PHYSICAL REVIEW C 68, 025802 (2003

Quantum Monte Carlo calculations of neutron matter

J. Carlson
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

J. Morales, Jr., V. R. Pandharipande, and D. G. Ravenhall
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, lllinois 61801, USA
(Received 20 February 2003; published 15 August 2003

Uniform neutron matter is approximated by a cubical box containing a finite number of neutrons, with
periodic boundary conditions. We report variational and Green’s function Monte Carlo calculations of the
ground state of fourteen neutrons in a periodic box using the ArgoBhéwo-nucleon interaction at densities
up to one and half times the nuclear matter density. The effects of the finite box size are estimated using
variational wave functions together with cluster expansion and chain summation techniques. They are small at
subnuclear densities. We discuss the expansion of the energy of low-density neutron gas in powers of its Fermi
momentum. This expansion is strongly modified by the largescattering length, and does not begin with the
Fermi-gas kinetic energy, as assumed in both Skyrme and relativistic mean field theories. The leading term of
neutron gas energy is approximately half the Fermi-gas kinetic energy. The quantum Monte Carlo results are
also used to calibrate the accuracy of variational calculations employing Fermi hypernetted and single operator
chain summation methods to study nucleon matter over a larger density range, with more realistic Hamilto-
nians including three-nucleon interactions.
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[. INTRODUCTION trast, the cluster expansion of the energy expectation value of
neutron matter used in the variational method has a rather
Since the discovery of neutron stars in 1967, there hapoor convergence when the optimum variational wave func-
been a continued interest in calculating the properties of newtion W, is used. In the latest calculatiof@| two- and three-
tron matter from realistic models of nuclear for¢és2]. Itis  body cluster contributions are calculated accurately, while
difficult to extrapolate the data on bound nuclei usingthose of= four-body clusters are summed approximately
energy-density functionals to estimate the equation of stateith hypernetted and single-operator chain summation meth-
E(p) of pure neutron matter. Various Skyrme and relativisticods. The convergence rate of the expansion is sensitive to the
energy-density functionals that fit the binding energies andange of correlations i¥,,. Hence it is often possible to use
radii of nuclei available in laboratories at present give rathesshorter range correlations, which give a more convergent
different E(p) for neutron matter. These energy-density cluster expansion together with a variational energy within a
functionals also predict different properties of nuclei near thefew percent of the optimum minimum. Thus, even though
neutron drip ling[3], which may be synthesized in the near the results of these two methods are in agreement within
future using radioactive ion beams. Theoretical predictionseveral percent, the theoretical error in the treatment of long
of the neutron matteE(p) have been used to constrain the range correlations is not well estimated.
energy density functionals used to study neutron rich nuclei. In the past few years, it has been possible to calculate the
The two-neutron interaction is strong and highly spin de-energies of all the bound states of nuclei having up to ten
pendent. Therefore, calculating the neutron mdftgs) is a  nucleons with errors estimated to 5e2% using the Green’s
challenging many-body problem, though in some ways it isfunction Monte Carlo(GFMC) method[10,11]. Results of
simpler than that of symmetric nuclear matter. Neutron matthese calculations are being used to construct realistic mod-
ter properties have been calculated recently with Brueckneels of three-nucleon interactiof$2]. The computational ef-
theory[4,5] and with variational methods using chain sum-fort necessary for a nuclear GFMC calculation scales ap-
mation technique$6,7]. There is good agreement between proximately with Z*Al/(N!Z!) for a system with N
the results of these two methofi&], and recent high preci- neutrons,Z protons, andA=N+Z. The factor 2 comes
sion models of th@n interaction give rather similar neutron from the number of spin states Afnucleons and\!/(N!Z!)
matter E(p) with the lowest order Brueckner methdd]. is the number of charge conserving isospin states. In the
The results for symmetric nuclear matter, however, havepresent work, we report calculations of the ground state of 14
more model dependence. Th€p) of high-density neutron neutrons in a periodic boxPB) with the GFMC method
matter is also sensitive to the lesser known three neutrononsidering all the ¥ spin states. We have also used the
interaction[7]. auxiliary field diffusion Monte CarléAFDMC) method pro-
The Brueckner and variational methods use different exposed by Schmidt and Fantdri3] to calculate the ground-
pansions. From the results of two- and three-hole line constate energy. In this method one effectively samples tHe 2
tributions, the hole line expansion in Brueckner theory ap-spin states stochastically. The computational effort of
pears to convergg8], though contributions of terms with AFDMC scales withA3, and thus it can be used to study
more than three hole-lines have not been calculated. In corsystems with larger values & [14]. The present AFDMC
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calculations seem to have larger errors than the GFMC; howand P waves as well as irfD; and its coupling to®S;. In

ever, it may be possible to improve their accuracy. neutron matter this interaction can be written as an operator
The interactions and the variational wave functions usedvith four terms:

in this work are described in Sec. Il. The quantum Monte

Carlo (QMC) calculations, variational Monte Carl¢y MC), b= 2 v (i) OP 1)
GFMC, and AFDMC, are described briefly in Sec. Ill, where S L O

we present results gi=0.04, 0.08, 0.16, and 0.24 fm.

The details of these methods have been presented previously oh~ cotb_1 g g, S;, LS 2)

[10,13; here we simply describe the additional techniques
used to calculate results for 14 neutrons in a PB, and discussere S; andL - S are the usual tensor and spin-orbit opera-
several tests of the calculations. The total energy and thtrs. In the calculations using the PB boundary condition, the
potential energy expectation values are reported for eacimteraction is truncated af; =L/2, whereL is the length of
density. the cubic box holding 14 neutroniﬂp 14),

The variational calculations using chain summation meth-
ods (VCS) are reported in Sec. IV. In this section we also
discuss the difference between the density matrices of 14 v(rij) =v(rij) 0(5_“1'
neutrons in a PB and of uniform gddG) with large number
of neutrons. The smallness of this difference makes the 14Fhe contribution of the long range patt(r;) 6(ri;—L/2),
particle PB a useful approximation to UG. The differenceto theE(p) of UG is estimated using variational calculations.
between the energy per neutron in the PB and in UG idVhile at low densities this contribution is small, at
estimated using variational wave functions. It is small at sub=0.24 fm 3 it becomes comparable to the total(p) in
nuclear densities,p<p,=0.16 fm 3, but significant at magnitude.
1.50,. The comparison of VCS results with the QMC ones  The variational wave functio®,, used in this work has
suggests that the former can have errors up-i®%. the form

