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The Woods-Saxon~WS! basis is suggested to replace the widely used harmonic oscillator basis for solving
the relativistic mean-field theory in order to generalize it to study exotic nuclei. As an example, the relativistic
Hartree theory is solved for spherical nuclei in a Woods-Saxon basis obtained by solving either the Schro¨dinger
equation or the Dirac equation~labeled as SRHSWS and SRHDWS, respectively, and SRHWS for both!. In
SRHDWS, the negative energy states in the Dirac sea must be properly included. The WS basis in SRHDWS
could be smaller than that in SRHSWS, which will simplify the deformed problem. The results from SRHWS
are compared in detail with those from solving the spherical relativistic Hartree theory in the harmonic
oscillator basis~SRHHO! and those in the coordinate space~SRHR!. All of these approaches give identical
nuclear properties such as total binding energies and root mean square radii for stable nuclei. For exotic nuclei,
e.g., 72Ca, SRHWS satisfactorily reproduces the neutron density distribution from SRHR, while SRHHO fails.
It is shown that the Woods-Saxon basis can be extended to more complicated situations for exotic nuclei where
both deformation and pairing have to be taken into account.
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I. INTRODUCTION

The existence of an average field in an atomic nucl
revealed by the exceptional role of nuclear magic numb
provides the foundation of the nuclear shell model and v
ous mean-field approaches@1–3#. This average field is be
lieved to be approximated most closely by a Woods-Sa
~WS! potential@4#, either by analyzing the radial dependen
of the nuclear force or by deriving it from a microscop
two-body force.

Since eigenfunctions for the WS potential cannot be giv
analytically, as good approximations for stable nuclei, o
often adopts the harmonic oscillator~HO! potential in shell
model calculations for both spherical@1# and deformed nu-
clei @5# or the square well. The HO eigenfunctions also oft
serve as a complete basis in solving equations in both n
relativistic and relativistic mean-field approximations such
the Skyrme Hartree-Fock~SHF!, Hartree-Fock-Bogoliubov
~HFB!, relativistic Hartree~RH!, and relativistic Hartree-
Bogoliubov ~RHB! theories. In these approaches, solutio
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of the corresponding equations are transformed into a ma
diagonalization problem which can be easily dealt with.

However, due to the incorrect asymptotic behavior of t
HO wave functions, the expansion in a localized HO basi
not appropriate for the description of drip line nuclei@6–8#,
which display many interesting features because of the
tremely weakly binding properties; that is, the coupling b
tween bound states and the continuum due to pairing co
lations, the large spatial density distribution or possib
modifications of shell structure, etc. One must improve
asymptotic behavior of HO wave functions, e.g., by perfor
ing a local scaling transformation@9#.

A proper representation for solving the HFB or RH
equations for drip line nuclei is in the coordinate spa
@7,10–12#, where wave functions are approximated on a s
tial lattice and the continuum is discretized by suitably lar
box boundary conditions. The HFB method solved inr space
can take into account all the mean-field effects of the c
pling to the continuum fully@6,7,10,13#. Nevertheless for
deformed nuclei, working inr space becomes much mo
difficult and numerically very sophisticated@8#. Particularly,
it becomes very time consuming when pairing correlatio
are included. Therefore, much effort is made towards a m
efficient solution of the HFB or RHB equations, e.g., usi
natural orbitals@14# or working on basis-spline Galerkin
lattices@15,16#.

/
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A reconciler between the HO basis andr space may be the
WS basis because~i! the WS potential represents the nucle
average field more suitably than the HO potential and~ii ! in
principle, there are no localization restrictions on the W
potential. Although analytical wave functions cannot
given for the WS potential, one may easily find numeric
solutions for a spherical WS potential inr space by virtue of
various effective methods of solving ordinary different
equations@17#. One can still use a large box boundary co
dition to discretize the continuum. These WS wave functio
can thus be used as a complete basis for spherical or
formed systems, and one finally comes back to the fam
matrix diagonalization problem.

In the present work, we restrict the application of th
method to nuclei with spherical symmetry, which largely f
cilitates the discussion of basic principles and allows one
present illustrations for the radial dependence of all relev
physical quantities such as density distributions. We comb
this approach with the relativistic Hartree theory@18#, which
provides a framework for describing the nuclear many bo
problem as a relativistic system of baryons and mesons
together with its extensions with deformation and/or pair
correlations included, has been successfully applied to
studies of nuclear matter and properties of finite nuc
throughout the periodic table@19,20#.

The paper is organized as follows. In Sec. II, we give
brief reminder of the formalism of the relativistic Hartre
theory. The numerical details of solving it in the WS ba
are given in Sec. III. In Sec. IV, we present our results a
compare them to those obtained in the HO basis andr
space. We also discuss the contribution from negative en
states in the Dirac sea in the same section. Finally, the w
is summarized in Sec. V.

Throughout the paper, the relativistic Hartree theor
solved inr space, in the HO basis, and in the WS basis
abbreviated as ‘‘SRHR,’’ ‘‘SRHHO,’’ and ‘‘SRHWS,’’ where
the first ‘‘S’’ represents ‘‘spherical.’’ We use ‘‘SWS’’ and
‘‘DWS’’ to distinguish the WS basis which is obtained from
solving the Schro¨dinger equation or the Dirac equation wi
initial WS potentials, respectively. Thus we have SRHSW
and SRHDWS theories.

