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Quantum Monte Carlo calculations of neutron matter
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Uniform neutron matter is approximated by a cubical box containing a finite number of neutrons, with
periodic boundary conditions. We report variational and Green’s function Monte Carlo calculations of the
ground state of fourteen neutrons in a periodic box using the Argonnev88 two-nucleon interaction at densities
up to one and half times the nuclear matter density. The effects of the finite box size are estimated using
variational wave functions together with cluster expansion and chain summation techniques. They are small at
subnuclear densities. We discuss the expansion of the energy of low-density neutron gas in powers of its Fermi
momentum. This expansion is strongly modified by the largenn scattering length, and does not begin with the
Fermi-gas kinetic energy, as assumed in both Skyrme and relativistic mean field theories. The leading term of
neutron gas energy is approximately half the Fermi-gas kinetic energy. The quantum Monte Carlo results are
also used to calibrate the accuracy of variational calculations employing Fermi hypernetted and single operator
chain summation methods to study nucleon matter over a larger density range, with more realistic Hamilto-
nians including three-nucleon interactions.
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I. INTRODUCTION

Since the discovery of neutron stars in 1967, there
been a continued interest in calculating the properties of n
tron matter from realistic models of nuclear forces@1,2#. It is
difficult to extrapolate the data on bound nuclei usi
energy-density functionals to estimate the equation of s
E(r) of pure neutron matter. Various Skyrme and relativis
energy-density functionals that fit the binding energies a
radii of nuclei available in laboratories at present give rat
different E(r) for neutron matter. These energy-dens
functionals also predict different properties of nuclei near
neutron drip line@3#, which may be synthesized in the ne
future using radioactive ion beams. Theoretical predictio
of the neutron matterE(r) have been used to constrain th
energy density functionals used to study neutron rich nuc

The two-neutron interaction is strong and highly spin d
pendent. Therefore, calculating the neutron matterE(r) is a
challenging many-body problem, though in some ways i
simpler than that of symmetric nuclear matter. Neutron m
ter properties have been calculated recently with Brueck
theory @4,5# and with variational methods using chain sum
mation techniques@6,7#. There is good agreement betwe
the results of these two methods@2#, and recent high preci
sion models of thenn interaction give rather similar neutro
matter E(r) with the lowest order Brueckner method@4#.
The results for symmetric nuclear matter, however, h
more model dependence. TheE(r) of high-density neutron
matter is also sensitive to the lesser known three neu
interaction@7#.

The Brueckner and variational methods use different
pansions. From the results of two- and three-hole line c
tributions, the hole line expansion in Brueckner theory a
pears to converge@8#, though contributions of terms with
more than three hole-lines have not been calculated. In c
0556-2813/2003/68~2!/025802~13!/$20.00 68 0258
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trast, the cluster expansion of the energy expectation valu
neutron matter used in the variational method has a ra
poor convergence when the optimum variational wave fu
tion CV is used. In the latest calculations@9# two- and three-
body cluster contributions are calculated accurately, wh
those of> four-body clusters are summed approximate
with hypernetted and single-operator chain summation m
ods. The convergence rate of the expansion is sensitive to
range of correlations inCV . Hence it is often possible to us
shorter range correlations, which give a more converg
cluster expansion together with a variational energy withi
few percent of the optimum minimum. Thus, even thou
the results of these two methods are in agreement wi
several percent, the theoretical error in the treatment of l
range correlations is not well estimated.

In the past few years, it has been possible to calculate
energies of all the bound states of nuclei having up to
nucleons with errors estimated to be& 2% using the Green’s
function Monte Carlo~GFMC! method@10,11#. Results of
these calculations are being used to construct realistic m
els of three-nucleon interactions@12#. The computational ef-
fort necessary for a nuclear GFMC calculation scales
proximately with 2AA!/(N!Z!) for a system with N
neutrons,Z protons, andA5N1Z. The factor 2A comes
from the number of spin states ofA nucleons andA!/(N!Z!)
is the number of charge conserving isospin states. In
present work, we report calculations of the ground state o
neutrons in a periodic box~PB! with the GFMC method
considering all the 214 spin states. We have also used t
auxiliary field diffusion Monte Carlo~AFDMC! method pro-
posed by Schmidt and Fantoni@13# to calculate the ground
state energy. In this method one effectively samples the14

spin states stochastically. The computational effort
AFDMC scales withA3, and thus it can be used to stud
systems with larger values ofA @14#. The present AFDMC
©2003 The American Physical Society02-1
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calculations seem to have larger errors than the GFMC; h
ever, it may be possible to improve their accuracy.

The interactions and the variational wave functions u
in this work are described in Sec. II. The quantum Mon
Carlo ~QMC! calculations, variational Monte Carlo~VMC!,
GFMC, and AFDMC, are described briefly in Sec. III, whe
we present results atr50.04, 0.08, 0.16, and 0.24 fm23.
The details of these methods have been presented previo
@10,13#; here we simply describe the additional techniqu
used to calculate results for 14 neutrons in a PB, and dis
several tests of the calculations. The total energy and
potential energy expectation values are reported for e
density.

The variational calculations using chain summation me
ods ~VCS! are reported in Sec. IV. In this section we al
discuss the difference between the density matrices of
neutrons in a PB and of uniform gas~UG! with large number
of neutrons. The smallness of this difference makes the
particle PB a useful approximation to UG. The differen
between the energy per neutron in the PB and in UG
estimated using variational wave functions. It is small at s
nuclear densities,r<r050.16 fm23, but significant at
1.5r0. The comparison of VCS results with the QMC on
suggests that the former can have errors up to;10%.

The pair distribution functions obtained from VMC an
GFMC calculations are compared in Sec. V. These indic
that neutron matter has strong correlations even at small
sities, as expected from the large scattering lengtha
;218 fm in the 1S0 state. The results for theE(r), ex-
trapolated to the UG limit, are presented in Sec. VI. Here
also discuss the expansion of theE(r) in powers ofkF .
When uakFu,1, this expansion begins with the Fermi-g
kinetic energy,TFG50.3kF

2/m. However, at densities of in
terest in nuclear or neutron star physicsuakFu@1, and the
expansion of theE(r) seems to begin with;TFG/2, which
is the estimated UG energy for a short range interaction w
scattering length (2a)→`. This approximation to nuclea
forces in a low-density neutron-gas was suggested
Bertsch@15#.