The pair distribution functions obtained from VMC and
GFMC calculations are compared in Sec. V. These indicate _

: lIrv—(sl'[ Fi-) 4

that neutron matter has strong correlations even at small den- J
sities, as expected from the large scattering length,
~—18 fm in the 1S, state. The results for thE(p), ex-  Where® is the noninteracting Fermion wave function. In UG
trapolated to the UG limit, are presented in Sec. VI. Here wecalculations® =®¢g, the Fermi-gas wave function, while
also discuss the expansion of tE£p) in powers ofkg. in calculations using the PB boundary conditichs ®pg.
When |akg|<1, this expansion begins with the Fermi-gas It has 14 neutrons occupying spin up and down states with
kinetic energy,Trg=0.3Z/m. However, at densities of in- Momenta
terest in nuclear or neutron star physjekg|>1, and the . . .
expansion of thé&(p) seems to begin with- Tgg/2, which k=0, *kgx, *kgy, *kgz 5
is the estimated UG energy for a short range interaction with
scattering length £ a)—. This approximation to nuclear Herekg=2m/L andx,y, andz are unit vectors.
forces in a low-density neutron-gas was suggested by SII denotes a symmetrized product of the noncommuting
Bertsch[15]. Fi; pair correlation operators. In VCS calculations they have

The results are summarized in Sec. VII, along with a disfour terms involving the four operators of E@),
cussion of the merits of the various many-body methods
used. In that section we also estimate the accuracy of the Fi= > Bofy(r;)OP 6)
present calculation. At densitiesp, the GFMC calculation . PEPR A
appears to be well converged and presumably has an accu-
racy of ~2% for the energy of normal neutron matter. How- The correlation functions,(r;;) are obtained by solving
ever, there is strong pairing in dilute Fermi gases veitt two-body Schrdinger-like equation§6], and have three pa-
— — [16], and their superfluid state can have energies berametersd,d;, and«. They correspond to the range of all
low those of the normal state by 10% [17] in the most  but the tensor correlationsl), range of tensor correlations
extreme case of an attractive delta-function interaction. Théd;), and the average quenching of spin-dependent interac-
true ground state of low-density neutron matter is in the sutions in matter ¢).
perfluid phase, and its energy may be a few percent below In the case of UG, the values df d;, anda are deter-
that of the normal state calculated here. mined by minimizing the energy with the VCS method for
Bp=1. Constraints imposing conservation of nucleons are
used during this minimizatiofi6] to prevent theF;; from
going into regions where the chain summation approxima-
tion fails. The parametei8,,, B;, andgy provide additional

We have used the Argonne8’ two-nucleon interaction variation ofF; B, is not a variational parameter sinE€r;
[18] in this work. This simplified interaction equals the isos- —%=)=1. The3,... parameters were not used in recent cal-
calar part of the realistic Argonnel8 interaction in all thes  culations[7] since they do not lower the energy significantly

L
+U(r|1) H(r”_z) (3)

II. INTERACTIONS AND VARIATIONAL WAVE
FUNCTIONS
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after optimizingd, d;, and @. They are used here for the of (O) has zero variance. For a system of 14 neutrons the
following reason. The optimum values @fandd, in UG are  (¥(R)|¥(R)) is a sum of squares of the'®2spin ampli-
>L/2. However, in VMC as well as VCS calculations using tudes.

the PB boundary condition, thé¢and d; must be<L/2. In This method grows exponentially in computational time
all PB calculations we usd=d;=L/2, and vary thew and  with increasingA, and present-day computers limit practical
Bp+c to minimize the energy. simulations to roughly 14 neutrons. This is somewhat larger

In VMC calculations the spin-orbit correlations in tFe than the largest nuclei handled to date because there is only
are neglected due to computational difficulties associatedne isospin component to the wave function. Another limi-
with the gradient operator ih. These calculations use the tation of these initial calculations is that we have dropped the
v6 interaction obtained by dropping the spin-orbit term inL-S pair correlation functions, as they depend upon the mo-
thev8’. There results are compared with those of VCS withmentum of the particles in the pair. A complete evaluation of
the sameF to test the accuracy of the chain summation ap-these terms would be difficult because the derivative opera-
proximation. The complet@8’ interaction is used in the tors in one pair correlation function can, in principle, act on
GFMC calculations where the spin-orbit correlations areall other pair correlations. This limitation is not very impor-
generated by propagation in imaginary time as discussed itant at low densities, but can be quite significant at higher
the following section. densities. The variational wave function cannot adequately

describep-wave pairing of the neutrons which appears to be
important at nuclear densities and above. It may be possible
IIl. QUANTUM MONTE CARLO CALCULATIONS to construct a simplified wave function that includes most of

Quantum Monte Carlo methods have often been used tH'€5€ correlatirc])ns in thehfuture. i
study infinite systems of either fermions or bosons at both GFMC methods are then used to obtain the ground-state

zero and finite temperatures. Examples include atomic liqui§n€r9y and other properties for the 14 neutrons with periodic
3He and*He[19], the electron gak20], as well as a myriad oundary conditions. The method is the same as that used for

study of lattice models in condensed matter theory. Theydnt nuclei[10], with only very minor modifications used to

have proven remarkably successful at studying the equatio!lmplement the periodic bo_undary conditions_. The basic idea
5 to sample a wave functiod (7) by evaluating path inte-

of state of strongly interacting systems, and have also beel
used to explore phase transitions, momentum distributiongra!s of the form

static and dynamic response, etc. Although studies of fer-

mion systems are usually treated via approximate fixed-node V(=[] exd—(H-Eq)A7]|¥), (8)

[21] or constrained patliCP) [22] methods, these approxi-

mations can often be quite accurate. )

The nuclear many-body problem is more difficult than all Where each step in the product evolves the system over a
the cases listed above, because of the strong spin-isospiort imaginary timeAr; after many stepsi—o, W(r
dependence of the interaction. Instead of a single function ofNA 7) will converge to the true ground state of the system
the 3A coordinates of the particles, the wave function of@s long as the origindlariationa) wave function is not or-
simple systems, the nuclear state is described with a set #fogonal to it. Because we are studying systems at densities
(compleX amplitudes dependent upon the spins and isospinBigher than equilibrium nuclear densify, the time step
of the nucleons. This complication has been handled succes¢sed here is 0.000 25 MeV, or 1/2 the time step typically
fully for few-body (A<10) nuclei[11] by simply summing used in nuclear calculations. Again the spatial integrals are
explicitly over all these amplitudes. Monte Carlo is then usecdone with the Monte Carlo method, using a sum over many
to eva'uate the A-dimensiona' Spatia' integra's_ Configurations W|th diﬁerent Spatia| COOI’dinatés EaCh

