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Specific heat at constant volume in the thermodynamic model
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A thermodynamic model for multifragmentation which is frequently used appears to give very different
values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is
used. The cause for this discrepancy is analyzed.

DOI: 10.1103/PhysRevC.68.031601 PACS number~s!: 25.70.2z, 25.75.Ld, 24.10.Lx
r-
t

o
c

T

ve

in
ite
th
o

ac
c
s

e

h
th
e
fo
e
o

rta
e

m
m
om

on
n-

ca

l
w

ter

ze-

rms

nly

and
the
hen
but

del.
ar
. In
nd
The motivation for this work is just one puzzle. A the
modynamic model, often used for fitting data, appears
give very different answers for specific heat at constant v
ume depending upon whether the canonical or the grand
nonical ensemble is used. We wish to resolve this issue.
relevant papers are Refs.@1# and @2#. Although for practical
applications a much more sophisticated two component
sion of the model is used@3–5#, here, as in@1,2# we use one
kind of particle as in the original formulation@1#. If a system
hasA nucleons in a volumeV at temperatureT the system
can break up into various composites which have a bind
energy consisting of volume and surface energies. Exc
states of the composite can also be included. Assuming
the break up takes place only according to the availability
phase space, it was shown in Ref.@1# that this problem forA
nucleons can be solved numerically with arbitrary accur
very easily. One can also solve the problem in a grand
nonical ensemble@2,6#. We do not give any details here a
they are given in many places including Refs.@1,2#.

By specific heat we will always mean specific heat p
particle. It was shown in the original paper@1# that for a
fixed A, the total number of particles, and a fixedV, the
specific heat as a function of temperature went throug
maximum at a certain temperature which was labeled
boiling temperature. A numerical calculation which is rath
easy and can be made sufficiently accurate showed that
fixed r[A/V if we increase the number of particles th
height of the peak rises and the width decreases. Since
sees no reason why this behavior should change at ce
high value ofA, it was concluded that the specific heat b
haves like ad function in the limitA→`. There is a physics
picture one can associate with this. Below the boiling te
perature there is a blob of liquid. Just above the boiling te
perature this blob disappears into a system of smaller c
posites and nucleons. Qualitatively, ad function would
emerge if a finite fraction rather than an infinitesimal fracti
of the blob is converted into gas with an infinitesimal i
crease of temperature.

In Fig. 1 we show the specific heats in the canoni
model forr5r0/2.7 whenA5200 andA52000. All calcu-
lations shown here will be at thisr. The grand canonica
results are also shown in the figure. For grand canonical
solve

r5 (
k51

km

kexp~kbm!ṽk , ~1!
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where km is the number of nucleons in the largest clus
allowed in the system. Here

ṽk5
~2pmTk!3/2

h3
exp@avk2s~T!k2/31kT2/e0# for k.1

5
~2pmT!3/2

h3
for k51. ~2!

To do the grand canonical calculation forA52000 we set
km in the above equation at 2000. The average value of^nk&
is then given by

^nk&5exp~kbm!ṽkV, ~3!

whereV is the appropriate value of 2000 nucleons at free
out, i.e., V5200032.7/r0. Denoting ^nk& as the average
number of composites which hask nucleons~i.e., the average
number of trimers iŝn3&) we have

(
k51

2000

k^nk&52000. ~4!

It should be realized that allA’s ~up to`) are included in the
grand canonical ensemble but settingkm52000 in Eq.~1!
signifies that the largest cluster has 2000 nucleons. In te
of canonical partition functions one has

Qgr.can5 (
K50

`

exp~bmK !QK,km
, ~5!

whereQK,km
is the canonical partition function ofK nucleons

but with the restriction that the largest cluster has onlykm
(52000) nucleons. The quantitybm is known from solving
Eq. ~1! with km52000. Similar arguments hold whenkm
5200 but we will not discuss this case and concentrate o
on A5km52000.

Figure 1 shows that the specific heats in the canonical
the grand canonical models are very different. In both
models, the peak value of the specific heat increases w
we go from 200 to 2000 particles and the widths decrease
the results are much more dramatic in the canonical mo
SinceA52000 is a large number in the context of nucle
physics, we try to understand the cause of this difference
particular, it is not obvious that the specific heat in the gra
©2003 The American Physical Society01-1
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FIG. 1. Specific heat per particle at constant volume when the system has total number of particles 200 and 2000. The cano
grand canonical values are shown.
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canonical model will attain extraordinary heights and
miniscule widths. We will show that the cause of discrepan
between the canonical and the grand canonical models is
very large fluctuation in the particle number in the gra
canonical ensemble. We can investigate this in two ways,
more detailed than the other. We note that

Qgr.can5expS (
k51

2000

Vṽke
kbmD ~6!

and we can calculate fluctuation exploiting the well-know
relation

1

b2

]2ln Qgr.can

]2m
5^A2&2^A&25 (

k51

2000

k2^nk&. ~7!

But we can also exploit the fact that we knowQK,km
up to

rather large values ofK and the value ofbm from the grand
canonical calculation. Hence we can use Eq.~5! also to cal-
culate fluctuation. For practical reasons, the upper limit oK
will have to be cut off. The upper limit ofK in the sum above
was 10 000. Since we are investigatingA52000 one mighta
priori assume this should be adequate.

