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Many-body approach to proton emission and the role of spectroscopic factors
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The process of proton emission from nuclei is studied by utilizing the two-potential approach of Gurvitz and
Kalbermann in the context of the full many-body problem. A time-dependent approach is used for calculating
the decay width. Starting from an initial many-body quasistationary state, we employ the Feshbach projection
operator approach and reduce the formalism to an effective one-body problem. We show that the decay width
can be expressed in terms of a one-body matrix element multiplied by a normalization factor. We demonstrate
that the traditional interpretation of this normalization as the square root of a spectroscopic factor is only valid
for one particular choice of projection operator. This causes no problem for the calculation of the decay width
in a consistent microscopic approach, but it leads to ambiguities in the interpretation of experimental results. In
particular, spectroscopic factors extracted from a comparison of the measured decay width with a calculated
single-particle width may be affected.
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I. INTRODUCTION tial acts as a perturbation that converts it into a quasistation-
ary state(a wave packef which can decay.

One of the classic problems in quantum mechanics is that An important shortcoming of all the above approaches,
of tunneling through a classically forbidden region or, morehowever, and in common with the descriptions of so many
specifically, the decay of a quasistationary state to the comuclear processes, is the approximate treatment of the many-
tinuum. In nuclear physics, this manifests itself in the pro-body structure effects. In most descriptions of the proton-
cesses ofr decay in heavy nuclei and proton emission by emission process, the initié-body wave function is written
proton drip-line nuclei. Of particular current interest are theas a product of afA—1)-body wave function, describing the
lifetimes of proton emitters, especially in the lighter region daughter nucleus, and the proton’s single-particle wave func-
of the nuclear chart, and the implications of this in nucleartion. The decay width is then written in the form of a single-
astrophysics. particle width multiplied by a spectroscopic factor, which

Over the years, a number of different theoretical ap-contains the many-body information of the system. This pro-
proaches have been used to describe the decay processcidure, however, makes various assumptions about the rela-
nuclear physics, either by means of perturbation theory ofionship between the many-body problem and the effective
decaying states or by time reverse study of resonance statefe-body problem that have to be tested. In this work, we
via scattering theory1—6]. Some authors solve the time- consider the TPA of Gurvitz and Kalbermann and extend it to
dependent problem while others use a stationary picture anstoperly account for the many-body correlations.
make use of approximation methods such as the distorted- The standard reduction from a many-body problem to an
wave Born approximation or the semi-classical Wentzeleffective one-body picture has been revisited in a recent
Kramers-Brillouin approach to evaluate the widi#j. Other  study of radiative proton captuf@0]. The work focused on
more accurate methods, suchRsnatrix theory, are some- one-body overlap functions and their associated equations of
times very sensitive to the channel radius giving dramatianotion. The one-body overlap functions are obtained by in-
variation in the calculated widthd—4]. The method of Gur-  tegrating the product of the wave functions for Arbody
vitz and Kalbermanip5,8,9], also known as the two-potential system and it§A—1)-body subsystem over the coordinates
approach(TPA) [6,7], is based on splitting the barrier poten- of the latter. While the overlap functions are unambiguously
tial into interior and exterior components. The inner potentialdefined, it was demonstrated in REf1] that useful “auxil-
binds the particle, which can then be described by a bounihry” one-body functions can be defined in several different
eigenstate of the relative Hamiltonian, while the outer potenways. Naturally, the associated equations of motion differ for

the three approaches considered in R&t]. In the current
work, we derive expressions for the proton decay width us-
*Electronic address: J.Al-Khalili@surrey.ac.uk ing two of the three approaches mentioned. The resulting
"Electronic address: barbieri@triumf.ca decay widths have formally the same structure in both ap-
*Permanent address: Nuclear Theory and Modeling Groupproaches, but the overall normalization factors differ. Only
Lawrence Livermore National Laboratory, P.O. Box 808, one of these normalization factors can be interpreted as the
L-414 Livermore, CA 94551, USA. Electronic address: square root of a spectroscopic factor. This has consequences

escherl@Ilinl.gov for the interpretation of experimental results and in particular
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We start, in Sec. Il, with the time-dependent Sclinger  pole location and we obtain a simple exponential function
equation and follow the standard theory of decaying statewhich describes the decay of the initial state. Thus the initial
[12]. This method is briefly compared with the scatteringstate|,) should be chosen to minimize the contributions
approach to decay problems. In Secs. Ill and IV, we usdrom other poles.
projection operator techniques and perturbation theory to de- The same result can be found by considering the related
rive an expression for the decay width in terms of the imagi-scattering problem. A quasibound state can also be thought
nary part of the pole in the Green’s function matrix element.of as a resonance in the scattering amplitude. We consider
In Sec. V, we describe the two alternative routes for reducingcattering of a proton off theA—1)-body system and we
the many-body problem to an effective one-body problemdefine at matrix T through the equation
We compare the resulting two expressions for the width in .