VMC calculations evaluate the energy and other observconfiguration includes amplitudes for all thé*Zpin states
ables through the use of the Metropolis Monte Carlo methodwhich are explicitly summed in the evaluation of matrix el-
The method is described in detail in REE0], the basic idea ements.
being to generate points in the\alimensional configuraton ~ Some of the GFMC results reported here are obtained
space distributed with the probability density of a weightWith the CP approximatioi22,10. Since the neutrons are
functionW(R). HereR is the 3A-dimensional configuration fermions, they may exchange and produce contributions to
vectorr,, ... rx. The expectation values of operators arethe wave functions of opposite signs, and indeed with arbi-

obtained as averages over the sampled pdts trary complex phases. In an exact GFMC calculation, this
leads to a statistical error that grows withThis problem is

more severe at higher densitiea with larger numbers of

2 (¥(R)|O| W (R)YW(R)) particles singe it i; then easier for a pair to interchange.
i To deal with this problem, we implement a constraint on

(0)= . D the paths to be included in the evaluation'B{7). For a
Z (¥ (R)|¥(R))/W(R;) spin-isospin independent interaction the wave function is a

scalar, and one can perform a fixed-node calculation in

which configurations where the variational wave function is
The optimum weight function in most cases is the square otero are discarded. This defines a surface within which the
the wave functio V' (R)| ¥ (R)) for which the denominator evolution proceeds, and eliminates the sign problem at the
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cost of introducing an approximation into the calculation. 36 ‘ TaTvel ™ ‘
The fixed-node method is exact when the variational wave 33; . J-_VB‘ - - .
function has the true nodal surface, and provides an upper  3oe 3 024
bound to the true ground-state energy. This upper bound is ;[ ° ‘ ‘ ‘ 'y ‘ .
often quite accurate because we are solving for the “opti- 3 ! o ! ! ]
mum” solution subject only to the boundary condition that 200 - - - " oo
the wave function is zero on a predefined surface close to the ~ 18}- . . ] ' 7
correct one. 1] N S S ] |

The nuclear case is more complicated than the one dis- @ % B
cussed above, both because the trial wave function is a set of< | T = - * " 008 ]
complex amplitudes and because we cannot evaluate the full<m‘: - ‘ * ‘ ‘ L . s
wave function for a given set of coordinates. We can only L ! e ! ]
evaluate it for a specific order of pair correlation operators in 7: . . - . =008 il
Eq.(4), as a complete set would requji&(A—1)/2]! terms. 6.5¢ - - . . ' 8
These pair orders are sampled in both the VMC and GFMC 6 e IS

0 0.001 0.002 0.003 0.004 0.005 0.006

calculations. Fortunately, the fluctuations in samples of pair
orders arise from the commutators of correlation operators.
These involve clusters of three or more nucleons, and they FIG. 1. Energy vs imaginary time after CP propagation, at
have a small effect on the variance. For the nuclear case, wearious densities. VMC result§upper squargs for v6 and
construct an alternative constraint based on the overlap d8FMC-CP results(lower squares and dotfor v6 andv8’ are
each configuratio¥(r,R;) with the sampled variational shown atr=0, and unconstrained GFMC results are shown for
wave function. Configurations with negative overlap are disvarious=>0.

carded along with those with correspondingly small positive,tion. Thev6 VMC and the PB variational chain summa-

overlap, ensuring that the average overlap of the discardeghn (VCS) calculations discussed in Sec. IV use the same
configurations with the trial wave function is zero. This wave function.

yields a stable simulation, and the calculation can proceed The UC GFMC results are plotted as a function of uncon-
out to quite large imaginary time, much larger than the in-strained propagation time after the end of CP propagation.
verse gap in the system. This approximation is not guaran€ircles and squares show results for tH&f andv6. At all
teed to produce an upper bound to the ground-state energyensities, the 6 calculations appear to be fairly stable and
though it has proven to be quite accurate for few-body nuiittle change is observed between the CP results and the un-
clei. The results obtained using this method are labeled witigonstrained results for larger imaginary time. Table | lists the
CP. total and potential energy per neutron for various densities.
The CP approximation is tested by removing the con-The GFMC potential energies are approximately 15% lower

straint. The configurations generated by the CP calculatiof’@n the VMC results indicating that true ground state has
are evolved further in the imaginary time without con- ~ More correlations than the present variational wave function.

straint. The fermion sign problem makes this calculation! N€ difference in the VMC and the GFMC potential energies

more difficult for increasing density and for increasingin IS mofe.‘ha” twice that in the total energigs as expecteq near
principle, we can evaluate the energy for a much largat the minimum. The results of VCS calculations are also listed

I . : . . in Table I; they are discussed in Sec. IV.
ow density. In practice, the low-density calculations appear h its fow8' interaction are diven in Table Il and
to be well converged at fairly small imaginary time. Of .T € resuits fows Inte ! given | .

. _ : . .~ Fig. 1. The VMC rows in this table give results with the
course, the total uncopstralned Imaginary time propagation i jarional wave function for the6 potential without any
quite small here, typically 0.005 MeV}, and hence only spin-orbit correlation. With this wave function the expecta-
fairly high-energy excitations are removed by this pro.c:eduretiOn value of the spin-orbit interactiody, <), is small and
The results of these unconstraingdC) GFMC calculations  ysitive. It in nonzero due to the tensor correlations. In con-
are the most accurate of the presented results. trast, the variational wave function used in the VCS calcula-

In this work we user to denote the time after the CP tjons contains spin-orbit correlations that give significant
propagation. The CP GFMC propagation starts at a larg@egative(v, s). TheL - S correlations absent in the6 varia-
negativer and ends atr=0. The propagation time of CP tional wave function are partly generated via the CP propa-
GFMC is large enough to ensure convergence; however, thgfation, as can be seen from the GFMC-GR ) values.
of UC GFMC is limited by the growth in statistical errors However, the constraint imposed by thé wave function
due to the fermion sign problem. hinders their growth. After the constraint is removed, the

Results for the VMC and GFMC calculations at different spin-orbit correlations increase substantially, and we obtain
densities are presented graphically in Fig. 1. The uppesignificantly more attraction from thg 5. This will be more
square point at=0, at each density, shows the VMC results evident in the comparison of pair distribution functions in
for thev 6 Hamiltonian, while the lower square point, also atSec. VI. The UC GFMC energy decreases witliFig. 1),
7=0, shows the CP GFMC results. The CP GFMC energiesnd atp=p, the growth in statistical error limits the UC
are typically 5-10 % lower than the VMC for theb inter-  calculation.

