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Performing a shell-model calculation for heavy nuclei has been a long-standing problem in nuclear physics.
Here, we propose one possible solution. The central idea of this proposal is to combine the advantages of two
existing models, the projected shell modBISM) and the fermion dynamical symmetry Mod@&DSM), to
construct a multishell shell model. The PSM is an efficient method of coupling quasiparticle excitations to the
high-spin rotational motion, whereas the FDSM contains a successful truncation scheme for the low-spin
collective modes from the spherical to the well-deformed region. The new shell model is expected to describe
simultaneously the single-particle and the low-lying collective excitations of all known types, yet keeping the
model space tractable even for the heaviest nuclear systems.

DOI: 10.1103/PhysRevC.68.024315 PACS nunier21.60.Cs

[. INTRODUCTION prove the traditional shell-model code. The shell-model code
ANTOINE [4] is a representative example of the recent devel-
Except for a few nuclei lying in the vicinity of shell clo- opments along this line. Using this code the defornied
sures, most of the heavy nuclei are difficult to describe in aZ nuclei up to massA~50 can be well explained. The
spherical shell-model framework because of the unavoidableecent record example performed by this code is theffoll
problem of dimension explosion. Therefore, the study ofshell calculation ofA=52 nuclei[5], with the basis dimen-
nuclear structure in heavy nuclei has relied mainly on thesions in excess of £0
mean-field approximations, in which the concept of sponta- While, in principle, it does not matter how to prepare a
neous symmetry breaking is appli¢dl,2]. However, there shell-model basis, it is crucial in practice to use the most
has been an increasing number of compelling evidences irefficient one. Moreover, feasibility in computation is not our
dicating that the nuclear many-body correlations are imporenly concern. The other important aspect of using an effi-
tant. Thus, the necessity of a proper quantum mechanicalient basis is that it may have a good classification scheme,
treatment for nuclear states has been growing, and we awmtich that a simple configuration in that basis corresponds
facing the challenge of understanding the nuclear structurepproximately to a real mode of excitation. This can not only
by going beyond the mean-field approximations. simplify the calculations, but also make the physical inter-
The demand for a proper shell-model treatment arises alspretations of results more easy and transparent.
from the nuclear astrophysics. Since heavy elements are In the second direction, which is defined in a much wider
made in stellar evolution and explosions, nuclear physicscope, one employs various methods in seeking judicious
and, in particular, nuclear structure far from stability, enterstruncation schemes. Such schemes should contain the most
into the stellar modeling in a crucial way. The nucleosynthe=significant configurations, each of which can be a compli-
sis and the correlated energy generation are not completeyated combination in terms of the original shell-model basis
understood, and the origin of elements in the cosmos remairstates. In this way, the basis dimension can be significantly
one of the most significant unsolved physics puzzlesreduced and the final diagonalization is performed in a much
Nuclear shell-models can generate well-defined wave funcsmaller space, thus making a shell-model calculation for
tions in the laboratory frame, allowing us to compute, with-heavy nuclei possible. The early MONSTER-VAMPIR ap-
out further approximations as often assumed in the mearproach[6] and the recent Monte Carlo shell mod&|8] are
field approaches, quantities such as transition probabilitiegxamples along this line. Nevertheless, numerical calcula-
spectroscopic factors, an@-decay rates. These quantities tions required by these models are still quite heavy, which
provide valuable structure information to nuclear astrophysmay make a systematical application difficult.
ics. In fact, the nuclear shell-model calculations could There are two other existing models that belong to the
strongly modify the results of nuclear astrophysics, as thesecond category: the projected shell md&s$M) [9] and the
recent work of Langanke and Martinez-Pinedo has demonfermion dynamical symmetry modéFDSM) [10]. In the
strated(see, for example, Ref3]). PSM, the shell-model basis is constructed by choosing a few
Tremendous efforts have been devoted to extending thgquasiparticle(qp) orbitals near the Fermi surfaces and per-
shell-model capacity from its traditional territory of tlsel ~ forming angular momentum and particle-number projection
shell to heavier shells. Over the years, one has looked foon the chosen configurations. By taking multi-qp states as
possible solutions in the following two major directions. In the building blocks, the PSM has been designed to describe
the first direction, one employs rapidly growing computerthe rotational bands built upon gp excitatidi®g. The PSM
power and sophisticated diagonalization algorithms to im-as been rather successful in calculating the high-spin states
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of well-deformed and superdeformed nuclei. For lighter nu-multi-gqp states with respect to the deformed-BCS vacuum
clei where the large-scale shell-model calculation is feasibl¢d); then the angular momentum and the particle-number
[11], studies for the deformed®Cr [12] and the superde- projection are performed on the selected gp basis to form a
formed %°Ar [13] have demonstrated that the PSM calcula-shell-model space in the laboratory frame; and finally, a
tion can achieve a similar accuracy in describing the data. Ishell-model Hamiltonian is diagonalized in this projected
the FDSM, the truncated basis is built by the symmetry despace.

tectedS and D pairs, assuming that these are the relevant If a,T, and a:’T are the gp creation operators, with index
degrees of freedom for the low-lying collective motions. (7;) denoting the neutroriproton quantum numbers and
Having these pairs as the building blocks, the FDSM canunning over properly selected single-gp states, the multi-qp
provide a unified description for the low-spin collective ex- bases of the PSM are given as

citations from the spherical to the well-deformed redit@].

It is clear that the PSM and the FDSM follow the shell-  even-even nucleus{|®), alal|®), al al|®),
model philosophy and both have their own shell-model trun-
cation scheme. However, the truncations emphasize on dif- alalal al |®) }
vy e

i Tk ™

ferent excitation modes, which are contained in one model
but are absent in the other. An idea emerges naturally that
one may combine the advantages of the two models to con-
struct a new shell-model for heavy nuclei. The question is
how. The PSM is a microscopic approach employing the ~ odd-m nucleus: {al |®), aLianaIJcD% .
deformed intrinsic states and the projection method, while

odd nucleus: {a}|®), aIiaITjakakD), )

the FDSM is a fermionic model based on the group theory. odd—odd nucleus: {a’al |®),...}. 1)
The crucial step that leads us to connect these two different b
approaches is through the recent recognifibh 19 that the |5 paseq1), “ - - - ” denotes those configurations that contain

numerical results obtained by the PSM exhibit, up to highmore than two like-nucleon quasiparticles. If one is inter-
angular momenta and excitations, a remarkable one-to-ongsted in the low-lying states only, they can practically be
correspondence with the analytical SU(3) spectrum of thggnored because these configurations have higher excitation
FDSM. This suggests that the projected deformed-BC%nergies due to mutual blocking of levels. BagBscan be
vacuum has at the microscopic level @)-like structures  easily enlarged by including higher orders of multi-qp states,
which are very close to the representations of the SU(3)f necessary. If the configurations denoted by " are com-
dynamical symmetry of ais-D fermion-pair system. This pletely included, one recovers the full shell-model space
recognition has motivated us to propose a multishell shellwritten in the representation of gp excitation.
model for heavy nuclei. Hereafter, we shall call it heavy shell | the gp basis, truncation can now be easily implemented
model, or HSM for short. by simply excluding the states with higher energies. Usually,
In the following section, the PSM and the FDSM will be only a few orbitals around the Fermi surfaces are sufficient
brleﬂy reviewed. The emphasis will be laid on the diSCUSSiOffor a description of the |0w-|ying ap excitations. The trunca-
of the advantages and deficiencies of each model. In Sec. Ilfion is thus so efficient that dimension never poses a problem
the connection between the two models will be explored. Ineven for superdeformed, heavy nuclei.
Sec. IV we will discuss in detail how the two models are  After truncation is implemented in the multi-gp basis, the

integrated to form the HSM. We will give the basis states andshell-model space can be constructed by the projection tech-
the basis truncations for the well-deformed, transitional, angique[1]:

spherical regions. The effective interactions and the general

method for evaluating the projected matrix elements will |qK|M>:|S:VINK|q)q> with P =PL, PN, 2
also be discussed in this section. Finally, the paper will be
summarized in Sec. V. where |®,) denotes the qp basis given in E@) with q

meaning the multi-qp configuration, and

Il. PROJECTED SHELL MODEL AND FERMION

DYNAMICAL SYMMETRY MODEL lSIMK: 2l+1
872

fdQD'MK(Q)ﬁe(Q),
In this section, we introduce the basic structure of the
PSM and the FDSM. For each model, we point out the main

