861 23.3329 5.6314 5.9889
2 23.0762 2.5939 2.8889 23.3316 5.6315 5.9890
4 23.0617 2.5942 2.8893 23.3304 5.6317 5.9892
6 23.0439 2.5946 2.8898 23.3299 5.6318 5.9893
8 23.0385 2.5946 2.8899 23.3294 5.6319 5.9893
10 23.0376 2.5946 2.8899 23.3292 5.6319 5.9894
12 23.0375 2.5946 2.8899 23.3291 5.6319 5.9899
14 23.0375 2.5946 2.8899 23.3290 5.6319 5.9894
16 23.0375 2.5946 2.8899 23.3290 5.6319 5.9894
18 23.0375 2.5946 2.8899 23.3289 5.6319 5.9893
20 23.0375 2.5946 2.8899 23.3288 5.6319 5.9893
22 23.0375 2.5946 2.8899 23.3287 5.6319 5.9893
30 23.0375 2.5946 2.8899 23.3287 5.6319 5.9893

binding energy or nuclear radius, as is seen in Table IVThe binding energy per nucledB/A and the proton rms
Furthermore, these differences could also be decreased Iydiusr, are almost independent of the box size wifR,
increasingEcy; OF Nyay- is larger than 20 fmE,=75 MeV andR,=20, 25, 30,
From the above discussions, it is clear that SRHWS isand 35 fm in SRHWS correspond to cutoffs on the principal
equivalent to SRHR and SRHHO for stable nuclei. Thus, weyuantum numbeN,,,,=25, 31, 37, and 43, which are used
conclude that the Woods-Saxon basis provides another pof; SRHHO calculations in order to make fair comparisons
sibility to solve the(nonjrelativistic mean-field theory. between SRHWS and SRHHO. Similar to those from SRHR
and SRHWSE/A andr, depend little onN 5, in SRHHO.
However, the neutron rms radiug increases steadily with
Nmax» Which shows a much slower convergence. As it is
As already discussed in the Introduction, one of the meritdased on a complete basis, SRHHO can also reach conver-
of SRHR against SRHHO is its proper description of exoticgence ofr, if Ny, is large enough. From Table V, one finds
nuclei. In this section, we will demonstrate the equivalencehat for the saméN ., (or equivalentR,,,), a difference of
between SRHWS and SRHR when reasonably l&ggis  Arp,~0.2 fm between SRHHO and SRHWSRHR) can be
applied in SRHWS. seen. From the slow convergencer gfvith Ny, in SRHHO
In order to see the results for the unstable nuclei near théAN,,,=6 givesAr,~0.02 fm), we can estimate the lower
neutron drip line, the neutron density distribution fé€a is  limit of Ny, @SNy~ 90 in order to giver ,=4.8 fm.
studied here. The nucleu§Ca is predicted to be the last ~ We compare the neutron density distribution’éta from
bound calcium isotopg28-31. Since it is not a doubly different SRH approaches in Fig. 6. With the same box size,
magic nucleus, there might be some uncertainty in thehe density distribution from SRHR are almost identical with
present results due to the lack of inclusion of pairing correthose from SRHWS, which indicates the equivalence be-
lations. However, as stressed in the beginning of this sectioriween SRHWS and SRHR. For brevity, onpy(r) from
the main aim here is to show the equivalence betweel$SRHR withR,=35 fm is displayed in Fig. 6 which covers
SRHWS and SRHR, it is very unlikely that pairing correla- the curve corresponding te,(r) from SRHWS withRax
tions would change our conclusion qualitatively. =35 fm in Fig. 6. On the other hang,(r) from SRHHO
For stable nuclei, it has been shown thgt,,~20 fm is  even with N,,,=43 fails to reproduce the result of SRHR
large enough. For drip line nuclei, the dependence of thelue to the well known localization property of the HO
results onR ., for "?Ca is presented in Table V. For both potential[9].
SRHR and SRHWSAr =0.1 fm andR,,,,=20, 25, 30, and This result is very encouraging and shows us that even the
35 fm have been used, respectively. The energy cligff long tail (or halg behavior in neutron density distribution for
=75 MeV is used in SRHWS calculations. In SRHR andnuclei near the drip line can be described by SRHSWS as
SRHWS calculations, the neutron rms radiys and the well as SRHR, if pairing correlations are incorporated
Fermi energy\,, of "°Ca converge aroun®,., = 35 fm.  properly.

B. Neutron density distributions for "’Ca
in different SRH theories
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TABLE IV. The binding energy per nucleon, and neutron, proton and charge radii of some typically spherical nuclei. The parameter set
NLSH is used for the Lagrangiafyq,=20 fm andAr=0.1 fm for SRHR and SRHWSiw,=41A"*3 for SRHHO. Numbers in brackets
in the second column givE_, for SRHWS and\ ., for SRHHO. Data forE/A andr are taken from Refd26] and[27], respectively.
Energy is in MeV and radius in fm.