T (MeV’l)
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TABLE I. Quantum Monte Carlo and VCS results for 14 neutrons in PB withvhédamiltonian(MeV
per neutron Statistical errors are indicated in parentheses.

Method p (fm~3) 0.04 0.08 0.16 0.24
VMC (H) 7.0401) 11.3201) 21.3901) 34.3001)
GFMC-CP 6.7201) 10.6401) 19.8002) 31.9002)
GFMC-UC 6.7501) 10.6403) 19.94(11) 32.1508)
VCS 7.6 11.9 21.2 33.6
VMC (v6) —9.92(03) —16.17(05) —22.79(08) —26.10(11)
GFMC-CP —11.75(08) —18.64(09) —28.01(08) —32.94(25)
GFMC-UC —11.36(13) —18.17(36) —26.62(71) —32.71(71)
VCS -9.2 -15.4 —22.7 —26.6

We have also performed calculations with different inputEach configuration now has 14 two-component vectors de-
correlation functions in the trial wave function. Their results scribing the relative amplitude and phases of the spin of each
for p=pg are illustrated by the two sets of square points inneutron. These spins rotate in the presence of fluctuating
Fig. 2. The points labeled GFMCR) are obtained with the fields which, when summed, reproduce exactly the results of
trial wave function having pair correlation functions of rangethe two-nucleon interaction. As in the GFMC calculation, a
L/2, while those labeled GFMGR) have much shorter constraint is imposed requiring a positive overlap between
range input pair correlation functions. There appears to beéhe configuration at any time and the trial wave function.
very little dependence of the UC GFMC results upon the The two sets of UC AFDMC results shown in Fig. 2 are
choice of the range of input two-body correlation functions;obtained with two different estimators of the ground-state
this has been checked for the pair distribution functions agnergy. The growth energiplack dot$ is determined from
well. the rate of increase/decrease in the population with imagi-

We have also implemented the AFDMC method ofnary time 7, while the mixed estimatéred dot$ is deter-
Schmidt and Fantonii13]. Since this method scales much mined by the overlap of the configurations with the Hamil-
better withA than the GFMC method discussed here, it cantonian acting on the trial wave function. These two estimates
be used to treat much larger systems. At present, the trighould be equal within statistical errors for small values of
wave function used in these calculations includes only spinthe time stepA r.
independent Jastrow factors times a Fermi-Gas determinant, W, is a very simple trial function and hence does not

provide an accurate constraint. The CP AFDMC energies at
7=0 are higher than the CP GFMC because of this relatively
Drg. (9) poor constraint. Asr increases beyond the CP propagation

i< region, the energy drops and becomes compatible with the

\PJ:{H fc(rij)

TABLE Il. Quantum Monte Carlo and VCS results for 14 neutrons in PB withvBleHamiltonian(MeV
per neutroin

Method p (fm~3) 0.04 0.08 0.16 0.24
VMC (H) 7.1601) 11.67807) 21.8212) 35.0201)
GFMC-CP 6.4801) 10.0202) 18.5404) 30.0404)
GFMC-UC 6.3203) 9.50106) 17.0027) 28.3550)
VCS 7.0 10.3 17.4 26.3
VMC (v86) —9.74(03) —15.72(6) —21.64(09) —24.37(11)
GFMC-CP —11.85(09)  —18.34(11)  —27.72(15) —32.34(23)
GFMC-UC —11.44(19)  —17.83(30) —25.62(87)  —30.52(1.35)
VCS -9.3 —-15.1 -21.6 —24.9
VMC (vi.9) 0.0701) 0.2601) 0.1301) 0.21(01)
GFMC-CP —0.23(11) —1.37(03) —2.69(03) —4.08(08)
GFMC-UC —0.85(04) —2.59(15) —6.24(50) —7.98(98)
VCS —-0.88 -23 -6.9 —12.1
—6.9(p/po)>" —-0.68 -22 -6.9 -13.6
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24 . P 1
| E(Zb)zif d3r|]C|:F(r|])(_EV2+U(r|]))F(r|J):|
22t . o AFDMC (growth) - p 1
° i T 3 . v ) 2
3 ' AU ] + 2f dr;C eijF(rij)( =V +U(rij))F(rij)}€ (ri)
3 0l = % = GFMC(LR) i
=3 - 1
< g i } ] _PEJ dr;;Cle; F(rij) VF(ri)]-€(rij)VEe(r;).
18] . 4
[]
, N E SN (11)
16|~ /‘1;8?'16 fm'® . HereC[ - - - ] denotes the spin independent part, called@he
L a | part[23] of the operators inside the square brackegsis the
0 0.601 0.0‘02 ‘ 0.0‘03 0.0‘04 0.605 0.006 spin eXChange Operator,
T (Mev™) 1
&j=— 51+ oy o), (12)

FIG. 2. Energy vs imaginary time for different calculations
using v8’ interaction atp=0.16 fm 3. Two different estimates
(growth and mixedl are shown for the AFDMC calculation along
with the results of two different GFMC calculations, using short- 1
range(SR) and long-rangéLR) correlations in the trial wave func- (r)= A Z ekir (13
tion. i

and{(r) is the spatial density matrix,

GFMC results. The statistical errrors are somewhat worsd)ormalized such that(r=0)=1. It is given by the Slater
though, as each configuration contains only a single set of 1#nction
spin vectors rather than the'2amplitudes in the GFMC.