T ) A 1 e
features and the limitations. For interested readers, we refer pN:_f d¢e—l(N—N)¢ (3)
to the review paper of the PSM] and the FDSM 10]. 2m

are the angular momentum and particle-number projection
A. Projected shell model operators, respectively. In E@3), D}, is the D function
The PSM begins with the deforme@.g., the Nilsson- [16], R the rotation operatoK) the solid angleN the num-
type) single-particle basis, with pairing correlations incorpo- ber operator, ang the gauge angle. If one keeps the axial
rated into the basis by a BCS calculation for the Nilssonsymmetry in the deformed bas@,}v,K in Eq. (3) reduces to
states. The basis truncation is first implemented in thehe smalld function and the three dimensions({hreduce to
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one. The eigenvalueB and the corresponding wave func-
tions |W,) == q«F </ qKIM) are then obtained by solving
the following eigenvalue equation:

| | |
% {HqK qur_E NqK qur}quKr:o; (4)

where H'qK gk and N;K gk are, respectively, the matrix
elements of the Hamiltonian and the norm

| 2 I ! N pIN
Hok qurE<qK||H|q K'T)=(®Pg|HP /| Pygr),

| _ I3V ~IN
NqKq’K’=<qK||q K |>:<q)q|PKKf

The PSM uses a large size of single-partide) space,

|q)q’>- (5)

which ensures that the collective motion is defined micro-,
scopically by accommodating a sufficiently large number o

active nucleons. It usually includes thréeur) major shells

each for neutrons and protons in a calculation for deforme
(superdeformednuclei. The effective interactions employed
in the PSM are the separable forces. The Hamiltonian tak

the following form:

ﬂ: :2 ﬂa+ﬂ ﬂVW:_XVWQET.Qg’

v

" y XU’"(TT
Ho= 0_7Q2 )

>

Q5 —GnP TP"—GZPS - PS. (6)
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For a description of rotational bands associated with a
well-deformed minimum, the PSM is a highly efficient trun-
cation scheme. Diagonalization for a heavy nucleus can be
done almost instantly, yet the results are often satisfactory.
The reason for the success is because the major part of pair-
ing and quadrupole correlations has already been built in the
basis through the use of a deformed basis and the BCS for-
malism. Therefore, a small configuration space with a few sp
orbits around the Fermi surface can already span a very good
basis for the low-lying excitations. Note that each of the
configurations in the basis is a complex mixture of multishell
configurations of the spherical shell-model space. Although
the final dimension of the PSM is small, it is huge in terms of
original shell-model configurations. In this sense, the PSM is
a shell-model in a truncated multi-major-shell space.

The features of the PSM make it a frequently used model
n the high-spin physics. Many applications can be found in
the review papef9]. The recent papers include the study of

uperdeformed structure in a wide range of different mass
egions[17-20, the study of the origin of identical bands

e@l]’ and the study of the higK- stateq22].

While the PSM is an efficient shell-model for deformed
systems with rotational behavior, it becomes less valid when
going to the transitional region, and eventually loses its ap-
plicability for spherical nuclei. Moreover, it cannot effi-
ciently describe thgg and y vibrations. Although such col-
lective modes can, in principle, be obtained by mixing a
large amount of excited qp configurations, it suffers in prac-
tice from a similar dimension problem as in conventional
shell-models. The main reason for these shortcomings is due

The first termﬂg in I3|U of Eq. (6) is the spherical single- to the use of the simple BCS vacuum which contains only
particle Hamiltonian and the remaining terms are residuathe properties of the ground-state rotational band, but not
quadrupole-quadrupole, monopole-pairing, and quadrupolghose of the collective vibrations.

pairing interactions, respectively. The strength of the
quadrupole-quadrupole force is determined in a self-
consistent way that it would give the empirical deformation . )
as predicted in the variation calculations. The monopole- If we say that the PSM is a shell-model in a truncated
pairing strength is taken as the for@y,=G/A (A is the multi-major-shell space, then the FDSM is ashell-_model ina
mass number with G being adjusted to yield the known truncateq one—.major—shell space. The truncation is based on
odd-even mass differences. The quadrupole-pairing strengfﬁe consideration that the like nucleons prefer to _form coher-
Gq is assumed to be about 20% @, [9]. ent S (angular momentunL =0) andD (L=2) pairs. One

The One-body operato(ﬁ)r each kind of nucleons'n Eq may thus assume that a closed Subspace built up by these
(6) are of the standard forms: S-D pairs is mainly responsible for nuclear low-lying collec-

tive motions. Such a®-D subspace can be carved out by a
symmetry requirement that tHf®@ and D creation(annihila-
tion) operators together with a necessary minimum amount
of number conserving operators form a closed Lie algebra.
To this end, &-i basis is introduce@see Ref[10], and the

B. Fermion dynamical symmetry model

A T
QM_E Q,uaa’ CoCa’ s
!
a,a

., 1 . .
PT=5 > clel, (7)  references cited thergin
IST 1 Q F ot blmk imi:; Cf(Tnk imicirm! (8)
= A 1C_C,
nop & Npaa'atgl

. where k (pseudo-orbital angular momenturand i (pseu-
whereQ .. =(a|Qy,|a’) is the one-body matrix element dospin could be eithek=1 andi= any half integer, oi
of the quadrupole operator amg the nucleon creation op- =3/2 andk= any integer. This basis must uniquely repro-
erator, with a representing the quantum numbers of a spduce the normal-parity leve|23] in that shell byk-i angular
state in the spherical basig€{n¢jmj}). The time reversal momentum coupling, no more and no less. With tkis
of cl is defined ag,=(—)'""Cngj—m- basis, the coherei@andD pairs and the multipole operators
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P: ., Which are necessary in order to form a closed Lie al- With this Hamiltonian, it can be shown that there exist
gebra, are found to be as folloy24]: analytical solutions in various dynamical symmetry limits,
each one corresponding to a collective mode known experi-
‘ Qi+ 400 _ mentally: the SU(3) limit in thé-active shell and the SO(6)
s'=2 — Lbkibiloo (forany k and i), (9 limit in the i-active shell correspond, respectively, to rigid
' and y-soft rotors for well-deformed nuclei, while the SU(2)
q limit in the k-active shell and the SO(5) limit in theactive
t_ 2EKiE t Lt 120 e L shell correspond to a vibrator of spherical nuclei. Since the
D"_Z’ [Dyibyilo (for k active: k=1), FDSM contains all major collective modes, the general fea-
(100  ture of different collective motions arises naturally as the
O number of valence nucleons varies; namely, nuclei behave as
L:E —kl[bl'bl']gz (for i active: i=3/2), a spherical vibrator near the closed shell and become a well-
TN 2 deformed rot d the midshell. If the strengths of th
eformed rotor around the midshell. e strengths of the
Hamiltonian are properly chosen and the sp splitting is taken
At T 410 . into account as a perturbation, the FDSM can even quantita-
Pfﬂzzi ZQki[blibki]MO (for k active: k=1, r<2), tively reproduce the low-lying spectrd&(E2)’s, ground-
(11) state masses, etc., in a unified manner from the spherical to
the well-deformed region.
Pru= 2 V2Q,[blb13, (for i active: i=3/2, r<3), Here, it may be appropriate to emphasize one remarkable
' result of the FDSM: There exists a one-to-one correspon-
dence between the SU(3) irreps and phand y vibrations

