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Multishell shell model for heavy nuclei
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Performing a shell-model calculation for heavy nuclei has been a long-standing problem in nuclear physics.
Here, we propose one possible solution. The central idea of this proposal is to combine the advantages of two
existing models, the projected shell model~PSM! and the fermion dynamical symmetry Model~FDSM!, to
construct a multishell shell model. The PSM is an efficient method of coupling quasiparticle excitations to the
high-spin rotational motion, whereas the FDSM contains a successful truncation scheme for the low-spin
collective modes from the spherical to the well-deformed region. The new shell model is expected to describe
simultaneously the single-particle and the low-lying collective excitations of all known types, yet keeping the
model space tractable even for the heaviest nuclear systems.
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I. INTRODUCTION

Except for a few nuclei lying in the vicinity of shell clo
sures, most of the heavy nuclei are difficult to describe i
spherical shell-model framework because of the unavoida
problem of dimension explosion. Therefore, the study
nuclear structure in heavy nuclei has relied mainly on
mean-field approximations, in which the concept of spon
neous symmetry breaking is applied@1,2#. However, there
has been an increasing number of compelling evidences
dicating that the nuclear many-body correlations are imp
tant. Thus, the necessity of a proper quantum mechan
treatment for nuclear states has been growing, and we
facing the challenge of understanding the nuclear struc
by going beyond the mean-field approximations.

The demand for a proper shell-model treatment arises
from the nuclear astrophysics. Since heavy elements
made in stellar evolution and explosions, nuclear phys
and, in particular, nuclear structure far from stability, ent
into the stellar modeling in a crucial way. The nucleosynth
sis and the correlated energy generation are not comple
understood, and the origin of elements in the cosmos rem
one of the most significant unsolved physics puzzl
Nuclear shell-models can generate well-defined wave fu
tions in the laboratory frame, allowing us to compute, wi
out further approximations as often assumed in the me
field approaches, quantities such as transition probabili
spectroscopic factors, andb-decay rates. These quantitie
provide valuable structure information to nuclear astroph
ics. In fact, the nuclear shell-model calculations cou
strongly modify the results of nuclear astrophysics, as
recent work of Langanke and Martinez-Pinedo has dem
strated~see, for example, Ref.@3#!.

Tremendous efforts have been devoted to extending
shell-model capacity from its traditional territory of thesd
shell to heavier shells. Over the years, one has looked
possible solutions in the following two major directions.
the first direction, one employs rapidly growing compu
power and sophisticated diagonalization algorithms to
0556-2813/2003/68~2!/024315~14!/$20.00 68 0243
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prove the traditional shell-model code. The shell-model co
ANTOINE @4# is a representative example of the recent dev
opments along this line. Using this code the deformedN
'Z nuclei up to massA;50 can be well explained. The
recent record example performed by this code is the fullf p
shell calculation ofA552 nuclei@5#, with the basis dimen-
sions in excess of 108.

While, in principle, it does not matter how to prepare
shell-model basis, it is crucial in practice to use the m
efficient one. Moreover, feasibility in computation is not o
only concern. The other important aspect of using an e
cient basis is that it may have a good classification sche
such that a simple configuration in that basis correspo
approximately to a real mode of excitation. This can not o
simplify the calculations, but also make the physical int
pretations of results more easy and transparent.

In the second direction, which is defined in a much wid
scope, one employs various methods in seeking judici
truncation schemes. Such schemes should contain the
significant configurations, each of which can be a comp
cated combination in terms of the original shell-model ba
states. In this way, the basis dimension can be significa
reduced and the final diagonalization is performed in a m
smaller space, thus making a shell-model calculation
heavy nuclei possible. The early MONSTER-VAMPIR a
proach@6# and the recent Monte Carlo shell model@7,8# are
examples along this line. Nevertheless, numerical calc
tions required by these models are still quite heavy, wh
may make a systematical application difficult.

There are two other existing models that belong to
second category: the projected shell model~PSM! @9# and the
fermion dynamical symmetry model~FDSM! @10#. In the
PSM, the shell-model basis is constructed by choosing a
quasiparticle~qp! orbitals near the Fermi surfaces and pe
forming angular momentum and particle-number project
on the chosen configurations. By taking multi-qp states
the building blocks, the PSM has been designed to desc
the rotational bands built upon qp excitations@9#. The PSM
has been rather successful in calculating the high-spin st
©2003 The American Physical Society15-1
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of well-deformed and superdeformed nuclei. For lighter n
clei where the large-scale shell-model calculation is feas
@11#, studies for the deformed48Cr @12# and the superde
formed 36Ar @13# have demonstrated that the PSM calcu
tion can achieve a similar accuracy in describing the data
the FDSM, the truncated basis is built by the symmetry
tectedS and D pairs, assuming that these are the relev
degrees of freedom for the low-lying collective motion
Having these pairs as the building blocks, the FDSM c
provide a unified description for the low-spin collective e
citations from the spherical to the well-deformed region@10#.

It is clear that the PSM and the FDSM follow the she
model philosophy and both have their own shell-model tr
cation scheme. However, the truncations emphasize on
ferent excitation modes, which are contained in one mo
but are absent in the other. An idea emerges naturally
one may combine the advantages of the two models to c
struct a new shell-model for heavy nuclei. The question
how. The PSM is a microscopic approach employing
deformed intrinsic states and the projection method, wh
the FDSM is a fermionic model based on the group theo
The crucial step that leads us to connect these two diffe
approaches is through the recent recognition@14,15# that the
numerical results obtained by the PSM exhibit, up to h
angular momenta and excitations, a remarkable one-to
correspondence with the analytical SU(3) spectrum of
FDSM. This suggests that the projected deformed-B
vacuum has at the microscopic level SU(3)-like structures
which are very close to the representations of the SU
dynamical symmetry of anS-D fermion-pair system. This
recognition has motivated us to propose a multishell sh
model for heavy nuclei. Hereafter, we shall call it heavy sh
model, or HSM for short.

In the following section, the PSM and the FDSM will b
briefly reviewed. The emphasis will be laid on the discuss
of the advantages and deficiencies of each model. In Sec
the connection between the two models will be explored
Sec. IV we will discuss in detail how the two models a
integrated to form the HSM. We will give the basis states a
the basis truncations for the well-deformed, transitional, a
spherical regions. The effective interactions and the gen
method for evaluating the projected matrix elements w
also be discussed in this section. Finally, the paper will
summarized in Sec. V.

II. PROJECTED SHELL MODEL AND FERMION
DYNAMICAL SYMMETRY MODEL

In this section, we introduce the basic structure of
PSM and the FDSM. For each model, we point out the m
features and the limitations. For interested readers, we r
to the review paper of the PSM@9# and the FDSM@10#.

A. Projected shell model

The PSM begins with the deformed~e.g., the Nilsson-
type! single-particle basis, with pairing correlations incorp
rated into the basis by a BCS calculation for the Nilss
states. The basis truncation is first implemented in
02431
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multi-qp states with respect to the deformed-BCS vacu
uF&; then the angular momentum and the particle-num
projection are performed on the selected qp basis to for
shell-model space in the laboratory frame; and finally
shell-model Hamiltonian is diagonalized in this project
space.

If an
† andap

† are the qp creation operators, with indexn i

(p i) denoting the neutron~proton! quantum numbers and
running over properly selected single-qp states, the multi
bases of the PSM are given as

even2even nucleus:$uF&, an i

† an j

† uF&, apk

† ap l

† uF&,

an i

† an j

† apk

† ap l

† uF&, . . . %

odd-n nucleus: $an i

† uF&, an i

† ap j

† apk

† uF&, . . . %

odd-p nucleus: $ap i

† uF&, ap i

† an j

† ank

† uF&, . . . %

odd2odd nucleus: $an i

† ap j

† uF&, . . . %. ~1!

