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Specific heat at constant volume in the thermodynamic model

PHYSICAL REVIEW C 68, 031601R) (2003

C. B. Dast S. Das Guptd,and A. Z. Mekjiarf
IPhysics Department, McGill University, Monéde Canada H3A 2T8
2Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855, USA
(Received 20 June 2003; published 29 September)2003

A thermodynamic model for multifragmentation which is frequently used appears to give very different
values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is
used. The cause for this discrepancy is analyzed.
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The motivation for this work is just one puzzle. A ther- wherek,, is the number of nucleons in the largest cluster
modynamic model, often used for fitting data, appears tallowed in the system. Here
give very different answers for specific heat at constant vol- (2 T2
ume depending upon whether the canonical or the grand ca- _ (£7m 23 5
nonical ensemble is used. We wish to resolve this issue. Th&k~ h3 exfa,k—o(Tk™+kTe] for k>1
relevant papers are Refd] and[2]. Although for practical
applications a much more sophisticated two component ver- (27mT)3?

sion of the model is uselB—5], here, as if1,2] we use one T for k=1. @)
kind of particle as in the original formulatidi]. If a system
hasA nucleons in a volume at temperaturd the system To do the grand canonical calculation & 2000 we set

can break up into various composites which have a binding in the above equation at 2000. The average valuggf
energy consisting of volume and surface energies. Excitegmthen given by

states of the composite can also be included. Assuming that
the break up takes place only according to the availability of n.) = exn k RV, 3
phase space, it was shown in Rf] that this problem foA (N AkBr) o, @

nucleons can be solved numerica”y with arbitrary aCCUracyNhereV is the appropriate value of 2000 nucleons at freeze-

very easily. One can also solve thg problem in.a grand cagyt, i.e., V=2000x 2.7lpo. Denoting(n,) as the average
nonical ensembl¢2,6]. We do not give any details here as nymper of composites which hasiucleongi.e., the average

they are given in many places including R€fk,2]. number of trimers ign,)) we have
By specific heat we will always mean specific heat per
particle. It was shown in the original papgt] that for a 2000
fixed A, the total number of particles, and a fix& the kEl k(n,)=2000. (4)

specific heat as a function of temperature went through a

maximum at a certain temperature which was labeled th(ﬁ should be realized that all's (up to=) are included in the

boiling temperature. A numerical calculation which is rather%{élnd canonical ensemble but settikg=2000 in Eq.(1)

easy and can be made sufficiently accurate showed that for o
fixed p=A/V if we increase the number of particles the signifies _that the_largest clyster has 2000 nucleons. In terms
ﬁ)é canonical partition functions one has

height of the peak rises and the width decreases. Since o

sees no reason why this behavior should change at certain o
high value ofA, it was concluded that the specific heat be- — ex K 5
haves like a5 function in the limitA—o. There is a physics Qar.can Zo PBRK) Qi ©

picture one can associate with this. Below the boiling tem-

perature there is a blob of liquid. Just above the boiling temWhereQy i is the canonical partition function & nucleons
perature this blob disappears into a system of smaller conbut with the restriction that the largest cluster has dxly
posites and nucleons. Qualitatively, & function would  (=2000) nucleons. The quantif§u is known from solving
emerge if a finite fraction rather than an infinitesimal fractionEq. (1) with k,,=2000. Similar arguments hold wheg,

of the blob is converted into gas with an infinitesimal in- =200 but we will not discuss this case and concentrate only
crease of temperature. on A=Kk.,=2000.

In Fig. 1 we show the specific heats in the canonical Figure 1 shows that the specific heats in the canonical and
model forp=p/2.7 whenA= 200 andA=2000. All calcu-  the grand canonical models are very different. In both the
lations shown here will be at this. The grand canonical models, the peak value of the specific heat increases when
results are also shown in the figure. For grand canonical weve go from 200 to 2000 particles and the widths decrease but

solve the results are much more dramatic in the canonical model.
K Since A=2000 is a large number in the context of nuclear

p= E kexp(kB ) @y, (1) phy§|cs, we try to undgrstand the cause pf this q|ﬁerence. In

k=1 particular, it is not obvious that the specific heat in the grand
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FIG. 1. Specific heat per particle at constant volume when the system has total number of particles 200 and 2000. The canonical and
grand canonical values are shown.

canonical model will attain extraordinary heights and/or It is interesting to study fluctuations further. The probabil-
miniscule widths. We will show that the cause of discrepancyity of K particles being in the grand canonical ensemble is
between the canonical and the grand canonical models is thee®## " [Eq. (5)] and we plot in Fig. 3 eXBu(K—A)
very large fluctuation in the particle number in the grand+In Q«—InQ,]. This takes the value 1 &=A and in the
canonical ensemble. We can investigate this in two ways, oneormal picture of the grand canonical ensemble would drop
more detailed than the other. We note that

rather large values df and the value offu from the grand 02 f
canonical calculation. Hence we can use &j.also to cal-
culate fluctuation. For practical reasons, the upper limi of
will have to be cut off. The upper limit df in the sum above 0 w " . . w
was ;0 000. S|nge we are investigatiig- 2000 one migha Temperature (MeV)
priori assume this should be adequate.

The fluctuations calculated from Eq¢5) and (7) are FIG. 2. Fluctuations calculated using E¢S) and(7). The solid
shown in Fig. 2. One sees that there is a temperature aboYge corresponds to using E) with K cut off at 10 000 and the
which the fluctuations are small. At these temperatures th@otted line corresponds to using E(). T, corresponds to the
grand canonical value of specific heat is indistinguishabl@emperature where the specific heat maximizes in the canonical cal-
from the canonical value. But as temperature is loweredgulation andT, to the temperature of highest specific heat in the
fluctuations grow rapidly and the results begin to diverge. grand canonical calculation.