The correlations between these amplitudes reduce the fer-

mion sign problem, but at the cost of an exponentially in-for the

creasing computational time. The AFDMC method has been™ | "0 rgl(?ﬁively simple to calculate the above two-body

use(_j to study much larger systems with Fh.'s. simple CON%luster contribution without approximations. All the terms in
straint, and also to study the spin susceptibility of neutro

. . Nhe three-body cluster energy except those containing spin-
matter. It could be used to determine the difference betweep .. .o clations can now be calculated exad®y. How-

the infinite-particle limit and the results for 14 neutrons. S
Here, though, we use VCS methods to calculate this differEVe" all the= four-body cluster contributions as well as the

ence. In addition, the QMC results provide a test of the Vcéhree-body contributions frorn - S correlations are estimated

: ) . . L -“approximately using the chain summation methods.
calculations often used in studies with more realistic Hamil- . . .
; ) . . .. Results of VCS calculations of the UG are given in Table
tonians that include three-nucleon interactions and relativis:

tic corrections Ill. These are at optimum values dfandd,, which gener-
’ ally exceed the./2 of 14 neutron PB. In this case tlsg,
obtained withg,=1 is within ~2% of theE,, with optimum
IV. VARIATIONAL CHAIN SUMMATION CALCULATIONS B,. The contributions of clusters are calculated following

In VCS calculations of UG the expectation value lof Ref. [9]. The three- and=4-b-static contributions do not
include spin-orbit interaction and correlation terms; their

contributions are listed in row=3-b-L-S. The values of
3-b-static contributions calculated with the chain summation
SH_ Fij |Pre) approximation are also given in Table Il for comparison.
) They are typically within 10% of the exact values. The listed
- B values of=4-b-static contributions include the elementary
Si1;[j F”Hsiﬂj F”}@FG) four-body circular exchange diagram discussed in the Ap-
(100  pendix. It was omitted in previoys,9] calculations because
it is generally small in symmetric nuclear matter. However,
is expanded in powers of the short range functiofs§ (  this contribution contains the facter 3, wheres=2,4 is the
—1) [23]. The @ is an eigenstate of the kinetic energy spin-isospin degeneracy factor in neutron and symmetric
operator T= —EiViZIZm with the eigenvalue Tgg nuclear matter. It is relatively larger in neutron matter, and its
=0.3 k,%/m, hence the terms witil operating on®; are  values are listed in Table III.

£(r)=3[sin(x)—x cogx)]/x3, x=Kkgr (14)

—Tee,

(el Siﬂj Fij}(H_TFG)

Ev—Trc=

<(I)FG|

not included in the expansion. Thebody cluster contribu- Table 1lI clearly shows that the cluster expansion of the

tion contains all the terms of this expansion havimgeu- E(p) has slow convergence. At low densities this is prima-

trons. rily due to the largenn scattering length. With the8’ in-
The leading two-body cluster contribution to the energyteraction, the total contribution of clusters with=4 is

of UG of neutrons is given by ~30(10)% of the total energy at=0.04(0.16).
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TABLE lII. Results of VCS calculations of the UG(p) (MeV
per neutropwith optimumd andd,, in MeV. Contributions with an
* are estimated using chain summation approximation; those with-
out are calculated exactly. The bottom two rows give the approxi-
mate 3b-static*, for comparison with the exact [3static, and
4-b-elementary* circular exchange contribution included =
— b-static*.

1(r)

p (fm~3) 0.04 0.08 0.16 0.24 -

d(fm) 3.66 331 2.29 2.20

di(fm) 6.17 5.56 5.22 4.69 1

a 0.89 0.87 0.80 0.72

B, 0.8 0.8 1.0 1.0 r T

B 0.9 1.0 0.9 0.9 o L RS

B 0.9 0.8 1.0 1.1 0 05 L Ls 2

Tra 13.9 22.1 35.1 46.0 FIG. 3. The Slater functiodf pg(r) for 14 neutrons in PB. The

2-b-total —-10.1 —16.9 —-255 —33.9 top and bottom dash-dotted lines show thg(r) with r parallel to

3-b-static 4.9 6.9 3.7 35 the 0,0,1 box side and to the 1,1,1 diagonal, respectively. The

=4-b-static* -23 -3.1 -15 -1.1 middle full line shows the averagg(¢3g(r), and the dashed line

=3-pb—L-S 0.1 0.2 0.2 -0.1 shows thef(r) in the UG.

Total E(p) 6.6 92 12.0 14.5 is an eigenstate of the kinetic energy with the eigenvghee
neutron

3-b-static* 4.6 6.6 35 3.2 1 6/2m7\2

4-b-elementary* -05 -05 0.5 0.7 TPB:ﬁ 7(T) =1.014T ¢ . (15

Table IV gives the results for UG variational energy for We note that the kinetic energypg per neutron of the 14
d=d;=L/2 and optimum values o& and 3,. The cluster noninteracting neutrons in a periodic box is only 1.4% larger
expansion has better convergence for these shorter range cthan that of free Fermi gas.
relations, and th&, (d=d;=L/2) is above the optimurk,, As in the case of the UG, we expand the expectation value
by only ~0.1 MeV for p<p,, while atp=1.5p, itis higher =~ of H—Tpg as a sum over clusters. The leading two-body
by 0.3 MeV. At smallp the 3 is significantly larger than 1. cluster contribution is given by Eq11) with the PB density

matrix,
A. Variational calculations with ®pg

1
These calculations use the truncated interaction, €pg(r)= 7[1+2 cogxkg) +2 cogykg) +2 cogzks)],
v(ri;)6(L/2—r;;), and correlation ranged=d;=L/2. ®pg (16)

TABLE V. Results of VCS calculations of the UG(p) (MeV ) ) o
per neutropwith d=d,=L/2, in MeV. Contributions with an * are  in place of the UG density matrix given by the Slater func-
estimated using chain summation approximation; those without arion [Eq. (14)]. €pg depends upon the direction of as il-

calculated exactly. lustrated in Fig. 3. Thépg is largest forr parallel to the box
side and smallest along the diagonal.

p (fm~9) 0.04 0.08 0.16 0.24 The C-parts of the operators if£(2b) [Eqg. (11)] are

L/2 (fm) 3.52 2.80 2.22 1.94 spherically symmetric functions af; , therefore theE(2b)

@ 0.90 0.85 0.80 0.80 depends only on the angle averaged valué%f

B 0.80 0.9 0.9 1.0

Bi 1.50 2.0 1.0 1.0 B

Bo 0.85 0.9 11 11 pa(r)= f sing do dg €5g(r), (17

Tea 13.9 22.1 35.1 46.0 at r<L/2. The €24(r) is fairly close to€2(r) in UG as

2-b-total -9.7 -149 —23.0 —29.9 shown in Fig. 3. Therefore, the two-body cluster contribu-

3-b-static 3.9 2.7 -0.1 -0.8 tions obtained with the UG and PB density matrices are not

= 4-b-static* -15 -0.7 -0.0 -0.0 very different. In the variational calculations withpg we

=3—-Db-L-S* 0.0 0.0 0.2 -0.4 approximate the contributions of al= three-body clusters
by their values in the UG. The B-static cluster is calculated

Total E(p) 6.7 9.2 12.1 14.8 exactly, and the rest with chain summation approximations.