Sec. VI. An alternative expression for the decay width is Ta'(K)|¢ga-1)=V|ga), (5
given in Sec. VII, which shows more clearly the relation of

the width to the spectroscopic factor wherea'(k) is the creation operator for a particle with mo-

mentumk=+2mE/#%2 and m is the reduced mass of the

. PROTON-EMISSION FORMALISM system. By standard techniques, it can be shown that

In this section, we begin to recast the formalism of Gur- T=V+VGeT ©®)

vitz and Kalbermann in a form which is more convenient for —VLVGYV )
our purposes. The approach of Ref8,9] starts with a N ’

square-integrable wave functidgy,), which corresponds to whereGy=1/(E—Hq+i€), G=1/(E—H+i¢), andH, de-

the quasibound nucleus whose decay we are interested igeripes the free motion of the ejected particle with respect to
The initial wave function is close to the resonance state ifhe  final state of the A—1)-body system, i.e.

the nuclear interior but decays rather than oscillates in thﬁOaT(kH¢A—1>:EaT(k)|(/fA—l> and H=Ho+V. We ob-

exterior region. This wave function cannot be an eigenstat@ere that the poles of thematrix are given by the poles of

of the full Hamiltonian or it would have a trivial time depen- \; gnq G. AssumingV has no nearby pole, we see that the
dence and no decay would take place. TaM,"?‘@ as the  oles of T are just those of the many-body Green’s function.
wave function at=0, we follow its time evolution using the The width of the state is then given by the imaginary part of

time-dependent Schadinger equation: the pole location as in the previous case.
P In principle, the potential/ is the sum of the interactions
iﬁﬁ|w(t)>:H|w(t)>_ (1) of the Ath particle with each of the particles in the

(A—1)-body system. In nuclear physics, this is generally
approximated by a nucleon-nucleus optical potential. This
approach, however, has the disadvantage of losing track of
the Pauli exchange correlations and other many-body effects.
For bound states, one of the principal effects is included
) ~ ~ through the use of the spectroscopic factor. However, for

~ifi|1ho) + E[Y(E)) =H[4(E)), 2 scattering states there is, strictly speaking, no spectroscopic

~ gy J(E+iotlh . o factor. Using Eq.(4) as the starting point, we can formally

where|y(E)) = fdt € |l/f(t)>~andf IS a positive IN-  take the many-body effects into account while deriving an
finitesimal real number. Solving fde/(E)), we have effective one-body equation.

This initial value problem is solved by using the one-sided
Fourier transform(sometimes called a Laplace transform
We obtain

if
~ _ I1l. PROJECTION OPERATOR FORMALISM

The main ingredient of Eq4) is the matrix element of
The probability amplitude for the nucleus remaining in thethe Green’s functionM = (| LI(E—H+i€)|¢p). Its ex-

initial state after a timé is given by pression can be simplified as done in REfl] by using
the projection operator formalism. We define a projection

i (= - 1 operator P=|¢o){io| and the complementary operator
(llfo|ll/(t)>zzﬁxdEe 'Ew<¢o|m|¢o>a (4 Q=1-P. The equation for the Green’s function can be
written as

which is obtained by taking the matrix element of the previ-

ous equation witi ¢,| and carrying out the inverse Fourier (E—H)
transform. This is the Fourier transform of one particular
matrix element of the many-body Green’s function. In gen-
eral, the Lehmann representation of the latter contains co
tributions from many poles. However, the overkafy| #(t))

Eho=(E-H)G=1. (8)

Acting on the left byP or Q and on the right by’ we get the
"o equations

takes a simple form if the right-hand side of E4) is domi- P(E—H)(P+Q)GP=P,
nated by the contribution of only one pole. In this case, the
decay rate can be extracted from the imaginary part of the Q(E-H)(P+Q)GP=0. 9
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Solving the second equation f@ GP and substituting this
into the first equation, we have

QH@PGP=R
(10)

(E—PHP—PHQEjaﬁGIE

Taking the matrix element of this equation wift¥,) and
using the explicit form foP, we find

E— (ol H+HQ

1
£gnarizQ" o sty =1
(11)
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IV. PERTURBATIVE APPROXIMATION

In general, Eq.(12) is highly nonlinear and has many
solutions. Every solution of this equation will give a pole of
the Green'’s function, however, not every pole of the Green'’s
function will necessarily be found by using this equation. For
example, if|o) has a definite angular momentum, only
poles with that angular momentum can be found with that
particular choice of ¢).

For the problem at hand, namely proton emission, we are
not interested in the full complexity of the Green'’s function.
To obtain the decay width, only the imaginary part of the
pole location of the nearby pole is relevant. We define a
Hermitian HamiltonianH, such thatH | )= Eg| o) with
H=Hy+ éH. Expanding the right-hand side of E@l2)

Since the left-hand side of this equation is a product of twoahoutE, and neglecting terms of the order d& { Ey)?, we
terms, the poles ofio|G|#) must coincide with the zeros gptain

of the multiplying factor. Thus the poles of the Green’s func-

tion are given by

E=(4ol| H+HQ

1
E_QHQ+|€QH)|¢O>, (12)

or, if we use a spectral representation of EL{QHQ
+ie€), by

* [(olHQZen)|?
E= H dE'———, 13
(¢l |'//°>+f,w E E'tic (13
where|{g/) is the solution of the equation
E[{e)=QHQ|{p), (14

normalized according t6/¢|{e)= S(E’ —E). Note that i)

is also an eigenstate @HQ, but with energyE=0. This
state is excluded from the su(mtegra) in Eq. (13) by the
projection operator. In fact, the only role @ in this equa-
tion is to exclude the discrete stdif,). The residudr of the

pole of (| G| o) is given by

1

d 1 -
R= 1—d—E<¢o|HQmQH|¢o> . (15

This follows from a Taylor series expansion of Efjl) in E.