@)

with in deformed nuclei. As one can see from Table I, ey
vibrations are microscopically the collectii@-pair excita-

~(2k+1)(2i+1) tions (the D, ; excitations are forbidden by the time reversal
ki 2 symmetry. The anharmonic behavior of thgy vibrations

is due to the finite particle-number effect. In the large-

where the symbof ] denotes angular momentum coupling limit, ignoring 1h,, the FDSM reproduces exactly the
and the time reversal is defined aSBkmkim. p_artlcle-rotor model results. Th_|s means that the FDSM has
= (= )k meri-mip ‘ The operator slet discovered th(_a reIev_ant fem_uon degrees of f_reedom of

N . k=myi —m;- ) ) nuclear collective motions, which are tBeandD pairs. The
{S$'.S,D,.D,.P;,} forms a closed Lie algebra of either s.p supspace is so compact that it never suffers from the
Sp(6) k active or SO(8) ( active), depending on the level dimension explosion even for the heaviest nuclear systems.
structure of the valence sh¢ll0]. While with theS-D subspace the FDSM is able to provide

Once theS-D subspace is carved out, the form of the 3 microscopic view to the low-lying collective motions, it
effective Hamiltonian(restricted to a two-body interactibn  has difficulties in describing the gp excitations and the high-
in this truncated space is uniquely determined: spin physics due to a lack of the sp degrees of freedom. In
principle, this can be resolved by allowing a few pairs to
break. The problem is that once the sp degrees of freedom

H= 2 H7+H™, H Z_Z B "Pr-Pr, open up, the dimension increases very rapidly. In addition,

o inclusion of sp degrees of freedom results in adding many
new terms to the effective Hamiltonian. To pin down so
H'szg—GgsffTsU— GgDUT. D?— 2 BIPY-PY. many coupling strengths in the Hamiltonian is a very diffi-

>0 cult task, if not impossible. Therefore, even the number of
(12 broken pairs is limited to just one for proton and one for

_ ) neutron, the model could at best be applied to ftheshell
It can be shown that the multipole operatdPs with r nuclei, and could not go any further.
=0,1 are proportional to the number operator in normal-

parity levelsn; and the total angular momentuim respec-  Iil. CONNECTION BETWEEN THE PSM AND THE FDSM
tively, while P, is proportional to the effective quadrupole
operator in the truncated space. The tdtifiis a quadratic Let us summarize our main claims in Sec. Il. Both the

function of valence neutron and proton numbensr(” is  PSM and the FDSM are truncated shell models, aiming at
included in then-p interactionH"™). This Hamiltonian[Eq.  grasping the essential ingredients to describe the low-lying
(12)] appears formally similar to that of the PSHq. (6)] if ~ physics. However, the emphasis in each model is different,
we assume that onlg,# 0 in the summation. However, one which is reflected in their different truncation schemes. The
should bear in mind that the FDSM Hamiltonian is written in PSM emphasizes on the high-spin description of rotational
a truncated one-major-shell space and the sp energy splittirglates built upon gp excitations associated with a well-
within the shell is neglected. This is the price the FDSM hasdeformed minimum, but it is not an efficient method for the
to pay in order to meet the symmetry requirement so thatollective vibrations. In contrast, the FDSM has a well-
solutions can be obtained with the aid of the group theory. defined classification for all known types of collective vibra-
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TABLE I. The SU(3) irreps in the FDSM and the collectiyey vibrations. The SU(3) intrinsic states for each of iBey vibrational
modes are listed in the first column. The second and the third column are the phonon excitation energies and the associated quantum numbers
according to the particle-rotor model. The fourth and the fifth column are the SU(3) irkep9 @nd the corresponding Young tablets
[hq,h,,h3], respectively. The excitation energies obtained from the FDSM are listed in the last colBpA@é\, 1), whereAC(\, ) is
the change of the expectation values of the SU(3) Casimir operator with respect to the ground-st@giry@p B, is then-p quadrupole
interaction strength, anflo=(3/2) n,B,.

Intrinsic state Evip (B,Y) n, ng /2 hy (A, W [h, h,h,] B, Ac(Au)
(s+BDH" |0) 0 0 0 0 0Cn .00 [1]2]3]4]5]6]......n] 0
Dg(ST—F BD(‘;)N—1|0> . 0o 1 0 0Oy —4,2)0 |||3|4|5|6| ............. | h(t)(l—l—)

0 0 ® ~ -
Dl (s BDHY o) 0 0 1 0(ny—4.2) 2 [Ty
DJD;(Sl ﬁD;)N72|0> 0o 2 0 0mn—-8.490 [AT2]3]4]5]6] - | 271(,0(1—3—)
v . - _ BN n
D, D, (s%BDH" " *|0) o 0 1 1 0 -8.4) 2 i, ;
T T & FON-2 \ _
D,D, (s% ﬁDo) |0/ 00 2 0 -8,6)4 112 3|4|5|6| ............. | R
DD, (s+BDH  *0) 2.0 0 0(n;-6,0)0 _E 2h01=57)
Dy Dy Dy (S'+BDy) " "10) 0 3 0 0(n 12,6 0 s
DID{Dy (s BDS)”’2I0> 0 2 1 0(ny-12,6) 2 3no(1-—)
[ . ; FyN - -
DzDzDQ(S]"' BD!) [0} 3% 0o 1 2 0(ny-12,6) 4
p/pipl(sw+pp,H" *lo) 0 0 3 0(n-12,6) 6
DD, Dy (s pDy)" o) 210 2(ny -10.2) 0 5 30 (1-12
DZTD;D;TZ(SL BDS)N_3|0> 2 0 0 2(n)-10,2) 2 Bm ( 3m)

tion, ranging from the spherical, via transitional, to the well-ground band corresponding to a strongly coupled BCS con-
deformed region, but it lacks the necessary degrees afensate of neutrons and protons, but also leads to a new set
freedom of gp-excitations. Thus, the main advantages of thef excited bands arising from the vibrations of relative ori-
PSM and the FDSM are mutually complementary to eaclentation of the neutron and proton cofése so-called “scis-
other. sors” mode.

If we could use the advantages of the PSM and the FDSM As one can see from Fig. 1, the spectrum obtained from
and combine them into a single model, the deficiencies othe PSM is, up to high angular momenta and excitation en-
each model will be eliminated. At first glance, it is not obvi- ergies, nearly identical to that from the FDSM SU(3) for-
ous how to bridge these two different approaches. In thisnalism with (12"=32,0) and 6%"=16,0) irreps, respec-
section, we show that a realization of the combination istively assigned to the neutron and proton BCS vacuum. The
possible. The assertion is made based on the recent recogalassification of the spectrum follows exactly the FDSM
tion that an SU(3) symmetry can emerge from the projectegsU(3) reduction rules
deformed-BCS vacuum. Having this as the basis, the full
idea of the microscopic classification for the collective vibra- (n¢",00®(n¢",0)D(\,w)«l (13
tions discovered by the FDSM could be adopted by the PSM,
while the latter keeps its original features in building the With

shell-model configuration space through projection. )\:nﬁﬁ+ niﬁ— 24,

A. Emergence of SY3) symmetry in PSM L= s Mmax— Ly - - 1,0; Mmax:min(niﬁ!n?rﬁ)y
It is remarkable[14,15 that the states numerically ob-

tained by the PSM exhibit an interesting one-to-one correand

spondence with the analytical SU(3) spectrum of the FDSM.