We note that Fantoni and Schm[@4] have developed chain
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CARLSON, MORALES, PANDHARIPANDE, AND RAVENHALL PHYSICAL REVIEW C68, 025802 (2003

TABLE V. Results of PB variational calculations witt6 inter-  energy is higher by 8% aiy/4 and lower by 2% at 1/,
action truncated at=L/2. The variational parameters are listed in The difference between the VCS and VMC potential energy,

Table 1V, and the energies are in MeV per neutron. (v6), is similar. The clusters witk=3 neutrons give a rela-
tively larger contribution at smaller densiti€gable V) due

p (fm™) 0.04 0.08 0.16 0.24 to the largenn scattering length. It is thus not surprising that

Teg 14.1 22 4 356 46.6 VCS has larger errors in that region. The GFMC-UC ener-

2b-total —90 ~126 142 —123 gies are below those of the VCS by 12-14 % in this density

=3.b-total 25 20 —01 07 range. We note that the differences between the GFMC-UC

and VCS or VMC potential energies are much larger, of or-
der 20%. This is because the present variational wave func-
tions underestimate the correlations in matter, as is further
elaborated in the following section.

summation methods for calculations widheg without ten- In the case of the8" Hamiltonian, the VMC calculations
sor correlations. They retain thé in all the many-body do not include the spin-orbit correlations while the VCS do,

cluster contributions calculated with chain summation methiherefore the VMC and VCS results are not comparable in
ods. this case. However, we can compare the GFMC-UC and

The results of calculations with thes andv8’ interac-  YCS results. As fow6, the GFMC-UC energies are lower
tions are given in Tables V and VI. The values Bfg _by 10% at lower densities; however,.atﬂ_oﬁhe VCS energy
—Tpg and is lower by 2+0.5 _MeV. _M_ost of t_hls difference seems to

come from the spin-orbit interaction. THe .g)=—-8=1

AE(2b)=Eyg(2b) —Epg(2b) (18 and—12 MeV in these two calculations at p& When the

density dependence of spin-orbit correlations is neglected,
are also listed in Table VI. The smallness of these differencethe leading two-neutron cluster gives a contribution propor-
makes the 14-neutron periodic box a good approximation fotional to p°* to (v, .g). This comes about because the spin-
studying uniform gasE(p). The variational parameters orbit contributions are proportional j&'® via thek? momen-
and 8, have essentially the same values in PB calculationsum dependence of .gL-Sf .gL-S, and the summation
as in UG withd=d;=L/2. The main difference between the over particles gives an additional factor pffor two-body
UG and PB energies comes from the contribution of the longlusters. The VCS results fqw, .s) approximately follow
range interactiorv(r;;) 6(rj; —L/2) omitted in the PB. Its this density dependence as shown in Table Il. Upgahe
contribution denoted byv (rj;>L/2)) is estimated from UG GFMC-UC (v, .s) also has a similar density dependence.
calculations and listed in Table VI. It becomes comparable tHHowever, at 1.5, the GFMC-UC is smaller in magnitude. It

Total E(p) 7.6 11.9 21.2 33.6

the totalEyg(p) at p~1.5 pg. could be that higher order cluster terms become more impor-
tant at this density and that VCS overestimatesithg con-
B. Comparison with QMC calculations tribution, or that, if GFMC-UC is propagated further in the

The results of the approximate VCS calculations are Coml_maglnary time7 after the CP, thdv, .5) will decrease and

. : : the GFMC-UC energy will go down. In the present calcula-
pared with those of QMC calculations in Tables | and Il for . . L . .
the v6 andv8’ interactions. Since the VMC and VCS cal- tion we cannot test this possibility because of the increase in

. ) . the statistical errors due to the Fermion sign problem.
culations use the same wave function for & Hamil- gnp

tonian, they should ideally give the same results. The differ-
ence between them is due only to the approximations in the
VCS calculations. Relative to the VMC results, the VCS total  The pair distribution functions obtained from QMC cal-
o _ o culations with thev8’ interaction are shown in Figs. 4 to 7.
TABLE VI. Results of PB variational calculations withB" in- |5 each figure the circles show the results of VMC calcula-
teraction truncated at=L/2. The variational parameters are listed tions with a wave function containink correlationgwith-
in Table 1V, and the last three rows give the differences between P%ut LS correlations Squares and triangles represent the re-
and UG contributions. All energies are in MeV per neutron. sult of the constrained path(GFMC-CP, and the
unconstrainedGFMC-UCQ). The pair distribution functions

V. PAIR DISTRIBUTION FUNCTIONS

-3
p (fm ) 0.04 0.08 0.16 0.24 gp(r) are given by the expectation value
Teg 14.1 22.4 35.6 46.6
2-b-total —-9.5 —14.0 —18.3 —-19.1
r)=N W|8(r,; —r)OR| W)Y, 19

=3-b-total 2.4 1.9 0.1 -1.2 9(1) ;, (W] 8(ry =nOfIF) (19
Total E(p) 7.0 10.3 17.4 26.3 with a normalizatiorN such thaig,(r)=g.(r) goes to one at

large distances. Thg,_, are denoted by, ,g; andg, s for
Tea—Tes —0.2 ~03 —05 ~0.7 clarity. Theg.(r) gives the probability to find a neutron at a
AE(2b) ~0.0 —01 ~01 —01 distancer from another neutron sinc@ﬁzlzl. In contrast,
(v(r;>L/2)) —01 ~08 —45 ~10.7 Oﬁ=2=ai-aj, thus g,, is proportional to the expectation

value of §(ri; —r) oy- oy. Using the projection operators,
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FIG. 4. Pair distribution functions for the8' interaction atp
=0.04 fm 3. The datasets from top to bottom correspond to cen-=q 16 fm
tral, LS, tensor, ande;- o; pair distribution functions. Each set
contains circles, squares, and triangles showing the VMC, GFMC-

CP, and GFMC-UC results. TheS and the tensor distribution func-
tions are scaled up by a factor of 5.