In bases~1!, ‘‘ ••• ’’ denotes those configurations that conta
more than two like-nucleon quasiparticles. If one is int
ested in the low-lying states only, they can practically
ignored because these configurations have higher excita
energies due to mutual blocking of levels. Bases~1! can be
easily enlarged by including higher orders of multi-qp stat
if necessary. If the configurations denoted by ‘‘••• ’’ are com-
pletely included, one recovers the full shell-model spa
written in the representation of qp excitation.

In the qp basis, truncation can now be easily implemen
by simply excluding the states with higher energies. Usua
only a few orbitals around the Fermi surfaces are suffici
for a description of the low-lying qp excitations. The trunc
tion is thus so efficient that dimension never poses a prob
even for superdeformed, heavy nuclei.

After truncation is implemented in the multi-qp basis, t
shell-model space can be constructed by the projection t
nique @1#:

uqKIM &5 P̂MK
IN uFq& with P̂MK

IN 5 P̂MK
I P̂N, ~2!

where uFq& denotes the qp basis given in Eq.~1! with q
meaning the multi-qp configuration, and

P̂MK
I 5

2I 11

8p2 E dVDMK
I ~V!R̂~V!,

P̂N5
1

2pE dfe2 i (N̂2N)f ~3!

are the angular momentum and particle-number projec
operators, respectively. In Eq.~3!, DMK

I is the D function

@16#, R̂ the rotation operator,V the solid angle,N̂ the num-
ber operator, andf the gauge angle. If one keeps the ax
symmetry in the deformed basis,DMK

I in Eq. ~3! reduces to
the smalld function and the three dimensions inV reduce to
5-2
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one. The eigenvaluesE and the corresponding wave fun
tions uCM

I &5(qKFqK
I uqKIM & are then obtained by solvin

the following eigenvalue equation:

(
qK

$HqK q8K8
I

2E NqK q8K8
I %Fq8K8

I
50, ~4!

where HqK q8K8
I and NqK q8K8

I are, respectively, the matri
elements of the Hamiltonian and the norm

HqK q8K8
I [^qKIuĤuq8K8I &5^FquĤ P̂KK8

IN uFq8&,

NqKq8K8
I [^qKIuq8K8I &5^FquP̂KK8

IN uFq8&. ~5!

The PSM uses a large size of single-particle~sp! space,
which ensures that the collective motion is defined mic
scopically by accommodating a sufficiently large number
active nucleons. It usually includes three~four! major shells
each for neutrons and protons in a calculation for deform
~superdeformed! nuclei. The effective interactions employe
in the PSM are the separable forces. The Hamiltonian ta
the following form:

Ĥ5 (
s5n,p

Ĥs1Ĥnp , Ĥnp52xnp Q̂2
n†
•Q̂2

p ,

Ĥs5Ĥ0
s2

xs

2
Q̂2

s†
•Q̂2

s2GM
s P̂s †P̂s2GQ

s P̂2
s †

• P̂2
s . ~6!

The first termĤ0
s in Ĥs of Eq. ~6! is the spherical single

particle Hamiltonian and the remaining terms are resid
quadrupole-quadrupole, monopole-pairing, and quadrup
pairing interactions, respectively. The strength of t
quadrupole-quadrupole force is determined in a s
consistent way that it would give the empirical deformati
as predicted in the variation calculations. The monopo
pairing strength is taken as the formGM5G/A (A is the
mass number!, with G being adjusted to yield the know
odd-even mass differences. The quadrupole-pairing stre
GQ is assumed to be about 20% ofGM @9#.

The one-body operators~for each kind of nucleons! in Eq.
~6! are of the standard forms:

Q̂m5 (
a,a8

Qmaa8 ca
†ca8 ,

P̂†5
1

2 (
a

ca
†cā

† , ~7!

P̂m
† 5

1

2 (
a,a8

Qmaa8ca
†cā8

† ,

whereQmaa85^auQ̂2mua8& is the one-body matrix elemen
of the quadrupole operator andca

† the nucleon creation op
erator, with a representing the quantum numbers of a
state in the spherical basis (a[$n, jm%). The time reversal
of ca

† is defined ascā[(2) j 2mcn, j 2m .
02431
-
f

d

es

l
e-

f-

-

th

p

For a description of rotational bands associated with
well-deformed minimum, the PSM is a highly efficient trun
cation scheme. Diagonalization for a heavy nucleus can
done almost instantly, yet the results are often satisfact
The reason for the success is because the major part of
ing and quadrupole correlations has already been built in
basis through the use of a deformed basis and the BCS
malism. Therefore, a small configuration space with a few
orbits around the Fermi surface can already span a very g
basis for the low-lying excitations. Note that each of t
configurations in the basis is a complex mixture of multish
configurations of the spherical shell-model space. Althou
the final dimension of the PSM is small, it is huge in terms
original shell-model configurations. In this sense, the PSM
a shell-model in a truncated multi-major-shell space.

The features of the PSM make it a frequently used mo
in the high-spin physics. Many applications can be found
the review paper@9#. The recent papers include the study
superdeformed structure in a wide range of different m
regions@17–20#, the study of the origin of identical band
@21#, and the study of the high-K states@22#.

While the PSM is an efficient shell-model for deforme
systems with rotational behavior, it becomes less valid wh
going to the transitional region, and eventually loses its
plicability for spherical nuclei. Moreover, it cannot effi
ciently describe theb andg vibrations. Although such col-
lective modes can, in principle, be obtained by mixing
large amount of excited qp configurations, it suffers in pra
tice from a similar dimension problem as in convention
shell-models. The main reason for these shortcomings is
to the use of the simple BCS vacuum which contains o
the properties of the ground-state rotational band, but
those of the collective vibrations.

B. Fermion dynamical symmetry model

If we say that the PSM is a shell-model in a truncat
multi-major-shell space, then the FDSM is a shell-model i
truncated one-major-shell space. The truncation is base
the consideration that the like nucleons prefer to form coh
ent S ~angular momentumL50) andD (L52) pairs. One
may thus assume that a closed subspace built up by t
S-D pairs is mainly responsible for nuclear low-lying colle
tive motions. Such anS-D subspace can be carved out by
symmetry requirement that theS and D creation~annihila-
tion! operators together with a necessary minimum amo
of number conserving operators form a closed Lie algeb
To this end, ak-i basis is introduced~see Ref.@10#, and the
references cited therein!

bkmk imi

† 5(
j

ckmk imi

jm cjm
† , ~8!

where k ~pseudo-orbital angular momentum! and i ~pseu-
dospin! could be eitherk51 and i 5 any half integer, ori
53/2 andk5 any integer. This basis must uniquely repr
duce the normal-parity levels@23# in that shell byk-i angular
momentum coupling, no more and no less. With thisk-i
basis, the coherentSandD pairs and the multipole operator
5-3
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Prm , which are necessary in order to form a closed Lie
gebra, are found to be as follows@24#:

S†5(
i
AVki

2
@bki

† bki
† #00

00 ~ for any k and i ! , ~9!

Dm
† 5(

i
AVki

2
@bki

† bki
† #m0

20 ~ for k active: k51!,

~10!

Dm
† 5(

i
AVki

2
@bki

† bki
† #0m

02 ~ for i active: i 53/2!,

Prm5(
i

A2Vki@bki
† b̃ki#m0

r0 ~ for k active: k51, r<2!,

~11!

