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Many-body approach to proton emission and the role of spectroscopic factors
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The process of proton emission from nuclei is studied by utilizing the two-potential approach of Gurvitz and
Kalbermann in the context of the full many-body problem. A time-dependent approach is used for calculating
the decay width. Starting from an initial many-body quasistationary state, we employ the Feshbach projection
operator approach and reduce the formalism to an effective one-body problem. We show that the decay width
can be expressed in terms of a one-body matrix element multiplied by a normalization factor. We demonstrate
that the traditional interpretation of this normalization as the square root of a spectroscopic factor is only valid
for one particular choice of projection operator. This causes no problem for the calculation of the decay width
in a consistent microscopic approach, but it leads to ambiguities in the interpretation of experimental results. In
particular, spectroscopic factors extracted from a comparison of the measured decay width with a calculated
single-particle width may be affected.
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I. INTRODUCTION

One of the classic problems in quantum mechanics is
of tunneling through a classically forbidden region or, mo
specifically, the decay of a quasistationary state to the c
tinuum. In nuclear physics, this manifests itself in the p
cesses ofa decay in heavy nuclei and proton emission
proton drip-line nuclei. Of particular current interest are t
lifetimes of proton emitters, especially in the lighter regi
of the nuclear chart, and the implications of this in nucle
astrophysics.

Over the years, a number of different theoretical a
proaches have been used to describe the decay proce
nuclear physics, either by means of perturbation theory
decaying states or by time reverse study of resonance s
via scattering theory@1–6#. Some authors solve the time
dependent problem while others use a stationary picture
make use of approximation methods such as the distor
wave Born approximation or the semi-classical Wentz
Kramers-Brillouin approach to evaluate the width@7#. Other
more accurate methods, such asR-matrix theory, are some
times very sensitive to the channel radius giving drama
variation in the calculated widths@1–4#. The method of Gur-
vitz and Kalbermann@5,8,9#, also known as the two-potentia
approach~TPA! @6,7#, is based on splitting the barrier pote
tial into interior and exterior components. The inner poten
binds the particle, which can then be described by a bo
eigenstate of the relative Hamiltonian, while the outer pot
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tial acts as a perturbation that converts it into a quasistat
ary state~a wave packet!, which can decay.

An important shortcoming of all the above approach
however, and in common with the descriptions of so ma
nuclear processes, is the approximate treatment of the m
body structure effects. In most descriptions of the proto
emission process, the initialA-body wave function is written
as a product of an~A21!-body wave function, describing th
daughter nucleus, and the proton’s single-particle wave fu
tion. The decay width is then written in the form of a singl
particle width multiplied by a spectroscopic factor, whic
contains the many-body information of the system. This p
cedure, however, makes various assumptions about the
tionship between the many-body problem and the effec
one-body problem that have to be tested. In this work,
consider the TPA of Gurvitz and Kalbermann and extend i
properly account for the many-body correlations.

The standard reduction from a many-body problem to
effective one-body picture has been revisited in a rec
study of radiative proton capture@10#. The work focused on
one-body overlap functions and their associated equation
motion. The one-body overlap functions are obtained by
tegrating the product of the wave functions for anA-body
system and its~A21!-body subsystem over the coordinat
of the latter. While the overlap functions are unambiguou
defined, it was demonstrated in Ref.@11# that useful ‘‘auxil-
iary’’ one-body functions can be defined in several differe
ways. Naturally, the associated equations of motion differ
the three approaches considered in Ref.@11#. In the current
work, we derive expressions for the proton decay width
ing two of the three approaches mentioned. The resul
decay widths have formally the same structure in both
proaches, but the overall normalization factors differ. On
one of these normalization factors can be interpreted as
square root of a spectroscopic factor. This has conseque
for the interpretation of experimental results and in particu
for the determination of spectroscopic factors from dec
widths.
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©2003 The American Physical Society14-1



te
ng
s
d
g
n
in
m
i
is

of

ur
fo

d
i

th
ta
-

ed

he

vi
r

la
n
o

th
th

ion
tial
ns

ted
ght
ider

-
e

t to

f
he
n.
of

s
e
lly
his
k of
cts.
ed
for
opic
y
an

on
r
e

JIM AL-KHALILI et al. PHYSICAL REVIEW C 68, 024314 ~2003!
We start, in Sec. II, with the time-dependent Schro¨dinger
equation and follow the standard theory of decaying sta
@12#. This method is briefly compared with the scatteri
approach to decay problems. In Secs. III and IV, we u
projection operator techniques and perturbation theory to
rive an expression for the decay width in terms of the ima
nary part of the pole in the Green’s function matrix eleme
In Sec. V, we describe the two alternative routes for reduc
the many-body problem to an effective one-body proble
We compare the resulting two expressions for the width
Sec. VI. An alternative expression for the decay width
given in Sec. VII, which shows more clearly the relation
the width to the spectroscopic factor.

II. PROTON-EMISSION FORMALISM

In this section, we begin to recast the formalism of G
vitz and Kalbermann in a form which is more convenient
our purposes. The approach of Refs.@8,9# starts with a
square-integrable wave functionuc0&, which corresponds to
the quasibound nucleus whose decay we are intereste
The initial wave function is close to the resonance state
the nuclear interior but decays rather than oscillates in
exterior region. This wave function cannot be an eigens
of the full Hamiltonian or it would have a trivial time depen
dence and no decay would take place. Takinguc0& as the
wave function att50, we follow its time evolution using the
time-dependent Schro¨dinger equation:

i\
]

]t
uc~ t !&5Huc~ t !&. ~1!