PS=O:Z(1_0'i'0'j)a (20)

1
PSIl:Z(3+Ui'0j)! (21)

, as in Fig. 4.

r (fm)

FIG. 6. Palr distribution functions for the8' interaction atp

EG<r>:1—%€2<r>, (24)
(r)=—5t%(r), (25
{2(r)=g(s=0. (26)

and giveg, s~0.

the pair distribution functions in spi8=0 and 1 pairs are
found to be

The VMC calculations do not have spin-orbit correlations,

At p=0.04 fm 3, there is a very strong pairing into spin
0 states as indicated by the large negatjye It can be seen

more clearly in Fig. 8, which compares the_q 4(r) in neu-

tron matter and Fermi gases. The large peak ofgthe, is
due to the large negativen scattering length; it should be

relatively model independent and grow at smaller densities.

1
9s=0(r) = 7[9c(r) =gs(1)], (22)

1
9s-1(r) = 7[39c(r) +9,(r)]. (23
Sincegs-—1(r—0)—0, theg,(r)=—3g.(r) at smallr. In

noninteracting Fermi gases,

This pairing is present in the variational calculations, though
underestimated by- 25%. The tensor anl- S correlations

are quite modest at these low densities. There is little change
between the constrained GFMC-CP and unconstrained
GFMC-UC, indicating reasonably good convergence within
this class of wave functions. The tensor correlations are long-

I I I I I I T
101 1.0
| @@eagg§§§§§§@@936 I §§§$$§g@é§
0.5 g%ll‘ 0.5+ é ? ; E |
g..-. F % § "R E g § A E 1
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® g (X5
180 we L o 0.05 | o0 o wwe o .
20/a GEMO-UC AVE i oL U GFMCCP g g (x5 AVE i
| p=0.08 fm* | A GFMC-UC ® 9. (5 p=0.24fm>
| | | | - | | |
230 0.5 1.0 15 2.0 25 2.0 0.5 1.0 15
r (fm) r (fm)

FIG. 5. Pair distribution functions for the8' interaction atp
=0.08 fm 3, as in Fig. 4.
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compared to distributions in noninteracting FG shown by solidpresent calculation. The dashed line showsHx5 .

lines.

ranged, extending nearly to tHe/2 limit imposed by the

0.1

_ . FIG. 9. The energy of neutron matter at low densities. The stars
results of unconstrained GFMC calculations are give the results of Ref:30] and the circles give the results of the

ing the box corrections listed in Table VI to the GFMC-UC

energies listed in Table II. The ratio of neutron matgp)

periodic boundary conditions. This same behavior is seefy the noninteracting neutron Fermi gas energy is also listed
even When Stal’tlng the GFMC W|th tr|a| wave funCtIOI’]S haV'in Table VII. This ratio approaches 0.5 at low densities.

The properties of low density neutron matter are domi-

ing much shorter range correlations.
The correlations atp=0.08 fm 3 are fairly similar,

nated by the large negativen scattering length. When

though the spin correlation is not as large, and the tensor aqng|<1 we have the well known low-density expansion

L - S correlations are becoming more significant. T is

essentially zero in the variational calculation, and underesti-
mated in CP GFMC.

At the largest densities considereg, = 0.16 and

0.24 fn 3, the differences between the variational, GFMC-
CP, and the GFMC-UC results are quite large. Both the ten-
sor andL - S correlations are quite important and significantly
underestimated in the VMC and GFMC-CP calculations. We
see a transition from low densities, where wave inter-
action and Spin Zero pairing is dominant, to these h|ghe|SUCh an eXpanSion is not useful for neutron matter because
densities, where thB-wave interactions are crucial. It could even at densities as low as 1% @f, |akg|>6. The limit

be associated with théP,-°F, pairing [25] expected at

[27],

——

E(p) =Erc(p)

217

10 4
1+ %ak,:wL—(ll—Zan)(ak,:)z

(27)

akr— — is perhaps more applicable to neutron gas than

higher densities. In VCS calculations with three nucleon inthe low-density expansion, as suggested by Berfs6h In
teraction(see Fig. 9 of Ref[26]) such a behavior is associ- this limit it is known that
ated with the onset of pion condensation.

VI. DENSITY DEPENDENCE OF NEUTRON MATTER

v 8’ potential is reported in Table VII. It is obtained by ad

TABLE VII. Neutron matter energy with the8’ interaction in

MeV per neutron.

ENERGY

E(p)=Erc(p)é.

(28)

The estimates of range from 0.32628,29 to 0.568[28] to

0.59 [16]. Recent quantum Monte Carlo calculatiofis/]
The total energy of neutron matter interacting with the9ve ¢~0.54 for the normal phase age- 0.44*0.02 for the

d- superfluid phase. Most many-body calculations, both

Brueckner and variational, givé~0.5 for normal neutron

matter. As an example, we compare the energies of neutron

matter calculated with the CSM in 19830] with the Egg

p (fm~3)
GFMC-UC
Box correction

Total E(p)

E(p)/Erc(p)

0.04
6.3
-03
6.0

0.43

0.08
9.5

-1.1
8.4

0.38

0.16

17.0
—-51

121

0.34

0.24
28.4
—-115

and results of present calculation in Fig. 9.
Equation(28) implies that at low densities the interaction

energy of neutron matter becomes proportionaas is the

FG kinetic energy. This interaction energy is proportional to

density = k§/3w2) times the volume integral of the effective

16.9

G interaction, related to the bate interaction by the well-

known Brueckner equatio® ¢ =uv . Here ¢ and ¢ are the

0.37
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and in vacuumg=1—alr beyond the the rangR, of v. The VMC and VCS energies for 14 neutrons in a PB
When—a/R,>1, as is the case for neutrons, we can neglectperiodic boy, with the v6 Hamiltonian, differ only due to
the 1 in comparison and approximate théy —a/R,. The  approximations used to calculate the energy expectation
effective interaction in vacuum is essentially enhanced by &alue in the VCS method. The results listed in Table | show
factor —a/R, by the large scattering length. In matter the that this error in VCS is less than 5% except at the lowest
effective scattering length is limited by the interparticle spac-density. Note that due to the largen scattering length the
ing of order 1kg. Thus, when—ake>1, theG is enhanced |ow-density neutron matter has very strong correlations as
by a factor proportional to kiR, , its integral becomes pro- shown in Fig. 8. Comparison of the VMC and GFMC-UC
portional to 1kg, and the interaction energy proportional to energies in Table | show that the error due to the assumed
kﬁ. At higher densities we see a deviation from E2@) in  variational wave function increases from 4 to 7% in the
Fig. 9. It starts wherkcR, becomes of order 1 and the first density range 0.04 to 0.24 fmi for thev6 Hamiltonian.