E_EO
1
~<w0|5H|¢0>+<¢0|HQWQH|¢O>

d 1
+(E_Eo)[ﬁ<¢o|HQmQH|¢o>}

E=E,

(16)

1
“R(<¢o|5H|¢o>+<¢o|HQWQH|¢o>),
(17)

where the last line has been obtained by solving far (
—Eg) in the first equation. This expression for the energy,
Eq. (17), contains a factor oR, the residue of the pole of
(o|G|io). Note that (o|HQ=(o|SHQ implies that
R—1 is of the order ofsH?. Since it multiplies a factor of
the order ofsH, it will introduce terms of order higher than
(E—Eg)%~6H? and therefore it can be neglected. In the
following, we thus takeR=1, which is the same as neglect-
ing the third term in Eq(16).

Let us emphasize th#, is real, since it is an eigenvalue
of the Hermitian operataf ;. The pole location, on the other
hand, occurs at a complex energy. If the width of the state is
large, for any reason not just proton emission, tlienE,
does not holdsince E is real and the pole location has a

For the present probleR is close to 1, since we will choose large imaginary pajtand the approximation fails. However,
|4o) to be an eigenvalue dfl inside the nucleus and differ- when the width is narrow then it will be possible to choose
ent from an eigenstate only in a region where the wave functy,) or equivalentlyH, such that perturbation theory is
tion is exponentially damped. Wheté) is an eigenstate applicable.

(o|HQ is zero, so the contribution from the second term  The equation for the energy is now linearfrand has the

will be exponentially small.

form typical of perturbation theory. The explicit connection

More insight into Eq.(12) can be obtained by an with perturbation theory can be made when the unperturbed

alternative  derivation. Consider the equatiorE

Hamiltonian is taken to bel,o=Hy+QJHQ, and notH, as

={(o|H|we) (ol ¥e), where|ye) is an eigenstate of the one might have expected. This definition is not only neces-
full Hamiltonian H. The wave function can be written as sary in order to cast Eq13) into the form of a perturbation
|e)=(P+Q)|ie). Following the standard Feshbach pro- expansion but at the same time eliminates the problem of

jection operator technique, we can wri@ )= Q[ 1/(E
—QHQ+ie)]QHP|#g). Using the explicit form of the pro-
jection operatolP = ){¢o| yields Eq.(12) immediately.

noncompactness,9]. The noncompactness arises sittg
is chosen in such a manner that it does not go to zero at
infinity. However, bothH andHq, go to zero at infinity.
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The stateqg) occurring in the integral in Eq(13) are  potential V(r) to be zero inside the nucleus so that it does
eigenstates oHqg, as is|ig). In contrast to Eq(14), the  not modify the wave function in the interior. With this an-
state| ) now occurs with energ§, rather than 0. We can satz, expressiofil8) for E becomes
also rewrite (¢o|HQ|{e) as (yol(H—Ho)Q|er) or
(ol(H=Hg) Q| Ler), since(iy| is an eigenstate of botd,
and Hyg or, equivalently, sinc&) commutes with botH, E~Eo—f dr @& (r)V(r) ¢o(r)
and Hqg. Using the previously definedH=H—-H,, Eq.
(13) can be rewritten as

2
de¢>3(f)V(r)¢Ef(r)

® SH 0|2 +fm dE’ , 22
E~E0+<¢O|5H|¢O>+f g (el HQULeD ng? LIPS e Eo—E'+ie 22
—® EO_E’+|6
. (ol SH Q| 212 where g (r)=(®a_1|a(r)|¢o) is a spectroscopic amplitude
%EO+<¢O|5HI|¢’O>+f dE 270 e/ (i.e., a one-body overlap function involving bound many-
- Eo—E'+ie body states and ¢g/(r)=(P_4]a(r)|{e/) is an optical

(19  model wave functioncf. the discussion in Refg.10,11]).
h The projection operato@ does not have to be included ex-
where plicitly, since the integral does not include the discrete state

H'=H—Hgo=PSH+ 8HP—P&HP. 20 %ol
g 00=P2oH+0 0 (20 A miracle has occurred here. Due to the choicesbf,

Equation(18) for E is notin the form of perturbation theory, Which is physically motivated, the expression has reduced to

since|Zg) is an eigenfunction oH g, and notH,. However, ~ an effective one-body problem. All the many-body aspects of

Eq. (19) is. The only approximation made in deriving Eqs. the problem are contained in the one-body overlap functions,

(18) and (19) was the replacement @ in the denominator ¢o(r) and ¢g/(r). We stress that the only approximation

on the right-hand side b, i.e., we assumed that perturba- Made so far is that second-order perturbation theory was

tion theory is valid. used to justify replacind with Eg in Eq. (13). For states
We emphasize that neithéyo) nor |Z¢) is an eigenstate with narrow width_s, this should be acceptable. We have not

of the full HamiltonianH and our derivation depends cru- assumed thafuy) is a product state or made any other as-

cially on this point. Instead,s;) is an eigenstate dfiy and ~ Sumptions regarding its structure. _

Hoo While |£¢) is an eigenstate dHQ andHg,. The fact Equation (14) for |{g) can be written asE[{g)

that both wave functions are eigenstatesgf allows us to = Hod ). In the neighborhood oE = E,, the Hamiltonian

interpret the right-hand side of E€L9) as the first few terms  in this equation fof{e:) can be approximated as

of a perturbative expansion.