II. BASIC FORMALISM OF THE RELATIVISTIC
HARTREE THEORY

The starting point of the relativistic Hartree theory is
Lagrangian density where nucleons are described as D
spinors which interact via the exchange of several mes
(s, v, andr) and the photon@18–20#,

L5c̄ i~ i ]”2M !c i1
1

2
]ms]ms2U~s!2gsc̄ isc i

2
1

4
VmnVmn1

1

2
mv

2 vmvm2gvc̄ iv” c i2
1

4
RW mnRW mn

1
1

2
mr

2rW mrW m2grc̄ ir”W tWc i2
1

4
FmnFmn
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~12t3!

2
A” c i , ~1!

where the summation convention is used and the summa
over i runs over all nucleons,x”[gmxm5gmxm, M the
nucleon mass, andms , gs , mv , gv , mr , gr are the masses
and coupling constants of the respective mesons. Isove
quantities are indicated by over arrows. The nonlinear s
coupling for the scalar mesons is given by@21#

U~s!5
1

2
ms

2s21
g2

3
s31

g3

4
s4, ~2!

and field tensors for the vector mesons and the photon fi
are defined as

Vmn5]mvn2]nvm ,

RW mn5]mrW n2]nrW m2gr~rW m3rW n!,

Fmn5]mAn2]nAm . ~3!

The classical variation principle gives equations of m
tion for the nucleon, mesons, and the photon. As in ma
applications, we study the ground state properties of nu
with time reversal symmetry; thus, the nucleon spinors
the eigenvectors of the stationary Dirac equation

@a•p1V~r!1b~M1S~r!!#c i~r!5e ic i~r!, ~4!

and equations of motion for mesons and the photon are

@2D1]sU~s!#s~r!52gsrs~r!,

~2D1mv
2 !v0~r!5gvrv~r!,

~2D1mr
2!r0~r!5grr3~r!,

2DA0~r!5erp~r!, ~5!

wherev0 and A0 are timelike components of the vectorv
and the photon fields andr0 is the three-component of th
timelike component of the isovector vectorr meson. Equa-
tions ~4! and~5! are coupled to each other by the vector a
scalar potentials

V~r!5gvv0~r!1grt3r0~r!1e
~12t3!

2
A0~r!,

S~r!5gss~r!, ~6!

and various densities

rs~r!5(
i 51

A

c̄ i~r!c i~r!,

rv~r!5(
i 51

A

c i
†~r!c i~r!,

r3~r!5(
i 51

A

c i
†~r!t3c i~r!,
3-2
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rc~r!5(
i 51

A

c i
†~r!

12t3

2
c i~r!. ~7!

For spherical nuclei, meson fields and densities dep
only on the radial coordinater. The spinor is characterize
by the angular momentum quantum numbers (l , j ), m, the
parity, the isospint561/2 ~‘‘ 1’’ for neutrons and ‘‘2 ’’ for
protons!, and the radial quantum numbera. The Dirac
spinor has the form

cakm~r,s,t !5S i
Ga

k~r !

r
Yjm

l ~u,f,s!

2
Fa

k~r !

r
Yjm

l̃ ~u,f,s!
D x ta

~ t !, j 5 l 6
1

2
,

~8!

with Ga
k(r )/r and Fa

k(r )r the radial wave functions for the
upper and lower components andYjm

l (u,f) the spin spheri-

cal harmonics wherek5(21) j 1 l 11/2( j 11/2) and l̃ 5 l 1
(21) j 1 l 21/2. The value ofk from the upper component i
used to label a state disregarding that this state is in
Fermi sea or in the Dirac sea. States with the samek form a
‘‘block.’’ The radial equation of the Dirac spinor, Eq.~4!, is
reduced as

eaGa
k5S 2

]

]r
1

k

r DFa
k1@M1S~r !1V~r !#Ga

k ,

eaFa
k5S 1

]

]r
1

k

r DGa
k2@M1S~r !2V~r !#Fa

k . ~9!

The meson field equations become simply radial Lapl
equations of the form

S 2
]2

]r 2
2

2

r

]

]r
1mf

2 D f~r !5sf~r !. ~10!

mf are the meson masses forf5s,v,r and zero for the
photon. The source terms are

sf~r !55
2gsrs~r !2g2s2~r !2g3s3~r ! for s

gvrv~r ! for v

grr3~r ! for r

erc~r ! for A,

~11!

with

4pr 2rs~r !5(
i 51

A

~ uGi~r !u22uFi~r !u2!,

4pr 2rv~r !5(
i 51

A

~ uGi~r !u21uFi~r !u2!,
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4pr 2r3~r !5(
i 51

A

2t i~ uGi~r !u21uFi~r !u2!,

4pr 2rc~r !5(
i 51

A S 1

2
2t i D ~ uGi~r !u21uFi~r !u2!. ~12!

The above coupled equations have been solved inr space
@22# and in the HO basis@23# using the no sea and the mea
field approximation. Here we depict briefly the procedure
solving these coupled equations. With a set of estimated
son and photon fields, the scalar and vector potentials
calculated and the radial Dirac equation solved. The so
tained nucleon wave functions are used to calculate
source term of each radial Laplace equation for mesons
the photon. New meson and photon fields are calculated
solving these Laplace equations. This procedure is itera
until a demanded accuracy is achieved. Laplace equat
are usually solved by using the Green’s function meth
@22,23# though in Ref.@23# Laplace equations for mesons a
solved in the HO basis. SRHR, SRHHO, and SRHWS dif
from each other mainly in how the Dirac equation is solve
In the following, the numerical solution of the Dirac equ
tion in the WS basis will be presented.

III. SOLVING THE DIRAC EQUATION IN A WOODS-
SAXON BASIS ANDX NUMERICAL DETAILS

A. Woods-Saxon basis from solving a Schro¨dinger equation
„the SWS basis…

For the Schro¨dinger equation with a spherical Wood
Saxon potential

VWS~r !5H V0

11e(r 2R0)/a0
, r ,Rmax

`, r>Rmax,

~13!

whereRmax is introduced for practical reasons to define t
box boundary, the eigenfunction can be written asfnlml

(r)
5Rnl(r )Ylml

(u,f). Its radial Schro¨dinger equation is de-
rived as

F2
1

2M S 1

r 2

]

]r
r 2

]

]r
2

l ~ l 11!

r 2 D 1VWS~r !GRnl~r !