The results are summarized in Sec. VII, along with a d
cussion of the merits of the various many-body metho
used. In that section we also estimate the accuracy of
present calculation. At densities<r0 the GFMC calculation
appears to be well converged and presumably has an a
racy of;2% for the energy of normal neutron matter. How
ever, there is strong pairing in dilute Fermi gases withakF
→2` @16#, and their superfluid state can have energies
low those of the normal state by;10% @17# in the most
extreme case of an attractive delta-function interaction. T
true ground state of low-density neutron matter is in the
perfluid phase, and its energy may be a few percent be
that of the normal state calculated here.

II. INTERACTIONS AND VARIATIONAL WAVE
FUNCTIONS

We have used the Argonnev88 two-nucleon interaction
@18# in this work. This simplified interaction equals the iso
calar part of the realistic Argonnev18 interaction in all theS
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and P waves as well as in3D1 and its coupling to3S1. In
neutron matter this interaction can be written as an oper
with four terms:

v i j 5 (
p51,4

vp~r i j !Oi j
p , ~1!

Oi j
p5c,s,t,b51, si•sj , Si j , L•S. ~2!

HereSi j andL•S are the usual tensor and spin-orbit ope
tors. In the calculations using the PB boundary condition,
interaction is truncated atr i j 5L/2, whereL is the length of
the cubic box holding 14 neutrons (L3r514),

v~r i j !5v~r i j ! uS L

2
2r i j D1v~r i j ! uS r i j 2

L

2D . ~3!

The contribution of the long range part,v(r i j ) u(r i j 2L/2),
to theE(r) of UG is estimated using variational calculation
While at low densities this contribution is small, atr
50.24 fm23 it becomes comparable to the totalE(r) in
magnitude.

The variational wave functionCV used in this work has
the form

CV5S S)
i , j

Fi j DF, ~4!

whereF is the noninteracting Fermion wave function. In U
calculationsF5FFG , the Fermi-gas wave function, whil
in calculations using the PB boundary conditionsF5FPB .
It has 14 neutrons occupying spin up and down states w
momenta

k50, 6kBx̂, 6kBŷ, 6kBẑ. ~5!

HerekB52p/L and x̂,ŷ, and ẑ are unit vectors.
S) denotes a symmetrized product of the noncommut

Fi j pair correlation operators. In VCS calculations they ha
four terms involving the four operators of Eq.~2!,

Fi j 5 (
p5c,s,t,b

bpf p~r i j !Oi j
p . ~6!

The correlation functionsf p(r i j ) are obtained by solving
two-body Schro¨dinger-like equations@6#, and have three pa
rameters,d,dt , anda. They correspond to the range of a
but the tensor correlations (d), range of tensor correlation
(dt), and the average quenching of spin-dependent inte
tions in matter (a).

In the case of UG, the values ofd, dt , anda are deter-
mined by minimizing the energy with the VCS method f
bp51. Constraints imposing conservation of nucleons
used during this minimization@6# to prevent theFi j from
going into regions where the chain summation approxim
tion fails. The parametersbs , b t , andbb provide additional
variation ofF; bc is not a variational parameter sinceF(r i j
→`)51. ThebpÞc parameters were not used in recent c
culations@7# since they do not lower the energy significant
2-2
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QUANTUM MONTE CARLO CALCULATIONS OF NEUTRON . . . PHYSICAL REVIEW C68, 025802 ~2003!
after optimizingd, dt , and a. They are used here for th
following reason. The optimum values ofd anddt in UG are
.L/2. However, in VMC as well as VCS calculations usin
the PB boundary condition, thed anddt must be<L/2. In
all PB calculations we used5dt5L/2, and vary thea and
bpÞc to minimize the energy.

In VMC calculations the spin-orbit correlations in theFi j
are neglected due to computational difficulties associa
with the gradient operator inL . These calculations use th
v6 interaction obtained by dropping the spin-orbit term
thev88. There results are compared with those of VCS w
the sameF to test the accuracy of the chain summation a
proximation. The completev88 interaction is used in the
GFMC calculations where the spin-orbit correlations a
generated by propagation in imaginary time as discusse
the following section.

III. QUANTUM MONTE CARLO CALCULATIONS

Quantum Monte Carlo methods have often been use
study infinite systems of either fermions or bosons at b
zero and finite temperatures. Examples include atomic liq
3He and4He @19#, the electron gas@20#, as well as a myriad
study of lattice models in condensed matter theory. Th
have proven remarkably successful at studying the equa
of state of strongly interacting systems, and have also b
used to explore phase transitions, momentum distributio
static and dynamic response, etc. Although studies of
mion systems are usually treated via approximate fixed-n
@21# or constrained path~CP! @22# methods, these approx
mations can often be quite accurate.

The nuclear many-body problem is more difficult than
the cases listed above, because of the strong spin-iso
dependence of the interaction. Instead of a single functio
the 3A coordinates of the particles, the wave function
simple systems, the nuclear state is described with a se
~complex! amplitudes dependent upon the spins and isos
of the nucleons. This complication has been handled succ
fully for few-body (A<10) nuclei@11# by simply summing
explicitly over all these amplitudes. Monte Carlo is then us
to evaluate the 3A-dimensional spatial integrals.

VMC calculations evaluate the energy and other obse
ables through the use of the Metropolis Monte Carlo meth
The method is described in detail in Ref.@10#, the basic idea
being to generate points in the 3A-dimensional configuration
space distributed with the probability density of a weig
functionW(R). HereR is the 3A-dimensional configuration
vector r1 , . . . ,rA . The expectation values of operators a
obtained as averages over the sampled pointsRi ,

^O&5

(
i

^C~Ri !uOuC~Ri !&/W~Ri !

(
i

^C~Ri !uC~Ri !&/W~Ri !

. ~7!

The optimum weight function in most cases is the square
the wave function̂C(R)uC(R)& for which the denominator
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of ^O& has zero variance. For a system of 14 neutrons
^C(R)uC(R)& is a sum of squares of the 214 spin ampli-
tudes.

This method grows exponentially in computational tim
with increasingA, and present-day computers limit practic
simulations to roughly 14 neutrons. This is somewhat lar
than the largest nuclei handled to date because there is
one isospin component to the wave function. Another lim
tation of these initial calculations is that we have dropped
L•S pair correlation functions, as they depend upon the m
mentum of the particles in the pair. A complete evaluation
these terms would be difficult because the derivative ope
tors in one pair correlation function can, in principle, act
all other pair correlations. This limitation is not very impo
tant at low densities, but can be quite significant at hig
densities. The variational wave function cannot adequa
describep-wave pairing of the neutrons which appears to
important at nuclear densities and above. It may be poss
to construct a simplified wave function that includes most
these correlations in the future.