Prm5(
i

A2Vki@bki
† b̃ki#0m

0r ~ for i active: i 53/2, r<3!,

with

Vki5
~2k11!~2i 11!

2

where the symbol@ # denotes angular momentum couplin
and the time reversal is defined asb̃kmkimi

[(2)k2mk1 i 2mibk2mki 2mi
. The operator se

$S†,S,Dm
† ,Dm ,Prm% forms a closed Lie algebra of eithe

Sp(6) (k active! or SO(8) (i active!, depending on the leve
structure of the valence shell@10#.

Once theS-D subspace is carved out, the form of th
effective Hamiltonian~restricted to a two-body interaction!
in this truncated space is uniquely determined:

H5 (
s5n,p

Hs1Hnp, Hnp52(
r

Br
npPr

n
•Pr

p ,

Hs5H0
s2G0

sSs †Ss2G2
sDs †

•Ds2(
r .0

Br
sPr

s
•Pr

s .

~12!

It can be shown that the multipole operatorsPr with r
50,1 are proportional to the number operator in norm
parity levelsn1 and the total angular momentumÎ , respec-
tively, while P2 is proportional to the effective quadrupo
operator in the truncated space. The termH0

s is a quadratic
function of valence neutron and proton numbers (npnn is
included in then-p interactionHnp). This Hamiltonian@Eq.
~12!# appears formally similar to that of the PSM@Eq. ~6!# if
we assume that onlyB2Þ0 in the summation. However, on
should bear in mind that the FDSM Hamiltonian is written
a truncated one-major-shell space and the sp energy spli
within the shell is neglected. This is the price the FDSM h
to pay in order to meet the symmetry requirement so t
solutions can be obtained with the aid of the group theor
02431
l-

l-

ng
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t

With this Hamiltonian, it can be shown that there ex
analytical solutions in various dynamical symmetry limit
each one corresponding to a collective mode known exp
mentally: the SU(3) limit in thek-active shell and the SO(6
limit in the i-active shell correspond, respectively, to rig
andg-soft rotors for well-deformed nuclei, while the SU(2
limit in the k-active shell and the SO(5) limit in thei-active
shell correspond to a vibrator of spherical nuclei. Since
FDSM contains all major collective modes, the general f
ture of different collective motions arises naturally as t
number of valence nucleons varies; namely, nuclei behav
a spherical vibrator near the closed shell and become a w
deformed rotor around the midshell. If the strengths of
Hamiltonian are properly chosen and the sp splitting is ta
into account as a perturbation, the FDSM can even quan
tively reproduce the low-lying spectra,B(E2)’s, ground-
state masses, etc., in a unified manner from the spheric
the well-deformed region.

Here, it may be appropriate to emphasize one remarka
result of the FDSM: There exists a one-to-one corresp
dence between the SU(3) irreps and theb andg vibrations
in deformed nuclei. As one can see from Table I, theb-g
vibrations are microscopically the collectiveD-pair excita-
tions ~theD61

† excitations are forbidden by the time revers
symmetry!. The anharmonic behavior of theb-g vibrations
is due to the finite particle-number effect. In the large-n1
limit, ignoring 1/n1, the FDSM reproduces exactly th
particle-rotor model results. This means that the FDSM
discovered the relevant fermion degrees of freedom
nuclear collective motions, which are theSandD pairs. The
S-D subspace is so compact that it never suffers from
dimension explosion even for the heaviest nuclear syste

While with theS-D subspace the FDSM is able to provid
a microscopic view to the low-lying collective motions,
has difficulties in describing the qp excitations and the hig
spin physics due to a lack of the sp degrees of freedom
principle, this can be resolved by allowing a few pairs
break. The problem is that once the sp degrees of freed
open up, the dimension increases very rapidly. In additi
inclusion of sp degrees of freedom results in adding ma
new terms to the effective Hamiltonian. To pin down
many coupling strengths in the Hamiltonian is a very dif
cult task, if not impossible. Therefore, even the number
broken pairs is limited to just one for proton and one f
neutron, the model could at best be applied to thef p shell
nuclei, and could not go any further.

III. CONNECTION BETWEEN THE PSM AND THE FDSM

Let us summarize our main claims in Sec. II. Both t
PSM and the FDSM are truncated shell models, aiming
grasping the essential ingredients to describe the low-ly
physics. However, the emphasis in each model is differe
which is reflected in their different truncation schemes. T
PSM emphasizes on the high-spin description of rotatio
states built upon qp excitations associated with a w
deformed minimum, but it is not an efficient method for th
collective vibrations. In contrast, the FDSM has a we
defined classification for all known types of collective vibr
5-4
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TABLE I. The SU(3) irreps in the FDSM and the collectiveb-g vibrations. The SU(3) intrinsic states for each of theb-g vibrational
modes are listed in the first column. The second and the third column are the phonon excitation energies and the associated quantu
according to the particle-rotor model. The fourth and the fifth column are the SU(3) irreps (l,m) and the corresponding Young table
@h1 ,h2 ,h3#, respectively. The excitation energies obtained from the FDSM are listed in the last column asB2DC(l,m), whereDC(l,m) is
the change of the expectation values of the SU(3) Casimir operator with respect to the ground-state irrepC(n1,0), B2 is then-p quadrupole
interaction strength, and\v[(3/2) n1B2.

 

        
ll

th
c

S
o

i-
th

i
og
te
fu
ra

M
he

-
rre
M
a

tu
to
te
i

SM
ith
na

on-
set

ri-

om
en-
r-

-
he

M

)
er-
tion, ranging from the spherical, via transitional, to the we
deformed region, but it lacks the necessary degrees
freedom of qp-excitations. Thus, the main advantages of
PSM and the FDSM are mutually complementary to ea
other.

If we could use the advantages of the PSM and the FD
and combine them into a single model, the deficiencies
each model will be eliminated. At first glance, it is not obv
ous how to bridge these two different approaches. In
section, we show that a realization of the combination
possible. The assertion is made based on the recent rec
tion that an SU(3) symmetry can emerge from the projec
deformed-BCS vacuum. Having this as the basis, the
idea of the microscopic classification for the collective vib
tions discovered by the FDSM could be adopted by the PS
while the latter keeps its original features in building t
shell-model configuration space through projection.

A. Emergence of SU„3… symmetry in PSM

It is remarkable@14,15# that the states numerically ob
tained by the PSM exhibit an interesting one-to-one co
spondence with the analytical SU(3) spectrum of the FDS
To show this, the original PSM was extended in such a w
that instead of a single BCS vacuum, the angular momen
projection was performed for separate neutron and pro
BCS vacuum with the same deformation, and the projec
states were coupled through diagonalization of the Ham
tonian @14#. This extension is necessary; otherwise the P
would have no collectively excited bands to compare w
the FDSM. This procedure not only gives the usual rotatio
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ground band corresponding to a strongly coupled BCS c
densate of neutrons and protons, but also leads to a new
of excited bands arising from the vibrations of relative o
entation of the neutron and proton cores~the so-called ‘‘scis-
sors’’ mode!.

As one can see from Fig. 1, the spectrum obtained fr
the PSM is, up to high angular momenta and excitation
ergies, nearly identical to that from the FDSM SU(3) fo
malism with (nn

eff532,0) and (np
eff516,0) irreps, respec

tively assigned to the neutron and proton BCS vacuum. T
classification of the spectrum follows exactly the FDS
SU(3) reduction rules

~nn
eff ,0! ^ ~np

eff ,0!.~l,m!kI ~13!

with

l5nn
eff1np

eff22m,

m5mmax, mmax21, . . .,1,0; mmax5min~nn
eff ,np

eff!,

and

k5kmax, kmax22, . . . ,1 or 0; kmax5min~l,m!