5 EnlRnl~r !. ~14!

Equation~14! is solved on a discretized radial mesh wi
a mesh sizeDr . Rmax (Dr ) should be chosen larger~smaller!
enough to make sure that the final results do not depend
it. The radial wave functions thus obtained form a compl
basis

$Rnl~r !;n50,1, . . . ;l 50,1, . . . ,n%, ~15!

in terms of which the radial parts of the upper and the low
components of the Dirac spinor in Eq.~9! are expanded,
respectively, as
3-3
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Ga
k~r !52 i (

n50

nmax

ganrRnl~r !,

Fa
k~r !52 i (

ñ50

ñmax

f añrRñl̃ ~r !. ~16!

The radial Dirac equation, Eq.~9!, is transformed into the
WS basis as

S Amn Bmñ

Cm̃ñ Dm̃ñ
D S gan

f añ
D 5eaS gan

f añ
D , ~17!

where the matrix elements are calculated as follows

Amn5E
0

Rmax
r 2drRml~r !~V~r !1S~r !1M !Rnl~r !,

Bmñ5E
0

Rmax
r 2drRml~r !S 1

]

]r
2

ka21

r DRñl̃ ~r !,

Cm̃n5E
0

Rmax
r 2drRm̃l̃ ~r !S 2

]

]r
2

ka11

r DRnl~r !,

Dm̃ñ5E
0

Rmax
r 2drRm̃l̃ ~r !~V~r !2S~r !2M !Rñl̃ ~r !.

~18!

In practical calculations, an energy cutoffEcut ~relative to
the nucleon massM ) is used to determine the cutoff of th
radial quantum numbernmax for each block. In the expansio
of the corresponding lower component, we takeñmax5nmax
1Dn with Dn>1 in order to avoid spurious states@23#.

The following Woods-Saxon parameters have been u
according to Ref.@25#:

V05@251633~N2Z!/A# MeV,

R051.27A1/3 fm, a050.67 fm, ~19!

where ‘‘1’’ is for the neutron and ‘‘2 ’’ for the proton. As
expected, the dependence of final results on the initial
potential is almost negligible. For example, a variation ofV0
by 50% gives a difference in total binding energies by le
than 0.1% and a difference in charge radii by less than 0
for 16O, 48Ca, and208Pb. Such a situation is also checked
be true for the other two parameters in the WS potential,R0
anda0.

B. Woods-Saxon basis from solving a Dirac equation
„the DWS basis…

The radial Dirac equation, Eq.~9!, may be solved inr
space @22# with Woods-Saxon-like potentials forV0(r )
6S0(r ) @24# within a spherical box of sizeRmax, together
with the spherical spinor which gives a complete WS ba

$@enkm
0 ,cnkm

0 ~r,s,t !#;enkm
0 :0%, ~20!
03432
d

S

s
%

with n50,1, . . . , k561,62, . . . , andm52 j k , . . . ,j k .
cnkm

0 (r,s,t) takes the form of Eq.~8!. We note that states
both in the Fermi sea and in the Dirac sea should be inclu
in the basis for completeness. The nucleon wave funct
Eq. ~8!, can be expanded in terms of this set of basis as

cakm~r,s,t !5 (
n50

nmax

cancnkm
0 ~r,s,t !, ~21!

wherenmax5nmax
1 1nmax

2 11 and the summation is over pos
tive energy levels in the Fermi sea for 0<n<nmax

1 and over
negative energy levels in the Dirac sea fornmax

1 11<n
<nmax. The negative energy states are obtained with
same method as the positive energy ones@22#. In this WS
basis, the Dirac equation, Eq.~4!, turns out to be

camem
0 1 (

n50

nmax

canHmn8 5eacam ,m51, . . . ,nmax, ~22!

with

Hmn8 5^cm
0 ~r!u@DV~r!1bDS~r!#ucn

0~r!&

5E
0

Rmax
drGm

0 ~r !@DV~r !1DS~r !#Gn
0~r !

1E
0

Rmax
drFm

0 ~r !@DV~r !2DS~r !#Fn
0~r !, ~23!

where DV(r)5V(r)2V0(r) and DS(r)5S(r)2S0(r). The
angular, spin, and isospin quantum numbers are omitted
brevity.

It should be mentioned that Eq.~9! can be solved directly
in r space with the same method of generating the DW
basis. It is our aim to test the validity of an efficient solutio
not only for the spherical RH model but also for its extensi
to include the deformation and/or pairing correlations.
fact, if only the SRH theory is concerned, this procedure
just a replacement of the direct solution inr space by a
diagonalization of a matrix with some complication intr
duced by the fact that contributions from states in the Di
sea must be included.

An energy cutoffEcut ~relative to the nucleon massM )
and the cutoff of radial quantum numbersnmax

1 are applied to
positive energy levels alternatively according to practi
convenience. For the initial Woods-Saxon potentialsV0(r )
6S0(r ), we follow Ref. @24#.