This initial value problem is solved by using the one-sid
Fourier transform~sometimes called a Laplace transform!.
We obtain

2 i\uc0&1Euc̃~E!&5Huc̃~E!&, ~2!

whereuc̃(E)&5*0
`dt ei (E1 i e)t/\uc(t)& ande is a positive in-

finitesimal real number. Solving foruc̃(E)&, we have

uc̃~E!&5
i\

E2H1 i e
uc0&. ~3!

The probability amplitude for the nucleus remaining in t
initial state after a timet is given by

^c0uc~ t !&5
i

2pE2`

`

dEe2 iEt/\^c0u
1

E2H1 i e
uc0&, ~4!

which is obtained by taking the matrix element of the pre
ous equation witĥc0u and carrying out the inverse Fourie
transform. This is the Fourier transform of one particu
matrix element of the many-body Green’s function. In ge
eral, the Lehmann representation of the latter contains c
tributions from many poles. However, the overlap^c0uc(t)&
takes a simple form if the right-hand side of Eq.~4! is domi-
nated by the contribution of only one pole. In this case,
decay rate can be extracted from the imaginary part of
02431
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pole location and we obtain a simple exponential funct
which describes the decay of the initial state. Thus the ini
state uc0& should be chosen to minimize the contributio
from other poles.

The same result can be found by considering the rela
scattering problem. A quasibound state can also be thou
of as a resonance in the scattering amplitude. We cons
scattering of a proton off the (A21)-body system and we
define at matrix T through the equation

Ta†~k!ucA21&5VucA&, ~5!

wherea†(k) is the creation operator for a particle with mo
mentum k5A2mE/\2 and m is the reduced mass of th
system. By standard techniques, it can be shown that

T5V1VG0T ~6!

5V1VGV, ~7!

whereG051/(E2H01 i e), G51/(E2H1 i e), andH0 de-
scribes the free motion of the ejected particle with respec
the final state of the (A21)-body system, i.e.,
H0a†(k)ucA21&5Ea†(k)ucA21& and H5H01V. We ob-
serve that the poles of thet matrix are given by the poles o
V and G. AssumingV has no nearby pole, we see that t
poles ofT are just those of the many-body Green’s functio
The width of the state is then given by the imaginary part
the pole location as in the previous case.

In principle, the potentialV is the sum of the interaction
of the Ath particle with each of the particles in th
(A21)-body system. In nuclear physics, this is genera
approximated by a nucleon-nucleus optical potential. T
approach, however, has the disadvantage of losing trac
the Pauli exchange correlations and other many-body effe
For bound states, one of the principal effects is includ
through the use of the spectroscopic factor. However,
scattering states there is, strictly speaking, no spectrosc
factor. Using Eq.~4! as the starting point, we can formall
take the many-body effects into account while deriving
effective one-body equation.

III. PROJECTION OPERATOR FORMALISM

The main ingredient of Eq.~4! is the matrix element of
the Green’s function,M5^c0u1/(E2H1 i e)uc0&. Its ex-
pression can be simplified as done in Ref.@11# by using
the projection operator formalism. We define a projecti
operator P5uc0&^c0u and the complementary operato
Q512P. The equation for the Green’s function can b
written as

~E2H !
1

E2H1 i e
5~E2H !G51. ~8!

Acting on the left byP or Q and on the right byP we get the
two equations

P~E2H !~P1Q!GP5P,

Q~E2H !~P1Q!GP50. ~9!
4-2
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Solving the second equation forQGP and substituting this
into the first equation, we have

S E2PHP2PHQ
1

E2QHQ1 i e
QHPD PGP5P.

~10!

Taking the matrix element of this equation withuc0& and
using the explicit form forP, we find

FE2^c0uS H1HQ
1

E2QHQ1 i e
QHD uc0&G^c0uGuc0&51.

~11!

Since the left-hand side of this equation is a product of t
terms, the poles of̂c0uGuc0& must coincide with the zero
of the multiplying factor. Thus the poles of the Green’s fun
tion are given by

E5^c0uS H1HQ
1

E2QHQ1 i e
QHD uc0&, ~12!

or, if we use a spectral representation of 1/(E2QHQ
1 i e), by

E5^c0uHuc0&1E
2`

`

dE8
u^c0uHQuzE8&u

2

E2E81 i e
, ~13!

whereuzE8& is the solution of the equation

EuzE&5QHQuzE&, ~14!

normalized according tôzE8 uzE&5d(E82E). Note thatuc0&
is also an eigenstate ofQHQ, but with energyE50. This
state is excluded from the sum~integral! in Eq. ~13! by the
projection operator. In fact, the only role ofQ in this equa-
tion is to exclude the discrete stateuc0&. The residueR of the
pole of ^c0uGuc0& is given by

R5F12
d

dE
^c0uHQ

1

E2QHQ1 i e
QHuc0&G21

. ~15!

This follows from a Taylor series expansion of Eq.~11! in E.
For the present problemR is close to 1, since we will choos
uc0& to be an eigenvalue ofH inside the nucleus and differ
ent from an eigenstate only in a region where the wave fu
tion is exponentially damped. Whereuc0& is an eigenstate
^c0uHQ is zero, so the contribution from the second te
will be exponentially small.

More insight into Eq. ~12! can be obtained by an
alternative derivation. Consider the equationE
5^c0uHucE&/^c0ucE&, where ucE& is an eigenstate of the
full Hamiltonian H. The wave function can be written a
ucE&5(P1Q)ucE&. Following the standard Feshbach pr
jection operator technique, we can writeQucE&5Q@1/(E
2QHQ1 i e)#QHPucE&. Using the explicit form of the pro-
jection operatorP5uc0&^c0u yields Eq.~12! immediately.
02431
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IV. PERTURBATIVE APPROXIMATION

In general, Eq.~12! is highly nonlinear and has man
solutions. Every solution of this equation will give a pole
the Green’s function, however, not every pole of the Gree
function will necessarily be found by using this equation. F
example, if uc0& has a definite angular momentum, on
poles with that angular momentum can be found with t
particular choice ofuc0&.