To show this, the original PSM was extended in such a way

that instead of a single BCS vacuum, the angular momentum .

projection was performed for separate neutron and proton |— ANuhtp=2,...,1 or 0 if k=0

BCS vacuum with the same deformation, and the projected K, k+1,... A\+u—r+1 if k#0.

states were coupled through diagonalization of the Hamil-

tonian[14]. This extension is necessary; otherwise the PSIMNot only the spectrum but also the{E2)’s exhibit this cor-

would have no collectively excited bands to compare withrespondencgl5]. Note that there are many types of SU(3)

the FDSM. This procedure not only gives the usual rotationamodels, and that different SU(3) models have different per-

K= Kmaxs Kmax— 2 - - -1 0r 0;  kpa=mMin(\,u)
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must be redefined in a multi-major-shell space, since one
20 s ’5‘. (34,7) major shell is not large enough to accommodate so many
s KTy e FT active nucleongheren®''=32 andn®'’=16).
18] Ko _§f3_°_ =% In this regard, there is a conceptual distinction between
g 88O the SU(3) symmetry in the one-major-shell FDSM and that
) koo KO - emerged from the PSM. In the former, the SU(3) symmetry
16 pK=0_ BANLPE S 4 arises entirely from the normal-parity nucleons and the
_ g oG8 abnormal-parity orbit enters only implicitly through the Pauli
14 ks KB g v effect and the renormalization of the parameters. In the latter,
Sleowoc™™ the SU(3) symmetry arises from the explicit dynamical par-
— 5 A ticipation of both normal and abnormal-parity nucleons of
% 12 eo Ke2 Kt _ g T ’Z’ s 2 : many shells. Ignoring the direct contribution from the
g S ‘:’ ':— s 2 8 abnormal-parity nucleons in the one-major-shell FDSM is a
> 10f10 2 * “—Degeneracy _ _- ~g 429 sacrifice for having an exact symmetwhich forms a
o ke - el closed Lie algebra In practice, this turns out not to be a bad
qf:J 8 e s A ~ approximation for collective motions because in a single ma-
L ] “42) jor shell, there is only one singletevel with abnormal par-
e v ity, which does not have much quadrupole collectivity com-
I L R S ¢ pared to the normal-parity contributiof27]. When going to
o (46D a multi-major-shell space, the situation will change. A bunch
4 PSS aad of abnormal-parity levels, which are located just below the
K=1 R g d normal-parity levels, will open up. This means that, when
-~ one redefines the FDSM-type coher&D pairs in a multi-
2 0 major-shell space, the conceptual distinction of the SU(3)
_ - ol ‘ symmetry between the FDSM and the PSM will be elimi-
R N S Rlagil O nated.
0 1 2 3 45 6 7 8 9 101 12 13 14

Spin (H)

FIG. 1. Comparison between the PS8ymbolg and the FDSM
SU(3) limits (curves assumingn®'=32 andn®"=16. The SU(3)
quantum numbersi,u) « are marked for each band with degen-
eracy of k= kmaxsKmax— 2, - - - ,0 Or 1, anck .= min{\,u}. The
comparison takes the well-deformed nucléffEr as an example.

B. Collective D-pair Excitations

To see further the relationship between the two models,
let us ignore the terms with+# 2 in the most general FDSM
Hamiltonian (12). This is a reasonable approach because
from the multipole expansion point of view, there is no mul-
tipole interactions withr =odd without considering the par-
ity admixture. One may note that there is the monopole-
monopole interaction r(=0) in the FDSM, which is not

missible irreps and reduction rules due to the different physiincluded in the PSM. However, it is well-known that this
cal input, and therefore can lead to different band structuredhteraction only affects the nuclear total binding energy, but
Here, we emphasize that this SU(3) symmetry shown in Figdoes not haye much influence on the excitations. On the
1 is of the FDSM type. This is because among the existin@ther hand, it can be added to the PSM, if necessary. Thus,
fermionic SU(3) models in nuclear physics, only the FDSMWe have for both r_n_odels the interactions of the monopole-
SU(3) formalism can naturally provide the required irreps@nd quadrupole-pairing plus the quadrupole-quadrupole type.
and reproduce the band structure of the PSM. Other SU(3) The PSM Hamiltonian contains operators written in the

models such as the pseudo-SU(3) do not have this propert
In their recent investigation of the onset of rotational motion,

g_rdinary shell-model basis, whereas the FDSM ones in the
-i basis. In order to compare them, we transform the FDSM

Zuker et al. [25,26 introduced a preliminary formulation of ©Perators in Eqst9)—(11) back to the ordinary shell-model
an approximate quasi-SU(3) symmetry. It would be interestPasis by rewriting them in terms af, andc,, . We find that
ing to study whether the quasi-SU(3) contains a similar

property.

Figure 1 presents a highly nontrivial result because the

_ (2) i
Pou= 2 Q). clear,
aa’

PSM, as described above, is not built on any explicit SU(3)
symmetry, and no free parameters have been adjusted to ob-
tain such a symmetry. Nevertheless, the spectra, the electro-
magnetic transition rates, and the wave functions of the PSM
agree nearly perfectly with the FDSM SU(3) results, from
the ground band to states of high spins and high excitations
[15]. This strongly suggests that the projected deformed-BCS
vacuum in the PSM could be at the microscopic level close

to the S-D core in the FDSM, provided that tf&-D pairs  with

1
STZE > clel,

1 T
DLZE 2, ina,clcE,, (14)

024315-6



MULTISHELL SHELL MODEL FOR HEAVY NUCLEI PHYSICAL REVIEW C 68, 024315 (2003

i ko However, the FDSM is a severely truncated one-major-shell

@ _ 2 el ., shell-model dictated by symmetry, and in this sense, it is not

Quaa= \/ZQkiij J"—m’( ek as microscopic as the PSM. Although it is quite successful in
0 2 2 the description of low-lying collective motions, the FDSM is

] . e just an effective theory. For practical applications, large
Comparing Eq(14) with Eq. (7), we see that the definitions yenormalization effects must be embedded in the parameters
of ST, DL, andP,,, in the FDSM are similar to that ', of the FDSM Hamiltonian, which have to be determined
P", and® , in the PSM, except that the model spaces for the?henomenologically. Therefore, we choose to construct the
two models are different. However, within one major shell,Heavy Shell Model based on the extension of the PSM.
the operatos' (S is exactly the same &' (P) in the PSM. The main ingredients of the heavy shell model are as fol-
For theD pair andP, operators, although the coefficients lOWs: o )

Q(Z) look different from Q appearing in the corre- (1) We keep the multi-major-shell basis of the PSM as the
paa’ paa’

sponding operator@L and ), in the PSM, their physical model space, using the PSRi andP} operators to describe

: L the coheren and D pairs in the multi-major-shell configu-
meanings are the same. The FDSM H_am|lton|an may thus b tions, and construct the intrinsic collective excitation states
considered as a one-major-shell version of the PSM Ham|lb

) ) ) i S A ) y Pg acting on the deformed-BCS vacuum.

tonian, with the approximations dof, and Q,, being re- (2) We carry out the shell-model truncation by selecting a
placed byD], and P,, and the sp energy splitting being few single-gqp states near the Fermi surfaces plus a few
ignored. In other words, if, in the multi-major-shell case, thep-pair excitations, and perform angular momentum and
symmetry constraint is released from the FDSM and the Sparticle-number projection to obtain a shell-model basis in
energy splitting is considereds’, DT, and Py, in the  the laboratory frame.