V. CHOICE OF H, 5H'~—f dra’(n)|®a_)Vod r)(Pa_gla(r). (23

The proper choice dfi; was discussed in a very convinc-
ing and direct way by Gurvitz and Kalbermaf$,9] for the ~ For an appropriately chosefy(r), the approximation made
problem of a single particle in a local potential well. The here is the same as that of Bg.15 in Ref. [8]. The basic
reader is referred to those papers for specific details. Thargument given there proceeds as follows: the eigenfunction
basic idea is to take aH such that at infinity the potential of H at resonance will be large when tA¢h particle is in the
goes to a finite value, larger th&f, rather than to zero. This nuclear interior. However, the stdt&:) will be small due to
causes the state under consideration to be bound, but if t{8€ projection operators IQHQ. It will look like the real
decay width is small this new state should be very close t&tate in the exterior region but be suppressed in the interior.
the scattering state. We now generalize this concept to th&he form of V(1) will ensure this if we take it to be 0 in
case ofA interacting particles. the exterior region and repulsiv@reater thangg) in the

We consider the case where there is one open channdhterior region(see Fig. 3 in Refl8]). This is the opposite of
Asymptotically, the wave function describes a free protonwhat we did forV(r) which was large in the exterior and 0

and the boundA&—1)-body system. Thus we take in the interior.
Despite its nice form, Eq(22) is not useful until we

specify how to calculate the functionsy(r) and ¢g:(r).
oH = _f dra’(n|®a-)V({(Pa-alar), (21 Following Ref.[11] we set up one-body equations for these

functions using the Feshbach projection operator technique.
where|®,_,) is the ground state of theA(~1)-body sys- We start with the exact scattering statk,) and write the
tem, r is the relative coordinate of the proton and the ( equation of motion for the corresponding one-body overlap
—1)-body system. The integral covers the whole space. Ifunction (which in this case is the Feshbach optical model
V(r) is taken to be greater thdfy outside the range of the wave function and see how it is modified when the perturb-
nuclear potentialr,, it will prevent the initial state] ) ing Hamiltonian5H is added. The one-body overlap func-
from decaying. At the same time, we want the perturbingtion for the exact scattering state is given [48-15,11
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Ec;’)(r):f dr’dr{(®,_q|a(r)

1
X H+HQFmQFH

xal(r)|@a-)Mr",r') (') (24

:J dr'H(r,r")é(r’), (25)
where  Pe=[drdr'a’(r)|®_)Mr,r’) " Xd_4la(r’),
Qr=1-Pg, and the norm operator isA(r,r’)
=(Dp_q]a(r)a’(r')|®a_,). Since SHQr=Qr6H=0, it
follows that ¢o(r) satisfies the equation

E¢o<r>=f dr TR ) A M V() Tdo(r). (26)

Note the explicit asymmetry of this Hamiltonian. Even in t

absence of inelastic processes it is not Hermitian. An analo?

PHYSICAL REVIEW @8, 024314 (2003

PF:J drfa(r)+a’(r)]|®a_1}(Pa_sl[a(r)+a’(r)],
(31)
for which Eq.(26) reduces to the Dyson equation of many-
body theory. For time reversal invariant states, the associated

norm operator reduces to the unity operator. Repeating the
derivation with this new projection operator, we obtain

E¢>o<r>=f dr [H(Far )+ S V() o), (32)

E¢E(r>=f Ar [Ha(r T )+ 81T Wogt ) Te(r),
33

where H,(r,r') is the mass operator that occurs in the

he particle-hole Green's functiofill]. In general, there is no

simple relation bet\Neeh{M(r r andH(r r'). The equa-

gous potential ina emission has been strongly criticized tions for ¢(r) and ¢(r) are now formally the same. At this
[16,17 in the study ofa emission. Two methods of address- Point, we would expect the widths calculated with these

ing the problem were discussed in REf1]. The first is to
define a new amplitudes(r)=fdr’ A(r,r’) " 2¢(r’) and
take

= —f drdr’dr"a’(r)|®,_4)

XMr,r’)_1/2\7(r')/\/(|",r”)_1/2<<I>A_1|a(r”).

(27)

The equation forg(r) is then
Edo(r)= | Or THnr)+ 800 W) Tdo(r), (28)
whereH(r,r') is given in Ref[11] as

ﬁ(r,r/): f drr/dr///j\/(r,rlr)—1/2H(rlr’r///)'/\/'(r///,r/)1/2.
(29)

A similar development holds fothg(r) and we obtain the
corresponding equation

EXEm:Jdr'[77<r,r'>+5(r.r'>Voo(r'>]$E(r'>. (30

The equations we find fapo(r) and¢g(r) are quite remark-

able. As previously noted, we have reduced the many-bod
problem to an effective one-body equation in which all

many-body effects are contained?i“_t(r,r’). The perturbing

potential is taken to be local in both cases. This is not really

functions to be numerically similar. The only difference in
the two treatments is the form ®f(r) andVq(r). When the
argument leading to the justification of perturbation theory is
correct we expect both approaches to work equally well.

Note also that, in general, botH,, and H are complex,
since they involve optical potentials containing imaginary
(absorptive pieces.