For the problem at hand, namely proton emission, we
not interested in the full complexity of the Green’s functio
To obtain the decay width, only the imaginary part of t
pole location of the nearby pole is relevant. We define
Hermitian HamiltonianH0 such thatH0uc0&5E0uc0& with
H5H01dH. Expanding the right-hand side of Eq.~12!
aboutE0 and neglecting terms of the order of (E2E0)2, we
obtain

E2E0

'^c0udHuc0&1^c0uHQ
1

E02QHQ1 i e
QHuc0&

1~E2E0!F d

dE
^c0uHQ

1

E2QHQ1 i e
QHuc0&G

E5E0

~16!

'RS ^c0udHuc0&1^c0uHQ
1

E02QHQ1 i e
QHuc0& D ,

~17!

where the last line has been obtained by solving forE
2E0) in the first equation. This expression for the ener
Eq. ~17!, contains a factor ofR, the residue of the pole o
^c0uGuc0&. Note that ^c0uHQ5^c0udHQ implies that
R21 is of the order ofdH2. Since it multiplies a factor of
the order ofdH, it will introduce terms of order higher than
(E2E0)2'dH2 and therefore it can be neglected. In th
following, we thus takeR51, which is the same as neglec
ing the third term in Eq.~16!.

Let us emphasize thatE0 is real, since it is an eigenvalu
of the Hermitian operatorH0. The pole location, on the othe
hand, occurs at a complex energy. If the width of the stat
large, for any reason not just proton emission, thenE'E0
does not hold~sinceE0 is real and the pole location has
large imaginary part! and the approximation fails. Howeve
when the width is narrow then it will be possible to choo
uc0& or equivalently H0 such that perturbation theory i
applicable.

The equation for the energy is now linear inE and has the
form typical of perturbation theory. The explicit connectio
with perturbation theory can be made when the unpertur
Hamiltonian is taken to beH005H01QdHQ, and notH0 as
one might have expected. This definition is not only nec
sary in order to cast Eq.~13! into the form of a perturbation
expansion but at the same time eliminates the problem
noncompactness@8,9#. The noncompactness arises sinceH0
is chosen in such a manner that it does not go to zero
infinity. However, bothH andH00 go to zero at infinity.
4-3
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The statesuzE& occurring in the integral in Eq.~13! are
eigenstates ofH00, as is uc0&. In contrast to Eq.~14!, the
stateuc0& now occurs with energyE0 rather than 0. We can
also rewrite ^c0uHQuzE8& as ^c0u(H2H0)QuzE8& or
^c0u(H2H00)QuzE8&, since^c0u is an eigenstate of bothH0
and H00 or, equivalently, sinceQ commutes with bothH0
and H00. Using the previously defineddH5H2H0, Eq.
~13! can be rewritten as

E'E01^c0udHuc0&1E
2`

`

dE8
u^c0udHQuzE8&u

2

E02E81 i e
~18!

'E01^c0udH8uc0&1E
2`

`

dE8
u^c0udH8QuzE8&u

2

E02E81 i e
,

~19!

where

dH85H2H005PdH1dHP2PdHP. ~20!

Equation~18! for E is not in the form of perturbation theory
sinceuzE& is an eigenfunction ofH00 and notH0. However,
Eq. ~19! is. The only approximation made in deriving Eq
~18! and ~19! was the replacement ofE in the denominator
on the right-hand side byE0, i.e., we assumed that perturb
tion theory is valid.

We emphasize that neitheruc0& nor uzE& is an eigenstate
of the full HamiltonianH and our derivation depends cru
cially on this point. Instead,uc0& is an eigenstate ofH0 and
H00 while uzE& is an eigenstate ofQHQ andH00. The fact
that both wave functions are eigenstates ofH00 allows us to
interpret the right-hand side of Eq.~19! as the first few terms
of a perturbative expansion.

V. CHOICE OF H 0

The proper choice ofH0 was discussed in a very convinc
ing and direct way by Gurvitz and Kalbermann@8,9# for the
problem of a single particle in a local potential well. Th
reader is referred to those papers for specific details.
basic idea is to take anH0 such that at infinity the potentia
goes to a finite value, larger thanE0, rather than to zero. This
causes the state under consideration to be bound, but i
decay width is small this new state should be very close
the scattering state. We now generalize this concept to
case ofA interacting particles.

We consider the case where there is one open chan
Asymptotically, the wave function describes a free prot
and the bound (A21)-body system. Thus we take

dH52E dra†~r !uFA21&V~r !^FA21ua~r !, ~21!

where uFA21& is the ground state of the (A21)-body sys-
tem, r is the relative coordinate of the proton and theA
21)-body system. The integral covers the whole space
V(r ) is taken to be greater thanE0 outside the range of the
nuclear potential,r 0, it will prevent the initial stateuc0&
from decaying. At the same time, we want the perturb
02431
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potentialV(r ) to be zero inside the nucleus so that it do
not modify the wave function in the interior. With this an
satz, expression~18! for E becomes

E'E02E drf0* ~r !V~r !f0~r !