(unit) term of ¢ cannot be neglected. Whéy— 0, as in the In the case of the more realistic8’ Hamiltonian, the
challenge problem proposed by Bertsch, E28) is valid at  VMC calculations serve only to start the GFMC. The differ-
all densities wherm= —x. ence between the presumably exact GFMC-UC and the VCS

Most of the nonrelativistic Skyrme as well as the relativ- energies for 14 neutron PB, listed in Table Il, indicate that
istic mean field energy density functions commonly used tdhe overall accuracy of the VCS method is about 10% for the
study nuclei and neutron star matter assumegkat. None total energy. However, the potential energies as well as the
of these therefore can reproduce the equation of dkalg)  pair distribution functiongFigs. 4 to 7 have differences of
of pure neutron mattefl] obtained from realistic interac- ~ 20%.
tions even at low densities. The effective interaction used in Our most accurate results for the normal phase are given
mean field models must diverge ps+0 due to largenn  in Table VIl and Fig. 9. These are obtained by adding box
scattering length. Energy density functionals containing sucleorrections calculated with the VCS method to the
low-density divergencds81] are probably necessary to study GFMC-UC energies. The totéd(p) is presumably accurate
nuclei near neutron drip line or in the inner crust of neutronto 2% atp<0.08 fm 3, where the box corrections are small
stars. and the GFMC-UC appears to be well converged. pAt
=>0.16 fm 2 the total error in the present calculations is
probably larger due to increases in the size of box corrections
and in GFMC-UC statistical error at large(see Fig. 1

We have presented here results of cold neutron matter We now discuss the limitations of the present calculation.
calculations with three different methods, the VCS, theThe present quantum Monte Carlo calculations start from a
VMC, and the GFMC. Of these the VCS is computationally correlated Slater trial wave function. This trial function is
most efficient, and can be used for infinite uniform matterappropriate for the normal phase of Fermi liquids and is used
with realistic two- and three-body interactions. However, ithere as the starting point for the CP GFMC and to obtain the
has two approximations: the assumed variational wave funcsonstraints used to limit the Fermion sign problem in that
tion may not exactly correspond to that of the true groundcalculations. Its results are expected to give the equation of
state; and the energy expectation value is calculated usingtate of the normal phase. The long-wavelength properties of
approximations. This method has been used extensively tihe correlated Slater wave function do not include the ex-
study properties of dense nucleon matter. The VMC methogbected superfluid properties of neutron matter. Generally, the
is computationally demanding, and can be used at present fenergy of the superfluid phase is not significantly different
systems with<14 neutrons. Its main advantage is that thefrom that of the normal one, since in most systems the pair-
energy expectation value is calculated exactly from the asing is confined near the Fermi surface, and involves only
sumed variational wave function. It is also a necessary stepelatively few particles. Here, however, the magnitude of the
before the GFMC. The wave functions used in present VMnn scattering length is very large compared to the interpar-
studies do not contain spin-orbit correlations included in theticle spacing, and the pairing could be exceptionally strong,
VCS. The GFMC is computationally very demanding, nev-affecting all the particles.
ertheless, in unconstrained calculations it gives the exact en- In principle, it may be possible for the unconstrained
ergy whenr is sufficiently large. However, the Fermion sign GFMC calculations to relax to the lower-energy superfluid
problem limits the duration of unconstrained propagation byphase, provided there is sufficient overlap between the 14
e~ (H~Eo)7 in imaginary timer. In practice, one propagates particle wave functions of these phases. However, the uncon-
with constraints for larger. This gives the lowest energy strained calculations are limited to fairly short paths, due to
consistent with the nodes of the trial wave function used irthe small unconstrained propagation time, and hence are un-
the constraint. The constraints are released near the end lifely to relax to the superfluid phase. In calculations with
the propagation for a small period limited by the growth insimple spin-independent, purely attractive, delta-function-
statistical errors due to the Fermion sign problem. This proiike short-range interactions wita= —, Schmidt et al.
cedure inevitably leads to the ground state of the thermody{-17] find, upon including superfluid pairing into the trial
namic phasenormal against superfluid, for examplas-  wave function, important effects, including=a20% reduc-
sumed in the trial wave function. In addition, both VMC and tion in the energy per particle mentioned in the preceding
GFMC methods omit interactions at a range larger than halection. In realistic neutron matter we expect the reduction to
the periodic box sizé. be much smaller; nevertheless, it needs to be determined.

VIl. SUMMARY
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One of the important features of the Monte Carlo ap- 2
proach pursued here is that it can be extended to include
BCS pairing into the trial wave function. Thus it will be
possible to study properties of superfluid neutron matter with
realistic models of then interaction. We are presently pur-
suing such studies. The main remaining uncertainty in the
equation of state of cold, low-density neutron matter is prob-
ably due to the neglected difference in tBg(p) of normal 1 3
and superfluid phases.
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QMC calculations reported here were performed at the Na- ~'C- 10 The lowest order elem;%tary four-body circular ex-
) i change diagram. The dashed line shéws— 1, the thick solid line
tional Energy Research Supercomputer facility. denotes the interaction link, and the thin lines with direction show

the exchange pattern.
APPENDIX: ELEMENTARY FOUR-BODY CIRCULAR

EXCHANGE DIAGRAMS We approximate the contribution of this diagram with
The four-body diagrams in the expansion Bf—Tgg 3

[Ed. (10)], not included in the Fermi hypernetted chain sum- pzf d3r 1503r 19030 146150 250340 41
mation, are called elementaf23]. In Fermi liquids they

were first calculated by Zabolitzk§32]. The circular ex- 2P ) F2(1 - F2(F ) F2(r
change diagram shown in Fig. 10 is the only one of first e(r2fe(r29 felraa) fera)
order in the expansion in powers d¥f{— 1), among these. X C[ (12623834 €34€29€19)| 13(F§4— 1.

It therefore has special importance as emphasized by
Krotscheck[33], and was included in the study of nuclear

matter structure functiong34]. The thick interaction line in  The term withes,e,q€;, takes into account the circular ex-

(A2)

this diagram represents change in the other direction. The spin-orbit interactions and
52 correlations, and the spin correlations between neutron pairs
_ T 12, 23, 34, and 41 are neglected in this approximation ex-

115=Faa| v1gF 15~ IV Faal | (AL) pected to have an accuracy of order 20%.
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