The argument for E(23) can be restated using the one-
body functions defined above. The resonant state, which is
the solution of the exact Schimger-like equation

0dOU(r)=[dr"H(r,r')pg"«r’), grows exponentially as
we go into the classical forbidden region under the Coulomb
barrier from the outside and the wave function is exponen-
tially large in the interior. On the other han@g(r) coming
from |{g), the solution of the many body-state defined with
the HamiltonianQHQ, is exponentially suppressed due to
the orthogonality of #4p) and|{g). If the suppression is large
(i.e., the state under consideration is narrothe precise
form of | £g) in the interior is not important as it is essentially
zero. The approximate form dfiyy is chosen so that the
approximatd {g) is also zero in the interior. As we will see
later, we do not neef{g) in the interior but only outside at
some radiust g.

VI. TWO EXPRESSIONS FOR THE WIDTH

The decay width is given in terms of the imaginary part of
91e pole location in Eq(22). We find

2

FowZW‘ f dr 3 (V(r) e (1) (34)

an additional approximation, since the justifications given

previously still hold.

Another way of getting a symmetric form for the addi-
tional potential is by using a projection operator given in

Ref.[11],

or

2

r0~2w“ dr g (NV(r) e (1) (35)
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depending on whether we use the amplitudes with an overbar
or the standard overlap functions. As discussed below, we
expect the approximations leading to the two equations to be
valid simultaneously, so that the resulting two expressions
for the width will agree. We stress again that the reduction to
an effective one-body problem is not an approximation but
emerges rather naturally from the formalism. In a pure one-

body problem,¢q(r) and Eo(r) would be normalized to
unity whereas here they are normalized to the fact(®s

and \/§ respectively. The normalization factors contain the
many-body aspects of the problem. For the standard overlap

function ¢q(r), this normalization is the well-known spec- | N — i
troscopic factor(see also Ref[11]). It is useful to define Ilneis) and of the auxiliary Iglnctlona‘) (dashe(_j linesfor the Iow_est
3/2~ and 3/2 states of 'F, calculated via the self-consistent

normalized one-body function@(r) and ¢o(r) via ¢o(r) Green's function method. For the 3/2state, both functions are
=Syo(r) and Eo(r): \/§¢o(r) (i.e., fdr|€bo(r)|2 nearly identical, and a phenomenological wave function, with a

_ - o . - normalization chosen to be close to that of the microscopic wave
=[dr|¢(r)o|*=1). The wave funCt'ong’Eo(r) and ¢Eo(r) functions, is shown for comparisqdash-dotted ling

describe scattering states and are normalized asymptotically

at larger. If we assume the one-body HamiltoniaHsandH —#2

to be local(more will be said about this laterwe can take Hp(r,r')= VWV+VM(r) o(r,r'). (40

over verbatim the development given in R€f5,8,9. The k

only difference between the treatment presented there ang this equation,,, is correctly evaluated at the enerfy

the approach shown here is the presence of the fa8prs of the scattered state, therefarg(r) accounts for the sole

(for the standard overlap functionand S, (for the function  spatial nonlocality and differs from the usual definition of

with an overbar. To make the dependence on these normaleffective massn* (r) [19,20. When Eq.(40) holds, the in-

ization factors explicit we rewrite the last equations as tegral, Eq.(39), can be simplified through integration by
parts and, for spherically symmetric potentislig), V ,(r),

(36) and effective masm(r), one obtains

41/2]

or, @r [fm

FIG. 1. Radial part of the one-body overlap functiopagsolid

2

Fo~2wso‘ f dr ¢ (V(r) e (1)

ﬁZ
and I= mﬁ’fo(ro) ¢r,EO(r0)_ ¢rEO(rO)¢,:O(rO)]
_ - _ 2 (41)
1ﬂo~27'FSoH drepg (NV(r) e (r)] (37)
72 — — — —
To further understand the results, we peruse one particular 225—“ ) [670(ro) dre (ro) = drey(fo) ' To(ro) ],
line of development. As previously noted, we takg) to be Ko (42)

zero inside the nucleu/(r)=0 for r<ry. Forr=r,, we
havefdr'H y(r.r') ¢e(r') =E¢e(r), sinceVoy(r) vanishes  where the wave functions are assumed to factorize)@3
for larger. For definiteness, we follow RefE3,9] and take =[¢,(r)/r1YT(6,¢) and YT(6,¢) are spherical harmonic

ro to the maximum of the potential. For the example of fluo-fynctions of the angular variable® ¢. The prime denotes
rine discussed below, this corresponds to about 5 fm. Thuge derivation with respect to the radial coordinate

we write the integral in Eq(34) as In deriving these last two equations we made an addi-
tional approximation, namely that the potentials are local in
| = f dré(r— ro)d”S(F)V(f)(on(r) (39 the vicinity of r [or at least the nonlocality is restricted to an
effective masany(r)]. The two equations will be simulta-

neously valid only if the norm operator is local, i.e.,

:f drdr’ 6(r—rg) s (N{Hp(r.r") /l/(r,r’)=J\/(r)5(r—r’), in the vicinity of ry. In this case,
my(ro)/my(ro) =N(rp) and the two equations are identical.
+[— Eo+V(r)]5(r,f’)}¢Eo(r), (39 Sincer is in the tail of the density distribution, one expects