Ml
FDSM should return back to the versionf®ef, PL, andQ,, (3) We keep the PSM Hamiltonian to be the effective
operators in the PSM; so is for the Hamiltonian. Hamiltonian, but allow addition of more multipole interac-

From the above analysis we may conclude that the PSNjons and/or readjust the interaction strengths, if necessary.
and the FDSM are just two approaches to solve an effective (4) We utilize the algorithms developed in the PSM to
Hamiltonian of a common form. In order for them to be carry out calculations for all the necessary matrix elements,
applicable to heavy nuclei, approximations have to be madand diagonalize the Hamiltonian in the truncated shell-model
in each model. The PSM is based on a multi-major-shelbpace.
space so that it can describe the nuclear rotational motion Let us now discuss each of the items in more detail.
microscopically through a dynamic participation of many
particles. However, it can afford to do so only for a truncated A. The basis states

configuration space that includes only a BCS vacuum plus a .
few gp excitations. As a sacrifice, this truncation does not We have demonstrated that the projected deformed-BCS

include the collective modes such gsand y vibrations. In Vac““”ﬂq’) In the PSM is nefafirly |_dent|cal to the FDSM-
contrast, the FDSM aims at nuclear low-lying collective ex-SU(3) intrinsic ground statenf".,0) irrep. Furthermore, we

citations. It can afford to do so only when the model space iiave indicated that th? FDSM and D pairs and thd_DZM
reduced to one major shell such as in the conventional shelpperator are, rgspectlvely, t.he symmetry-constraint one-
model. But it is still not enough for heavy nuclei. Additional Majo"-shell version of the ordinary monopole pair quad-
approximations to further reduce the configuration spacéupole pairP,, and quadrupole operat@, in the PSM. It
down to the symmetry detect&iD subspace are necessary. IS therefore natural to believe that in a multi-major-shell

These approximations leave out the sp excitations. space, the FDSNbandD pairs are nothing but theé andP ,
pairs if we abandon the symmetry requirement; so is for the
IV. CONSTRUCTION OF HEAVY SHELL MODEL guadrupole operator. In the FDSM, all known types of low-

lying collective excitation can be obtained by acting on
Having realized that the projected deformed-BCS stateghe FDSM-SU(3) intrinsic ground state Si(+ ﬂD(T))N|o>
exhibit the SU(3) symmetry, and that the collective excita-(see Table )l Combining these facts, the collective excita-
tions may be approached by tBepair excitations, with the  tions of the HSM in a multi-major-shell space may be con-
D-pair operator defined as the quadrupole-pair operﬁf[pr structed by replacing, respectivelys'¢- BD{)N|0) and D'
in a multi-major-shell-model space, we propose a multishelin Table | with |®) and PL defined in the PSM.
shell-model: the heavy shell model. The essence of this pro- Hereafter, we will continue to use the FDSM notati®s
posal is to adopt the truncation scheme for the collectiveand D for the pair operators. One should bear in mind that
modes, which was discovered by the FDSM, into the PSM tahey have been redefined as
enrich the shell-model basis. This essentially combines the
advantages of both models. ¢ 1 S ot
In fact, to incorporate both sp and collective excitations, =P 2 ¢
there are in principle two alternatives: One can either extend
the FDSM by adding the PSM gp truncation scheme on top
of the FDSM collective states, or extend the PSM by includ- D L: E Quaa’ CZCZ, . (15)
ing the D-pair collective excitations into the PSM vacuum. a,a’
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The intrinsic collective states can then be expressed as  states but has a definite angular momentum. Likewise, a
D-pair excited stateDL|<I>o> is now a 2" state. Therefore,

Np . . ]
o B there is no need for performing angular momentum projec-
|(D°>=|ND(nB 'nV’K»_iHO Dﬂi|q)> tion. The basis with a given total angular momentucan be
directly obtained by the angular momentum coupling. The
=(DH)"(DIDT ,)"2(DI) <2 D). (16)  general expression of the HSM basis in the spherical case

. . . . ) can be written as follows:
Equation (16) provides the microscopic meaning of the

quantum numbersg;, n,, andx in a very clear manner: the lqcIM)=PN|!M

phonon number appearing in phenomenological models is

nothing but the total number @ pairs, |¢L“£>E[A}q(nq)®|3£c D)]IM|¢’0> (19)

Np=ng+n,+ «/2. 1
o 0 itn
The basis of the HSM can be constructed by adding qp ; ; S

excitations on top of the collective intrinsic states; the for- A}qu(nq)E[Ajy(n§)®AJw(n3)] qq, (20

q q

malism is the same as that used to build the PSM bases in
Eg. (1), but the simple BCS vacuuf®) in Eq. (1) is now

37 o

replaced by a more correlated oh@,). The general expres- Al Mg : 4 o g .
sion of the HSM basis in the laboratory system can be writ- JaMo(n )= 11 & Z[Em% C[m](Jqu)iﬂl ajm
ten as e
(21
_ BN
|QC|M>_PM|q)qC>! Ng RC N
ng ng D&CMC(ND)EL]:[l D' :; C[M](RCMC)k]:[l D}
=11 IT aiazlo (18) v,
T (22

whereny (ng) is the gp number of neutrorigrotons, and  whereA’ UMU(n ") andD}, k.m (Np) are the creation operators
the indicesg andc stand for the gp and the collective vibra- §
tional configurations, respectively. o(fr na qps and Np D pallrs coupled to angular mqmenta
The HSM basig18) contains both sgap excitationsand ~ JqMgq andRcMc, respectively. The short-hand nOtat'E",']

collective (D-pair excitations degrees of freedom; the defi- "€Presents the configuratigmy ,ms, . .. .mys} of the gp’s.
ciency of lack of collective degrees of freedom in the origi- Similarly, [ «] is for the D pairs.
nal PSM is redeemed. Moreover, bagl®) is expected to The amplitudesCy;(JgMg) in Eg. (21) can be easily
work also for the transitionalor weakly deformegnuclei,  calculated by using the standard shell-model technique. As a
which is beyond the original PSM territory. This is expectedmatter of fact, all spherical nuclei lie very close to the doubly
because it is known from the FDSM that the collective stateslosed shell. Therefore, only a few gp’s from therbits
of transitional nuclei can be described as a mixture of differ-around the Fermi surfaces need to be considered. The ampli-
ent SU(3) irreps[10]. The original PSM uses only the tudesCi,;(R:M¢) in Eq. (22) are difficult to obtain in this
deformed-BCS vacuunithe ground state of the SU(3) way because multi-major-shells are involved due to the
irreps], and thus does not contain such a mixing mechanismD-pair collectivity. However, they can be easily evaluated
This is why the PSM becomes less and less valid when gointhrough thed-boson coefficients of fractional parentage if the
away from the well-deformed region. The HSM bagls) D pairs are regarded as bosons. It should be noted that this is
now contains all possible SU(3) irreps, since its labels,(  not a boson approximation since tDéLs in Eq. (22 remain

n,, k) are in one-to-one correspondence to that of theo be fermionic operators. It is just a symmetry detected trun-
SU(3) irreps &, w) [28]. cation to select only those states that are symmetric with

For spherical nuclei, the basis should be constructed sepg@espect to interchanging ariy pairs.