GFMC methods are then used to obtain the ground-s
energy and other properties for the 14 neutrons with perio
boundary conditions. The method is the same as that use
light nuclei @10#, with only very minor modifications used to
implement the periodic boundary conditions. The basic id
is to sample a wave functionC(t) by evaluating path inte-
grals of the form

C~t!5) exp@2~H2E0!Dt#uCV&, ~8!

where each step in the product evolves the system ov
short imaginary timeDt; after many stepsn→`, C(t
5nDt) will converge to the true ground state of the syste
as long as the original~variational! wave function is not or-
thogonal to it. Because we are studying systems at dens
higher than equilibrium nuclear densityr0, the time step
used here is 0.000 25 MeV21, or 1/2 the time step typically
used in nuclear calculations. Again the spatial integrals
done with the Monte Carlo method, using a sum over ma
configurations with different spatial coordinatesR. Each
configuration includes amplitudes for all the 214 spin states
which are explicitly summed in the evaluation of matrix e
ements.

Some of the GFMC results reported here are obtai
with the CP approximation@22,10#. Since the neutrons ar
fermions, they may exchange and produce contributions
the wave functions of opposite signs, and indeed with a
trary complex phases. In an exact GFMC calculation, t
leads to a statistical error that grows witht. This problem is
more severe at higher densities~or with larger numbers of
particles! since it is then easier for a pair to interchange.

To deal with this problem, we implement a constraint
the paths to be included in the evaluation ofC(t). For a
spin-isospin independent interaction the wave function i
scalar, and one can perform a fixed-node calculation
which configurations where the variational wave function
zero are discarded. This defines a surface within which
evolution proceeds, and eliminates the sign problem at
2-3
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cost of introducing an approximation into the calculatio
The fixed-node method is exact when the variational w
function has the true nodal surface, and provides an up
bound to the true ground-state energy. This upper boun
often quite accurate because we are solving for the ‘‘o
mum’’ solution subject only to the boundary condition th
the wave function is zero on a predefined surface close to
correct one.

The nuclear case is more complicated than the one
cussed above, both because the trial wave function is a s
complex amplitudes and because we cannot evaluate the
wave function for a given set of coordinates. We can o
evaluate it for a specific order of pair correlation operators
Eq. ~4!, as a complete set would require@A(A21)/2#! terms.
These pair orders are sampled in both the VMC and GF
calculations. Fortunately, the fluctuations in samples of p
orders arise from the commutators of correlation operat
These involve clusters of three or more nucleons, and t
have a small effect on the variance. For the nuclear case
construct an alternative constraint based on the overla
each configurationC(t,Ri) with the sampled variationa
wave function. Configurations with negative overlap are d
carded along with those with correspondingly small posit
overlap, ensuring that the average overlap of the discar
configurations with the trial wave function is zero. Th
yields a stable simulation, and the calculation can proc
out to quite large imaginary time, much larger than the
verse gap in the system. This approximation is not guar
teed to produce an upper bound to the ground-state en
though it has proven to be quite accurate for few-body
clei. The results obtained using this method are labeled w
CP.

The CP approximation is tested by removing the co
straint. The configurations generated by the CP calcula
are evolved further in the imaginary timet without con-
straint. The fermion sign problem makes this calculat
more difficult for increasing density and for increasingt. In
principle, we can evaluate the energy for a much largert at
low density. In practice, the low-density calculations app
to be well converged at fairly small imaginary time. O
course, the total unconstrained imaginary time propagatio
quite small here, typically 0.005 MeV21, and hence only
fairly high-energy excitations are removed by this procedu
The results of these unconstrained~UC! GFMC calculations
are the most accurate of the presented results.

In this work we uset to denote the time after the C
propagation. The CP GFMC propagation starts at a la
negativet and ends att50. The propagation time of CP
GFMC is large enough to ensure convergence; however,
of UC GFMC is limited by the growth in statistical error
due to the fermion sign problem.

Results for the VMC and GFMC calculations at differe
densities are presented graphically in Fig. 1. The up
square point att50, at each density, shows the VMC resu
for thev6 Hamiltonian, while the lower square point, also
t50, shows the CP GFMC results. The CP GFMC energ
are typically 5–10 % lower than the VMC for thev6 inter-
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action. Thev6 VMC and the PB variational chain summa
tion ~VCS! calculations discussed in Sec. IV use the sa
wave function.

The UC GFMC results are plotted as a function of unco
strained propagation timet after the end of CP propagation
Circles and squares show results for thev88 andv6. At all
densities, thev6 calculations appear to be fairly stable a
little change is observed between the CP results and the
constrained results for larger imaginary time. Table I lists
total and potential energy per neutron for various densit
The GFMC potential energies are approximately 15% low
than the VMC results indicating that true ground state h
more correlations than the present variational wave funct
The difference in the VMC and the GFMC potential energ
is more than twice that in the total energies as expected
the minimum. The results of VCS calculations are also lis
in Table I; they are discussed in Sec. IV.

The results forv88 interaction are given in Table II and
Fig. 1. The VMC rows in this table give results with th
variational wave function for thev6 potential without any
spin-orbit correlation. With this wave function the expect
tion value of the spin-orbit interaction,^vL•S&, is small and
positive. It in nonzero due to the tensor correlations. In c
trast, the variational wave function used in the VCS calcu
tions contains spin-orbit correlations that give significa
negativê vLS&. TheL•S correlations absent in thev6 varia-
tional wave function are partly generated via the CP pro
gation, as can be seen from the GFMC-CP^vLS& values.
However, the constraint imposed by thev6 wave function
hinders their growth. After the constraint is removed, t
spin-orbit correlations increase substantially, and we ob
significantly more attraction from thevLS . This will be more
evident in the comparison of pair distribution functions
Sec. VI. The UC GFMC energy decreases witht ~Fig. 1!,
and atr>r0 the growth in statistical error limits the UC
calculation.
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FIG. 1. Energy vs imaginary timet after CP propagation, a
various densities. VMC results~upper squares! for v6 and
GFMC-CP results~lower squares and dots! for v6 and v88 are
shown att50, and unconstrained GFMC results are shown
varioust.0.
2-4



QUANTUM MONTE CARLO CALCULATIONS OF NEUTRON . . . PHYSICAL REVIEW C68, 025802 ~2003!
TABLE I. Quantum Monte Carlo and VCS results for 14 neutrons in PB with thev6 Hamiltonian~MeV
per neutron!. Statistical errors are indicated in parentheses.