Nucleus E/A In o re
160 SRHR —8.022 2.551 2.578 2.699
SRHSWS(80) —8.022 2.554 2.581 2.702
SRHDWS(80) —8.014 2.553 2.580 2.701
SRHHO (25) —8.034 2.551 2.577 2.699
Experiment —7.976 2.693
“Ca SRHR —8.500 3.311 3.359 3.452
SRHSWS(80) —8.499 3.310 3.358 3.452
SRHDWS(80) —8.497 3.312 3.359 3.453
SRHHO (25 —8.514 3.310 3.358 3.452
Experiment —8.551 3.478
“8Ca SRHR —8.644 3.586 3.369 3.463
SRHSWS(80) —8.646 3.583 3.368 3.461
SRHDWS(80) —8.639 3.586 3.371 3.464
SRHHO (25) —8.659 3.584 3.368 3.462
Experiment —8.666 3.479
SeNj SRHR —8.634 3.582 3.630 3.717
SRHSWS(80) —8.640 3.580 3.628 3.715
SRHDWS(80) —8.625 3.585 2.633 3.720
SRHHO (25 —8.650 3.581 3.629 3.716
Experiment —8.345
907r SRHR —8.677 4.294 4.186 4.262
SRHSWS(75) —8.677 4.295 4.187 4.263
SRHDWS(75) —8.672 4.295 4.187 4.262
SRHHO (25) —8.693 4.293 4.185 4.261
Experiment —-8.710 4.270
1&g SRHR —8.466 4.743 4.553 4.623
SRHSWS(70) —8.466 4.743 4.554 4.624
SRHDWS(70) —8.460 4.743 4.554 4.624
SRHHO (25) —8.482 4.741 4.552 4.622
Experiment —8.517 4.641
1829 SRHR —-8.377 4.964 4.636 4.704
SRHSWS(70) —-8.377 4.964 4.637 4.704
SRHDWS(70) —8.370 4.964 4.637 4.706
SRHHO (25) —8.393 4.963 4.635 4.703
Experiment —8.355
20%pp SRHR —7.885 5.713 5.447 5.505
SRHSWS(60) —7.886 5.712 5.447 5.505
SRHDWS(60) —7.874 5.712 5.448 5.506
SRHHO (25 —7.900 5.711 5.445 5.504
Experiment —7.868 5.504
C. Contribution from negative energy levels from Table VI. Second, contrary to the case with negative
in the SRHDWS theory energy levels included, the calculated nuclear properties de-

In the expansion of the nucleon wave function, E2{D), pend on the initial potentials very much if no negative energy
one has to take into account not only the states in the Ferni@Vvels are included.
sea but also those in the Dirac sea because these states formlt should be noted that the contribution from negative en-
a complete basis together. We study the contribution fron€rgy levels depends on the initial Woods-Saxon potentials for
negative energy states fofO. The results are given in Table generating the DWS basis. So do the cutgff,, or E for
VI. First, without negative energy levels included, the convergence. If the initial Woods-Saxon potential is exactly
nucleus is overbound and the nuclear size is smaller as sedtentical to the converged potentials, the matrix in &2) is
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0.10 . . —— " T IR L
55 10— E N —— SRHR (R, =35m) | ]
102 | \\ ---------- SRHWS (R, = 35fm) | 1
r \ -~~~ SRHWS(R,, =30fm)| 7|
0.08 7 \‘ — — SRHWS(R, =25fm)
SRHWS(R,,, = 20 fm)
\ ~~~~~~~~~~ SRHHO (N, =43) | }
— E -~~~ SRHHON,,=37) | ]
< 0.06 1 LR | — — SRHHO(N..=31) |]
£ glo i SRHHO (N, = 25)
= 004 1 =
10° |
002 | | . v \ <
SRHSWS L A
5 \ \\ \
0.00 L L 10 ————1 f o+ f +4
0 3 6 ——
r [fm] F \ 72
10° | \ ca ]
FIG. 5. (Color onlin@ Neutron density distributions foté0
from different SRH approaches. The parameter set NLSH is used
for the LagrangianRy,,,=20 fm andAr=0.1 fm for SRHR and ~ ;— .
SRHWS. E. =80 MeV for SRHWS. CorrespondingI\.,=25 £ 100
for SRHHO. In SRHDWS, the number of levels in the Dirac sea =
included in each block is the same as that of levels in the Fermi "F
sea which is determined blg.,. The inset presents logarithmic o F
densities. 100 r
diagonal, negative energy states do not contribute because of . SRHDWS
the no sea approximation. Positive energy states canalsobe ;4o [, . .. ... ... .,
chosen as less as possible, e.Gy5l 1p3p, and Ipy, are 0 5 10
enough for *0. From the third column corresponding to r[fm]