2000 i

Qqr.can™ ex% kzl Vwkekﬁ'u) (6) |

0.8

and we can calculate fluctuation exploiting the well-known A

. < :
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But we can also exploit the fact that we knd@y , up to $
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FIG. 3. These graphs show the spread of particle numbers in the grand canonical ensemble when the average particle number is 2000.
The spread is very narrow at temperature 7.7 MeV but becomes quite wide at lower temperatures.

off rapidly on either side ofA. This does happen at a tem- system there is indeed&function inC,,, one will miss the
perature higher than the boiling temperature. The case aifunction since it has zero width. To see that there is indeed
temperaturd =7.7 MeV corresponds to a standard scenarioone, we should instead calculate the total energy and see that
But the situation at temperature 7.3 MeV is drastically dif-at a given temperatufethere is a huge difference in the total

ferent. The probability does not maximizeat A but at a
lower value. It is also very spread out with a periodic struc-
ture. At temperature 2.0 MeV, the probability of having no
particle is higher than the probability of havig=A. We
notice that here also there is a periodicity in the probability
distribution. The periodicity is 2000 and is linked with the

fact that in the case studied the largest composite has 2000 ’>'\
nucleons and at low temperatures, this composite will play a @
significant role. >

We can now understand why the specific heat curve is so
flat in the grand canonical ensemble in Fig. 1. Even though <
the average number @éfis 2000, the ensemble contains large
components oK <A (thus have lower density and peaks of
specific heat below 7.1 MeVandK>A (which have peaks
at higher than 7.1 Me)/ It is this smearing which makes the
specific heat peak much lower and much wider.

In Fig. 4 we have shown canonical and grand canonical
results for the total energy of 2000 particles. The canonical
result suggests that starting from a low temperature, energy
increases at a finite ratémplies a finite value ofC,)), fol-
lowed by a sudden riséwill lead to infinite specific heat
followed again by a regular behavior. Thus the transition
region is marked by two different values &, with a &
function switched in between. In the grand canonical model
for 2000 particles one sees only the discontinuity in the value
of Cy. If one was calculatingC,, directly in either the ca-
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FIG. 4. Caloric curves in the canonical and the grand canonical

nonical or the grand canonical model and for a very largemodels for a system of 2000 particles.
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One might get the impression that for finite systems theAlso the factorial momen¢nkm(nkm—1)> is given by
use of a grand canonical ensemble is very dangerous. For
many observables it is quite acceptable. However, a recent
work shows[ 7] that interpreting data according to grand ca- 5 Qk -2k,
nonical ensemble can lead to a serious error in estimating (g (g —1))=(wy_ ) 0c |
temperature. It thus depends on the particular observable be-
ing calculated.

Returning briefly to the interesting periodicity seen in Fig. And in general,
3, it arises because at low temperatures it is advantageous for
the system to form large clusters. In the example studied in
Fig. 3 where the largest cluster size was 2000, at temperature (
2 MeV when the system has 8000 nucleons, we have essen-
tially four clusters, each of size 20Q@e are confining our-

selves to canonical calculation of cours€his becomes less .
precise at higher temperature. For example, at 6 MeV tem! NS the points at 8000, 6000, 4000, 2000, and O can be

perature if the system has 4100 nucleons, nearly 4000 J]elated to the factorial moments of trmgm distributions as
them are distributed in large clustefmore precisely, on an T—0. At T=0 these are X4X3X2X15X4X3X25
average, 3950.22 nucleons are bound in clusters of sizes b&4x3,5x4, and 5 ak = 0,2000,4000,6000, and 8000, re-
tween 1800 and 200@Gnd nearly 100 of them are in lighter spectively. The heights of the peaks in Fig. 3 will be deter-
clusters(149.78 on an averagdf we now go to a system of Mmined by
6100 nucleons, on an average 5940.22 are bound in very
heavy clusters and 159.78 in lighter clusters. Approximately,
at low temperatures, . 2005~ 1N Qc+IN(Vyo0 - (ne (N —=1)---(n, —n+ 1)>&eBM[K7(n+l)kml

The low temperature periodic structureTat 2 MeV can wm” men " Km
be qualitatively understood using the following results. As
T—0, the system will go to the largest cluster allowed, and . o
in this casek,,=2000. For example, 4= 10 000(the total asT—0. Even atT=2 MeV, this expression is very accu-
number of nucleons in the system result of five clusters of rate.
size 2000 follows. The mean number of cluster of dize
(=2000) is

K—nk,

Qk

N (N, = 1) (e —n+ 1)>:(wkm)n< ) 8

m

We acknowledge communications from K. A. Bugaev and
I. Mishustin. This work was supported in part by the Natural
Ok« Sciences and Engineering Research Council of Canada,
m Fonds Nature et Technologies of Quebec and the U.S. De-
partment of Energy Grant No. DEFG02-96ER40987.

<nkm>: wkm QK

[1] S. Das Gupta and A.Z. Mekjian, Phys. ReVbT 1361(1998. [5] A. Majumder and S. Das Gupta, Phys. Rev.6@C 034603

[2] K.A. Bugaev, M.I. Gorenstein, I.N. Mishustin, and W. Greiner, (2000.
Phys. Rev. (62, 044320(2000. [6] S. Das Gupta and A.Z. Mekjian, Phys. Ry, 131(19813).

[3] P. Bhattacharyya, S. Das Gupta, and A.Z. Mekjian, Phys. Rev.[7] C.B. Das, S. Das Gupta, X.D. Liu, and M.B. Tsang, Phys. Rev.
C 60, 054616(1999. C 64, 044608(2001).

[4] M.B. Tsanget al, Phys. Rev. (54, 054615(2001).

031601-4