Method r (fm23) 0.04 0.08 0.16 0.24

VMC ^H& 7.04~01! 11.32~01! 21.39~01! 34.30~01!

GFMC-CP 6.72~01! 10.64~01! 19.80~02! 31.90~02!

GFMC-UC 6.75~01! 10.64~03! 19.91~11! 32.15~08!

VCS 7.6 11.9 21.2 33.6

VMC ^v6& 29.92(03) 216.17(05) 222.79(08) 226.10(11)
GFMC-CP 211.75(08) 218.64(09) 228.01(08) 232.94(25)
GFMC-UC 211.36(13) 218.17(36) 226.62(71) 232.71(71)
VCS 29.2 215.4 222.7 226.6
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We have also performed calculations with different inp
correlation functions in the trial wave function. Their resu
for r5r0 are illustrated by the two sets of square points
Fig. 2. The points labeled GFMC~LR! are obtained with the
trial wave function having pair correlation functions of ran
L/2, while those labeled GFMC~SR! have much shorte
range input pair correlation functions. There appears to
very little dependence of the UC GFMC results upon
choice of the range of input two-body correlation function
this has been checked for the pair distribution functions
well.

We have also implemented the AFDMC method
Schmidt and Fantoni@13#. Since this method scales muc
better withA than the GFMC method discussed here, it c
be used to treat much larger systems. At present, the
wave function used in these calculations includes only sp
independent Jastrow factors times a Fermi-Gas determin

CJ5F)
i , j

f c~r i j !GFFG . ~9!
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Each configuration now has 14 two-component vectors
scribing the relative amplitude and phases of the spin of e
neutron. These spins rotate in the presence of fluctua
fields which, when summed, reproduce exactly the result
the two-nucleon interaction. As in the GFMC calculation,
constraint is imposed requiring a positive overlap betwe
the configuration at any timet and the trial wave function.

The two sets of UC AFDMC results shown in Fig. 2 a
obtained with two different estimators of the ground-sta
energy. The growth energy~black dots! is determined from
the rate of increase/decrease in the population with ima
nary time t, while the mixed estimate~red dots! is deter-
mined by the overlap of the configurations with the Ham
tonian acting on the trial wave function. These two estima
should be equal within statistical errors for small values
the time stepDt.

CJ is a very simple trial function and hence does n
provide an accurate constraint. The CP AFDMC energie
t50 are higher than the CP GFMC because of this relativ
poor constraint. Ast increases beyond the CP propagati
region, the energy drops and becomes compatible with
TABLE II. Quantum Monte Carlo and VCS results for 14 neutrons in PB with thev88 Hamiltonian~MeV
per neutron!.

Method r (fm23) 0.04 0.08 0.16 0.24

VMC ^H& 7.16~01! 11.678~07! 21.82~12! 35.02~01!

GFMC-CP 6.43~01! 10.02~02! 18.54~04! 30.04~04!

GFMC-UC 6.32~03! 9.501~06! 17.00~27! 28.35~50!

VCS 7.0 10.3 17.4 26.3

VMC ^v6& 29.74(03) 215.72(6) 221.64(09) 224.37(11)
GFMC-CP 211.85(09) 218.34(11) 227.72(15) 232.34(23)
GFMC-UC 211.44(19) 217.83(30) 225.62(87) 230.52(1.35)
VCS 29.3 215.1 221.6 224.9

VMC ^vL•S& 0.07~01! 0.26~01! 0.13~01! 0.21~01!

GFMC-CP 20.23(11) 21.37(03) 22.69(03) 24.08(08)
GFMC-UC 20.85(04) 22.59(15) 26.24(50) 27.98(98)
VCS 20.88 22.3 26.9 212.1
26.9(r/r0)5/3 20.68 22.2 26.9 213.6
2-5
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GFMC results. The statistical errrors are somewhat wo
though, as each configuration contains only a single set o
spin vectors rather than the 214 amplitudes in the GFMC.
The correlations between these amplitudes reduce the
mion sign problem, but at the cost of an exponentially
creasing computational time. The AFDMC method has b
used to study much larger systems with this simple c
straint, and also to study the spin susceptibility of neut
matter. It could be used to determine the difference betw
the infinite-particle limit and the results for 14 neutron
Here, though, we use VCS methods to calculate this dif
ence. In addition, the QMC results provide a test of the V
calculations often used in studies with more realistic Ham
tonians that include three-nucleon interactions and relati
tic corrections.

IV. VARIATIONAL CHAIN SUMMATION CALCULATIONS

In VCS calculations of UG the expectation value ofH
2TFG ,

EV2TFG5

^FFGuFS)
i , j

Fi j G~H2TFG!FS)
i , j

Fi j G uFFG&

^FFGuFS)
i , j

Fi j GFS)
i , j

Fi j G uFFG&

,

~10!

is expanded in powers of the short range functions (Fi j
21) @23#. The FFG is an eigenstate of the kinetic energ
operator T52( i¹ i

2/2m with the eigenvalue TFG

50.3 kF
2/m, hence the terms withT operating onFFG are

not included in the expansion. Then-body cluster contribu-
tion contains all the terms of this expansion havingn neu-
trons.

The leading two-body cluster contribution to the ener
of UG of neutrons is given by

0 0.001 0.002 0.003 0.004 0.005 0.006

τ (MeV
-1

)

16

18

20

22

24
E

/A
 (

M
eV

)

AFDMC (growth)
AFDMC (mixed)
GFMC (SR)
GFMC (LR)

ρ = 0.16 fm
-3

AV8’

FIG. 2. Energy vs imaginary timet for different calculations
using v88 interaction atr50.16 fm23. Two different estimates
~growth and mixed! are shown for the AFDMC calculation alon
with the results of two different GFMC calculations, using sho
range~SR! and long-range~LR! correlations in the trial wave func
tion.
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E~2b!5
r

2E d3r i j CFF~r i j !S 2
1

m
¹21v~r i j ! DF~r i j !G

1
r

2E d3r i j CFei j F~rij !S2 1

m
¹21v~rij !DF~rij !G,2~rij !

2r
1

mE d3r i j C@ei j F~r i j !“F~r i j !#•,~r i j !“,~r i j !.

~11!