I 5H l1m,l1m22, . . . ,1 or 0 if k50

k, k11, . . . ,l1m2k11 if kÞ0.

Not only the spectrum but also theB(E2)’s exhibit this cor-
respondence@15#. Note that there are many types of SU(3
models, and that different SU(3) models have different p
5-5
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missible irreps and reduction rules due to the different ph
cal input, and therefore can lead to different band structu
Here, we emphasize that this SU(3) symmetry shown in F
1 is of the FDSM type. This is because among the exist
fermionic SU(3) models in nuclear physics, only the FDS
SU(3) formalism can naturally provide the required irre
and reproduce the band structure of the PSM. Other SU
models such as the pseudo-SU(3) do not have this prop
In their recent investigation of the onset of rotational motio
Zuker et al. @25,26# introduced a preliminary formulation o
an approximate quasi-SU(3) symmetry. It would be intere
ing to study whether the quasi-SU(3) contains a sim
property.

Figure 1 presents a highly nontrivial result because
PSM, as described above, is not built on any explicit SU(
symmetry, and no free parameters have been adjusted to
tain such a symmetry. Nevertheless, the spectra, the ele
magnetic transition rates, and the wave functions of the P
agree nearly perfectly with the FDSM SU(3) results, fro
the ground band to states of high spins and high excitat
@15#. This strongly suggests that the projected deformed-B
vacuum in the PSM could be at the microscopic level clo
to the S-D core in the FDSM, provided that theS-D pairs
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FIG. 1. Comparison between the PSM~symbols! and the FDSM
SU(3) limits ~curves! assumingnn

eff532 andnp
eff516. The SU(3)

quantum numbers (l,m)k are marked for each band with dege
eracy ofk5kmax,kmax22, . . . ,0 or 1, andkmax5min$l,m%. The
comparison takes the well-deformed nucleus168Er as an example.
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must be redefined in a multi-major-shell space, since
major shell is not large enough to accommodate so m
active nucleons~herenn

e f f532 andnp
e f f516).

In this regard, there is a conceptual distinction betwe
the SU(3) symmetry in the one-major-shell FDSM and th
emerged from the PSM. In the former, the SU(3) symme
arises entirely from the normal-parity nucleons and
abnormal-parity orbit enters only implicitly through the Pau
effect and the renormalization of the parameters. In the la
the SU(3) symmetry arises from the explicit dynamical p
ticipation of both normal and abnormal-parity nucleons
many shells. Ignoring the direct contribution from th
abnormal-parity nucleons in the one-major-shell FDSM is
sacrifice for having an exact symmetry~which forms a
closed Lie algebra!. In practice, this turns out not to be a ba
approximation for collective motions because in a single m
jor shell, there is only one single-j level with abnormal par-
ity, which does not have much quadrupole collectivity co
pared to the normal-parity contributions@27#. When going to
a multi-major-shell space, the situation will change. A bun
of abnormal-parity levels, which are located just below t
normal-parity levels, will open up. This means that, wh
one redefines the FDSM-type coherentS-D pairs in a multi-
major-shell space, the conceptual distinction of the SU
symmetry between the FDSM and the PSM will be elim
nated.

B. Collective D-pair Excitations

To see further the relationship between the two mod
let us ignore the terms withrÞ2 in the most general FDSM
Hamiltonian ~12!. This is a reasonable approach becau
from the multipole expansion point of view, there is no mu
tipole interactions withr 5odd without considering the par
ity admixture. One may note that there is the monopo
monopole interaction (r 50) in the FDSM, which is not
included in the PSM. However, it is well-known that th
interaction only affects the nuclear total binding energy, b
does not have much influence on the excitations. On
other hand, it can be added to the PSM, if necessary. T
we have for both models the interactions of the monopo
and quadrupole-pairing plus the quadrupole-quadrupole ty

The PSM Hamiltonian contains operators written in t
ordinary shell-model basis, whereas the FDSM ones in
k-i basis. In order to compare them, we transform the FD
operators in Eqs.~9!–~11! back to the ordinary shell-mode
basis by rewriting them in terms ofca

† andca . We find that

P2m5 (
a,a8

Qmaa8
(2) ca

†ca8 ,

S†5
1

2 (
a

ca
†cā

† ,

Dm
† 5

1

2 (
a,a8

Qmaa8
(2) ca

†cā8
† , ~14!

with
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Qmaa8
(2)

5A2VkiCjm j82m8
2m

~2 !r 2mF i k j

i k j 8

0 2 2
G .

Comparing Eq.~14! with Eq. ~7!, we see that the definition
of S†, Dm

† , andP2m in the FDSM are similar to that ofP̂†,

P̂m
† , andQ̂m in the PSM, except that the model spaces for

two models are different. However, within one major she
the operatorS† ~S! is exactly the same asP† ~P! in the PSM.
For the D pair andP2 operators, although the coefficien
Qmaa8

(2) look different from Qmaa8 appearing in the corre

sponding operatorsP̂m
† and Q̂m in the PSM, their physica

meanings are the same. The FDSM Hamiltonian may thu
considered as a one-major-shell version of the PSM Ha
tonian, with the approximations ofP̂m

† and Q̂m being re-
placed byDm

† and P2m and the sp energy splitting bein
ignored. In other words, if, in the multi-major-shell case, t
symmetry constraint is released from the FDSM and the
energy splitting is considered,S†, Dm

† , and P2m in the

FDSM should return back to the version ofP̂†, P̂m
† , andQ̂m

operators in the PSM; so is for the Hamiltonian.
From the above analysis we may conclude that the P

and the FDSM are just two approaches to solve an effec
Hamiltonian of a common form. In order for them to b
applicable to heavy nuclei, approximations have to be m
in each model. The PSM is based on a multi-major-sh
space so that it can describe the nuclear rotational mo
microscopically through a dynamic participation of ma
particles. However, it can afford to do so only for a trunca
configuration space that includes only a BCS vacuum plu
few qp excitations. As a sacrifice, this truncation does
include the collective modes such asb andg vibrations. In
contrast, the FDSM aims at nuclear low-lying collective e
citations. It can afford to do so only when the model spac
reduced to one major shell such as in the conventional sh
model. But it is still not enough for heavy nuclei. Addition
approximations to further reduce the configuration sp
down to the symmetry detectedS-D subspace are necessa
These approximations leave out the sp excitations.

IV. CONSTRUCTION OF HEAVY SHELL MODEL

Having realized that the projected deformed-BCS sta
exhibit the SU(3) symmetry, and that the collective exci
tions may be approached by theD-pair excitations, with the
D-pair operator defined as the quadrupole-pair operatorP̂m

†

in a multi-major-shell-model space, we propose a multish
shell-model: the heavy shell model. The essence of this
posal is to adopt the truncation scheme for the collec
modes, which was discovered by the FDSM, into the PSM
enrich the shell-model basis. This essentially combines
advantages of both models.

In fact, to incorporate both sp and collective excitatio
there are in principle two alternatives: One can either ext
the FDSM by adding the PSM qp truncation scheme on
of the FDSM collective states, or extend the PSM by inclu
ing the D-pair collective excitations into the PSM vacuum
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However, the FDSM is a severely truncated one-major-s
shell-model dictated by symmetry, and in this sense, it is
as microscopic as the PSM. Although it is quite successfu
the description of low-lying collective motions, the FDSM
just an effective theory. For practical applications, lar
renormalization effects must be embedded in the parame
of the FDSM Hamiltonian, which have to be determin
phenomenologically. Therefore, we choose to construct
Heavy Shell Model based on the extension of the PSM.