rately, since in the spherical case the rotational symmetry is A comparison between the deformed basis and the spheri-
restored so that no distinction can be made between the ircal basis is shown in Table Il. It is interesting to see that the
trinsic and the laboratory system. In the spherical limit, theD-pair excited states, which, in the deformed case, produce
BCS vacuum is just thé=0 ground state, which, in the the 8-y bands after angular momentum projection, degener-
FDSM, corresponds to the intrinsic state wigh—0 (see ate in the spherical case into a spherical vibration spectrum.
Table 1l). Let us denote this BCS vacuum [aB,) to distin-  The spherical vibration spectrum has much less independent
guish it from the deformed one. The deformed mean fieldstates than the rotational spectrum. It is so, simply because
(e.g., the Nilsson schemén the spherical case is also re- when 8—0 most of the states obtained from the angular
duced to the spherical shell-model level scheme so that a gmomentum projection are not linearly independent due to the
state can be labeled HN¢jm}. Using{jm} for short, a qp  spherical symmetry nature. They are highly overcomplete.
state can be expressed sﬁféTm|<I>o> (o=v,m), which is no  For instance, thgg and y bands reduce to a2state when
longer a superposition of all possible angular momentunB—0. This is why we should construct the spherical shell-
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TABLE Il. Comparison of collective basis for deformed and spherical Nuclei. The first column lists the FDSM SU(3) intrinsic states.
The second column is the HSM collective basis for the deformed nuclei, which is obtained by rep&*c+ng[15)”|0) with the BCS
vacuum|®). After projection, each intrinsic state produces a rotational band label8d asand 0, .ng,«/2) listed in the third column.

The FDSM SU(2) states and the HSM collective basis for spherical nuclei are listed in the fourth and fifth column, respectively. The last
column lists their corresponding spin-parity and excitation energies relative to the BCS vacuum. Note Ehagitein the SU(2) states
have been modified to commute wig} [10].

Deformed Nuclei Spherical Nuclei (3—0)
FDSM SU(3) HSM Rotational FDSM HSM Vibrational
Intrinsic States Intrinsic Basis Bands SU(2) States Basis Spectrum
p
(s BD; )N |0> |®> Ground Band (ST)N |0> |<D0> 0t 0w
D:,(Sq’ BD;)N71|O> D;|<D> - Band D%(S% NT A\ 1\ +
0 0 : )10 D12,
Dl(s+BDH o) D)|®) ¥- Band g 107 w0 2 lho
p D! (s pDHY o) D, 0|q> (020) Band (DY1(sH" [0} (D)1, |2, 0*
DD (s BD| )N *lo) D,| @) (011) Band RS .
2 > D 0) DY |®,) +
DIDl (s BD))" *|0) D;D;|<I>> (002) Band (DYT8H™ (DY 1%) 2 2ho
DD, (5% [sDO)”’ZIo) DD |0 (200 Band (D) 1(sH)™ 10 (D) @) 4*
DD D, (S BDH" o) D\D'D!ld) (030 Band (DY 1(sH™ [0} (DY @) 0*
D;DoD o(S+l3Do)N *lo) DD‘,Dnlcb/ (021) Band NI 32 .
D,D,Dy(s+BDH" o) D'D.D|w) (012) Band (DY o) (DY, |®,) 2
D pIDl(sHppiH" o) DDD|(I>/ (003) Band (DY o) (DY, |®,) 3" 3hm
DD, D (s*BDyH" o) Dp' Do) (210) Band (Y158 10y (D‘)”|<I>“, 4*
p!pIDp, (s BpHY o) DD ) (201) Band (D158 10) (DY, |®,) 6*
model basis differently. It can be seen that even without con- N N2+ AN + 3+ 5"
figuration mixing, this collective basigs shown in Table I DO (N, = 2 2
can already give the essential features of the low-lying col- mem NL=0 NZ=0 4
lective modes found in the spherical nuclei. We therefore feel
confident that the HSM basis is going to work well. NZ2+A4ANT+3+ 87
Of course, having built a shell-model basis is not enough. X 4 , (24

The central objective that follows is whether it is possible to

find an efficient truncation scheme within the constructethereD(q)(n .n?), with o= or =, are the dimensions of

basis so that the calculations for heavy nuclei become fegpe ap states for neutrons or protoﬁ)é (N, is the dimen-

sible. sion of the intrinsic collective states, wit=1 whenNJ

= even ands’=0 whenNZ= odd. In Eq.(24), D{O(N,,) is

for separated neutron and proton vacyur). If we treat the
To estimate the size of the deformed intrinsic b44®), neutron and proton vacuum as a single coupled BCS

let us denote the maximum gp number, the number of sevacuum, the double summation in E®@4) is reduced to a

lected sp states, and the maximum number of the ex€&ited single one and this can be easily summed up:

pairs asng, ng (o=v»,m), andN,, respectively. The total © L

dimension is the product of the dimension of neutron gp  Dim(Nm)=2[(Nm+1)(Np+3)(2Np+7) + 38y, 1,

states, that of proton gp states, and that ofBhpairs: (25

B. Basis truncation

Dim=D{@(n¢ ,n)xD{P(n7 ,n7)xD&(Ny). (23  with &y =1 or 0 depending o= even or odd.
According to the experience of the PSM calculations, it is
sufficient in most cases to tak€/<2 andng<4 for both
ng o neutrons and protons. One can then obtain that the dimension
D@ n?) = ( S) (z is in step of % of the gp state® (¥ (ng,ng) x DI (ng ,n7)=49. If Eq. (25
v=0or1\ v is used for estimating dimension of the collective states,

For each of these three terms, it can be shown that

14
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D (N changes from 1, 3, 7, 13 to 161 when the maxi-citation states up to 4-qp and rid-pair excitations in the

mum excitedD-pair numbem,, varies from 0, 1, 2, 3, ..,  basis, the dimension can be reduced to aboul 6.
to 10. Thus, the total dimensidD;,, ranges from 49, 147, For spherical nuclei, the dimension should be estimated
343, 637, ..., to7889. differently. What Egs.(24) and (25 show us is the total

For well-deformed nuclei, th®-pair excitation energy is m-scheme dimensioD;, in the intrinsic frame. What we are
about 1 MeV (i.e., the band head of the firg-y band. actually interested in is the dimensidy;,(1) at a given
States with moré pairs are excited higher in energy. Fur- angular momenturi. In the deformed cas®;, (1) is equal
thermore, well-deformed nuclei are very close to an SU(3)to D;,, because after projection, every intrinsic state can in
rotor. States with differenNy, which correspond to differ- principle contribute one state to dnin the spherical case,
ent SU(3) irreps, hardly mix with each other although theDin(l) is smaller tharD;,, since the basis is now constructed
mixing may not be zero since the symmetry is not perfectby angular momentum coupling in the laboratory frame.
Thus, for the dominant low-lying collective states the num-Equation(23) may be utilized to estimate the-scheme di-
ber of the excitedD pairs, Ny, should not be large. We mension, but the formula for counting the collective basis
expect that takind\N,,=2-4 is already good enough to pro- States in the spherical case should be replaced by
duce all the low-lying collective vibrational states. Thus, the

total dimensionD;,, is of the order of 18-1C° for well- © Nm  (Np+4
deformed nuclei. Dim(Nm):NZO 4 (27)
~

For weakly deformed nuclei, mixing between different

SU(3) irreps must be stronger and therefore, it requires a, . . . . .
largerN, to account for such a mixing. This can increase the%h's formula is obtained because the collective basis states

basis dimension drastically. However, transition from the de2"® constructed differently for the spherical case, and we

formed to the spherical region behaves like a phase transitiolln'\ave imp_ose(_j a constraint that o_nIy those basis states that are
[29,30, which happens suddenly within a small interval of symmetric with respect to the interchange Dfpairs are
nucleon number. We therefore expect that as we pass throu%ﬁj’?leCteq Ac(cc?rdlng_to Eq27), _for Nm=0,1,23...,10, the
the weakly deformed region, nuclei may quickly enter intodimensionDin (Ny) is respectively 1, 6, 21, 56, . ., 3003,
the spherical region before ti, number becomes too large which are considerably larger than the dimensions in the de-
(e.g.,N,,>10). Thus, calculations for weakly deformed nu- formed case. . . .
clei, though harder, are tractable An estimation for the maximum dimension &f;,(1),

! ! i max H i

When including the scissors mode in the calculation, Wedenloted adjy, ", can be made by using the relati@ny,
can use Eq(24) for estimating the basis size. The maximum =2 "D, (1)(21 +1):
dimension in this case would rise by one to two orders of

magnitude. Namely, the dimension would become 49, 294, 4D.