HereC@•••# denotes the spin independent part, called theC
part@23# of the operators inside the square brackets,ei j is the
spin exchange operator,

ei j 52
1

2
~11si•sj !, ~12!

and,(r ) is the spatial density matrix,

,~r !5
1

A (
i

eiki•r, ~13!

normalized such that,(r 50)51. It is given by the Slater
function

,~r !53@sin~x!2x cos~x!#/x3, x5kFr ~14!

for the FFG .
It is relatively simple to calculate the above two-bod

cluster contribution without approximations. All the terms
the three-body cluster energy except those containing s
orbit correlations can now be calculated exactly@9#. How-
ever, all the> four-body cluster contributions as well as th
three-body contributions fromL•S correlations are estimate
approximately using the chain summation methods.

Results of VCS calculations of the UG are given in Tab
III. These are at optimum values ofd anddt , which gener-
ally exceed theL/2 of 14 neutron PB. In this case theEV
obtained withbp51 is within ;2% of theEV with optimum
bp . The contributions of clusters are calculated followin
Ref. @9#. The three- and>4-b-static contributions do no
include spin-orbit interaction and correlation terms; th
contributions are listed in row>3-b-L•S. The values of
3-b-static contributions calculated with the chain summat
approximation are also given in Table III for compariso
They are typically within 10% of the exact values. The list
values of>4-b-static contributions include the elementa
four-body circular exchange diagram discussed in the A
pendix. It was omitted in previous@7,9# calculations because
it is generally small in symmetric nuclear matter. Howev
this contribution contains the factors23, wheres52,4 is the
spin-isospin degeneracy factor in neutron and symme
nuclear matter. It is relatively larger in neutron matter, and
values are listed in Table III.

Table III clearly shows that the cluster expansion of t
E(r) has slow convergence. At low densities this is prim
rily due to the largenn scattering length. With thev88 in-
teraction, the total contribution of clusters withn>4 is
;30(10)% of the total energy atr50.04(0.16).
2-6
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Table IV gives the results for UG variational energy f
d5dt5L/2 and optimum values ofa and bp . The cluster
expansion has better convergence for these shorter range
relations, and theEV(d5dt5L/2) is above the optimumEV
by only ;0.1 MeV for r<r0, while atr51.5r0 it is higher
by 0.3 MeV. At smallr the b t is significantly larger than 1

A. Variational calculations with FPB

These calculations use the truncated interacti
v(r i j )u(L/22r i j ), and correlation rangesd5dt5L/2. FPB

TABLE III. Results of VCS calculations of the UGE(r) ~MeV
per neutron! with optimumd anddt , in MeV. Contributions with an
* are estimated using chain summation approximation; those w
out are calculated exactly. The bottom two rows give the appro
mate 3-b-static*, for comparison with the exact 3-b-static, and
4-b-elementary* circular exchange contribution included in>4
2b-static*.

r (fm23) 0.04 0.08 0.16 0.24
d(fm) 3.66 3.31 2.29 2.20
dt(fm) 6.17 5.56 5.22 4.69
a 0.89 0.87 0.80 0.72
bs 0.8 0.8 1.0 1.0
b t 0.9 1.0 0.9 0.9
bb 0.9 0.8 1.0 1.1

TFG 13.9 22.1 35.1 46.0
2-b-total 210.1 216.9 225.5 233.9
3-b-static 4.9 6.9 3.7 3.5
>4-b-static* 22.3 23.1 21.5 21.1
>32b2L•S* 0.1 0.2 0.2 20.1

Total E(r) 6.6 9.2 12.0 14.5

3-b-static* 4.6 6.6 3.5 3.2
4-b-elementary* 20.5 20.5 0.5 0.7

TABLE IV. Results of VCS calculations of the UGE(r) ~MeV
per neutron! with d5dt5L/2, in MeV. Contributions with an * are
estimated using chain summation approximation; those without
calculated exactly.

r (fm23) 0.04 0.08 0.16 0.24
L/2 (fm) 3.52 2.80 2.22 1.94
a 0.90 0.85 0.80 0.80
bs 0.80 0.9 0.9 1.0
b t 1.50 2.0 1.0 1.0
bb 0.85 0.9 1.1 1.1

TFG 13.9 22.1 35.1 46.0
2-b-total 29.7 214.9 223.0 229.9
3-b-static 3.9 2.7 20.1 20.8
> 4-b-static* 21.5 20.7 20.0 20.0
>32b-L•S* 0.0 0.0 0.2 20.4

Total E(r) 6.7 9.2 12.1 14.8
02580
or-

,

is an eigenstate of the kinetic energy with the eigenvalue~per
neutron!

TPB5
1

2m

6

7 S 2p

L D 2

51.014TFG . ~15!

We note that the kinetic energyTPB per neutron of the 14
noninteracting neutrons in a periodic box is only 1.4% larg
than that of free Fermi gas.

As in the case of the UG, we expand the expectation va
of H2TPB as a sum over clusters. The leading two-bo
cluster contribution is given by Eq.~11! with the PB density
matrix,

,PB~r !5
1

7
@112 cos~xkB!12 cos~ykB!12 cos~zkB!#,

~16!

in place of the UG density matrix given by the Slater fun
tion @Eq. ~14!#. ,PB depends upon the direction ofr , as il-
lustrated in Fig. 3. The,PB is largest forr parallel to the box
side and smallest along the diagonal.

The C-parts of the operators inE(2b) @Eq. ~11!# are
spherically symmetric functions ofr i j , therefore theE(2b)
depends only on the angle averaged value of,2,

,PB
2 ~r !5

1

4pE sinu du df ,PB
2 ~r !, ~17!

at r<L/2. The ,PB
2 (r ) is fairly close to ,2(r ) in UG as

shown in Fig. 3. Therefore, the two-body cluster contrib
tions obtained with the UG and PB density matrices are
very different. In the variational calculations withFPB we
approximate the contributions of alln> three-body clusters
by their values in the UG. The 3-b-static cluster is calculated
exactly, and the rest with chain summation approximatio
We note that Fantoni and Schmidt@24# have developed chain

-
i-

re

FIG. 3. The Slater function,PB(r ) for 14 neutrons in PB. The
top and bottom dash-dotted lines show the,PB(r ) with r parallel to
the 0,0,1 box side and to the 1,1,1 diagonal, respectively.

middle full line shows the averageA,PB
2 (r ), and the dashed line

shows the,(r ) in the UG.
2-7
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summation methods for calculations withFPB without ten-
sor correlations. They retain the,PB in all the many-body
cluster contributions calculated with chain summation me
ods.