The fluctuations calculated from Eqs.~5! and ~7! are
shown in Fig. 2. One sees that there is a temperature a
which the fluctuations are small. At these temperatures
grand canonical value of specific heat is indistinguisha
from the canonical value. But as temperature is lower
fluctuations grow rapidly and the results begin to diverge
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It is interesting to study fluctuations further. The probab
ity of K particles being in the grand canonical ensemble
}eKbm1 ln QK @Eq. ~5!# and we plot in Fig. 3 exp@bm(K2A)
1ln QK2ln QA#. This takes the value 1 atK5A and in the
normal picture of the grand canonical ensemble would d

 

-

FIG. 2. Fluctuations calculated using Eqs.~5! and~7!. The solid
line corresponds to using Eq.~5! with K cut off at 10 000 and the
dotted line corresponds to using Eq.~7!. T1 corresponds to the
temperature where the specific heat maximizes in the canonical
culation andT2 to the temperature of highest specific heat in t
grand canonical calculation.
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FIG. 3. These graphs show the spread of particle numbers in the grand canonical ensemble when the average particle numb
The spread is very narrow at temperature 7.7 MeV but becomes quite wide at lower temperatures.
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off rapidly on either side ofA. This does happen at a tem
perature higher than the boiling temperature. The cas
temperatureT57.7 MeV corresponds to a standard scena
But the situation at temperature 7.3 MeV is drastically d
ferent. The probability does not maximize atK5A but at a
lower value. It is also very spread out with a periodic stru
ture. At temperature 2.0 MeV, the probability of having n
particle is higher than the probability of havingK5A. We
notice that here also there is a periodicity in the probabi
distribution. The periodicity is 2000 and is linked with th
fact that in the case studied the largest composite has 2
nucleons and at low temperatures, this composite will pla
significant role.

We can now understand why the specific heat curve is
flat in the grand canonical ensemble in Fig. 1. Even thou
the average number ofA is 2000, the ensemble contains lar
components ofK,A ~thus have lower density and peaks
specific heat below 7.1 MeV! andK.A ~which have peaks
at higher than 7.1 MeV!. It is this smearing which makes th
specific heat peak much lower and much wider.

In Fig. 4 we have shown canonical and grand canon
results for the total energy of 2000 particles. The canon
result suggests that starting from a low temperature, en
increases at a finite rate~implies a finite value ofCV), fol-
lowed by a sudden rise~will lead to infinite specific heat!,
followed again by a regular behavior. Thus the transit
region is marked by two different values ofCV with a d
function switched in between. In the grand canonical mo
for 2000 particles one sees only the discontinuity in the va
of CV . If one was calculatingCV directly in either the ca-
nonical or the grand canonical model and for a very la
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system there is indeed ad function inCV , one will miss the
d function since it has zero width. To see that there is inde
one, we should instead calculate the total energy and see
at a given temperatureT there is a huge difference in the tot
energy for an infinitesimal increase inT.
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FIG. 4. Caloric curves in the canonical and the grand canon
models for a system of 2000 particles.
1-3



th
F

ce
a
tin
b

ig
s
d
tu
se

em

r
f
ve
el

As
n

f

be

-
er-

-

nd
ral
ada,
De-

RAPID COMMUNICATIONS

C. B. DAS, S. DAS GUPTA, AND A. Z. MEKJIAN PHYSICAL REVIEW C68, 031601~R! ~2003!
One might get the impression that for finite systems
use of a grand canonical ensemble is very dangerous.
many observables it is quite acceptable. However, a re
work shows@7# that interpreting data according to grand c
nonical ensemble can lead to a serious error in estima
temperature. It thus depends on the particular observable
ing calculated.

Returning briefly to the interesting periodicity seen in F
3, it arises because at low temperatures it is advantageou
the system to form large clusters. In the example studie
Fig. 3 where the largest cluster size was 2000, at tempera
2 MeV when the system has 8000 nucleons, we have es
tially four clusters, each of size 2000~we are confining our-
selves to canonical calculation of course!. This becomes less
precise at higher temperature. For example, at 6 MeV t
perature if the system has 4100 nucleons, nearly 4000
them are distributed in large clusters~more precisely, on an
average, 3950.22 nucleons are bound in clusters of sizes
tween 1800 and 2000! and nearly 100 of them are in lighte
clusters~149.78 on an average!. If we now go to a system o
6100 nucleons, on an average 5940.22 are bound in
heavy clusters and 159.78 in lighter clusters. Approximat
at low temperatures, lnQK12000' ln QK1ln(Vṽ2000).

The low temperature periodic structure atT52 MeV can
be qualitatively understood using the following results.
T→0, the system will go to the largest cluster allowed, a
in this case,km52000. For example, atK510 000~the total
number of nucleons in the system! a result of five clusters o
size 2000 follows. The mean number of cluster of sizekm
(52000) is

^nkm
&5vkm

QK2km

QK
.
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e
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Also the factorial moment̂nkm
(nkm

21)& is given by

^nkm
~nkm

21!&5~vkm
!2S QK22km

QK
D .

And in general,

^nkm
~nkm

21!•••~nkm
2n11!&5~vkm

!nS QK2nkm

QK
D . ~8!

Thus the points at 8000, 6000, 4000, 2000, and 0 can
related to the factorial moments of thenkm

distributions as

T→0. At T50 these are 534333231,5343332,5
3433,534, and 5 atK50,2000,4000,6000, and 8000, re
spectively. The heights of the peaks in Fig. 3 will be det
mined by

1

v
m

n
^nkm

~nkm
21!•••~nkm

2n11!&
QK

Qkm

ebm[K2(n11)km]

asT→0. Even atT52 MeV, this expression is very accu
rate.
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