C. Comparison with the r-space method

In order to check the validity of solving the Dirac equ
tion in the WS basis and to provide numerical experien
for future applications, we compare the results of16O and
208Pb obtained from solving the Dirac equation in the W
basis and those from solving the same equation in the c
dinate space. The latter is the most accurate method of s
ing the Dirac equation for realistic nuclei up to now and th
is used as a standard here. The scalar and vector potentia
the Dirac equation are provided by very accurate SRHR
3-4
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TABLE I. Dependence of the average single-particle energy, root mean square~rms! radius, and̂ r 4&1/4 on
the mesh sizeDr for the SRHSWS theory. The meson and Coulomb fields are obtained from SRHR c
lations with the parameter set NL3,Dr 50.05 fm, andRmax530 fm for 16O and 35 fm for 208Pb. In
SRHSWS calculations, the parameter set NL3 is used. For16O, Rmax54r0A

1/3512.8 fm and Ecut

5300 MeV. For208Pb, Rmax53r0A
1/3522.6 fm andEcut5200 MeV. The first row gives results from solvin

the Dirac equation in the coordinate space.

Dr 2Esp/A ^r 2&1/2 ^r 4&1/4 2Esp/A ^r 2&1/2 ^r 4&1/4

16O 208Pb
23.0375 2.5945 2.8900 23.3348 5.6315 5.9883

0.05 23.0375 2.5945 2.8900 23.3348 5.6315 5.9883
0.10 23.0376 2.5945 2.8899 23.3348 5.6315 5.9883
0.20 23.0385 2.5941 2.8896 23.3347 5.6315 5.9883
0.30 23.0430 2.5930 2.8889 23.3343 5.6314 5.9883
0.40 23.0420 2.5923 2.8885 23.3334 5.6315 5.9885
0.50 22.9887 2.5949 2.8936 23.3284 5.6319 5.9890
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culations with the parameter set NL3 for the Lagrangian,
mesh sizeDr 50.05 fm, and the box sizeRmax530 fm for
16O andRmax535 fm for 208Pb. Then withS(r ) and V(r )
thus obtained, the Dirac equation is solved in the coordin
space and in the WS basis with the parameter set NL3 a

To compare the results obtained only from solving t
Dirac equation avoids errors from other numerical pro
dures, e.g., the error from the iteration and that from solv
the Laplace equations. For the same reason, what we c
pare between these two methods is not the binding ene
which contains the contribution from mesons, but the av
age single-particle energyEsp/A; Esp5( ie i , wheree i is the
single-particle energy and the summation runs over all oc
pied states for both neutrons and protons. We also com
the rms radii^r 2&1/2 and ^r 4&1/4. The radiuŝ r 4&1/4 reflects
the nucleon densities in the larger region more than the rm
radius does.

Table I presents the dependence of results of the D
equation in the SWS basis on the mesh sizeDr . With Dr
decreasing, results in the SWS basis approach the stan
results, i.e., those inr space.Dr 50.1 fm gives results accu
rately enough. The dependence on the box sizeRmax and on
the basis size determined byEcut are investigated and show
in Figs. 1 and 2 where the deviations of the average sin
particle energyEsp/A, the rms radiî r 2&1/2 and ^r 4&1/4 from
the standards are plotted versusEcut, for different Rmax. If
Rmax is not large enough, it is difficult to approach the sta
dard results. For example, whenRmax53r0A

1/359.4 fm and
Ecut5300 MeV for 16O ~correspondingly,Nmax;20), the re-
sults seem converged, but the discrepancy of the ave
single-particle energy from the standard one remains 0.1
~Table II!. So one must use a large enough box with a s
Rmax around 4r 0A1/3 for light nuclei and 3r 0A1/3 for heavy
ones. It is interesting that the convergence of the results d
not depend onNmax, but only onEcut. For 16O (208Pb), the
results converge to the standard ones at; 300 ~400! MeV.
From Figs. 1 and 2, we find that the radius^r 4&1/4 also con-
verges very well, which implies that nucleon densities can
calculated accurately even for larger.

We have made similar investigations for results in the
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DWS basis and the same conclusions are drawn. For
stance, the deviations of the average single-particle en
Esp/A, the rms radiî r 2&1/2 and^r 4&1/4 from the standards are
plotted versusEcut for different Rmax in Figs. 3 and 4.
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<
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Rmax=16.0 fm 20 30 36 42 Nmax

Rmax=12.8 fm 16 24 28 34 Nmax

Rmax=9.6 fm 12 16 20 24 Nmax

X10X500

X50 X5

X50 X5

FIG. 1. ~Color online! Deviations of the average single-partic
energy Esp/A ~the upper panel!, rms radius ^r &1/2 ~the middle
panel!, and ^r 4&1/4 ~the lower panel! of 16O from the standard re-
sults versus the cutoff energyEcut with a different box sizeRmax for
the SRHSWS theory. The meson and Coulomb fields are obta
from SRHR calculations with the parameter set NL3,Dr
50.05 fm, andRmax530 fm. In SRHSWS calculations, the param
eter set NL3 is used. ForEcut5100, 200, 300, and 400 MeV, th
approximate maximum principal quantum number in each ba
Nmax52nmax1l, is given on the top of the plot.
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Rmax=30.1 fm 42 58 72 82 Nmax