The main ingredients of the heavy shell model are as
lows:

~1! We keep the multi-major-shell basis of the PSM as
model space, using the PSMP† andP2

† operators to describe
the coherentS andD pairs in the multi-major-shell configu
rations, and construct the intrinsic collective excitation sta
by P2

† acting on the deformed-BCS vacuum.
~2! We carry out the shell-model truncation by selecting

few single-qp states near the Fermi surfaces plus a
D-pair excitations, and perform angular momentum a
particle-number projection to obtain a shell-model basis
the laboratory frame.

~3! We keep the PSM Hamiltonian to be the effecti
Hamiltonian, but allow addition of more multipole interac
tions and/or readjust the interaction strengths, if necessa

~4! We utilize the algorithms developed in the PSM
carry out calculations for all the necessary matrix eleme
and diagonalize the Hamiltonian in the truncated shell-mo
space.

Let us now discuss each of the items in more detail.

A. The basis states

We have demonstrated that the projected deformed-B
vacuum uF& in the PSM is nearly identical to the FDSM
SU(3) intrinsic ground state (ne f f,0) irrep. Furthermore, we
have indicated that the FDSMS and D pairs and theP2m
operator are, respectively, the symmetry-constraint o
major-shell version of the ordinary monopole pairP, quad-
rupole pairPm , and quadrupole operatorQ̂m in the PSM. It
is therefore natural to believe that in a multi-major-sh
space, the FDSMSandD pairs are nothing but theP andPm
pairs if we abandon the symmetry requirement; so is for
quadrupole operator. In the FDSM, all known types of lo
lying collective excitation can be obtained by actingDm

† on
the FDSM-SU(3) intrinsic ground state, (S†1bD0

†)Nu0&
~see Table I!. Combining these facts, the collective excit
tions of the HSM in a multi-major-shell space may be co
structed by replacing, respectively, (S†1bD0

†)Nu0& and D†

in Table I with uF& andPm
† defined in the PSM.

Hereafter, we will continue to use the FDSM notationsS
and D for the pair operators. One should bear in mind th
they have been redefined as

S†[P†5
1

2 (
a

ca
†cā

† ,

Dm
† [ P̂m

† 5 (
a,a8

Qmaa8 ca
†ca8

† . ~15!
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The intrinsic collective states can then be expressed as

uFc&[uND~nb ,ng ,k!&5)
i 50

ND

Dm i

† uF&

5~D0
†!nb~D2

†D22
† !ng/2~D2

†!k/2uF&. ~16!

Equation ~16! provides the microscopic meaning of th
quantum numbersnb , ng , andk in a very clear manner: the
phonon number appearing in phenomenological model
nothing but the total number ofD pairs,

ND5nb1ng1k/2. ~17!

The basis of the HSM can be constructed by adding
excitations on top of the collective intrinsic states; the f
malism is the same as that used to build the PSM base
Eq. ~1!, but the simple BCS vacuumuF& in Eq. ~1! is now
replaced by a more correlated one,uFc&. The general expres
sion of the HSM basis in the laboratory system can be w
ten as

uqcIM&5 P̂M
INuFqc&,

uFqc&[)
i 50

nq
n

)
j 50

nq
p

an i

† ap j

† uFc&, ~18!

wherenq
n (nq

p) is the qp number of neutrons~protons!, and
the indicesq andc stand for the qp and the collective vibra
tional configurations, respectively.

The HSM basis~18! contains both sp~qp excitations! and
collective (D-pair excitations! degrees of freedom; the defi
ciency of lack of collective degrees of freedom in the ori
nal PSM is redeemed. Moreover, basis~18! is expected to
work also for the transitional~or weakly deformed! nuclei,
which is beyond the original PSM territory. This is expect
because it is known from the FDSM that the collective sta
of transitional nuclei can be described as a mixture of diff
ent SU(3) irreps@10#. The original PSM uses only th
deformed-BCS vacuum@the ground state of the SU(3
irreps#, and thus does not contain such a mixing mechani
This is why the PSM becomes less and less valid when go
away from the well-deformed region. The HSM basis~18!
now contains all possible SU(3) irreps, since its labels (nb ,
ng , k) are in one-to-one correspondence to that of
SU(3) irreps (l,m) @28#.

For spherical nuclei, the basis should be constructed s
rately, since in the spherical case the rotational symmetr
restored so that no distinction can be made between the
trinsic and the laboratory system. In the spherical limit,
BCS vacuum is just theI 50 ground state, which, in the
FDSM, corresponds to the intrinsic state withb→0 ~see
Table II!. Let us denote this BCS vacuum asuF0& to distin-
guish it from the deformed one. The deformed mean fi
~e.g., the Nilsson scheme! in the spherical case is also re
duced to the spherical shell-model level scheme so that
state can be labeled by$N, jm%. Using $ jm% for short, a qp
state can be expressed asaj

s
m
† uF0& (s5n,p), which is no

longer a superposition of all possible angular moment
02431
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states but has a definite angular momentum. Likewise
D-pair excited stateDm

† uF0& is now a 21 state. Therefore,
there is no need for performing angular momentum proj
tion. The basis with a given total angular momentumI can be
directly obtained by the angular momentum coupling. T
general expression of the HSM basis in the spherical c
can be written as follows:

uqcIM&5 P̂NuFqc
IM &,

uFqc
IM &[@AJq

† ~nq! ^ DRc

† ~ND!#M
I uF0& ~19!

with

AJqMq

† ~nq![@AJ
q
n

†
~nq

n! ^ AJ
q
p

†
~nq

p!#Mq

Jq , ~20!

AJ
q
sM

q
s

†
~nq

s![F)
i 51

nq
s

aj i

† G
M

q
s

Jq
s

5(
[m]

C[m]~Jq
sMq

s!)
i 51

nq
s

aj imi

† ,

~21!

DRcMc

† ~ND![F )
k51

ND

D†G
Mc

Rc

5(
[m]

C[m]~RcMc!)
k51

ND

Dmk

† ,

~22!

whereAJ
q
sM

q
s

†
(nq

s) andDRcMc

† (ND) are the creation operator

of nq
s qp’s and ND D pairs coupled to angular momen

Jq
sMq

s andRcMc , respectively. The short-hand notation@m#
represents the configuration$m1 ,m2 , . . . ,mn

q
s% of the qp’s.

Similarly, @m# is for theD pairs.
The amplitudesC[m] (Jq

sMq
s) in Eq. ~21! can be easily

calculated by using the standard shell-model technique. A
matter of fact, all spherical nuclei lie very close to the doub
closed shell. Therefore, only a few qp’s from thej orbits
around the Fermi surfaces need to be considered. The am
tudesC[m] (RcMc) in Eq. ~22! are difficult to obtain in this
way because multi-major-shells are involved due to
D-pair collectivity. However, they can be easily evaluat
through thed-boson coefficients of fractional parentage if th
D pairs are regarded as bosons. It should be noted that th
not a boson approximation since theDm

† ’s in Eq. ~22! remain
to be fermionic operators. It is just a symmetry detected tr
cation to select only those states that are symmetric w
respect to interchanging anyD pairs.