The results of calculations with thev6 andv88 interac-
tions are given in Tables V and VI. The values ofTFG
2TPB and

DE~2b!5EUG~2b!2EPB~2b! ~18!

are also listed in Table VI. The smallness of these differen
makes the 14-neutron periodic box a good approximation
studying uniform gasE(r). The variational parametersa
and bp have essentially the same values in PB calculati
as in UG withd5dt5L/2. The main difference between th
UG and PB energies comes from the contribution of the lo
range interactionv(r i j )u(r i j 2L/2) omitted in the PB. Its
contribution denoted bŷv(r i j .L/2)& is estimated from UG
calculations and listed in Table VI. It becomes comparable
the totalEUG(r) at r;1.5 r0.

B. Comparison with QMC calculations

The results of the approximate VCS calculations are co
pared with those of QMC calculations in Tables I and II f
the v6 andv88 interactions. Since the VMC and VCS ca
culations use the same wave function for thev6 Hamil-
tonian, they should ideally give the same results. The dif
ence between them is due only to the approximations in
VCS calculations. Relative to the VMC results, the VCS to

TABLE V. Results of PB variational calculations withv6 inter-
action truncated atr 5L/2. The variational parameters are listed
Table IV, and the energies are in MeV per neutron.

r (fm23) 0.04 0.08 0.16 0.24

TPB 14.1 22.4 35.6 46.6
2-b-total 29.0 212.6 214.2 212.3
>3-b-total 2.5 2.0 20.1 20.7

Total E(r) 7.6 11.9 21.2 33.6

TABLE VI. Results of PB variational calculations withv88 in-
teraction truncated atr 5L/2. The variational parameters are liste
in Table IV, and the last three rows give the differences between
and UG contributions. All energies are in MeV per neutron.

r (fm23) 0.04 0.08 0.16 0.24

TPB 14.1 22.4 35.6 46.6
2-b-total 29.5 214.0 218.3 219.1
>3-b-total 2.4 1.9 0.1 21.2

Total E(r) 7.0 10.3 17.4 26.3

TFG2TPB 20.2 20.3 20.5 20.7
DE(2b) 20.0 20.1 20.1 20.1
^v(r i j .L/2)& 20.1 20.8 24.5 210.7
02580
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energy is higher by 8% atr0/4 and lower by 2% at 1.5r0.
The difference between the VCS and VMC potential ener
^v6&, is similar. The clusters with>3 neutrons give a rela
tively larger contribution at smaller densities~Table V! due
to the largenn scattering length. It is thus not surprising th
VCS has larger errors in that region. The GFMC-UC en
gies are below those of the VCS by 12–14 % in this dens
range. We note that the differences between the GFMC-
and VCS or VMC potential energies are much larger, of
der 20%. This is because the present variational wave fu
tions underestimate the correlations in matter, as is furt
elaborated in the following section.

In the case of thev88 Hamiltonian, the VMC calculations
do not include the spin-orbit correlations while the VCS d
therefore the VMC and VCS results are not comparable
this case. However, we can compare the GFMC-UC a
VCS results. As forv6, the GFMC-UC energies are lowe
by 10% at lower densities; however, at 1.5r0 the VCS energy
is lower by 260.5 MeV. Most of this difference seems t
come from the spin-orbit interaction. ThêvL•S&52861
and212 MeV in these two calculations at 1.5r0. When the
density dependence of spin-orbit correlations is neglec
the leading two-neutron cluster gives a contribution prop
tional to r5/3 to ^vL•S&. This comes about because the sp
orbit contributions are proportional tor2/3 via thek2 momen-
tum dependence ofvL•SL•Sf L•SL•S, and the summation
over particles gives an additional factor ofr for two-body
clusters. The VCS results for̂vL•S& approximately follow
this density dependence as shown in Table II. Up tor0 the
GFMC-UC ^vL•S& also has a similar density dependenc
However, at 1.5r0 the GFMC-UC is smaller in magnitude. I
could be that higher order cluster terms become more imp
tant at this density and that VCS overestimates thevL•S con-
tribution, or that, if GFMC-UC is propagated further in th
imaginary timet after the CP, thêvL•S& will decrease and
the GFMC-UC energy will go down. In the present calcu
tion we cannot test this possibility because of the increas
the statistical errors due to the Fermion sign problem.

V. PAIR DISTRIBUTION FUNCTIONS

The pair distribution functions obtained from QMC ca
culations with thev88 interaction are shown in Figs. 4 to 7
In each figure the circles show the results of VMC calcu
tions with a wave function containingf 6 correlations~with-
out LS correlations!. Squares and triangles represent the
sult of the constrained path~GFMC-CP!, and the
unconstrained~GFMC-UC!. The pair distribution functions
gp(r ) are given by the expectation value

gp~r !5N(
i , j

^Cud~r i j 2r !Oi j
p uC&, ~19!

with a normalizationN such thatg1(r )[gc(r ) goes to one at
large distances. Theg224 are denoted bygs ,gt andgLS for
clarity. Thegc(r ) gives the probability to find a neutron at
distancer from another neutron sinceOi j

p5151. In contrast,
Oi j

p525si•sj , thus gs is proportional to the expectatio
value ofd(r i j 2r )si•sj . Using the projection operators,

B

2-8
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PS505
1

4
~12si•sj !, ~20!

PS515
1

4
~31si•sj !, ~21!

the pair distribution functions in spinS50 and 1 pairs are
found to be

gS50~r !5
1

4
@gc~r !2gs~r !#, ~22!

gS51~r !5
1

4
@3gc~r !1gs~r !#. ~23!

SincegS51(r→0)→0, the gs(r )523gc(r ) at small r. In
noninteracting Fermi gases,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
r (fm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
ρ 

(f
m

-3
)

g1
gσ
gt   (x5)

gLS (x5)

VMC
GFMC-CP

ρ = 0.04 fm
-3

AV8’

GFMC-UC∆

FIG. 4. Pair distribution functions for thev88 interaction atr
50.04 fm23. The datasets from top to bottom correspond to c
tral, LS, tensor, andsi•sj pair distribution functions. Each se
contains circles, squares, and triangles showing the VMC, GFM
CP, and GFMC-UC results. TheLS and the tensor distribution func
tions are scaled up by a factor of 5.

0.0 0.5 1.0 1.5 2.0 2.5
r (fm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ρ 
(f

m
-3

)

g1
gσ
gt   (x5)

gLS (x5)VMC
GFMC-CP

ρ = 0.08 fm
-3

AV8’
GFMC-UC∆

FIG. 5. Pair distribution functions for thev88 interaction atr
50.08 fm23, as in Fig. 4.
02580
gc
FG~r !512

1

2
,2~r !, ~24!

gs
FG~r !52

3

2
,2~r !, ~25!

gt
FG~r !5gLS

FG50. ~26!