1E
2`

`

dE8
U E drf0* ~r !V~r !fE8~r !U2

E02E81 i e
, ~22!

wheref0(r )5^FA21ua(r )uc0& is a spectroscopic amplitud
~i.e., a one-body overlap function involving bound man
body states! and fE8(r )5^FA21ua(r )uzE8& is an optical
model wave function~cf. the discussion in Refs.@10,11#!.
The projection operatorQ does not have to be included ex
plicitly, since the integral does not include the discrete st
f0(r ).

A miracle has occurred here. Due to the choice ofdH,
which is physically motivated, the expression has reduce
an effective one-body problem. All the many-body aspects
the problem are contained in the one-body overlap functio
f0(r ) and fE8(r ). We stress that the only approximatio
made so far is that second-order perturbation theory
used to justify replacingE with E0 in Eq. ~13!. For states
with narrow widths, this should be acceptable. We have
assumed thatuc0& is a product state or made any other a
sumptions regarding its structure.

Equation ~14! for uzE& can be written asEuzE&
5H00uzE&. In the neighborhood ofE5E0, the Hamiltonian
in this equation foruzE8& can be approximated as

dH8'2E dra†~r !uFA21&V00~r !^FA21ua~r !. ~23!

For an appropriately chosenV00(r ), the approximation made
here is the same as that of Eq.~2.15! in Ref. @8#. The basic
argument given there proceeds as follows: the eigenfunc
of H at resonance will be large when theAth particle is in the
nuclear interior. However, the stateuzE8& will be small due to
the projection operators inQHQ. It will look like the real
state in the exterior region but be suppressed in the inte
The form ofV00(r ) will ensure this if we take it to be 0 in
the exterior region and repulsive~greater thanE0) in the
interior region~see Fig. 3 in Ref.@8#!. This is the opposite of
what we did forV(r ) which was large in the exterior and
in the interior.

Despite its nice form, Eq.~22! is not useful until we
specify how to calculate the functionsf0(r ) and fE8(r ).
Following Ref.@11# we set up one-body equations for the
functions using the Feshbach projection operator techniq
We start with the exact scattering stateuFA& and write the
equation of motion for the corresponding one-body over
function ~which in this case is the Feshbach optical mod
wave function! and see how it is modified when the pertur
ing HamiltoniandH is added. The one-body overlap fun
tion for the exact scattering state is given by@13–15,11#
4-4
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Ef~r !5E dr 8dr 9^FA21ua~r !

3S H1HQF

1

E2QFHQF
QFH D

3a†~r 9!uFA21&N~r 9,r 8!21f~r 8! ~24!

5E dr 8H~r ,r 8!f~r 8!, ~25!

where PF5*drdr 8a†(r )uFA21&N(r ,r 8)21^FA21ua(r 8),
QF512PF , and the norm operator is N(r ,r 8)
5^FA21ua(r )a†(r 8)uFA21&. Since dHQF5QFdH50, it
follows thatf0(r ) satisfies the equation

Ef0~r !5E dr 8@H~r ,r 8!1N~r ,r 8!V~r 8!#f0~r 8!. ~26!

Note the explicit asymmetry of this Hamiltonian. Even in t
absence of inelastic processes it is not Hermitian. An an
gous potential ina emission has been strongly criticize
@16,17# in the study ofa emission. Two methods of addres
ing the problem were discussed in Ref.@11#. The first is to
define a new amplitudef̄(r )5*dr 8N(r ,r 8)21/2f(r 8) and
take

dH52E drdr 8dr 9a†~r !uFA21&

3N~r ,r 8!21/2V̄~r 8!N~r 8,r 9!21/2^FA21ua~r 9!.

~27!

The equation forf̄(r ) is then

Ef̄0~r !5E dr 8@H̄~r ,r 8!1d~r ,r 8!V̄~r 8!#f̄0~r 8!, ~28!

whereH̄(r ,r 8) is given in Ref.@11# as

H̄~r ,r 8!5E dr 9dr-N~r ,r 9!21/2H~r 9,r-!N~r-,r 8!1/2.

~29!

A similar development holds forfE(r ) and we obtain the
corresponding equation

Ef̄E~r !5E dr 8@H̄~r ,r 8!1d~r ,r 8!V̄00~r 8!#f̄E~r 8!. ~30!

The equations we find forf̄0(r ) andf̄E(r ) are quite remark-
able. As previously noted, we have reduced the many-b
problem to an effective one-body equation in which
many-body effects are contained inH̄(r ,r 8). The perturbing
potential is taken to be local in both cases. This is not re
an additional approximation, since the justifications giv
previously still hold.

Another way of getting a symmetric form for the add
tional potential is by using a projection operator given
Ref. @11#,
02431
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PF5E dr @a~r !1a†~r !#uFA21&^FA21u@a~r !1a†~r !#,

~31!

for which Eq.~26! reduces to the Dyson equation of man
body theory. For time reversal invariant states, the associ
norm operator reduces to the unity operator. Repeating
derivation with this new projection operator, we obtain

Ef0~r !5E dr 8@HM~r ,r 8!1d~r ,r 8!V~r 8!#f0~r 8!, ~32!

EfE~r !5E dr 8@HM~r ,r 8!1d~r ,r 8!V00~r 8!#fE~r 8!,

~33!

where HM(r ,r 8) is the mass operator that occurs in t
particle-hole Green’s function@11#. In general, there is no
simple relation betweenHM(r ,r 8) and H̄(r ,r 8). The equa-
tions for f(r ) and f̄(r ) are now formally the same. At this
point, we would expect the widths calculated with the
functions to be numerically similar. The only difference
the two treatments is the form ofV(r ) andV00(r ). When the
argument leading to the justification of perturbation theory
correct we expect both approaches to work equally w
Note also that, in general, bothHM and H̄ are complex,
since they involve optical potentials containing imagina
~absorptive! pieces.