A comparison between the deformed basis and the sph
cal basis is shown in Table II. It is interesting to see that
D-pair excited states, which, in the deformed case, prod
the b-g bands after angular momentum projection, degen
ate in the spherical case into a spherical vibration spectr
The spherical vibration spectrum has much less indepen
states than the rotational spectrum. It is so, simply beca
when b→0 most of the states obtained from the angu
momentum projection are not linearly independent due to
spherical symmetry nature. They are highly overcomple
For instance, theb andg bands reduce to a 21 state when
b→0. This is why we should construct the spherical she
5-8
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TABLE II. Comparison of collective basis for deformed and spherical Nuclei. The first column lists the FDSM SU(3) intrinsic
The second column is the HSM collective basis for the deformed nuclei, which is obtained by replacing (S†1bD0

†)Nu0& with the BCS
vacuumuF&. After projection, each intrinsic state produces a rotational band labeled asb, g, and (ng ,nb ,k/2) listed in the third column.
The FDSM SU(2) states and the HSM collective basis for spherical nuclei are listed in the fourth and fifth column, respectively.
column lists their corresponding spin-parity and excitation energies relative to the BCS vacuum. Note that theD pairs in the SU(2) states
have been modified to commute withS† @10#.
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model basis differently. It can be seen that even without c
figuration mixing, this collective basis~as shown in Table II!
can already give the essential features of the low-lying c
lective modes found in the spherical nuclei. We therefore f
confident that the HSM basis is going to work well.

Of course, having built a shell-model basis is not enou
The central objective that follows is whether it is possible
find an efficient truncation scheme within the construc
basis so that the calculations for heavy nuclei become
sible.

B. Basis truncation

To estimate the size of the deformed intrinsic basis~18!,
let us denote the maximum qp number, the number of
lected sp states, and the maximum number of the exciteD
pairs asnq

s , ns
s (s5n,p), andNm , respectively. The tota

dimension is the product of the dimension of neutron
states, that of proton qp states, and that of theD pairs:

Dim5Dim
(q)~nq

n ,ns
n!3Dim

(q)~nq
p ,ns

p!3Dim
(c)~Nm!. ~23!

For each of these three terms, it can be shown that

Dim
(q)~nq

s ,ns
s!5 (

n50 or 1

nq
s S ns

s

n
D S (

n
is in step of 2D ,
02431
-

l-
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d
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e-
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Dim
(c)~Nm!5 (

ND
n

50

Nm

(
ND

p
50

Nm2ND
n

S ND
n214ND

n 131dn

4 D
3S ND

p214ND
p131dp

4 D , ~24!

whereDim
(q)(nq

s ,ns
s), with s5n or p, are the dimensions o

the qp states for neutrons or protons,Dim
(c)(Nm) is the dimen-

sion of the intrinsic collective states, withds51 whenND
s

5 even andds50 whenND
s 5 odd. In Eq.~24!, Dim

(c)(Nm) is
for separated neutron and proton vacuum@15#. If we treat the
neutron and proton vacuum as a single coupled B
vacuum, the double summation in Eq.~24! is reduced to a
single one and this can be easily summed up:

Dim
(c)~Nm!5 1

24 @~Nm11!~Nm13!~2Nm17!13dNm
#,

~25!

with dNm
51 or 0 depending onNm5 even or odd.

According to the experience of the PSM calculations, it
sufficient in most cases to takenq

s<2 andns
s<4 for both

neutrons and protons. One can then obtain that the dimen
of the qp statesDim

(q)(nq
n ,ns

n)3Dim
(q)(nq

p ,ns
p)<49. If Eq. ~25!

is used for estimating dimension of the collective stat
5-9



xi

,

r-
(3

he
c

m

-
he

nt
s
th
de
iti
of
u
to
e
u-

w
m
o

9

w
lin
m
ar

pr

e
ym
n
s-
eV
n
b

y
a

ex

ted

in
,
d
e.

sis

ates
we
t are

de-

ta

ical

e
sur-

ince

ed
c-
s

s.
the

en-

YANG SUN AND CHENG-LI WU PHYSICAL REVIEW C68, 024315 ~2003!
Dim
c (Nm) changes from 1, 3, 7, 13 to 161 when the ma

mum excitedD-pair numberNm varies from 0, 1, 2, 3,. . . ,
to 10. Thus, the total dimensionDim ranges from 49, 147
343, 637, . . . , to 7889.

For well-deformed nuclei, theD-pair excitation energy is
about 1 MeV ~i.e., the band head of the firstb-g band!.
States with moreD pairs are excited higher in energy. Fu
thermore, well-deformed nuclei are very close to an SU
rotor. States with differentND , which correspond to differ-
ent SU(3) irreps, hardly mix with each other although t
mixing may not be zero since the symmetry is not perfe
Thus, for the dominant low-lying collective states the nu
ber of the excitedD pairs, ND , should not be large. We
expect that takingNm52 –4 is already good enough to pro
duce all the low-lying collective vibrational states. Thus, t
total dimensionDim is of the order of 102–103 for well-
deformed nuclei.

For weakly deformed nuclei, mixing between differe
SU(3) irreps must be stronger and therefore, it require
largerNm to account for such a mixing. This can increase
basis dimension drastically. However, transition from the
formed to the spherical region behaves like a phase trans
@29,30#, which happens suddenly within a small interval
nucleon number. We therefore expect that as we pass thro
the weakly deformed region, nuclei may quickly enter in
the spherical region before theNm number becomes too larg
~e.g.,Nm.10). Thus, calculations for weakly deformed n
clei, though harder, are tractable.

When including the scissors mode in the calculation,
can use Eq.~24! for estimating the basis size. The maximu
dimension in this case would rise by one to two orders
magnitude. Namely, the dimension would become 49, 2
1127, 2646,. . . , 23105 for Nm50, 1, 2, 3, . . . , 10.More-
over, the dimension should be multiplied by a factor off np ,
since, after the neutron and proton states have been built
good angular momentum, there are many ways of coup
these neutron and proton states to a given total angular
mentum I. It can be shown that for a given total angul
momentumI<2I cut ,

f np~ I !5
I

2
~4I cut1123I !1~ I cut11!, ~26!

whereI cut is the cutoff angular momentum~i.e., the highest
angular momenta that are considered for neutrons and
tons!. This factor is of an order of 102 for I cut'10. Thus, the
total dimensionDim would be of the order of 105–106 for
Nm5324. However, given the fact that different collectiv
modes usually have different energy scale and different s
metries, there is still room for further reduction in dimensio
It is known that the excitation energy of the low-lying sci
sors mode in the well-deformed region is about 2 M
higher than the low-lyingb-g bands. Furthermore, as show
in Refs. @14,15#, the scissors mode is physically caused
the relative motion of separatedn and p vacua ~with Nm
50), not by theD-pair excitation. Therefore, the interpla
between these different collective modes should be small
may thus be studied separately. One can thus setNm50
when studying the scissors vibrations. If we include qp
02431
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citation states up to 4-qp and noD-pair excitations in the
basis, the dimension can be reduced to about 53103.

For spherical nuclei, the dimension should be estima
differently. What Eqs.~24! and ~25! show us is the total
m-scheme dimensionDim in the intrinsic frame. What we are
actually interested in is the dimensionDim(I ) at a given
angular momentumI. In the deformed case,Dim(I ) is equal
to Dim because after projection, every intrinsic state can
principle contribute one state to anI. In the spherical case
Dim(I ) is smaller thanDim since the basis is now constructe
by angular momentum coupling in the laboratory fram
Equation~23! may be utilized to estimate them-scheme di-
mension, but the formula for counting the collective ba
states in the spherical case should be replaced by

Dim
(c)~Nm!5 (

ND50

Nm S ND14

4 D . ~27!

This formula is obtained because the collective basis st
are constructed differently for the spherical case, and
have imposed a constraint that only those basis states tha
symmetric with respect to the interchange ofD pairs are
selected. According to Eq.~27!, for Nm50,1,2,3, . . . ,10, the
dimensionDim

(c)(Nm) is respectively 1, 6, 21, 56,. . . , 3003,
which are considerably larger than the dimensions in the
formed case.