The VMC calculations do not have spin-orbit correlation
and givegLS;0.

At r50.04 fm23, there is a very strong pairing into spi
0 states as indicated by the large negativegs . It can be seen
more clearly in Fig. 8, which compares thegS50,1(r ) in neu-
tron matter and Fermi gases. The large peak of thegS50 is
due to the large negativenn scattering length; it should be
relatively model independent and grow at smaller densit
This pairing is present in the variational calculations, thou
underestimated by; 25%. The tensor andL•S correlations
are quite modest at these low densities. There is little cha
between the constrained GFMC-CP and unconstrai
GFMC-UC, indicating reasonably good convergence with
this class of wave functions. The tensor correlations are lo

-

-

0.0 0.5 1.0 1.5 2.0
r (fm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ρ 
(f

m
-3

)

g1
gσ
gt   (x5)

gLS (x5)

VMC

GFMC-CP
ρ = 0.16 fm

-3
AV8’

GFMC-UC∆

FIG. 6. Pair distribution functions for thev88 interaction atr
50.16 fm23, as in Fig. 4.

0.0 0.5 1.0 1.5
r (fm)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ρ 
(f

m
-3

)

g1
gσ
gt    (x5)

gLS (x5)

VMC

GFMC-CP
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FIG. 7. Pair distribution functions for thev88 interaction atr
50.24 fm23, as in Fig. 4.
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ranged, extending nearly to theL/2 limit imposed by the
periodic boundary conditions. This same behavior is s
even when starting the GFMC with trial wave functions ha
ing much shorter range correlations.

The correlations atr50.08 fm23 are fairly similar,
though the spin correlation is not as large, and the tensor
L•S correlations are becoming more significant. ThegLS is
essentially zero in the variational calculation, and undere
mated in CP GFMC.

At the largest densities considered,r 5 0.16 and
0.24 fm23, the differences between the variational, GFM
CP, and the GFMC-UC results are quite large. Both the t
sor andL•S correlations are quite important and significan
underestimated in the VMC and GFMC-CP calculations.
see a transition from low densities, where theS-wave inter-
action and spin zero pairing is dominant, to these hig
densities, where theP-wave interactions are crucial. It coul
be associated with the3P2-3F2 pairing @25# expected at
higher densities. In VCS calculations with three nucleon
teraction~see Fig. 9 of Ref.@26#! such a behavior is assoc
ated with the onset of pion condensation.

VI. DENSITY DEPENDENCE OF NEUTRON MATTER
ENERGY

The total energy of neutron matter interacting with t
v88 potential is reported in Table VII. It is obtained by ad

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
r (fm)

0.0

1.0

2.0

3.0
ρ 

(f
m

-3
)

S=0 pairs

ρ = 0.04 fm
-3

AV8’

S=1 pairs

FIG. 8. Pair distribution functions for spin 0 and spin 1 pairs
r50.04 fm23; results of unconstrained GFMC calculations a
compared to distributions in noninteracting FG shown by so
lines.

TABLE VII. Neutron matter energy with thev88 interaction in
MeV per neutron.

r (fm23) 0.04 0.08 0.16 0.24
GFMC-UC 6.3 9.5 17.0 28.4
Box correction 20.3 21.1 25.1 211.5

Total E(r) 6.0 8.4 12.1 16.9

E(r)/EFG(r) 0.43 0.38 0.34 0.37
02580
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ing the box corrections listed in Table VI to the GFMC-U
energies listed in Table II. The ratio of neutron matterE(r)
to the noninteracting neutron Fermi gas energy is also lis
in Table VII. This ratio approaches;0.5 at low densities.

The properties of low density neutron matter are dom
nated by the large negativenn scattering length. When
uakFu!1 we have the well known low-density expansio
@27#,

E~r!5EFG~r!F11
10

9p
akF1

4

21p2
~1122ln2!~akF!2

1•••G . ~27!

Such an expansion is not useful for neutron matter beca
even at densities as low as 1% ofr0 , uakFu.6. The limit
akF→2` is perhaps more applicable to neutron gas th
the low-density expansion, as suggested by Bertsch@15#. In
this limit it is known that

E~r!5EFG~r!j. ~28!

The estimates ofj range from 0.326@28,29# to 0.568@28# to
0.59 @16#. Recent quantum Monte Carlo calculations@17#
give j;0.54 for the normal phase andj50.4460.02 for the
superfluid phase. Most many-body calculations, b
Brueckner and variational, givej;0.5 for normal neutron
matter. As an example, we compare the energies of neu
matter calculated with the CSM in 1981@30# with the EFG
and results of present calculation in Fig. 9.

Equation~28! implies that at low densities the interactio
energy of neutron matter becomes proportional tokF

2 as is the
FG kinetic energy. This interaction energy is proportional
density (5kF

3/3p2) times the volume integral of the effectiv
G interaction, related to the barev interaction by the well-
known Brueckner equationGf5vc. Heref andc are the
unperturbed and perturbed two-nucleon wave functions.
small relative momenta of interest at low densities,f51,

t

0 0.02 0.04 0.06 0.08 0.1

Density (fm
-3

)

0

5

10

15

E
/N

 (
M

eV
)

FIG. 9. The energy of neutron matter at low densities. The s
give the results of Ref.@30# and the circles give the results of th
present calculation. The dashed line shows 0.5EFG .
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and in vacuumc512a/r beyond the the rangeRv of v.
When2a/Rv@1, as is the case for neutrons, we can neg
the 1 in comparison and approximate thec by 2a/Rv . The
effective interaction in vacuum is essentially enhanced b
factor 2a/Rv by the large scattering length. In matter th
effective scattering length is limited by the interparticle sp
ing of order 1/kF . Thus, when2akF@1, theG is enhanced
by a factor proportional to 1/kFRv , its integral becomes pro
portional to 1/kF , and the interaction energy proportional
kF

2 . At higher densities we see a deviation from Eq.~28! in
Fig. 9. It starts whenkFRv becomes of order 1 and the fir
~unit! term ofc cannot be neglected. WhenRv→0, as in the
challenge problem proposed by Bertsch, Eq.~28! is valid at
all densities whena52`.