The argument for Eq.~23! can be restated using the on
body functions defined above. The resonant state, whic
the solution of the exact Schro¨dinger-like equation
E0f0

true(r )5*dr 8H(r ,r 8)f0
true(r 8), grows exponentially as

we go into the classical forbidden region under the Coulo
barrier from the outside and the wave function is expon
tially large in the interior. On the other hand,fE(r ) coming
from uzE&, the solution of the many body-state defined w
the HamiltonianQHQ, is exponentially suppressed due
the orthogonality ofuc0& anduzE&. If the suppression is large
~i.e., the state under consideration is narrow!, the precise
form of uzE& in the interior is not important as it is essential
zero. The approximate form ofH00 is chosen so that the
approximateuzE& is also zero in the interior. As we will se
later, we do not needuzE& in the interior but only outside a
some radius,r 0.

VI. TWO EXPRESSIONS FOR THE WIDTH

The decay width is given in terms of the imaginary part
the pole location in Eq.~22!. We find

G0'2pU E drf0* ~r !V~r !fE0
~r !U2

~34!

or

G0'2pU E dr f̄0* ~r !V̄~r !f̄E0
~r !U2

, ~35!
4-5
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depending on whether we use the amplitudes with an ove
or the standard overlap functions. As discussed below,
expect the approximations leading to the two equations to
valid simultaneously, so that the resulting two expressi
for the width will agree. We stress again that the reduction
an effective one-body problem is not an approximation
emerges rather naturally from the formalism. In a pure o
body problem,f0(r ) and f̄0(r ) would be normalized to
unity whereas here they are normalized to the factorsAS0

andAS̄0, respectively. The normalization factors contain t
many-body aspects of the problem. For the standard ove
function f0(r ), this normalization is the well-known spec
troscopic factor~see also Ref.@11#!. It is useful to define

normalized one-body functionsf̂0(r ) and f̂̄0(r ) via f0(r )

5AS0f̂0(r ) and f̄0(r )5AS̄0f̂̄0(r ) ~i.e., *dr uf̂0(r )u2

5*dr u f̂̄(r )0u251). The wave functionsfE0
(r ) andf̄E0

(r )
describe scattering states and are normalized asymptoti
at larger. If we assume the one-body HamiltoniansH andH̄
to be local~more will be said about this later!, we can take
over verbatim the development given in Refs.@5,8,9#. The
only difference between the treatment presented there
the approach shown here is the presence of the factorS0

~for the standard overlap functions! and S̄0 ~for the function
with an overbar!. To make the dependence on these norm
ization factors explicit we rewrite the last equations as

G0'2pS0U E dr f̂0* ~r !V~r !fE0
~r !U2

~36!

and

G0'2pS̄0U E dr f̂̄0* ~r !V̄~r !f̄E0
~r !U2

. ~37!

To further understand the results, we peruse one partic
line of development. As previously noted, we takeV(r ) to be
zero inside the nucleus,V(r )50 for r<r 0. For r>r 0, we
have*dr 8HM(r ,r 8)fE(r 8)5EfE(r ), sinceV00(r ) vanishes
for large r. For definiteness, we follow Refs.@8,9# and take
r 0 to the maximum of the potential. For the example of flu
rine discussed below, this corresponds to about 5 fm. T
we write the integral in Eq.~34! as

I 5E dru~r 2r 0!f0* ~r !V~r !fE0
~r ! ~38!

5E drdr 8u~r 2r 0!f0* ~r !$HM~r ,r 8!

1@2E01V~r !#d~r ,r 8!%fE0
~r !, ~39!

with a similar equation holding for the quantity with an ove
bar. Naively one might expect this to vanish and indeed
would if the step functionu were not there. In the following
we shall consider the case in which the nonlocality
HM(r ,r 8) is small enough to be properly described by
local potential and an effective massmk(r ). In this case, one
has@18#
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HM~r ,r 8!5F¹ 2\2

2mk~r !
¹1VM~r !Gd~r ,r 8!. ~40!

In this equation,HM is correctly evaluated at the energyE0
of the scattered state, thereforemk(r ) accounts for the sole
spatial nonlocality and differs from the usual definition
effective massm* (r ) @19,20#. When Eq.~40! holds, the in-
tegral, Eq. ~39!, can be simplified through integration b
parts and, for spherically symmetric potentialsV(r ), VM(r ),
and effective massmk(r ), one obtains

I 5
\2

2mk~r 0!
@f r0* ~r 0!f rE0

8 ~r 0!2f rE0
~r 0!f8r0* ~r 0!#

~41!

5
\2

2m̄k~r 0!
@f̄ r0* ~r 0!f̄ rE0

8 ~r 0!2f̄ rE0
~r 0!f̄8r0* ~r 0!#,

~42!

where the wave functions are assumed to factorize asf(r )
5@f r(r )/r #Y,

m(u,w) and Y,
m(u,w) are spherical harmonic

functions of the angular variablesu,w. The prime denotes
the derivation with respect to the radial coordinater.