Rmax=22.6 fm 32 44 54 62 Nmax

Rmax=15.0 fm 20 28 36 40 Nmax

X5

FIG. 2. ~Color online! Deviations of the average single-partic
energy Esp/A ~the upper panel!, rms radius ^r &1/2 ~the middle
panel!, and ^r 4&1/4 ~the lower panel! of 208Pb from the standard
results versus the cutoff energyEcut with a different box sizeRmax

for the SRHSWS theory. The meson and Coulomb fields are
tained from SRHR calculations with the parameter set NL3,Dr
50.05 fm, Rmax535 fm. In SRHSWS calculations, the parame
set NL3 is used. ForEcut5100, 200, 300, and 400 MeV, the ap
proximate maximum principal quantum number in each ba
Nmax52nmax1l, is given on the top of the plot.
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Rmax=12.5 fm 16 22 28 34 Nmax
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FIG. 3. ~Color online! Deviations of the average single-partic
energy Esp/A ~the upper panel!, rms radius ^r &1/2 ~the middle
panel!, and ^r 4&1/4 ~the lower panel! of 16O from the standard re-
sults versus the cutoff energyEcut with a different box sizeRmax for
the SRHDWS theory. The meson and Coulomb fields are obta
from SRHR calculations with the parameter set NL3,Dr
50.05 fm andRmax530 fm. In SRHDWS calculations, the param
eter set NL3 is used. ForEcut5100, 200, 300, and 400 MeV, th
approximate maximum principal quantum number in each ba
Nmax52nmax1l, is given on the top of the plot.
TABLE II. Dependence of the average single-particle energy, rms radius, and^r 4&1/4 on the differenceDn5ñmax2nmax for the SRHSWS
theory. The meson and Coulomb fields are obtained from SRHR calculations with the parameter set NL3,Dr 50.05 fm, andRmax530 fm for
16O and 35 fm for 208Pb. In SRHSWS calculations, the parameter set NL3 is used. For16O, Rmax54r0A

1/3512.8 fm. For 208Pb, Rmax

53r0A
1/3522.6 fm.

Dn 2Esp/A ^r 2&1/2 ^r 4&1/4 2Esp/A ^r 2&1/2 ^r 4&1/4

16O: Ecut5100 MeV 208Pb: Ecut5100 MeV
1 23.0382 2.5947 2.8920 23.3344 5.6315 5.9884
3 23.0326 2.5949 2.8913 23.3341 5.6315 5.9884
5 23.0298 2.5952 2.8915 23.3340 5.6315 5.9884
7 23.0290 2.5953 2.8915 23.3340 5.6315 5.9884
9 23.0289 2.5953 2.8915 23.3340 5.6315 5.9884

16O: Ecut5300 MeV 208Pb: Ecut5200 MeV
1 23.0375 2.5945 2.8999 23.3348 5.6315 5.9883
3 23.0375 2.5945 2.8999 23.3348 5.6315 5.9883
5 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
7 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
9 23.0375 2.5945 2.8999 23.3347 5.6315 5.9883
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SPHERICAL RELATIVISTIC HARTREE THEORY IN A . . . PHYSICAL REVIEW C68, 034323 ~2003!
In the expansion of the nucleon wave function, Eq.~21!,
one has to take into account not only the levels in the Fe
sea but also those in the Dirac sea because together
form a complete basis. Now the question arises of how m
levels in the Dirac sea one has to take into account. In
calculations in Figs. 3 and 4, we have usednmax

2 5nmax
1 with

nmax
1 determined byEcut. In Table III, the dependence of th

average single-particle energy, the rms radii^r 2&1/2 and
^r 4&1/4 on Nmax

2 52nmax
2 1l—a cutoff on the principal quantum

number of levels in the Dirac sea—are given for16O and
208Pb. From Table III, we find the merit of solving the Dira
equation in the DWS basis: the number of negative ene
states included in the basis could be much smaller than
of the positive energy states. Let us take16O as an example
Rmax54r0A

1/3 andEcut5300 MeV for positive energy state
correspond toNmax

1 ;28. For negative energy states,Nmax
2

510 gives very accurate results, e.g., the discrepancy
Esp/A from the standard is smaller than 0.1 keV. This w
significantly simplify the deformed problem by decreasi
the matrix dimension compared to the solution of the Di
equation in the SWS basis.
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<
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Rmax=29.4 fm 40 58 72 86 Nmax

Rmax=22.1 fm 30 42 52 62 Nmax

Rmax=14.7 fm 18 26 34 40 Nmax

X100 X10

FIG. 4. ~Color online! Deviations of the average single-partic
energy Esp/A ~the upper panel!, rms radius ^r &1/2 ~the middle
panel!, and ^r 4&1/4 ~the lower panel! of 208Pb from the standard
results versus the cutoff energyEcut with a different box sizeRmax

for the SRHDWS theory. The meson and Coulomb fields are
tained from SRHR calculations with the parameter set NL3,Dr
50.05 fm, andRmax535 fm. In SRHDWS calculations, the param
eter set NL3 is used. ForEcut5100, 200, 300, and 400 MeV, th
approximate maximum principal quantum number in each ba
Nmax52nmax1l, is given on the top of the plot.
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The above investigations are somehow academic. In p
tical applications, it is not necessary to go to an accuracy
some keV in the single-particle energy or 1024 fm in the
radius. So in the following calculations, we will useRmax
520 fm, Dr 50.1 fm, andEcut560–80 MeV for heavy and
light nuclei, which give reasonable accuracies both for
binding energy and the radius. This set of cutoffs cor
sponds approximately toNmax52nmax1l;25, wherel is the
orbital angular momentum of relevant state.

IV. RESULTS AND DISCUSSION

In this section, we present results of SRHWS. Since
main aim is to show the virtues of SRHWS compared
SRHHO and SRHR, we do not include pairing correlatio
and restrict our study to doubly magic or magic nuclei on
If not specified, the parameter set NLSH is used for the
grangian,Rmax520 fm, andDr 50.1 fm throughout this sec
tion. Other parameter sets for the Lagrangian do not cha
the conclusion here. In SRHDWS, the number of posit
energy levels in the Fermi sea and that of negative ene
ones in the Dirac sea are the same for convenience,
nmax

1 5nmax
2 . For SRHHO,\v0541A21/3 has been used an

cutoffs of the expansion for fermions and bosons are
same, i.e.,NF5NB[Nmax.