TABLE V. Convergence study fof?Ca. The parameter set 72CFIG. 6. (Color onling Comparison of density distributions for
NLSH is used for the Lagrangiamr=0.1 fm for SRHR and a from SRHR, SRHWS, and SRHHO. The parameter set NLSH

SRHWS.E,,=75 MeV for SRHWS. Energy is in MeV and radius is used for the Lagrangiamr=_0.1 fm for SRHR and SRH'WS.
E.=75 MeV and R,,,,=20 (thick dot-dashed curye 25 (thick

in fm. long-dashed curye 30 (thick dashed curye and 35 fm(thick dot-
E/A ', o A, ted curve for SRHWS. Note that the legend is for both SRHSWS

(the upper pangland SRHDWS(the lower panel These sets of

Rmax SRHR cutoffs correspond to cutoffs in principal quantum numbgg,y,

20 6.482 4.656 3.639 —-0.191 =25 (thin dot-dashed curye31 (thin long-dashed curye37 (thin

25 6.483 4.723 3.639 —0.221 dashed curye and 43 (thin dotted curvg which are used in

30 6.484 4.773 3.639 —0.228 SRHHO calculations. The density distribution from SRHR are al-

35 6.484 4.807 3.639 —0.229 most identical with that from SRHWS with the same box size. For
brevity, only p,(r) from SRHR withR,,,,=35 fm (thick solid line

Rinax SRHSWS is displayed here.

20 6.481 4.663 3.639 —0.206

25 6.482 4.726 3.639 —-0.231

30 6.483 4.774 3.639 —0.237 V=72 MeV in Table VI, one finds that the initial nuclear

35 6.483 4.803 3.639 —0.238 potential for the Dirac equation proposed in Rgf4] is a

Rumax SRHDWS good choice for SRHDWS as the negative energy states only

20 6.474 4.662 3.641 —0.163 contribute~1.25% to bothE/A andr ,s. If we change the

25 6.475 4.733 3.641 —-0.197 initial potentials, e.g., by changing, by 25%, much larger

30 6.475 4.789 3.640 —0.205 contributions from negative energy states are found in

35 6.475 4.828 3.640 —0.206 Table VI.

N max SRHHO In order to know the contribution of negative energy

25 6.489 4577 3.639 —0.054 states in the Dirac sea to the wave function, the value of

31 6.492 4.605 3.639 ~0.128 S.lch]? in the expansion, Eq21) has been calculated for

37 6.494 4.628 3.639 —0.166 occupied states ot°0. We found a small contribution, the

43 6.494 4.649 3.639 —0.189 value of 2,|c,|? is around 10* to 10 5. Note that the

nucleon wave function is normalized to one. However, such
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TABLE VI. Effects of negative energy levels on bulk properties  For neutron drip line nuclei, e.g?,ZCa, which has a very
in SRHDWS for 0. The parameter set for the Lagrangian is small neutron Fermi energy,~0.2 MeV, both SRHR and
NLSH, Rya=20 fm, Ar=0.1 fm, andN,,=25. For the inital SRHWS easily approach convergence by increasing box
Woods-Saxon-like potentials, parameters in R24] are used ex-  size, while SRHHO does not. Furthermore, SRHWS can sat-
cept forVy which is specified in the table. The left value in each isfactorily reproduce the neutron density distribution from
entry gives the result without negative energy levels included an&RHR, but SRHHO fails with similar cutoffs.

the right one that wittN,,,,=25. Energy is in MeV and radius in In SRHDWS calculations, negative energy states in the
fm. Dirac sea must be included in the basis in terms of which
nucleon wave functions are expanded. We studied in detail

Vo=54 MeV Vo=72 MeV Vo=90 MeV the effects and contributions of negative energy states. With-

E/A 8.547| 8.013 8.117 8.015 8.427 8.012 out negative energy levels !np!uded, the_ calculated nuclear
s 2.385| 2.568 2531 2.567 2,610 2.567 properties depend on the initial potentials very much. A

small component from negative energy states in the wave
functions, about 10* to 10 5, contributes to the physical

) . observables, such d@/A andr,,s, by the magnitude of
a small component from negative energy states in the wavg_1 o4, When the initial potentials differ more from the con-

functions contributes to the physical observables, such %erged ones, the contribution from negative energy levels
E/A andr s, by magnitudes of 1-10% as seen from Tableyacomes more important.

Vj. Again, we note that the initial Woods-Saxon potentials We conclude that the Woods-Saxon basis provides a com-
differ more from the converged ones, the larger the contribupomise hetween the harmonic oscillator basis and the coor-

tion from negative energy levels. dinate space, which may be used to describe exotic nuclei
both properly and efficiently.
V. SUMMARY The extension of the relativistic Hartree theory in the

We have solved the spherical relativistic Hartree theory inVoods-Saxon basis to deformed cases with pairing correla-

the Woods-Saxon basiSRHWS. The Woods-Saxon basis tions included is in progress.
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