In deriving these last two equations we made an ad
tional approximation, namely that the potentials are loca
the vicinity of r 0 @or at least the nonlocality is restricted to a
effective massmk(r )]. The two equations will be simulta
neously valid only if the norm operator is local, i.e
N(r ,r 8)5N(r )d(r2r 8), in the vicinity of r 0. In this case,
m̄k(r 0)/mk(r 0)5N(r 0) and the two equations are identica
Sincer 0 is in the tail of the density distribution, one expec
the norm operator to be unity in its vicinity, which mean
that the two expressions for the width should give the sa
result for realistic models. This is verified numerically in Fi
1, where the functionsf r(r ) ~solid lines! andf̄ r(r ) ~dashed
lines! are displayed for the 3/22 and 3/21 decaying states o
17F at respective excitation energies of 4.64 and 5.00 M
~the proton threshold is at 0.60 MeV!. The functions are
calculated with the self-consistent Green’s function meth

FIG. 1. Radial part of the one-body overlap functionsf ~solid

lines! and of the auxiliary functionsf̄ ~dashed lines! for the lowest
3/22 and 3/21 states of 17F, calculated via the self-consisten
Green’s function method. For the 3/21 state, both functions are
nearly identical, and a phenomenological wave function, with
normalization chosen to be close to that of the microscopic w
functions, is shown for comparison~dash-dotted line!.
4-6
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of Refs. @21–23#. The 3/21 state is well explained by the
nuclear mean field approach and provides a typical exam
of a strong state, for whichS0'S̄0. The 3/22 state, on the
other hand, is a typical example of a weak state for wh
Ref. @23# givesS0'0.04 andS̄0'0.14. It is worth to empha-
size the difference between these two cases. For st
states, the quenching of the spectroscopic factor is du
both short-range correlations and the coupling to other e
tations of the system@22#. Nevertheless, they maintain
strong single-particle structure and the orbital occupanc
of the order of unity. Weak states, instead, have a more c
plicated structure and can be seen as collective excitation
their own rather than having a single-particle character. A
consequence, the one-body spectroscopic factor can be
order of magnitude smaller or less. In this case, the functi
f(r ) andf̄(r ) sample the one-body substructure in a diffe
ent way, whence the difference in their normalizations w
S̄0 larger thanS0 @11#. For 16O1p, the nuclear interaction
becomes negligible beyond 5 fm typically and Fig. 1 sho
that f(r ) and f̄(r ) are equal beyond this radius, whic
means that the norm operator is unity. In principle, there
no problem calculating the width from a microscopic mod
one may define two different functionsf(r ) and f̄(r ),

which have two different normalization factorsAS andAS̄,
respectively, but the estimate for the width will be the sa
with both of them. In fact, a similar formula would be val
for any amplitude of the formfn(r )5*dr8N(r ,r 8)nf(r 8)
for arbitraryn, sinceN(r ,r 8) is unity aroundr 0.

Let us emphasize that for the actual calculation of
width by the above formulas, a microscopic model based
the harmonic oscillator basis, as in Refs.@22,23#, may not be
the best choice, since the wave function is not expected t
very precise in the vicinity ofr 0. This is demonstrated in
Fig. 1, where the 3/21 resonant wave function of the phe
nomenological mean field Woods-Saxon potential of R
@24# is shown for comparison. The agreement with the m
croscopic wave function is good in the interior but deter
rates above 4 fm~where the approximation of the potenti
by a harmonic oscillator breaks down, see Fig. 2!. The dif-
ference between both models is particularly large in t

FIG. 2. Effective ~interaction1 centrifugal! potentials corre-
sponding to the wave functions of Fig. 1. The 3/22 potentials have
an,51 centrifugal term and a singularity around 3–4 fm; the 3/1

potentials have an,52 centrifugal term and are regular. The das
dotted line indicates the potential corresponding to the phenom
logical 3/21 wave function.
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case, since the 3/21 state is wide (G051.5 MeV); for nar-
row states, the harmonic oscillator approximation could
sufficient, a possibility which will be explored elsewher
Let us finally stress that the phenomenological mean fi
potential of Ref.@24# does not reproduce the 3/22 state be-
cause its structure, unlike that of the 3/21 state, is not well
approximated by an16O core plus a proton, but is rathe
predominantly a two-particle–one-hole state@22#.

Equations~36! and~37! indicate that there may be a ser
ous problem in extracting spectroscopic factors from m
sured decay widths. The standard method for determinin
spectroscopic factor involves dividing an experimental wid
by a single-particle width calculated with a phenomenolo
cal model. However, it is not cleara priori whether the phe-
nomenological wave functions are good approximations

f̂0(r ) and fE(r ), or to f̂̄0(r ) and f̄E(r ); hence, it is not
obvious whether dividing the experimental width by the r
sult of a single-particle calculation provides the spect
scopic factorS0 or the normalizationS̄0 of the auxiliary
function f̄(r ) ~or the norm of yet another one-body fun
tion!. Normally, one assumes in proton-emission studies
f̂0(r ) and fE(r ) can be equated with the wave function
obtained from phenomenological potentials~see, for ex-
ample, Ref.@7#!. On the other hand, in the context of somea

emission studies it has been argued very strongly thatf̂̄0(r )
and f̄E(r ) correspond to phenomenological wave functio
@16,17# . If the latter is true then the experiments would
sensitive toS̄0 rather than toS0. For strong states, with a
clear core-plus-particle structure, this is mainly a philosop
cal issue, sinceS0'S̄0 holds. For weak states, however,S0

and S̄0 can be significantly different from each other.
We have attempted to resolve the ambiguity outlin

above by calculating the effective local potentials cor
sponding tof(r ) andf̄(r ) and comparing them with typica
phenomenological potentials. This is done by inversion
the local~radial! Schrödinger equation:

Veff~r !5E1
\2

2m

f r9~r !

f r~r !
, ~43!