A. Bulk properties of stable nuclei from
different SRH theories

In Table IV, the binding energy per nucleon (E/A), and
neutron, proton, and charge radii (r n , r p , and r c) of some
typical spherical nuclei are presented, which are calcula
from the present available codes, including SRH
SRHSWS, SRHDWS, and SRHHO. Available data@26,27#
are also included for comparison. We use approximately
sameNmax in the SRHHO as that in the SRHWS which
determined byEcut.

Generally speaking, for each studied nucleus, the four
proaches give almost the same results with an accu
within 0.1% with few exceptions where the differences a
still less than 0.3%. They are in excellent agreement w
available data.

With the same parameters of spatial lattice,Rmax andDr ,
SRHWS should reproduce results of SRHR whenEcut ~or
Nmax) is large enough. This is justified in Table IV. One ca
find exactly coincident results between SRHSWS and SR
for most of the studied nuclei. The remaining differences a
those between SRHDWS and SRHR could be diminished
increasingEcut.

In Fig. 5, the neutron density distributions are compa
between SRHR, SRHSWS, SRHDWS, and SRHHO,
which 16O is chosen as an example. Comparisons are
made for heavier nuclei such as48Ca and 208Pb. Similar
results are obtained and not shown here. The calculation
tails are the same as Table IV. For these stable nuclei, a
these SRH methods are valid and all calculations are in
cellent agreement with each other from the central to
outer region of each nucleus. Small differences in the cen
region do not affect the physical observables, such as

-

s,
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TABLE III. Dependence of the single particle energy, rms radius, and^r 4&1/4 on the maximum principal
quantum numberNmax

2 52nmax
2 1l for the SRHDWS theory. The meson and Coulomb fields are obtained

SRHR calculations with the parameter set NL3,Dr 50.05 fm, andRmax530 fm for 16O and 35 fm for208Pb.
In SRHDWS calculations, the parameter set NL3 is used. For16O, Rmax54r0A

1/3512.5 fm and Ecut

5300 MeV for positive energy states. For208Pb, Rmax53r0A
1/3522.1 fm andEcut5200 MeV for positive

energy states.

Ñmax
2Esp/A ^r 2&1/2 ^r 4&1/4 2Esp/A ^r 2&1/2 ^r 4&1/4

16O 208Pb
no 23.1129 2.5912 2.8859 23.3331 5.6314 5.9889
0 23.1077 2.5916 2.8861 23.3329 5.6314 5.9889
2 23.0762 2.5939 2.8889 23.3316 5.6315 5.9890
4 23.0617 2.5942 2.8893 23.3304 5.6317 5.9892
6 23.0439 2.5946 2.8898 23.3299 5.6318 5.9893
8 23.0385 2.5946 2.8899 23.3294 5.6319 5.9893
10 23.0376 2.5946 2.8899 23.3292 5.6319 5.9894
12 23.0375 2.5946 2.8899 23.3291 5.6319 5.9899
14 23.0375 2.5946 2.8899 23.3290 5.6319 5.9894
16 23.0375 2.5946 2.8899 23.3290 5.6319 5.9894
18 23.0375 2.5946 2.8899 23.3289 5.6319 5.9893
20 23.0375 2.5946 2.8899 23.3288 5.6319 5.9893
22 23.0375 2.5946 2.8899 23.3287 5.6319 5.9893
30 23.0375 2.5946 2.8899 23.3287 5.6319 5.9893
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binding energy or nuclear radius, as is seen in Table
Furthermore, these differences could also be decrease
increasingEcut or Nmax.

From the above discussions, it is clear that SRHWS
equivalent to SRHR and SRHHO for stable nuclei. Thus,
conclude that the Woods-Saxon basis provides another
sibility to solve the~non-!relativistic mean-field theory.

B. Neutron density distributions for 72Ca
in different SRH theories

As already discussed in the Introduction, one of the me
of SRHR against SRHHO is its proper description of exo
nuclei. In this section, we will demonstrate the equivalen
between SRHWS and SRHR when reasonably largeEcut is
applied in SRHWS.

In order to see the results for the unstable nuclei near
neutron drip line, the neutron density distribution for72Ca is
studied here. The nucleus72Ca is predicted to be the las
bound calcium isotope@28–31#. Since it is not a doubly
magic nucleus, there might be some uncertainty in
present results due to the lack of inclusion of pairing cor
lations. However, as stressed in the beginning of this sect
the main aim here is to show the equivalence betw
SRHWS and SRHR, it is very unlikely that pairing correl
tions would change our conclusion qualitatively.

For stable nuclei, it has been shown thatRmax;20 fm is
large enough. For drip line nuclei, the dependence of
results onRmax for 72Ca is presented in Table V. For bot
SRHR and SRHWS,Dr 50.1 fm andRmax520, 25, 30, and
35 fm have been used, respectively. The energy cutoffEcut
575 MeV is used in SRHWS calculations. In SRHR a
SRHWS calculations, the neutron rms radiusr n and the
Fermi energyln of 72Ca converge aroundRmax 5 35 fm.
03432
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The binding energy per nucleonE/A and the proton rms
radiusr p are almost independent of the box size whenRmax

is larger than 20 fm.Ecut575 MeV andRmax520, 25, 30,
and 35 fm in SRHWS correspond to cutoffs on the princip
quantum numberNmax525, 31, 37, and 43, which are use
in SRHHO calculations in order to make fair compariso
between SRHWS and SRHHO. Similar to those from SRH
and SRHWS,E/A and r p depend little onNmax in SRHHO.
However, the neutron rms radiusr n increases steadily with
Nmax, which shows a much slower convergence. As it
based on a complete basis, SRHHO can also reach con
gence ofr n if Nmax is large enough. From Table V, one find
that for the sameNmax ~or equivalentRmax), a difference of
Dr n'0.2 fm between SRHHO and SRHWS~SRHR! can be
seen. From the slow convergence ofr n with Nmax in SRHHO
(DNmax56 givesDr n'0.02 fm), we can estimate the lowe
limit of Nmax asNmax' 90 in order to giver n54.8 fm.