the norm operator to be unity in its vicinity, which means
with a similar equation holding for the quantity with an over- that the two expressions for the width should give the same
bar. Naively one might expect this to vanish and indeed itesult for realistic models. This is verified numerically in Fig.
would if the step functioré were not there. In the following, 1, where the functiong,(r) (solid lineg and ¢,(r) (dashed
we shall consider the case in which the nonlocality inlines) are displayed for the 372and 3/2° decaying states of
H(r,r'") is small enough to be properly described by al’F at respective excitation energies of 4.64 and 5.00 MeV
local potential and an effective masg(r). In this case, one (the proton threshold is at 0.60 Me¢VThe functions are
has[18] calculated with the self-consistent Green’s function method
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case, since the 3/2state is wide [',=1.5 MeV); for nar-
row states, the harmonic oscillator approximation could be
sufficient, a possibility which will be explored elsewhere.
Let us finally stress that the phenomenological mean field
potential of Ref[24] does not reproduce the 3/Xtate be-
cause its structure, unlike that of the 3/3tate, is not well
approximated by an'®O core plus a proton, but is rather
predominantly a two-particle—one-hole stf22].
10 Equations(36) and(37) indicate that there may be a seri-
ous problem in extracting spectroscopic factors from mea-
sured decay widths. The standard method for determining a
FIG. 2. Effective (interaction + centrifuga) potentials corre-  spectroscopic factor involves dividing an experimental width
sponding to the wave functions of Fig. 1. The 3/gotentials have by a single-particle width calculated with a phenomenologi-
an{=1 centrifugal term and a singularity around 3—4 fm; the'3/2 cal model. However, it is not clear priori whether the phe-

potentials have afi=2 centrifugal term and are regular. The dash- nomenological wave functions are good approximations to
dotted line indicates the potential corresponding to the phenomenas

logical 3/2° wave function. do(r) and ¢e(r), or to ¢o(r) and EE(r); hence, it is not
obvious whether dividing the experimental width by the re-

of Refs.[21-23. The 3/2" state is well explained by the sult of a single-particle calculation provides the spectro-

nuclear mean field approach and provides a typical examplgcopic factorS, or the normalizationS, of the auxiliary

of a strong state, for whicsy~Sy. The 3/2 state, on the function ¢(r) (or the norm of yet another one-body func-
other hand, is a typical example of a weak state for whicttion). Normally, one assumes in proton-emission studies that

Ref.[23] givesSy;~0.04 andSy~0.14. It is worth to empha-  ¢o(r) and ¢g(r) can be equated with the wave functions
size the difference between these two cases. For strongbtained from phenomenological potentiglsee, for ex-
states, the quenching of the spectroscopic factor is due tample, Ref[7]). On the other hand, in the context of some
both short-range correlations and the coupling to other exci
tations of the systeni22]. Nevertheless, they maintain a
strong single-particle structure and the orbital occupancy i ) .
of thegordegr ofpunity. Weak states, instead, have a mgre C)(/J 16,17 . If the latter is true then the experiments would be
plicated structure and can be seen as collective excitations gignsitive t0S, rather than toSy. For strong states, with a
their own rather than having a single-particle character. As &lear core-plus-particle structure, this is mainly a philosophi-
consequence, the one-body spectroscopic factor can be opal issue, sinc&y,~ S, holds. For weak states, howevé&,
order of magnitude smaller or less. In this case, the functiongng's, can be significantly different from each other.

¢(r) and ¢(r) sample the one-body substructure in a differ- We have attempted to resolve the ambiguity outlined
ent way, whence the difference in their normalizations withabove by calculating the effective local potentials corre-

Sy larger thanS, [11]. For %0+ p, the nuclear interaction sponding tog(r) and¢(r) and comparing them with typical
becomes negligible beyond 5 fm typically and Fig. 1 showsphenomenological potentials. This is done by inversion of
that ¢(r) and ¢(r) are equal beyond this radius, which the local(radia) Schralinger equation:

means that the norm operator is unity. In principle, there is

no problem calculating the width from a microscopic model: h? ¢f(r)

JR— = +_
one may define two different functiong(r) and ¢(r), Ver(r)=E

2m ¢, (1)’

which have two different normalization factogtS and \/§ . . ) )
respectively, but the estimate for the width will be the same/Vhere the effective potentiadde(r) is the sum of the inter-
with both of them. In fact, a similar formula would be valid @ction potential(nuclear + Coulomb and the centrifugal
for any amplitude of the formp*(r)=fdr’ A(r,r') ¢ (r') term. The .effectlve_ potentials corrgqundlng to the radial
for arbitrary v, sinceA{r,r') is unity aroundr . wave functions of Flg_. 1 are shown in Fig. 2. For the strpng

Let us emphasize that for the actual calculation of the3/2" state ¢ =2 centrifugal ter the three potentials are in
width by the above formulas, a microscopic model based ofi¢2Sonable agreement, except above 4 fm where the potential
the harmonic oscillator basis, as in R42,23, may not be extracted from the microscopic functions gsymptotlcally ap-
the best choice, since the wave function is not expected to B¥oaches the harmonic oscillator potential that generated
very precise in the vicinity of,. This is demonstrated in them. For the weak 3/2state ¢ =1 centrifugal terny the
Fig. 1, where the 3/2 resonant wave function of the phe- potentials deduced fromt(r) and¢(r) display a singularity
nomenological mean field Woods-Saxon potential of Refand are very different from traditional phenomenological po-
[24] is shown for comparison. The agreement with the mi-tentials. This singularity occurs because the zeroggf)
croscopic wave function is good in the interior but deterio-and ¢;(r) occur at different radii. This is probably not an
rates above 4 fnfwhere the approximation of the potential artifact of the model but a real effect and arises from the
by a harmonic oscillator breaks down, see Fig.The dif-  relative sign of the 0 and72w contributions to the spectro-
ference between both models is particularly large in thisscopic amplitude. Let us remark that E@3) assumes a