where the effective potentialVeff(r ) is the sum of the inter-
action potential~nuclear 1 Coulomb! and the centrifugal
term. The effective potentials corresponding to the rad
wave functions of Fig. 1 are shown in Fig. 2. For the stro
3/21 state (,52 centrifugal term!, the three potentials are in
reasonable agreement, except above 4 fm where the pote
extracted from the microscopic functions asymptotically a
proaches the harmonic oscillator potential that genera
them. For the weak 3/22 state (,51 centrifugal term!, the
potentials deduced fromf(r ) andf̄(r ) display a singularity
and are very different from traditional phenomenological p
tentials. This singularity occurs because the zeros off r(r )
and f r9(r ) occur at different radii. This is probably not a
artifact of the model but a real effect and arises from
relative sign of the 0 and 2\v contributions to the spectro
scopic amplitude. Let us remark that Eq.~43! assumes a

o-
4-7
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constant effective massmk(r )5m. We have checked tha
introducing a realistic effective mass does not lead to a s
pler potential for the weak state; more will be said about t
elsewhere. Let us finally emphasize that, though their e
gies are close to one another, the strong and weak s
correspond to very different potentials, which suggests th
strong energy dependence is a necessary feature for
potentials~see the discussion in the following section!. In
conclusion, this example shows that constructing relia
phenomenological local potentials for extracting spect
scopic factors from experimental cross sections is nontriv
Moreover, since the characteristics of the potential dep
strongly on the state, it is difficult to determine which no

malization (S0 or S̄0) would be extracted from a compariso
with the experimental data.

VII. ALTERNATIVE EXPRESSIONS FOR THE WIDTH

Let us now return to the expression for the decay wi
and establish a link with known results. In Refs.@5,8,9#, the
spatial derivatives were evaluated using a special form
V(r ) andV00(r ). In those references, these auxiliary pote
tials were chosen such that the total potential forf r0(r ) was
constant outside a given radius and the one forf rE0

(r ) was

constant inside. In Refs.@8,9#, the separation radius is at th
maximum of the potential barrier, whereas in Ref.@5#, the
advantage of using a radius of the order of the nuclear ra
~our r 0) is pointed out. For this last case, the width is th
given by

G0'2pF \2a

2mk~r 0!G
2

uf r0~r 0!f rE0
~r 0!u2, ~44!

wherea5A2mk(r 0)@V(r 0)2E0#/\2.
An alternative approach is to exploit the Wronskian fo

of Eqs. ~41! or ~42!. If V(r ) is zero for radii less than the
outer turning point andV00(r ) zero for radii greater than th
inner turning point, then there is a region wheref r0(r ) and
f rE0

(r ) satisfy the same differential equation. If the potent

is local, the Wronskian is a constant. Assuming a thick b
rier, there will be a region wheref r0(r ) is an irregular Cou-
lomb function, the regular Coulomb function having decay
away, and wheref rE0

(r ) is a regular Coulomb function

the irregular Coulomb function having decayed aw
All that is required is to determine the proportionali
constants. These have a simple expression for a con
effective massmk(r )5m: for f rE0

(r ) we have f rE0
(r )

5A2m/\2k0pF(k0r ), with k05A2mE0 /\2, while for
f r0(r ) the proportionality constant can be written
f r0(r 0)/G(k0r 0). Here,F(k0r ) andG(k0r ) are the regular
and irregular Coulomb functions, respectively, the Wron
ian of which equals2k0. The resulting width is then, as i
Ref. @5#,
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G0'
\2k0

m
uf r0~r 0!/G~k0r 0!u2. ~45!

This can be simplified further. The wave functionf r0(r ) is
normalized to the appropriate spectroscopic factorS0. We
can also consider the true scattering wave function at re
nance,f r0

true(r ). In the interior, it will behave likef r0(r )
while in the exterior region it will behave likeG(k0r ). Nor-
malizing it to G(k0r ) in the exterior region, we obtain th
following for the width:

G0'
S0\v0

E
0

r t
druf r0

true~r !u2
, ~46!

where v05\k0 /m is the asymptotic velocity. The exac
value of the upper limit on the integral is not crucial and w
take it to be the outer turning point~see numerical justifica-
tion below!.

Equation~46! can also be derived in a more transpare
way ~see also Refs.@25,26#!. Consider the Schro¨dinger-like
equation @H(E)2E#f(r ,E)50 for the overlap function.
Since the effective one-body equation we have been con
ering can depend on the energy, we keep an explicit ene
dependence in the Hamiltonian. Differentiating this equat
with respect toE, we find

@H~E!2E#
]f~r ,E!

]E
5F12

]H~E!

]E Gf~r ,E!. ~47!

Next we multiply byf* (r ,E) and integrate up to some ra
dius r l . SinceH(E) is, in general, complex and not Hermi
ian, f* (r ,E) should be replaced by the time reversed sta
If the potential is local in the vicinity ofr l , we can integrate
by parts on the left-hand side. Assuming spherical symme
this gives us

2
\2

2mk~r l !
Ff r* ~r l ,E!

]f r8~r l ,E!

]E
2f8r* ~r l ,E!

]f r~r l ,E!

]E G
5E

0

r l
drf r* ~r ,E!F12

]Hr~E!

]E Gf r~r ,E!, ~48!

where the prime denotes a partial derivative with respectr
and Hr(E) is the radial Hamiltonian. If we taker l to be
outside the range of nuclear force,f r(r ,E) can be written as

f r~r ,E! '
r .r 0

cosd~E!F~kr !1sind~E!G~kr !. ~49!

At a narrow resonance the phase shiftd(E) will be rapidly
varying, so we expect that the largest part of the ene
dependence will come from the phase shift and not from
Coulomb functions. The energy dependence of the Coulo
functions will be minimized if the radius is chosen to be ne
the outside turning point. For example, for larger the regular
Coulomb function will have a sin(kr) dependence. Differen
tiating with respect toE will give r (dk/dE)cos(kr), which
diverges for larger. As r decreases to the turning point, th
4-8
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asymptotic form for the wave function breaks down. Ho
ever, a similar argument using exponentials holds inside
turning points. Thus near the outside turning point we ha

]f r~r ,E!