Most of the nonrelativistic Skyrme as well as the relat
istic mean field energy density functions commonly used
study nuclei and neutron star matter assume thatj51. None
of these therefore can reproduce the equation of state,E0(r)
of pure neutron matter@1# obtained from realistic interac
tions even at low densities. The effective interaction used
mean field models must diverge asr→0 due to largenn
scattering length. Energy density functionals containing s
low-density divergences@31# are probably necessary to stud
nuclei near neutron drip line or in the inner crust of neutr
stars.

VII. SUMMARY

We have presented here results of cold neutron ma
calculations with three different methods, the VCS, t
VMC, and the GFMC. Of these the VCS is computationa
most efficient, and can be used for infinite uniform mat
with realistic two- and three-body interactions. However
has two approximations: the assumed variational wave fu
tion may not exactly correspond to that of the true grou
state; and the energy expectation value is calculated u
approximations. This method has been used extensivel
study properties of dense nucleon matter. The VMC met
is computationally demanding, and can be used at presen
systems with<14 neutrons. Its main advantage is that t
energy expectation value is calculated exactly from the
sumed variational wave function. It is also a necessary s
before the GFMC. The wave functions used in present VM
studies do not contain spin-orbit correlations included in
VCS. The GFMC is computationally very demanding, ne
ertheless, in unconstrained calculations it gives the exact
ergy whent is sufficiently large. However, the Fermion sig
problem limits the duration of unconstrained propagation
e2(H2E0)t in imaginary timet. In practice, one propagate
with constraints for larget. This gives the lowest energ
consistent with the nodes of the trial wave function used
the constraint. The constraints are released near the en
the propagation for a small period limited by the growth
statistical errors due to the Fermion sign problem. This p
cedure inevitably leads to the ground state of the thermo
namic phase~normal against superfluid, for example! as-
sumed in the trial wave function. In addition, both VMC an
GFMC methods omit interactions at a range larger than
the periodic box sizeL.
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The VMC and VCS energies for 14 neutrons in a P
~periodic box!, with the v6 Hamiltonian, differ only due to
approximations used to calculate the energy expecta
value in the VCS method. The results listed in Table I sh
that this error in VCS is less than 5% except at the low
density. Note that due to the largenn scattering length the
low-density neutron matter has very strong correlations
shown in Fig. 8. Comparison of the VMC and GFMC-U
energies in Table I show that the error due to the assum
variational wave function increases from 4 to 7 % in t
density range 0.04 to 0.24 fm23 for the v6 Hamiltonian.

In the case of the more realisticv88 Hamiltonian, the
VMC calculations serve only to start the GFMC. The diffe
ence between the presumably exact GFMC-UC and the V
energies for 14 neutron PB, listed in Table II, indicate th
the overall accuracy of the VCS method is about 10% for
total energy. However, the potential energies as well as
pair distribution functions~Figs. 4 to 7! have differences of
; 20%.

Our most accurate results for the normal phase are g
in Table VII and Fig. 9. These are obtained by adding b
corrections calculated with the VCS method to t
GFMC-UC energies. The totalE(r) is presumably accurate
to 2% atr<0.08 fm23, where the box corrections are sma
and the GFMC-UC appears to be well converged. Atr
>0.16 fm23 the total error in the present calculations
probably larger due to increases in the size of box correcti
and in GFMC-UC statistical error at larget ~see Fig. 1!.

We now discuss the limitations of the present calculati
The present quantum Monte Carlo calculations start from
correlated Slater trial wave function. This trial function
appropriate for the normal phase of Fermi liquids and is u
here as the starting point for the CP GFMC and to obtain
constraints used to limit the Fermion sign problem in th
calculations. Its results are expected to give the equatio
state of the normal phase. The long-wavelength propertie
the correlated Slater wave function do not include the
pected superfluid properties of neutron matter. Generally,
energy of the superfluid phase is not significantly differe
from that of the normal one, since in most systems the p
ing is confined near the Fermi surface, and involves o
relatively few particles. Here, however, the magnitude of
nn scattering length is very large compared to the interp
ticle spacing, and the pairing could be exceptionally stro
affecting all the particles.

In principle, it may be possible for the unconstrain
GFMC calculations to relax to the lower-energy superflu
phase, provided there is sufficient overlap between the
particle wave functions of these phases. However, the unc
strained calculations are limited to fairly short paths, due
the small unconstrained propagation time, and hence are
likely to relax to the superfluid phase. In calculations w
simple spin-independent, purely attractive, delta-functio
like short-range interactions witha52`, Schmidt et al.
@17# find, upon including superfluid pairing into the tria
wave function, important effects, including a'20% reduc-
tion in the energy per particle mentioned in the preced
section. In realistic neutron matter we expect the reductio
be much smaller; nevertheless, it needs to be determine
2-11
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One of the important features of the Monte Carlo a
proach pursued here is that it can be extended to inc
BCS pairing into the trial wave function. Thus it will b
possible to study properties of superfluid neutron matter w
realistic models of thenn interaction. We are presently pu
suing such studies. The main remaining uncertainty in
equation of state of cold, low-density neutron matter is pr
ably due to the neglected difference in theE0(r) of normal
and superfluid phases.
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APPENDIX: ELEMENTARY FOUR-BODY CIRCULAR
EXCHANGE DIAGRAMS

The four-body diagrams in the expansion ofEV2TFG
@Eq. ~10!#, not included in the Fermi hypernetted chain su
mation, are called elementary@23#. In Fermi liquids they
were first calculated by Zabolitzky@32#. The circular ex-
change diagram shown in Fig. 10 is the only one of fi
order in the expansion in powers of (Fi j

2 21), among these
It therefore has special importance as emphasized
Krotscheck@33#, and was included in the study of nucle
matter structure functions@34#. The thick interaction line in
this diagram represents
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We approximate the contribution of this diagram with

r3

4 E d3r 12d
3r 13d

3r 14,12,23,34,41

3 f c
2~r 12! f c

2~r 23! f c
2~r 34! f c

2~r 41!

3C@~e12e23e341e34e23e12!I 13~F24
2 21!#.

~A2!

The term withe34e23e12 takes into account the circular ex
change in the other direction. The spin-orbit interactions a
correlations, and the spin correlations between neutron p
12, 23, 34, and 41 are neglected in this approximation
pected to have an accuracy of order 20%.

1

2

4

3

FIG. 10. The lowest order elementary four-body circular e
change diagram. The dashed line showsF24

2 21, the thick solid line
denotes the interaction link, and the thin lines with direction sh
the exchange pattern.
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