50

Verr [MeV]
(@]

-50

-100

émisiion studies it has been argued very strongly%@:)
nd ¢¢(r) correspond to phenomenological wave functions

(43
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constant effective mass,(r)=m. We have checked that h2k,

introducing a realistic effective mass does not lead to a sim- Lo~ 7|¢ro(fo)/G(kofo)|2- (45
pler potential for the weak state; more will be said about this

elsewhere. Let us finally emphasize that, though their enerfhis can be simplified further. The wave functigny(r) is
gies are close to one another, the strong and weak state®rmalized to the appropriate spectroscopic faGgr We
correspond to very different potentials, which suggests that aan also consider the true scattering wave function at reso-
strong energy dependence is a necessary feature for sunance,¢!sS(r). In the interior, it will behave likeg,q(r)
potentials(see the discussion in the following sectiotn  while in the exterior region it will behave lik&(kor). Nor-
conclusion, this example shows that constructing reliablenalizing it to G(kgr) in the exterior region, we obtain the
phenomenological local potentials for extracting spectrofollowing for the width:

scopic factors from experimental cross sections is nontrivial.

Moreover, since the characteristics of the potential depend I~ Sofvg (46)
strongly on the state, it is difficult to determine which nor- O e 12
malization &, or Sp) would be extracted from a comparison fo drlro(r)]

with the experimental data.
where vo=7ky/m is the asymptotic velocity. The exact
value of the upper limit on the integral is not crucial and we

VII. ALTERNATIVE EXPRESSIONS FOR THE WIDTH take it to be the outer turning poisee numerical justifica-

tion below).

Let us now return to the expression for the decay width Equation(46) can also be derived in a more transparent
and establish a link with known results. In Reff§,8,9], the  way (see also Refd.25,26). Consider the Schainger-like
spatial derivatives were evaluated using a special form foequation[H(E)—E]¢(r,E)=0 for the overlap function.
V(r) andVy(r). In those references, these auxiliary poten-Since the effective one-body equation we have been consid-
tials were chosen such that the total potentialdeg(r) was  ering can depend on the energy, we keep an explicit energy
constant outside a given radius and the onegﬁg_ro(r) was dependence in the Hamiltonian. Differentiating this equation

constant inside. In Ref$8,9], the separation radius is at the with respect tcE, we find

maximum of the potential barrier, whereas in R, the Jb(r,E) JH(E)

advantage of using a radius of the order of the nuclear range [H(E)— E]a—E'= 1- E ¢(r,E). 47
(ourrg) is pointed out. For this last case, the width is then

given by Next we multiply by ¢* (r,E) and integrate up to some ra-

diusr,. SinceH(E) is, in general, complex and not Hermit-
5 ian, ¢* (r,E) should be replaced by the time reversed state.
| bro(ro) dre (o)l (44) If the potential is local in the vicinity of,, we can integrate
roL07%rEot T 071 by parts on the left-hand side. Assuming spherical symmetry,
this gives us

2

F0”2”[2mk<ro)

2

a(ﬁ;(n,E) a¢,(r|,E)

Wherea=\/2mk(ro)[V(I‘o)—E0]/ﬁ2. d);’k(rluE) °E _d)r‘rk(rl,E)

An alternative approach is to exploit the Wronskian form  2m(r) JE
of Eqgs. (41) or (42). If V(r) is zero for radii less than the . H.(E)
outer turning point an&qo(r) zero for radii greater than the :J dropf (r,E)|1— — }(ﬁr(r,E), (48)
inner turning point, then there is a region whefg(r) and 0 JE

,¢'E0(r) satisfy the siame- differential equauon..lf the pc_)tem'alwhere the prime denotes a partial derivative with respect to
is local, the Wronskian is a constant. Assuming a thick baryp H,(E) is the radial Hamiltonian. If we take, to be
rier, there will be a region wheré,o(r) is an irregular Cou-  gyside the range of nuclear forag,(r,E) can be written as
lomb function, the regular Coulomb function having decayed

away, and WheraﬁrEO(r) is a regular Coulomb function, ¢, (r,E) =~ cosS(E)F(kr)+sinS(E)G(kr). (49

the irregular Coulomb function having decayed away. =ro

All that is required is to Qetermine the' proportionality ¢ 4 narrow resonance the phase sW(E) will be rapidly
constgnts. These have a simple expression for a consta%rymg, so we expect that the largest part of the energy
effective massm(r)=m: for ¢ (r) we have ¢ (r)  dependence will come from the phase shift and not from the
=\2m/%%komF (kor), with ko=\2mE,/A2, while for  Coulomb functions. The energy dependence of the Coulomb
¢.o(r) the proportionality constant can be written asfunctions will be minimized if the radius is chosen to be near
bro(ro)/G(korg). Here,F(kor) andG(kqr) are the regular the outside turning point. For example, for largehe regular
and irregular Coulomb functions, respectively, the Wronsk-Coulomb function will have a sik¢) dependence. Differen-
ian of which equals—k,. The resulting width is then, as in tiating with respect t&E will give r(dk/dE)coskr), which

Ref. [5], diverges for large. Asr decreases to the turning point, this
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asymptotic form for the wave function breaks down. How-as well as under a general transformation with an arbitrary
ever, a similar argument using exponentials holds inside theower of A{r,r’). All that matters is thatH (E) and
turning points. Thus near the outside turning point we haveg,(r,E) are consistent with one another. These wave func-
tions are phase equivalent and any of them can be used.
dg(r,.E) do(E)
~ [—sind(E)F(kr)+coss(E)G(kr)].