]E
'

dd~E!

dE
@2sind~E!F~kr !1cosd~E!G~kr !#.

~50!

We have checked this relation numerically for Woods-Sax
plus Coulomb potentials and verified that for the widths le
then 15 KeV the error does not exceed 3%. That the rad
should be chosen near the outer turning point was also
firmed numerically. The Wronskian relation can now be wr
ten as

\2k

2mk~r t!

dd~E!

dE
'E

0

r t
drf r* ~r ,E!F12

]Hr~E!

]E Gf r~r ,E!,

~51!

where we have takenr l5r t to be the outside turning poin
radius.

At the resonant energy, we expect the energy variation
the phase shift to be a maximum so that the resonance en
occurs when*0

r tdrf r* (r ,E)@12]Hr(E)/]E#f r(r ,E) is a
maximum. At the resonance energy,dd(E0)/dE52/G0, and
we have

G0'
\v0

E
0

r t
drf r* ~r ,E0!F12

]Hr~E0!

]E Gf r~r ,E0!

, ~52!

where nowv05\k0 /m is the asymptotic value of the veloc
ity. For bound states, the spectroscopic factor can be wri
as

S05F E
0

`

drf r* ~r !f r~r !G Y
H E

0

`

drf r* ~r !F12
]Hr~E!

]E Gf r~r !J
~see Ref.@27#!, which does not depend on the specific n
malization of the overlap functionf(r ). By extending this
relation to define the spectroscopic factor for resonant sta
we recover Eq.~46!.

We finally note that expression~52! of the width is inde-
pendent of the choice off r(r ,E) or f̄ r(r ,E). Its denomina-
tor can be rewritten as

D5E
0

r t
drf r* ~r ,E!H ]

]E
@E2Hr~E!#J f r~r ,E!. ~53!

The amplitudes with an overbar are defined asf̄(r ,E)
5*drN(r ,r 8)21/2f(r ,E) and a corresponding expressio
for the Hamiltonian is H̄(E)5N 1/2@H(E)2E#N 1/21E.
Thus the denominator is invariant under this transformati
02431
-
e

e

n
s
s
n-
-

of
rgy

n

-

s,

,

as well as under a general transformation with an arbitr
power of N(r ,r 8). All that matters is thatHr(E) and
f r(r ,E) are consistent with one another. These wave fu
tions are phase equivalent and any of them can be used

VIII. DISCUSSION

We have embedded the elegant Gurvitz-Kalbermann
proach of proton emission@5,8,9# into a full many-body pic-
ture. We have reduced the formalism to an effective o
body problem and demonstrated that the decay width can
expressed in terms of a one-body matrix element multipl
by a normalization factor. At first sight, this result agre
with the standard procedure for extracting spectroscopic
tors from measurements via dividing an experimental wi
by a calculated single-particle width~see, for example, Ref
@7#!. The present work, however, clearly demonstrates t
this procedure for determining spectroscopic factors is o
valid if the phenomenological potential used to generate
single-particle width corresponds to the potential inHM @see
Eqs.~32! and~33!#. It is nota priori clear that this is actually
the case. In fact, the authors of Refs.@16,17# ~and prior to
that the authors of Ref.@28#! have argued strongly that th
phenomenological potential approximates the potential inH̄
@see Eq.~29!#. While the studies of Refs.@16,17# were car-
ried out fora decay, the arguments given there can be c
ried over to a description of the proton emission proce
Furthermore, Eq. ~52! suggests that *0

r tdrf r* (r )@1
2]Hr(E)/]E#f r(r ) is the appropriate observable that c
be extracted from proton-emission experiments.

Besides the ambiguity regarding whether the stand
spectroscopic factor or an auxiliary normalization is e
tracted from the experimental procedure, it has been dem
strated that constructing a reliable phenomenological po
tial is nontrivial. The situation is quite complicated, since t
interaction with the nuclear medium strongly depends on
initial state of the ejected proton. For states with a cle
core-plus-particle structure~i.e., with a large spectroscopi
factor!, traditional phenomenological potentials seem to p
vide good approximations to the nuclear mean field a
spectroscopic factors can be determined from prot
emission studies. In this case, the spectroscopic factor
tracted from the experiment can be safely compared to
results of nuclear many-body calculations~note also that for
largeS0 values,S0 andS̄0 are approximately equal@11# and
the distinction between the two approaches discussed
becomes irrelevant!.

For weak states, which have a more complicated ma
body structure, standard phenomenological potentials do
give a proper approximation to the nuclear medium,
shown by the radial shape of the 3/22 states in Fig. 2. Also,
as discussed in Ref.@11#, the dependence of the spectr
scopic factor on the energy derivative of the effective on
body Hamiltonian implies that the nuclear medium must
strongly energy dependent. This feature, which is missing
most phenomenological optical potentials, is also confirm
by the numerical results displayed in Fig. 2. Thus for we
states, simple potential models are probably not valid
4-9
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JIM AL-KHALILI et al. PHYSICAL REVIEW C 68, 024314 ~2003!
eitherf(r ) or f̄(r ). States that are neither weak nor stro
will also have to be dealt with on a case by case basis.

Sincef(r ) andf̄(r ) are identical for large radii, they ar
phase equivalent and elastic scattering experiments ca
distinguish between them. We conclude that additional
perimental input, together with an accurate derivation of
optical potential based on first principles, is required in or
to resolve the question regarding which one-body Ham
tonian is most appropriately approximated by a phenome
logical model.
se
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