1127, 2646,. .., 2x10° for N,,=0, 1,2, 3, ..., 10More- DM~ R D; = —'m2

over, the dimension should be multiplied by a factorf gf, (Imaxt2)

since, after the neutron and proton states have been built with

good angular momentum, there are many ways of coupling Lmax= ot 1ot 1S (28)

these neutron and proton states to a given total angular mo-
mentuml|. It can be shown that for a given total angular

wherel ., (c=v,m,c) are the maximum angular momenta
momentuml <2l .,

that the neutron gp’s, the proton gp’s, and the exdquhirs

| can reach. Thus, knowing the-scheme dimensioB;,, one
fp(1)= §(4th+ 1-31)+ (I t1), (26)  can estimate the maximum dimensib,2*. The reduction
factorR, =[ 2/(l max+ 2)12 makesD["* two to three orders of

wherel ., is the cutoff angular momentufie., the highest Magnitude smaller than the-schemeDp, . _
angular momenta that are considered for neutrons and pro- On the surface it seems that the basis for the spherical
tons. This factor is of an order of £for I,~10. Thus, the ~Case is smaller because of the reduction faBan Eq. (28),

total dimensionD;,, would be of the order of -1 for it is in fact not true. The_problem lies in the fact that in t_he
N,,=3—4. However, given the fact that different collective spherlqal case, the density of sp states around the Ferml_sur—
modes usually have different energy scale and different symi@c€s is much larger than that in the deformed case since
metries, there is still room for further reduction in dimension.€achj has a 2+1 degeneracy. The number of gp statgs

It is known that the excitation energy of the low-lying scis- Must be around 30 instead of four adopted in the deformed
sors mode in the well-deformed region is about 2 Mevcase. This increases tiescheme dimension on the gp sec-
higher than the low-lying3-y bands. Furthermore, as shown tor enormously. Keepingg<2, the dimension of gp basis

in Refs.[14,15, the scissors mode is physically caused bywill increase from 49 in the deformed case{&4) to an

the relative motion of separatet and p vacua(with N,,  order of 16, leaving almost no room for collective basis.
=0), not by theD-pair excitation. Therefore, the interplay This is another reason why we cannot continue to use the
between these different collective modes should be small anat-scheme basis for the spherical case. Udisgheme only
may thus be studied separately. One can thusNsgt0  D{n*should be concerned, which greatly reduces the dimen-
when studying the scissors vibrations. If we include qp ex-sion by a factor oR, . The total basis dimension varies from
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1125, 5879, 17742, %10°, ..., to 1x10° for N,  advantage. The parametrization in the Nilsson scheme has
=0,1,2,3...,10whenl ] == 12 is assumed. been well established for th@-stable mass regiorisee, for

It is known that the low-lying spherical vibrational energy example, Ref[33]). For the exotic mass regions, the stan-
fiw is about 0.5 MeV, which is roughly thB-pair excitation ~ dard Nilsson parameters may not be valid and improvement
energy in spherical nuclei. The sp excitations start to have amay be necessai4,35. In this regard, new experimental
influence at about2» and become significant around @,  data that can provide information on the single-particle en-
where the characteristics of vibrational spectrum are stronglgrgies in the exotic mass regions are very much desired. The
disturbed. Thus on the collective sector, takig=3 (3%  relativistic mean field theoryRMF) [36,37 could also be
excitation energymay be a reasonable choice. If the numberhelpful in providing a sp energy scheme for the exotic mass
of gp’s is kept to beng=2 (o=, ) to give the maximum regions where no data are available for determining a phe-
4-gp states, the dimension one has to deal with is of the ordélomenological mean field. The RMF may have a better ex-
of 10%. In fact, spherical nuclei lie often near the doubly trapolation power than other phenomenological mean fields
closed shells and have large binding energies. The 4-gBecause a single set of parameters of the RMF is able to fit
states may already be rather high and have only a smafluclear ground-state properties from light to heavy nuclei
influence on the low-lying states. If we ignore the 4-gp reasonably well. In practice, it may be a convenient approach
states, then the maximum shell-model dimension can be rd0 use the RMF sp energies as a reference to adjust the Nils-
duced to 488 forN,,=3. Even forN,=4 the maximum SOn parameters in the HSM.

dimension is only 908. Such a basis is clearly manageable. The parameterg) (A\=2,3,4) in Eq.(29) are deter-
mined by the self-consistent relation with deformation pa-

C. The effective interactions rameters, in the same way as in the P$M3I]. The
o . ) monopole-monopole interactionsA €0) includes three
Thg HSM Hamiltonian can be generally written in the terms:Xfro) n, (o=wv,m) andX(V?T)nynw- It has been shown
following form: that the monopole-monopole interactions are important for
the nuclear mass calculations, in particular, for those nuclei

H= > HA,+H,., H,,=—> xNor.gr, lying far from the stability ling[38,39. They can be viewed
o=nm AL as an average way of accounting for theZ dependence in
1 sp energies. However, for a given nucleus, the monopole-
A =f7—Geraet.&r—gepet.po— = MNAT. AT monop_ole interactions contnbut_e a constant energy only.
70 M @ 2 le Xo Q- Qn Thus, if we are not interested in calculating the absolute

(29 energies, these terms can be ignored. The strengths of

) ) ) , o ._monopole-pairing,Gy;, and quadrupole-pairingGg, de-
This rotational invariant Hamiltonian is the same as that 'npend on the size of the single-particle space. They are in-

the PSM[9] [see also Eq(6)], except that the multipole versely proportional to the mass numbder
interactions are now extended to include not only the quad- For the well-deformed mass regions where calculations

rupole but also monopole, octupole, and hexadecupole term{a e heen extensively performed by the PSM, the interaction
All these operators are defined in the muIt|-major-shelIstrengthS proposed for the HSM should be similar if the
Space: same size of the single-particle space is employed. However,
when the HSM is applied to other mass regions, such as the
sz > Q%arCZCa' , transitio_nal or spherical region, these strgngths may need to
aa’ be readjusted. In particular, the self-consistent relation used
o) N , for determining the multipole interaction strengths will break
Quua =(alr™Yy,(0,0)[a"); A=0,234. (30 down when the basis deformation becomes zero. The
strengths for these cases have to be studied separately. After
The octupole and hexadecupole interactions have been em, Eq. (29) is an effective Hamiltonian in nature, and is
ployed in their Hamiltonian by Chen and G@Bl] to deal  sypject to vary when the model is applied to different mass
with the actinide nuclei with projection. This type of sche- regions. Nevertheless, a smooth variation in parametrization
matic interactiong29) works for the structure calculations g expected since the model space is sufficiently large.
surprisingly well despite its simplicity. In fact, it has been
shown by Dufour and Zukef32] that these interactions
simulate the essence of the most important correlations in D. Evaluation of matrix elements

nuclei, so that even the realistic force has to contain at least Having achieved a tractable basis and a reliable effective
these basic components implicitly in order to work successyamjltonian, the remaining task comprises diagonalizing the
fully in the structure calculations. Therefore, we find no amjltonian in the basis to get the eigenenergies and eigen-
compelling reasons for not using these simple interactionsynctions, and then to use the obtained wave functions to
Of course, the model is open to adoption of any realisticcy|cylate the observables. To do so, one must know how to
forces. . evaluate the matrix elements in the projected basis. The pro-
The sp energy ternHg can be simply taken from the jection techniques have already been well developed by the
Nilsson scheme at zero deformation although other schemd&SM based on the pioneering work of Hara and Iwap4(.
such as the Woods-Saxon may also be adopted if there is arhe extensive discussion about the details of the projection
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techniques can be found in the PSM review pdféand the  The problem is then reduced to evaluate the matrix elements