We compare the neutron density distribution of72Ca from
different SRH approaches in Fig. 6. With the same box s
the density distribution from SRHR are almost identical w
those from SRHWS, which indicates the equivalence
tween SRHWS and SRHR. For brevity, onlyrn(r ) from
SRHR withRmax535 fm is displayed in Fig. 6 which cover
the curve corresponding torn(r ) from SRHWS withRmax
535 fm in Fig. 6. On the other hand,rn(r ) from SRHHO
even withNmax543 fails to reproduce the result of SRH
due to the well known localization property of the H
potential@9#.

This result is very encouraging and shows us that even
long tail ~or halo! behavior in neutron density distribution fo
nuclei near the drip line can be described by SRHSWS
well as SRHR, if pairing correlations are incorporat
properly.
3-8
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TABLE IV. The binding energy per nucleon, and neutron, proton and charge radii of some typically spherical nuclei. The param
NLSH is used for the Lagrangian.Rmax520 fm andDr 50.1 fm for SRHR and SRHWS.\v0541A21/3 for SRHHO. Numbers in brackets
in the second column giveEcut for SRHWS andNmax for SRHHO. Data forE/A and r c are taken from Refs.@26# and @27#, respectively.
Energy is in MeV and radius in fm.

Nucleus E/A rn r p r c

16O SRHR 28.022 2.551 2.578 2.699
SRHSWS~80! 28.022 2.554 2.581 2.702
SRHDWS~80! 28.014 2.553 2.580 2.701
SRHHO ~25! 28.034 2.551 2.577 2.699
Experiment 27.976 2.693

40Ca SRHR 28.500 3.311 3.359 3.452
SRHSWS~80! 28.499 3.310 3.358 3.452
SRHDWS~80! 28.497 3.312 3.359 3.453
SRHHO ~25! 28.514 3.310 3.358 3.452
Experiment 28.551 3.478

48Ca SRHR 28.644 3.586 3.369 3.463
SRHSWS~80! 28.646 3.583 3.368 3.461
SRHDWS~80! 28.639 3.586 3.371 3.464
SRHHO ~25! 28.659 3.584 3.368 3.462
Experiment 28.666 3.479

56Ni SRHR 28.634 3.582 3.630 3.717
SRHSWS~80! 28.640 3.580 3.628 3.715
SRHDWS~80! 28.625 3.585 2.633 3.720
SRHHO ~25! 28.650 3.581 3.629 3.716
Experiment 28.345

90Zr SRHR 28.677 4.294 4.186 4.262
SRHSWS~75! 28.677 4.295 4.187 4.263
SRHDWS~75! 28.672 4.295 4.187 4.262
SRHHO ~25! 28.693 4.293 4.185 4.261
Experiment 28.710 4.270

118Sn SRHR 28.466 4.743 4.553 4.623
SRHSWS~70! 28.466 4.743 4.554 4.624
SRHDWS~70! 28.460 4.743 4.554 4.624
SRHHO ~25! 28.482 4.741 4.552 4.622
Experiment 28.517 4.641

132Sn SRHR 28.377 4.964 4.636 4.704
SRHSWS~70! 28.377 4.964 4.637 4.704
SRHDWS~70! 28.370 4.964 4.637 4.706
SRHHO ~25! 28.393 4.963 4.635 4.703
Experiment 28.355

208Pb SRHR 27.885 5.713 5.447 5.505
SRHSWS~60! 27.886 5.712 5.447 5.505
SRHDWS~60! 27.874 5.712 5.448 5.506
SRHHO ~25! 27.900 5.711 5.445 5.504
Experiment 27.868 5.504
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C. Contribution from negative energy levels
in the SRHDWS theory

In the expansion of the nucleon wave function, Eq.~21!,
one has to take into account not only the states in the Fe
sea but also those in the Dirac sea because these states
a complete basis together. We study the contribution fr
negative energy states for16O. The results are given in Tabl
VI. First, without negative energy levels included, th
nucleus is overbound and the nuclear size is smaller as
03432
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from Table VI. Second, contrary to the case with negat
energy levels included, the calculated nuclear properties
pend on the initial potentials very much if no negative ene
levels are included.

It should be noted that the contribution from negative e
ergy levels depends on the initial Woods-Saxon potentials
generating the DWS basis. So do the cutoffNmax or Ecut for
convergence. If the initial Woods-Saxon potential is exac
identical to the converged potentials, the matrix in Eq.~22! is
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SHAN-GUI ZHOU, JIE MENG, AND P. RING PHYSICAL REVIEW C68, 034323 ~2003!
diagonal, negative energy states do not contribute becau
the no sea approximation. Positive energy states can als
chosen as less as possible, e.g., 1s1/2, 1p3/2, and 1p1/2 are
enough for 16O. From the third column corresponding

0 3 6
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SRHR     
SRHDWS
SRHSWS
SRHHO

16
O

FIG. 5. ~Color online! Neutron density distributions for16O
from different SRH approaches. The parameter set NLSH is u
for the Lagrangian.Rmax520 fm andDr 50.1 fm for SRHR and
SRHWS. Ecut580 MeV for SRHWS. Correspondingly,Nmax525
for SRHHO. In SRHDWS, the number of levels in the Dirac s
included in each block is the same as that of levels in the Fe
sea which is determined byEcut . The inset presents logarithmi
densities.