An estimation for the maximum dimension ofDim(I ),
denoted asDim

max, can be made by using the relationDim

5(0
I maxDim(I )(2I 11):

Dim
max5RIDim.

4Dim

~ I max12!2
,

I max5I max
n 1I max

p 1I max
c , ~28!

whereI max
s (s5n,p,c) are the maximum angular momen

that the neutron qp’s, the proton qp’s, and the excitedD pairs
can reach. Thus, knowing them-scheme dimensionDim one
can estimate the maximum dimensionDim

max. The reduction
factorRI5@2/(I max12)#2 makesDim

max two to three orders of
magnitude smaller than them-schemeDim .

On the surface it seems that the basis for the spher
case is smaller because of the reduction factorRI in Eq. ~28!,
it is in fact not true. The problem lies in the fact that in th
spherical case, the density of sp states around the Fermi
faces is much larger than that in the deformed case s
eachj has a 2j 11 degeneracy. The number of qp statesns

s

must be around 30 instead of four adopted in the deform
case. This increases them-scheme dimension on the qp se
tor enormously. Keepingnq

s<2, the dimension of qp basi
will increase from 49 in the deformed case (ns

s54) to an
order of 105, leaving almost no room for collective basi
This is another reason why we cannot continue to use
m-scheme basis for the spherical case. UsingI scheme only
Dim

max should be concerned, which greatly reduces the dim
sion by a factor ofRI . The total basis dimension varies from
5-10
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1125, 5879, 17 742, 43104, . . . , to 13106 for Nm

50,1,2,3, . . . ,10when I max
p 5I max

n 512 is assumed.
It is known that the low-lying spherical vibrational energ

\v is about 0.5 MeV, which is roughly theD-pair excitation
energy in spherical nuclei. The sp excitations start to have
influence at about 2\v and become significant around 3\v,
where the characteristics of vibrational spectrum are stron
disturbed. Thus on the collective sector, takingNm53 (3\v
excitation energy! may be a reasonable choice. If the numb
of qp’s is kept to benq

s52 (s5n,p) to give the maximum
4-qp states, the dimension one has to deal with is of the o
of 104. In fact, spherical nuclei lie often near the doub
closed shells and have large binding energies. The 4
states may already be rather high and have only a s
influence on the low-lying states. If we ignore the 4-
states, then the maximum shell-model dimension can be
duced to 488 forNm53. Even for Nm54 the maximum
dimension is only 908. Such a basis is clearly manageab

C. The effective interactions

The HSM Hamiltonian can be generally written in th
following form:

H5 (
s5n,p

Ĥs1Ĥnp , Hnp52 (
lÞ1

xnp
(l)Q̂l

n
•Q̂l

p ,

Ĥs5Ĥ0
s2GM

s Ŝs†
•Ŝs2GQ

sD̂s†
•D̂s2

1

2 (
lÞ1

xs
(l)Q̂l

s
•Q̂l

s

~29!

This rotational invariant Hamiltonian is the same as that
the PSM @9# @see also Eq.~6!#, except that the multipole
interactions are now extended to include not only the qu
rupole but also monopole, octupole, and hexadecupole te
All these operators are defined in the multi-major-sh
space:

Q̂lm5 (
a,a8

Qmaa8
(l) ca

†ca8 ,

Qmaa8
(l)

5^aur lYlm~u,w!ua8&; l50,2,3,4. ~30!

The octupole and hexadecupole interactions have been
ployed in their Hamiltonian by Chen and Gao@31# to deal
with the actinide nuclei with projection. This type of sch
matic interactions~29! works for the structure calculation
surprisingly well despite its simplicity. In fact, it has bee
shown by Dufour and Zuker@32# that these interaction
simulate the essence of the most important correlation
nuclei, so that even the realistic force has to contain at le
these basic components implicitly in order to work succe
fully in the structure calculations. Therefore, we find
compelling reasons for not using these simple interactio
Of course, the model is open to adoption of any realis
forces.

The sp energy termĤ0
s can be simply taken from the

Nilsson scheme at zero deformation although other sche
such as the Woods-Saxon may also be adopted if there
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advantage. The parametrization in the Nilsson scheme
been well established for theb-stable mass regions~see, for
example, Ref.@33#!. For the exotic mass regions, the sta
dard Nilsson parameters may not be valid and improvem
may be necessary@34,35#. In this regard, new experimenta
data that can provide information on the single-particle
ergies in the exotic mass regions are very much desired.
relativistic mean field theory~RMF! @36,37# could also be
helpful in providing a sp energy scheme for the exotic m
regions where no data are available for determining a p
nomenological mean field. The RMF may have a better
trapolation power than other phenomenological mean fie
because a single set of parameters of the RMF is able t
nuclear ground-state properties from light to heavy nuc
reasonably well. In practice, it may be a convenient appro
to use the RMF sp energies as a reference to adjust the
son parameters in the HSM.

The parametersxs
(l) (l52,3,4) in Eq. ~29! are deter-

mined by the self-consistent relation with deformation p
rameters, in the same way as in the PSM@9,31#. The
monopole-monopole interactions (l50) includes three
terms:xs

(0) ns (s5n,p) andxnp
(0) nnnp . It has been shown

that the monopole-monopole interactions are important
the nuclear mass calculations, in particular, for those nu
lying far from the stability line@38,39#. They can be viewed
as an average way of accounting for theN-Z dependence in
sp energies. However, for a given nucleus, the monop
monopole interactions contribute a constant energy o
Thus, if we are not interested in calculating the absol
energies, these terms can be ignored. The strength
monopole-pairing,GM

s , and quadrupole-pairing,GQ
s , de-

pend on the size of the single-particle space. They are
versely proportional to the mass numberA.

For the well-deformed mass regions where calculatio
have been extensively performed by the PSM, the interac
strengths proposed for the HSM should be similar if t
same size of the single-particle space is employed. Howe
when the HSM is applied to other mass regions, such as
transitional or spherical region, these strengths may nee
be readjusted. In particular, the self-consistent relation u
for determining the multipole interaction strengths will bre
down when the basis deformation becomes zero. T
strengths for these cases have to be studied separately.
all, Eq. ~29! is an effective Hamiltonian in nature, and
subject to vary when the model is applied to different ma
regions. Nevertheless, a smooth variation in parametriza
is expected since the model space is sufficiently large.

D. Evaluation of matrix elements

Having achieved a tractable basis and a reliable effec
Hamiltonian, the remaining task comprises diagonalizing
Hamiltonian in the basis to get the eigenenergies and eig
functions, and then to use the obtained wave functions
calculate the observables. To do so, one must know how
evaluate the matrix elements in the projected basis. The
jection techniques have already been well developed by
PSM based on the pioneering work of Hara and Iwasaki@40#.
The extensive discussion about the details of the projec
5-11
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techniques can be found in the PSM review paper@9# and the
PSM computer code@41#. Here, we emphasize only on ho
to deal with the new factor: theD pairs and the spherica
basis.

Let us first discuss the deformed case. Suppose th
one-body tensor operator ofl rank,T̂lm , and the eigenfunc-
tions uCM

I & are given in the laboratory frame:

T̂lm5 (
n,n8

Tmaa8
l ca

†ca8 , uCM
I &5(

qc
Fqc

I P̂MK
IN uFqc&,

~31!

whereTmaa8
l [^auT̂lmua8& is known. uFqc& is the intrinsic

basis defined in Eq.~18!, and the amplitudesFqc
I are ob-

tained by solving the eigenvalue equation, Eq.~4!. Although
we take the tensor operator in Eq.~31! as example, the fol-
lowing discussion applies equally well to the pairing ope
tors if we changeca

†ca8 in Eq. ~31! to ca
†ca8

† or caca8 and

rewrite Tmaa8
l [^0uT̂lmuaa8& or ^aa8uT̂lmu0&. Sandwiched

by the wave functions, the matrix element ofT̂lm in the
laboratory frame can be expressed as

^CM8
I 8 uT̂lmuCM

I &5 (
q8c8qc

Fq8c8
I 8 Fqc

I

3^Fq8c8uP̂K8M8
I 8N8 T̂lmP̂MK

IN uFqc&. ~32!