PSM computer codg4l]. Here, we emphasize only on how having the general forr(,qu,c,|i-m|?g(gy¢)|q)qc>_ These are
to deal with the new factor: th® pairs and the spherical the matrix elements for a one-body tensor operator between

basis. g e et A the intrinsic statg®/|, constructed in Eq(18), and the
Let us first discuss the de orrAned case. Suppose that a4 oneR(Q, )| D0).
one-body tensor operator dfrank, T, , and the eigenfunc- In order to evaluate the matrix elements, it is convenient

. | . . ) ~
tions [W},) are given in the laboratory frame: to transform the operatoxs, (c,), contained inT,,, and in

A A the D pairs (which are embedded in the ba$i§qc)), into
Ta=2 ThowCiCar,  [T)=2 FoPikl®qo), the qp representatiofa’,a}. The transformation matrices
v, qe (31) (of the Hartree-Fock-Bogoliubov typare known as

where T\ =(a|T,,|la’) is known.|®) is the intrinsic . " N T

basis defined in Eq(18), and the amplitude§ . are ob- Ca_EV Vwa,~ Ve ah CZ_EV Vaa, Ve, a,}
tained by solving the eigenvalue equation, E). Although

we take the tensor operator in E®1) as example, the fol-

lowing discussion applies equally well to the pairing opera- with  U,,=W,u,, V,=W_,uv,, (37)

tors if we changes!c,, in Eq. (31) to c/c’, or c,c, and

rewrite TZM,E<OI:I'M|aa'> or (aa'|T),|0). Sandwiched whereu andv are the occupation amplitudes in the BCS, and
by the wave functions, the matrix element 'B{M in the W,,’s the Nilsson wave functions of the deformed sp level

laboratory frame can be expressed as V. o
The evaluation of @/ Ty, R(Q, $)| D) in Eq. (36)
\If", Tl y= F", F! is equivalent to evaluate the following general expectation
Fhr Tl W) qr;qc a‘er” ac quantity with respect to the BCS vacuum stpte:

X<®q’c’|ﬁ:<er|\//|r:|\-}\ ﬁl,\'/}lK|®qc>. (32) R R
: <q)q’C’|T}\M’R(Qv¢)|q)qc>
By applying[NT, ,]=ANT, ,, whereAN=0 (+2) for the L.
y ppy g[ )\M] ai ( ) :<q)|'..D,LL2’D/.Ll’ .. .ayZ’avllT)\M/R(Qaqs)aIlaIZ

electromagnetic multipolgairing) operator, it can be shown
that -+-DI D, @), (39)

/\I,N, A~ /\IN _ Nr ler I/K! ~
Prm TauPuk= 5N+ANC'MM§ CIK’w’M’T"“' After applying the transformation from the spherical to the
deformed-BCS basifEq. (37)], the operators appearing in

5IN ~
XPyr k- (33 the above expression, such &g, andD,,, are generally
) . ) linear combinations of products of the gp operamfsinda.
Inserting Eq.(33) into Eq. (32), we obtain The problem eventually becomes the one of performing con-

A | M - | tractions for a series of qp creation and annihilation operators
(W Tl W) = Ciyin TP, (34)

with (®---apprapy- - 8,008,1 - - - a8 R(Q, p)alal,
T oot
oA ’ ! Te! e a a2|q)> (39)
IR =0 an 2 Pl FaCid P
w'g’c’qe
A~ AN In performing the contraction calculations, a generalized
X<¢q’°’|TW’PK’—M’K|q’q°> (39 Wick theorem is used. The techniques of carrying out the
and contractions with the rotation operat@rare available. It has
been showi9,40] that the problem can be reduced to evalu-
<¢q,c,|$w,|5:<’\', | Pgo) ation of the following three basic elements
—p
21+1 . _ T _
= 1677-3 J' d¢dQelN¢DL,7#,K(Q) AVV’:<aV[Q]ay’>1 va'_<avav’[9]>u
X{D g oo To RO, )| @) (36) C,,=([Q]ala’), (40)

Here, IA?(Q,d)):R(Q)e“"}N is a rotation operator in the L
four-dimensional(coordinate plus particle-numbespace. with [(Q]=R/(R), and(---) is the short-hand notation of
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vaccum expectation, for examplgd)=(®|O|d). The con- V. SUMMARY
traction can then be calculated by the following theorem: In this paper, a multishell shell-model for heavy nuclei is
+ + proposed. For performing a shell-model diagonalization in-
(@ -ay[Q]ag--ay) volving several major shells in the model space, we seek an
[n/2] efficient truncation scheme. The new heavy shell model can
= 2 2 (£)(B)k~(M—n)i2 cyn-2k p )k be viewed as an integration of two existing models: the

project shell model and the fermion dynamical symmetry
(41 model. The PSM is an efficient method for the high-spin
description of rotational states built upon gp excitations, but
n—n’ it is not a practical method for the low-spin collective vibra-
with | n+n’=even, m=max[ OT]) tions. In contrast, the FDSM provides a well-defined trunca-
tion scheme for all known types of low-lying collective vi-
brations, workable from the spherical to the well-deformed
region, but it lacks the necessary degrees of freedom of
single-particle excitations. The idea proposed in the present
paper is to combine the advantages of both models. To con-
truct the shell-model basis, we follow the FDSM discovery
hat the intrinsic collective states can be built by applyihg
airs onto the BCS vacuum state, and employ the PSM qp
the basis|® C> defined in Eq.(19) is constructed in the runcation scheme combined with the projection techniques.
laboratory frqame Therefore, in the spherical case, the projec- In this sense the model goes beyond the traditional one-
Mmajor-shell shell-model, yet the calculation is tractable for

tion operatorP,\,IK should be replaced bN. As a conse- heavy, and even for superheavy nuclei.

whereX, is a “permuted sum” with all possible combina-
tions of pairs of indices, anct is the permutation parity.
Details for these calculations can be found in the PSM re=
view paper{9].

For the spherical case, the matrix elements can be eval
ated in the same way. The only difference is that there is n
need for performing an angular momentum projection, sinc

quence, Egs(35) and(36) become Given the past success of the PSM and the FDSM in their
own applicable regimes, which has been documented in the
(! '| |-‘|-X| [y = 5N’+AN 2 qu’ C’FIqCC:I:/IM}:p, literature, we expect that the new model can work reasonably

well for heavy nuclear systems where traditional shell-model

"q’c’qc

e calculations are not feasible. This model should be capable

X{ q ‘et |Tw PN|<I> (42)  of describing the low-excitation collective vibrations of all
known types, including fragmentations due to the quasipar-

and ticle mixing. It should be capable of applying to the high-
spin regions where quasiparticle alignments play an impor-

< |_|_ PN| if dpdQeN? tant role. It should also be capable of treating weakly-
gre’ I iam’ 2 deformed nuclei across the transitional to the spherical
region. We conclude that the development of the heavy shell

X{(D q 't |TM,e"N*”|<I>' ). model may open possibilities of shell-model calculations for

heavy nuclei to a much wider range of nuclear structure

(43 problems.
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