TABLE V. Convergence study for72Ca. The parameter se
NLSH is used for the Lagrangian.Dr 50.1 fm for SRHR and
SRHWS.Ecut575 MeV for SRHWS. Energy is in MeV and radiu
in fm.

E/A rn r p ln

Rmax SRHR
20 6.482 4.656 3.639 20.191
25 6.483 4.723 3.639 20.221
30 6.484 4.773 3.639 20.228
35 6.484 4.807 3.639 20.229
Rmax SRHSWS
20 6.481 4.663 3.639 20.206
25 6.482 4.726 3.639 20.231
30 6.483 4.774 3.639 20.237
35 6.483 4.803 3.639 20.238
Rmax SRHDWS
20 6.474 4.662 3.641 20.163
25 6.475 4.733 3.641 20.197
30 6.475 4.789 3.640 20.205
35 6.475 4.828 3.640 20.206
Nmax SRHHO
25 6.489 4.577 3.639 20.054
31 6.492 4.605 3.639 20.128
37 6.494 4.628 3.639 20.166
43 6.494 4.649 3.639 20.189
03432
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V0572 MeV in Table VI, one finds that the initial nuclea
potential for the Dirac equation proposed in Ref.@24# is a
good choice for SRHDWS as the negative energy states
contribute;1.25% to bothE/A and r rms. If we change the
initial potentials, e.g., by changingV0 by 25%, much larger
contributions from negative energy states are found
Table VI.

In order to know the contribution of negative energ
states in the Dirac sea to the wave function, the value
(nucn

2u2 in the expansion, Eq.~21! has been calculated fo
occupied states of16O. We found a small contribution, th
value of (nucn

2u2 is around 1024 to 1025. Note that the
nucleon wave function is normalized to one. However, su

d
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FIG. 6. ~Color online! Comparison of density distributions fo
72Ca from SRHR, SRHWS, and SRHHO. The parameter set NL
is used for the Lagrangian.Dr 50.1 fm for SRHR and SRHWS.
Ecut575 MeV and Rmax520 ~thick dot-dashed curve!, 25 ~thick
long-dashed curve!, 30 ~thick dashed curve!, and 35 fm~thick dot-
ted curve! for SRHWS. Note that the legend is for both SRHSW
~the upper panel! and SRHDWS~the lower panel!. These sets of
cutoffs correspond to cutoffs in principal quantum numberNmax

525 ~thin dot-dashed curve!, 31 ~thin long-dashed curve!, 37 ~thin
dashed curve!, and 43 ~thin dotted curve! which are used in
SRHHO calculations. The density distribution from SRHR are
most identical with that from SRHWS with the same box size. F
brevity, onlyrn(r ) from SRHR withRmax535 fm ~thick solid line!
is displayed here.
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SPHERICAL RELATIVISTIC HARTREE THEORY IN A . . . PHYSICAL REVIEW C68, 034323 ~2003!
a small component from negative energy states in the w
functions contributes to the physical observables, such
E/A and r rms, by magnitudes of 1–10% as seen from Tab
VI. Again, we note that the initial Woods-Saxon potentia
differ more from the converged ones, the larger the contri
tion from negative energy levels.

V. SUMMARY

We have solved the spherical relativistic Hartree theory
the Woods-Saxon basis~SRHWS!. The Woods-Saxon basi
is obtained by solving either the Schro¨dinger equation
~SRHSWS! or the Dirac equation~SRHDWS!. Formalism
and numerical details for both cases are presented. The
basis in the SRHDWS theory could be much smaller th
that in the SRHSWS theory. This will largely facilitate th
deformed problem.

The results from SRHWS are compared with those fr
solving the spherical relativistic Hartree theory in the h
monic oscillator basis, SRHHO, and those in the coordin
space, SRHR. For stable nuclei, all approaches give iden
results for properties such as total binding energies, the n
tron, proton, and charge rms radii, as well as neutron den
distributions.

TABLE VI. Effects of negative energy levels on bulk properti
in SRHDWS for 16O. The parameter set for the Lagrangian
NLSH, Rmax520 fm, Dr 50.1 fm, andNmax

1 525. For the initial
Woods-Saxon-like potentials, parameters in Ref.@24# are used ex-
cept for V0 which is specified in the table. The left value in ea
entry gives the result without negative energy levels included
the right one that withNmax

2 525. Energy is in MeV and radius in
fm.

V0554 MeV V0572 MeV V0590 MeV

E/A 8.547u 8.013 8.117u 8.015 8.427u 8.012
r rms 2.385u 2.568 2.531u 2.567 2.610u 2.567
r

e

.

ys

ys
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For neutron drip line nuclei, e.g.,72Ca, which has a very
small neutron Fermi energyln;0.2 MeV, both SRHR and
SRHWS easily approach convergence by increasing
size, while SRHHO does not. Furthermore, SRHWS can
isfactorily reproduce the neutron density distribution fro
SRHR, but SRHHO fails with similar cutoffs.

In SRHDWS calculations, negative energy states in
Dirac sea must be included in the basis in terms of wh
nucleon wave functions are expanded. We studied in de
the effects and contributions of negative energy states. W
out negative energy levels included, the calculated nuc
properties depend on the initial potentials very much.
small component from negative energy states in the w
functions, about 1024 to 1025, contributes to the physica
observables, such asE/A and r rms, by the magnitude of
1–10%. When the initial potentials differ more from the co
verged ones, the contribution from negative energy lev
becomes more important.

We conclude that the Woods-Saxon basis provides a c
promise between the harmonic oscillator basis and the c
dinate space, which may be used to describe exotic nu
both properly and efficiently.

The extension of the relativistic Hartree theory in t
Woods-Saxon basis to deformed cases with pairing corr
tions included is in progress.
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