By applying@N̂T̂lm#5DNT̂lm , whereDN50 (62) for the
electromagnetic multipole~pairing! operator, it can be shown
that

P̂K8M8
I 8N8 T̂lmP̂MK

IN 5dN1DN
N8 CIM ,lm

I 8M8 (
m8

CIK 82m8,lm8
I 8K8 T̂lm8

3 P̂K82m8K
IN . ~33!

Inserting Eq.~33! into Eq. ~32!, we obtain

^CM8
I 8 uT̂lmuCM

I &5CIM ,lm
I 8M8 ^C I 8uuT̂luuC I&, ~34!

with

^C I 8uuT̂luuC I&5dN1DN
N8 (

m8q8c8qc

Fq8c8
I 8 Fqc

I CIK 82m8,lm8
I 8K8

3^Fq8c8uT̂lm8P̂K82m8K
IN uFqc& ~35!

and

^Fq8c8uT̂lm8P̂K82m8K
IN uFqc&

5
2I 11

16p3 E dfdVeiNfDK82m8K
I

~V!

3^Fq8c8uT̂lm8R̂~V,f!uFqc&. ~36!

Here, R̂(V,f)5R(V)e2 ifN̂ is a rotation operator in the
four-dimensional~coordinate plus particle-number! space.
02431
a
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The problem is then reduced to evaluate the matrix elem
having the general form̂Fq8c8uT̂lnR̂(V,f)uFqc&. These are
the matrix elements for a one-body tensor operator betw
the intrinsic statê Fq8c8u, constructed in Eq.~18!, and the
rotated oneR̂(V,f)uFqc&.

In order to evaluate the matrix elements, it is conveni
to transform the operatorsca

† (ca), contained inT̂lm and in
the D pairs ~which are embedded in the basisuFqc&), into
the qp representation$a†,a%. The transformation matrice
~of the Hartree-Fock-Bogoliubov type! are known as

ca
†5(

n
$Uanan

†2Van an̄%, cā
†
5(

n
$Uanan̄

†
1Van an%

with Uan5Wanun , Van5Wanvn , ~37!

whereu andv are the occupation amplitudes in the BCS, a
Wan’s the Nilsson wave functions of the deformed sp lev
n.

The evaluation of̂ Fq8c8uT̂lm8R̂(V,f)uFqc& in Eq. ~36!
is equivalent to evaluate the following general expectat
quantity with respect to the BCS vacuum stateuF&:

^Fq8c8uT̂lm8R̂~V,f!uFqc&

5^Fu•••Dm28Dm18 . . . an28an18T̂lm8R̂~V,f!an1
† an2

†

•••Dm1
† Dm2

†
•••uF&. ~38!

After applying the transformation from the spherical to t
deformed-BCS basis@Eq. ~37!#, the operators appearing i
the above expression, such asT̂lm and Dm , are generally
linear combinations of products of the qp operatorsa† anda.
The problem eventually becomes the one of performing c
tractions for a series of qp creation and annihilation opera

^Fu•••aD28aD18•••an28an18•••aT2
† aT1 R̂~V,f!an1

† an2
†

•••aD1
† aD2

†
•••uF&. ~39!

In performing the contraction calculations, a generaliz
Wick theorem is used. The techniques of carrying out
contractions with the rotation operatorR̂ are available. It has
been shown@9,40# that the problem can be reduced to eva
ation of the following three basic elements

Ann8[^an@V#an8
† &, Bnn8[^anan8@V#&,

Cnn8[^@V#an
†an8

† &, ~40!

with @V#[R̂/^R̂&, and ^•••& is the short-hand notation o
5-12
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vaccum expectation, for example,^Ô&[^FuÔuF&. The con-
traction can then be calculated by the following theorem

^an8•••a18@V#a1
†
•••an

†&

5 (
k5m

[n/2]

(
p

~6 !~B!k2(n2n8)/2~C!n22k~A!k

~41!

with S n1n85even, m5maxH 0,
n2n8

2 J D
where(p is a ‘‘permuted sum’’ with all possible combina
tions of pairs of indices, and6 is the permutation parity
Details for these calculations can be found in the PSM
view paper@9#.

For the spherical case, the matrix elements can be ev
ated in the same way. The only difference is that there is
need for performing an angular momentum projection, si
the basisuFqc

IM & defined in Eq.~19! is constructed in the
laboratory frame. Therefore, in the spherical case, the pro
tion operatorP̂MK

IN should be replaced byP̂N. As a conse-
quence, Eqs.~35! and ~36! become

^C I 8uuT̂luuC I&5dN1DN
N8 (

m8q8c8qc

Fq8c8
I 8 Fqc

I CIM ,lm8
I 8M8

3^Fq8c8
I 8M8uT̂lm8P̂

NuFqc
IM & ~42!

and

^Fq8c8
I 8M8uT̂lm8P̂

NuFqc
IM &5

1

2pE dfdVeiNf

3^Fq8c8
I 8M8uT̂lm8e

2 iN̂fuFqc
IM &.

~43!

After transforming T̂lm8 and the D pairs embedded in

uFq8c8
I 8M8& anduFqc

IM & into the qp basis, the evaluation of matr

element ^Fq8c8
I 8M8uT̂lm8e

2 iN̂fuFqc
IM & is again reduced to the

contraction calculations such as the type of Eq.~39!, except
that in this caseR̂ is replaced bye2 iN̂f.
do

R.
-
S
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V. SUMMARY

In this paper, a multishell shell-model for heavy nuclei
proposed. For performing a shell-model diagonalization
volving several major shells in the model space, we seek
efficient truncation scheme. The new heavy shell model
be viewed as an integration of two existing models: t
project shell model and the fermion dynamical symme
model. The PSM is an efficient method for the high-sp
description of rotational states built upon qp excitations,
it is not a practical method for the low-spin collective vibr
tions. In contrast, the FDSM provides a well-defined trun
tion scheme for all known types of low-lying collective v
brations, workable from the spherical to the well-deform
region, but it lacks the necessary degrees of freedom
single-particle excitations. The idea proposed in the pres
paper is to combine the advantages of both models. To c
struct the shell-model basis, we follow the FDSM discove
that the intrinsic collective states can be built by applyingD
pairs onto the BCS vacuum state, and employ the PSM
truncation scheme combined with the projection techniqu
In this sense the model goes beyond the traditional o
major-shell shell-model, yet the calculation is tractable
heavy, and even for superheavy nuclei.

Given the past success of the PSM and the FDSM in th
own applicable regimes, which has been documented in
literature, we expect that the new model can work reasona
well for heavy nuclear systems where traditional shell-mo
calculations are not feasible. This model should be capa
of describing the low-excitation collective vibrations of a
known types, including fragmentations due to the quasip
ticle mixing. It should be capable of applying to the hig
spin regions where quasiparticle alignments play an imp
tant role. It should also be capable of treating weak
deformed nuclei across the transitional to the spher
region. We conclude that the development of the heavy s
model may open possibilities of shell-model calculations
heavy nuclei to a much wider range of nuclear struct
problems.
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