JE dE
(50) VIIl. DISCUSSION

We have embedded the elegant Gurvitz-Kalbermann ap-

We have checked this relation numerically for Woods-Saxon roach of proton emissidi®.8,9] into a full many-body pic-

plus Coulomb potentials and verified that for the widths les ure. We have reduced the formalism to an effective one-

then 15 KeV the error does not exceed 3%. That the radiu )

; ; ody problem and demonstrated that the decay width can be
should be chosen near the outer turning point was also corn- ; : L
i ; ; . . expressed in terms of a one-body matrix element multiplied
firmed numerically. The Wronskian relation can now be writ-

ten as by a normalization factor. At first sight, this result agrees
with the standard procedure for extracting spectroscopic fac-
72 do(E) o oM, (E) ':)ors frorl‘n rreasur_emer_]ts v_ia divi_ding an experimental width
_ _%J' drg* (r,E)|1— &,(r,E), y a calculated single-particle wid{see, for example, Ref.
2my(ry) dE 0 JE [7]). The present work, however, clearly demonstrates that
(51)  this procedure for determining spectroscopic factors is only
] . ~valid if the phenomenological potential used to generate the
where we have taken=r to be the outside turning point single-particle width corresponds to the potentiatin, [see
radius. ~ E0gs.(32 and(33)]. It is nota priori clear that this is actually
At the resonant energy, we expect the energy variation ofhe case. In fact, the authors of Ref6,17 (and prior to
the phase shift to be a maximum so that the resonance energyai the authors of Ref28]) have argued strongly that the

r . -
oceurs when/qdr 7 (r,E)[1-dH (E)/dE](r,E) is a phenomenological potential approximates the potentigin
maximum. At the resonance energy(Ey)/dE=2/T"y, and  [see Eq.(29)]. While the studies of Ref§16,17 were car-

we have ried out for @ decay, the arguments given there can be car-
ried over to a description of the proton emission process.
Iy~ hvg (52) Furthermore, Eg. (52) suggests that fg‘drdﬁ‘(r)[l
oo, dH,(Eg) ' —JdH,(E)/9E],(r) is the appropriate observable that can
o dréy (r.Bo)| 1— ——=—| #:(1.Eo) be extracted from proton-emission experiments.

Besides the ambiguity regarding whether the standard
spectroscopic factor or an auxiliary normalization is ex-
fracted from the experimental procedure, it has been demon-
strated that constructing a reliable phenomenological poten-
tial is nontrivial. The situation is quite complicated, since the

% interaction with the nuclear medium strongly depends on the
SO=UO dr¢?‘(r)¢r(r)}/

where nowv g=7ky/m is the asymptotic value of the veloc-
ity. For bound states, the spectroscopic factor can be writte
as

initial state of the ejected proton. For states with a clear

core-plus-particle structuré.e., with a large spectroscopic
facton, traditional phenomenological potentials seem to pro-
[fwdr¢*(r)[l_ﬁHr(E) é (r)] vide good approximations to the nuclear mean field and
0 r JE r spectroscopic factors can be determined from proton-
emission studies. In this case, the spectroscopic factor ex-

(see Ref[27]), which does not depend on the specific nor-tracted from the experiment can be gafely compared to the
malization of the overlap functiog(r). By extending this results of nuclear many-body calculatiomote also that for

relation to define the spectroscopic factor for resonant statefgrge Sy values,S, and§0 are approximately equall] and

we recover Eq(46). the distinction between the two approaches discussed here
We finally note that expressiaf®2) of the width is inde- becomes irrelevajt
pendent of the choice af,(r,E) or ¢,(r,E). Its denomina- For weak states, which have a more compl|ca§ed many-
tor can be rewritten as body structure, standard phenomenological potentials do not
give a proper approximation to the nuclear medium, as

r J shown by the radial shape of the 3/2tates in Fig. 2. Also,
DZJ df(!)f(r,E)[(?—E[E—Hr(E)]]¢r(f-E)- (63)  as discussed in Refll], the dependence of the spectro-

0 scopic factor on the energy derivative of the effective one-
) ] ] — body Hamiltonian implies that the nuclear medium must be
The amplitudes with an overbar are defined #&,E)  strongly energy dependent. This feature, which is missing in
=JdrA(r,r’") "?¢(r,E) and a corresponding expression most phenomenological optical potentials, is also confirmed
for the Hamiltonian is H(E)=NYJH(E)—EJNY2+E. by the numerical results displayed in Fig. 2. Thus for weak
Thus the denominator is invariant under this transformationstates, simple potential models are probably not valid for
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